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Abstract

In this work we analyse the similarities and differences between the equations

of motion for the center of mass and intrinsic angular momentum for isolated

sources of gravitational radiation obtained by two different formulations. One ap-

proach is based on the asymptotic formulation of the GR whereas the other relies

on Post-Newtonian methods. Several conclusions are obtained which could be

useful for further developments in both approaches.

1 Introduction

The recent detections of gravitational waves made by LIGO [1, 2, 3, 4] have increased

the interest in the study of binary systems and in the detection and characterization of

the gravitational radiation emitted by these compact sources. In these observatories,

the initial stage of the data analysis begins with the filtering of the measured signal.

To improve the signal-to-noise ratio of the detector, the data output is compared with

a bank of templates that represent the best theoretical predictions for the expected sig-

nals. The theoretical models that are used to construct these templates are based on

Post-Newtonian (PN) methods which link the dynamical variables of the system to the

emitted gravitational radiation in the non relativistic stage of the coalescence.

For these compact sources, it is very important to define the notion of center of

mass and spin since the energy and momentum carried away by the gravitational wave
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induce a recoil to the center of mass of the coalesced binary. Likewise, the spin of

the resulting black hole or neutron star depends on the emitted gravitational wave.

Although, care must be taken to define these notions, in the PN approximation one

starts with a Newtonian definition, since it is assumed that when the compact objects

are far away the gravitational radiation is negligible and the system is well described

by Newtonian orbiting particles. As the sources get closer one redefines these variables

using the available Hamiltonian for the required approximation. However, in the very

energetic regime a full GR definition should be given. Otherwise, one is at risk of

obtaining erroneous results for the final recoil speed or final spin of the resulting black

hole or neutron star. The problem lies in the impossibility of defining locally these

variables since the gravitational radiation gives a vanishing contribution to the stress

energy tensor, though it carries away energy, momentum and angular momentum.

On the other hand, using the notion of asymptotic flatness together with the in-

clusion of a 3-dim null boundary, called Null Infinity, one defines global variables for

the isolated system like the Bondi mass MB , linear momentum P i
B [5], and the mass

dipole-angular momentum two-formMµν . These global variables are constructed from

suitable integrals at null infinity of the available radiative fields. This "Gaussian" ap-

proach yields physically meaningful flux laws for the above mentioned variables. This

fact has been acknowledged in the PN approach and the flux laws derived for asymp-

totically flat spacetimes are used in the PN formalism[6]. Moreover, the relationship

between the local description of the motion of the sources and the Bondi mass, linear

and angular momentum is computed at every stage of the approximation procedure[6].

Nevertheless, it is not an easy task in the PN approach to define the center of mass

worldline, and relate its motion to the available global quantities defined at null infin-

ity. Many authors define the center of mass velocity as V i ≡ P i
B/MB . However, in

doing so one could be neglecting the contribution of the gravitational radiation to the

Bondi momentum. (The analogous definition of total linear momentum for interacting

charged particles explicitly contains the kinematical particle as well as the Maxwell

field contribution, see eq. (33.6) in ref. [7]). This in turn could give an erroneous result

when computing the recoil velocity in a given coalescence problem. One should also

mention that without an adequate definition of center of mass it is impossible to define

the intrinsic angular momentum of the system.

In a recent work, a definition of center of mass and intrinsic angular momentum

for isolated sources of gravitational radiation based on global quantities defined at null

infinity was given and their time evolutions were derived [8]. A key issue in the formu-

lation is the use of a special set of Newman-Unti congruences that foliate null infinity

as a one parameter families of cuts. Each foliation is associated with a worldline in

a fiducial Minkowski space called observation space. It was shown that for one such

foliation the associated mass dipole moment vanishes. Thus, the special worldline with

vanishing mass dipole moment is called center of mass. Moreover, the angular momen-

tum of this foliation is called intrinsic angular momentum. This formulation yields by

construction a regular worldline and the evolution equations for the center of mass and

spin are derived from the available Bondi evolution equations for the radiative fields at

null infinity. The whole construction is global and regular since by assumption all the

radiative fields are regular at null infinity. A non trivial task in this formulation is to

relate these global variables with the motion of sources in the spacetime and it is part of

ongoing research. In this regard, a comparison between similar variables that are used

in the PN and our approach should be of great help to obtain a robust approximation

scheme in both formulations.

It is then the purpose of this work to compare the evolution equations for the center
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of mass and intrinsic angular momentum in both formalisms. The first result is promis-

ing: both formulations yield identical results if one only keeps the quadrupole mode of

the radiative field (as we will see in the derived equations). This is somehow surprising

since the PN approach is based on the motion of the sources and the asymptotic formu-

lation is based on the behavior of the radiative fields at null infinity. Using this result as

a guideline we then compute the nontrivial deviation in both formulations. To do so, we

extend our earlier work since the original derivation only kept quadrupole terms. We

find that adding an octupolar contribution yields the first non trivial difference between

the formalisms. The slow motion approximation is also assumed in our approach since

the center of mass do not acquire relativistic velocities as a result of the gravitational

radiation emission. It is also necessary to compare our derivations with the PN results.

As a result of this approximation spin-velocity terms will be neglected.

The paper is organized as follows. In Section 2 we give a summary of our previ-

ous results and some mathematical tools needed for our constructions. In particular,

we introduce the dipole mass moment and total angular momentum vector for an iso-

lated source coming from the Linkage integral. In section 3 we derive the main results

obtaining the relationships between these global variables together with their time evo-

lution. In section 4 we compare our evolution equations with those coming from the

Post Newtonian formalism. Finally, we conclude this work with some remarks and

conclusions about the PN approach and our asymptotic formulation.

2 A brief summary of Asymptopia

In this section, we briefly review some results derived within the framework of asymp-

totically flat spacetimes that will be useful for this work.

The notion of an asymptotically flat spacetime [9], the Newman-Penrose formalism

[10], and the notion of mass dipole/angular momentum introduced by the Winicour-

Tamburino linkage [11] play a central role in our construction. A thorough review

about these formalisms can be found in the following references [9, 12, 13].

We first introduce two sets of coordinates labeled by (uB, rB, ζ, ζ̄), and (u, r, ζ, ζ̄)
to denote the Bondi and Newman-Unti (NU) coordinates respectively. In both sets,

(uB, u) represents the Bondi and the Newman-Unti time. These coordinates label foli-

ations of cuts of I +, the null boundary of the null infinity, and are used to identify the

null surfaces that intersect null infinity at the corresponding cuts. One then introduce

affine parameters rB and r along the null geodesics of the null surfaces now labelled

as uB = const. and u = const.. Finally, ζ = eiφ cot(θ/2), is the complex stereo-

graphic coordinate labeling the null geodesics of each null surface. Associated with

these coordinates one has also available the null tetrads,

(la, na,ma, m̄a), (1)

(l∗a, n∗a,m∗a, m̄∗a), (2)

here the ∗ denote the associated vectors with the NU system. The NU foliations deter-

mined by the condition u = const. are related to those of Bondi through the transfor-

mations,

uB = Z(u, ζ, ζ̄), (3)

rB = Z ′r, (4)
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where Z is a real function, and Z ′ denotes the ∂uZ . Moreover, these equations allow

to establish a relation between the sets of vectors. These vectors, or tetrad of vectors,

form a base of the spacetime, and the transformation law between these bases is given

by the following equations,

l∗a =
1

Z ′
[la −

L

rB
m̄a −

L̄

rB
ma +

LL̄

r2B
na], (5)

n∗

a = Z ′na, (6)

m∗

a = ma −
L

rB
na, (7)

m̄∗

a = m̄a −
L̄

rB
na, (8)

where

L(uB, ζ, ζ̄) = ðZ(u, ζ, ζ̄). (9)

The way in which this function is chosen is one of the main inputs of this work. We

demand that Z satisfy the regularized null cone (RNC) cut equation [8],

ð̄
2
ð
2Z = ð̄

2σ0(Z, ζ, ζ̄) + ð
2σ̄0(Z, ζ, ζ̄). (10)

A straightforward way to get this equation is to solve the linearized geodesic de-

viation equation for the future light cone from a point. It represents the Huygens part

of the intersection of the future light cone from a given point of the spacetime with

null infinity. In previous works [8, 14] we have discussed in detail about the RNC cut

equation and we have shown how to obtain a NU foliation from the null cone cuts of

null infinity. Extra details about the RNC cuts are given in [15].One should also men-

tion that the RNC cut equation coincides with the linearized L. Mason equation [16]

obtained following a completely different approach,

Another useful variables are twelve complex quantities called “Spin Coefficients”

and five complex scalars named “Weyl Scalars”. These complex scalars are built from

the Ricci rotation coefficients and from the contraction of the null vectors with the

Weyl tensor respectively. However, the most important scalars in our approach are

introduced below,

ψ1 ≃ ψ0
1

r4B
, ψ∗

1 ≃ ψ∗0
1

r4
, (11)

σ ≃ σ0

r2B
, σ∗ ≃ σ∗0

r2
. (12)

Here the Weyl scalar ψ0∗
1 is constructed from the NU tetrad (2) while ψ0

1 from the

tetrad (1). The variables σ0∗ and σ0 are respectively called the asymptotic NU and

Bondi shears. These quantities are related by the following equations [8, 17],

ψ0∗
1

Z ′3
= [ψ0

1 − 3Lψ0
2 + 3L2ψ0

3 − L3ψ0
4 ], (13)

σ0∗

Z ′
= σ0 − ð

2Z. (14)

For any stationary spacetimes, at a linearized level, the real and imaginary parts

of ψ0
1 capture the notion of the two-form that defines the dipole mass and angular
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momentum. Thus, for any asymptotically flat spacetimes a natural generalization of

dipole mass moment-angular momentum tensor arise from the Winicour-Tamburino

linkage [11] for a given a u = const. null foliation, which can be either NU or Bondi.

To obtain these components, it is quite convenient to define a complex vectorD∗
i +

i

cJ
∗
i

(see ref. [8, 18] for extra details) as,

D∗i +
i

c
J∗i = − c2

12
√
2G

[

2ψ0∗
1 − 2σ0∗

ð
∗σ̄0∗ − ð

∗(σ0∗σ̄0∗)

Z ′3

]i

. (15)

Now, in a Bondi system the last equation take the form,

Di + ic−1J i = − c2

12
√
2G

[

2ψ0
1 − 2σ0

ðσ̄0 − ð(σ0σ̄0)
]i
. (16)

It is possible to relate eq. (15) and (16) just using the transformation law introduced

before, see eqs. (13) and (14), to obtain the following equation,

D∗i(u) = Di(uB) +
3c2

6
√
2G

Re[ðZ(Ψ− ð
2σ̄0) + F ]i (17)

J i∗(u) = J i(uB) +
3c3

6
√
2G

Im[ðZ(Ψ− ð
2σ̄0) + F ]i (18)

where the complex function F is given by,

F = −1

2
(σ0

ðð̄
2Z + ð

2Zðσ̄0 − ð
2Zðð̄2Z)

−1

6
(σ̄0

ð
3Z + ð̄

2Zðσ0 − ð̄
2Zð3Z). (19)

Finally, we introduce the notion of Bondi mass and linear momentum, these equations

are usually written as [9]

[

ψ0
2 + ð

2σ̄0 + σ0 ˙̄σ0
]

|ℓ=0 = −2
√
2G

c2
M, (20)

[

ψ0
2 + ð

2σ̄0 + σ0 ˙̄σ0
]i

ℓ=1
= −6G

c3
P i. (21)

The superscript i denotes the three-vector associated with a tensorial spin-s decompo-

sition as we see in the next section.

3 Equations of motion for the center of mass and angu-

lar momentum

3.1 Approximations and assumptions

We have previously defined the notion of mass dipole moment and angular momentum

associated with a NU or Bondi congruence. In particular, eqs. (17)-(18) give a relation

between these variables. Introducing a tensorial spin-s spherical harmonics decompo-

sition; Y 0
0 , Y

0
1i, Y

0
2ij , etc.[19] and keeping up to quadrupole and octupole terms, we can
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expand the relevant scalars as,

σ0 = σij(uB)Y
2
2ij(ζ, ζ̄) + σijk(uB)Y

2
3ijk(ζ, ζ̄), (22)

ψ0
1 = ψ0i

1 (uB)Y
1
1i(ζ, ζ̄) + ψ0ij

1 (uB)Y
1
2ij(ζ, ζ̄) + ψ0ijk

1 (uB)Y
1
3ijk, (23)

Ψ = −2
√
2G

c2
M − 6G

c3
P iY 0

1i(ζ, ζ̄) + Ψij(uB)Y
0
2ij(ζ, ζ̄) (24)

+ Ψijk(uB)Y
0
3ijk(ζ, ζ̄).

The complex tensor σij (σijk ) represents the radiative quadrupole (octupole) con-

tribution of the gravitational wave. The real and imaginary parts of σij (σijk ) are

respectively called, the "electric" and "magnetic" parts.

Since the mass dipole moment should vanish at the center of mass position, the

conditionD∗ = 0 gives the position of the center of mass in a Bondi coordinate system

by evaluating the r.h.s. of eq. (17). Similarly, the angular momentum at the center of

mass position J∗i = Si is, by definition, the spin or intrinsic angular momentum of

the system. Finally, eq. (18) gives a relation between the spin and the total angular

momentum which will be obtained explicitly in the following subsection.

3.2 The center of mass and spin

The center of mass worldline X i(u) is obtained from (17) by demanding that the l.h.s.

vanishes on the u = const. cut when uB = Z1(u, ζ, ζ̄) is inserted in the r.h.s. of

the equation. Furthermore, since by assumption X i(u), σij
R (u), and σijk

R (u) are small,

also we introduce the first order solution of the RNC cut (10) as follows,

Z1 = u+ δu = u+ δu, (25)

with

δu = −1

2
X i(u)Y 0

1i +
1

12
σij
R (u)Y 0

2ij +
1

60
σijk
R (u)Y 0

3ijk (26)

and making a Taylor expansion of eqs. (17) and (18) up to first order in δu we get,

0 = Di +
c2

6
√
2G

Re[(ðΨ− ð
3σ̄0)δu]i +

3c2

6
√
2G

Re[(Ψ− ð
2σ̄0)ðδu+ F ]i (27)

and

Si = J i +
c3

6
√
2G

Im[(ðΨ − ð
3σ̄0)δu]i +

3c3

6
√
2G

Im[(Ψ− ð
2σ̄0)ðδu + F ]i, (28)

where F is given by (19).

Now, using the definition of δu, Ψ, σ̄0, and considering only linear terms in δu and

δu′ we obtain,

MX i = Di +
8

5
√
2c
σij
RP

j . (29)

Also from eq. (28) we can get the relation between the spin and the total angular

momentum as follows,

J i = Si + ǫijkXjP k +
137c3

168
√
2G

(σijk
R σjk

I − σijk
I σjk

R ). (30)
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3.3 Dynamical Evolution

The time evolution of Di and J i can be obtained taking one time derivative of eq. (16)

togethers with the equation for ψ̇0
1 [8]. Furthermore, the dynamical of the Bondi mass

and momentum P can be computed from the Bianchi identity for ψ̇0
2 . These equations

are given by,

Ḋi = P i +
3

7

c2√
2G

[

(σ̇ijk
R σjk

R − σijk
R σ̇jk

R ) + (σ̇ijk
I σjk

I − σijk
I σ̇jk

I )
]

, (31)

J̇ i =
c3

5G
(σkl

R σ̇
jl
R + σkl

I σ̇
jl
I )ǫijk +

9c3

7G
(σklm

R σ̇jlm
R + σklm

I σ̇jlm
I )ǫijk, (32)

Ṁ = − c

10G
(σ̇ij

R σ̇
ij
R + σ̇ij

I σ̇
ij
I )− 3c

7G
(σ̇ijk

R σ̇ijk
R + σ̇ijk

I σ̇ijk
I ), (33)

Ṗ i =
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk −
√
2c2

7G
(σ̇jk

R σ̇ijk
R + σ̇jk

I σ̇ijk
I ) +

3c2

7G
σ̇jlm
R σ̇klm

I ǫijk.(34)

These above equations are used to derive the equation of motion for the center of mass.

Starting from (29), and taking one time derivative it is posible to obtain the relation

between the center of mass velocity and the scalars at null infinity. Considering up to

quadratic terms, this equation reads,

MẊ i = P i+
8

5
√
2c
σ̇ij
RP

j+
3c2

7
√
2G

[(σ̇ijk
R σjk

R −σijk
R σ̇jk

R )+(σ̇ijk
I σjk

I −σ̇jk
I σ

ijk
I )]. (35)

Finally, taking one more time derivative of (35) and considering up quadratic terms one

obtains the equation of motion for the center of mass,

MẌ i − 8M

5
√
2c
σ̈ij
R Ẋ

j =
2c2

15G
σ̇jl
R σ̇

kl
I ǫ

ijk −
√
2c2

7G
(σ̇jk

R σ̇ijk
R + σ̇jk

I σ̇ijk
I ) (36)

+
3c2

7G
σ̇jlm
R σ̇klm

I ǫijk +
3c2

7
√
2G

(σ̈ijk
R σjk

R − σijk
R σ̈jk

R )

+
3c2

7
√
2G

(σ̈ijk
I σjk

I − σijk
I σ̈jk

I ).

Following the same steps for the angular momentum, we can write,

Ṡi = J̇ i +
137c3

168
√
2G

(σjk
I σjki

R )· − 137c3

168
√
2G

(σjki
I σjk

R )·

=
c3

5G
(σkl

R σ̇
jl
R + σkl

I σ̇
jl
I )ǫ

ijk +
9c3

7G
(σklm

R σ̇jlm
R + σklm

I σ̇jlm
I )ǫijk (37)

+
137c3

168
√
2G

(σjk
I σjki

R )· − 137c3

168
√
2G

(σjki
I σjk

R )·

4 A Comparison with the Post Newtonian formalism

In this section we compare our evolution equations with those coming from the Post

Newtonian formalism. The asymptotic formulation has exact equations of motion for

the total Bondi mass, linear and angular momentum of the isolated system. Further-

more, there is a well defined procedure to first obtain the center of mass vector and

spin and then derive their equations of motion. Although we have used a slow motion
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approximation and kept up to octupole contributions in a spherical harmonic decompo-

sition, our procedure can in principle be implemented for any order of approximation

and for arbitrary spherical harmonic contributions. Since the main goal of this work

is to compare our results with those coming from the Post Newtonian formalism it is

worth mentioning that in the Post Newtonian approach one builds up the loss due to

gravitational radiation valid up to the level of approximation considered since a priori

one does not have available an exact formula for the center of mass or intrinsic angu-

lar momentum. Thus, it is not an easy task to match orders of approximation in these

apparently dissimilar approaches to the emission of gravitational waves.

Nevertheless it is very useful to try to see whether or not they yield equivalent

equations of motion for a compact source emitting gravitational radiation. A matching

of the formulae could give a robust check for the formulations and the discrepancies

should be useful to detect possible sources of errors in the formalisms.

We compare below the evolution equations for the total mass, momentum and an-

gular momentum of a compact source of gravitational radiation. In both formalisms, a

dot derivative means derivation with respect with the retarded time.

The PN formalism also uses the Bondi radiative energy, linear and angular momen-

tum loss available for asymptotically flat space times [20, 21],

ĖPN = − G

5c5
U (1)ijU (1)ij − 16G

45c7
V (1)ijV (1)ij − G

189c7
U (1)ijkU (1)ijk

− G

84c9
V (1)ijkV (1)ijk (38)

Ṗ i
PN = − 2G

63c7
U (1)ijkU (1)jk +

16G

45c7
ǫijkU (1)klV (1)jl − 4G

63c9
V (1)ijkV (1)jk

+
1G

126c9
ǫijkU (1)klmV (1)jlm (39)

Ṡi
PN = − ǫijkG

( 1

c5
2

5
UklU (1)jl +

1

c5
32

45
V klV (1)jl

+
1

c7
1

63
UklmU (1)jlm +

1

c7
1

28
V klmV (1)jlm

)

, (40)

where in the above equations the quadrupole as well octupole terms have been

included.

Since both formalisms use the same equation for these global variables, making the

following identification of quadrupole and octupole terms

σij
R → −

√
2G

c3
U ij (41)

σij
I → 4

√
2G

3c4
V ij (42)

σijk
R → − G

9c4
U ijk (43)

σijk
I → G

6c5
V ijk (44)

one obtains identical expressions for the mass and linear momentum loss formulae.

This is not surprising since, as we said before, both approaches use the same Bondi

flux equations. However, as we will see below, this does not imply that the acceleration

or the time evolution of the center of mass are identical in both approaches.
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It is worth noting that in the PN formalism most, if not all, of the results are obtained

in the center of mass frame. In order to compare the acceleration of the center of mass

in both approaches we have to find the appropriate Bondi frame such that at a given

initial time u0 the system was not radiating and,

X i
0 = 0, Ẋ i

0 = V i
0 = 0 (45)

and therefore

P i
0 = 0, (46)

i.e., the initial Bondi momentum vanishes in our setup. Keeping up to quadratic terms

in the radiative shear we get directlly from (35),

MV i = P i +
3c2

7
√
2G

[(σ̇ijk
R σjk

R − σijk
R σ̇jk

R ) + (σ̇ijk
I σjk

I − σijk
I σ̇jk

I )], (47)

from which we obtain

V i = V i
PN +

3c2

7M
√
2G

[(σ̇ijk
R σjk

R − σijk
R σ̇jk

R ) + (σ̇ijk
I σjk

I − σijk
I σ̇jk

I )]. (48)

In the above equation we have used the recoil velocity of the center of mass that is

defined in the PN formalism as P i
B/MB. As one can see, the two velocities differ by

octupole (and higher) terms.

Integrating again yields a relation between the center de mass positions in both

formalism,

X i = X i
PN +

3c2

7M
√
2G

∫ T

−∞

[(σ̇ijk
R σjk

R − σijk
R σ̇jk

R ) + (σ̇ijk
I σjk

I − σijk
I σ̇jk

I )]dt. (49)

Regarding the evolution of the intrinsic angular momentum, the PN approach gives a

flux law for the angular momentum in the center of mass frame,

Ṡi
PN = − ǫijkG

( 1

c5
2

5
UklU (1)jl +

1

c5
32

45
V klV (1)jl

+
1

c7
1

63
UklmU (1)jlm +

1

c7
1

28
V klmV (1)jlm

)

. (50)

This is highly surprising since it has exactly the same r.h.s. as in eq. (32). It is worth

making a few comments regarding the above equation. First, eq. (32) is derived using a

specific definition of angular momentum based on linkages. There are many formulae

for angular momentum in general relativity, and all of them coincide if only quadrupole

terms are taken into account. Only the linkage formulation yields the r.h.s. of eq. (32).

It deserves further analysis to understand why the PN formalism yields the same r.h.s

as in the linkage formula for the angular momentum loss. The second point is more

subtle and deserves a closer look. It is tacitly assumed in the PN approach that the

center of mass frame corresponds to a particular Bondi cut at null infinity. However, it

has been shown that the intersection of the future null cone from a point in the space

time with null infinity is not a Bondi cut. Thus, the l.h.s. of the above equation should

not be called the time derivative of the intrinsic angular momentum. This issue can be

seen more clearly in eq. (30). When gravitational radiation reaches null infinity, even

if we set X i = 0 the Bondi angular momentum is not equal to the intrinsic angular

momentum since the cuts are different.
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Thus, there is a discrepancy between the angular momentum flux formulae given

by,

Ṡk = Ṡk
PN +

137c3

168
√
2G

(σjk
I σjki

R − σjki
I σjk

R )·. (51)

Directly from (51) it follows that,

∆Sk = ∆Sk
PN +

137c3

168
√
2G

(σij
I σ

ijk
R − σijk

I σij
R ) (52)

Note that both formulations conicide up to quadrupole terms. Note also that while in

the PN approach ∆Sk
PN does not mix different types of radiation terms, our equations

contains mixed products of "electric" and "magnetic" components of the Bondi shear.

5 Summary and Conclusions

The purpose of this note was to compare global results coming from two completely

different approaches to the motion of sources that emit gravitational radiation.

The PN approximation relies on the definition of a point particle in Newtonian me-

chanics and its generalization to non trivial spacetimes. The gravitational radiation is

computed in a coordinate system that is well defined near the sources and it is assumed

the observer is at a large but finite distance from the source.

The asymptotic formulation on the other hand, uses full knowledge of general rela-

tivity to derive exact equations of motion for global variables of an isolated system. A

non trivial task is to associate these global variables to the motion of a center of mass

or the time evolution of the intrinsic angular momentum. We recall that a gravitational

point particle cannot be defined in general relativity. Thus, the asymptotic formulation

relies on a congruence of cuts at null infinity to define a worldline in a fiducial space

with a Minkowski metric.

In some sense the two formulation should help each other since they are both strong

at opposite limits, one near the sources and the other one far away from them.

We ahve shown that the evolution equations for the global variables obtained in both

formulations have some similarities. In fact, both formulations yield identical results

if one only keeps the quadrupole mode of the radiative field. The difference arises one

including octupole and higher terms in the spherical harmonic decomposition of the

radiative field. It is thus, important to check if these differences are important and/or

measurable. We perform a simple check using a newtonian model of two coalescing

particles given in the Appendix.

Regarding the time evolution of the intrinsic angular momentum we find that they

differ by a non-vanishing term, even if we time average over a period of the gravi-

tational wave and this difference is of the same order of magnitude of the remaining

terms in equation (37). Furthermore, it is not easy to see where these terms should be

coming from in the PN approximation as far as the mixing between quadrupole and

octupole terms is concerned.

The equations of motion for the center of mass also have, in principle, a difference

between the two approaches. However, this difference might be zero or negligible for

binary coalescence. If one computes this difference in newtonian mechanics for two

point particles separated by a distance r in the adiabatic approximation and takes a

time average over a period, this difference vanishes. This follows from the formulae

given in the Appendix, where the quadrupole and octupole contributions used in the PN

10



formalism to describe black hole coalescence in circular orbits are explicitly obtained.

Thus, we should not have a difference between the two formalisms when averaging

over a period of the gravitational wave. We conclude that both formulations yield

similar results for the center of mass motion when considering black hole coalescence.

On the other hand, gravitational waves emitted by supernovae come from a com-

pletely different physical scenario and could give different answers. If so, this could

serve as a test for the formulations.

A Compact Binary System

In this appendix we derive the quadrupole and octupole moments for two spinning

objects with mass m1 and m2 in a circular orbit in the x-y plane, at distance r1, r2 (re-

spectively) from their common center of mass. The motion of the objects is considered

in the Newtonian approximation.

The mass parameters are given asm = m1+m2, δm = m1−m2 and the symmetric

mass ratio is given by η = m1m2/m
2.

We define −→x = −→r 1 − −→r 2 and rs = |−→x | to be the relative vector and separation

between the particles.

The motion of the two objects in the center of mass frame is equivalent to the

motion of a particle of reduced mass µ, the mutual action of the force that describes the

mutual interaction, the force of attraction between two masses separated by a distance

rs = r1 + r2. If this particle describes a circular motion of radius rs, its acceleration

is Ω2rs. Newton second law is written.

µΩ2rs =
Gm1m2

r2s
(53)

and then the angular frequency of the orbit is,

Ω =
(Gm

r3s

)1/2

. (54)

In terms of Ω we can write,

−→r 1 =
M2

M
rs(cosΩt, sinΩt) (55)

−→r 2 = −M1

M
rs(cosΩt, sinΩt) (56)

the position and relative velocity is,

−→x = −→r 1 −−→r 2 = rs(cosΩt, sinΩt) (57)

−̇→x = −→v = rsΩ(− sinΩt, cosΩt). (58)

From [22] o [21], we have the following expressions for the quadrupole and oc-

tupole moments,

IijN = ηmx<ij> (59)

IijkN = −ηδmx<ijk> (60)

J ij
N = −ηδmǫab<ixj>avb = −δm

m
L<ixj> (61)

J ijk = η(1− 3η)mǫab<ixjk>avb = (1− 3η)L<ixjk>. (62)
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In the main text of this work a comparison is made using the mass parameters of the

collision of two black holes, recently detected by LIGO [1]. In this binary system the

mass parameters are,

M1 = 36M⊙ (63)

M2 = 29M⊙ (64)

MF = 62M⊙ (65)

η =
M1M2

M2
≈ 16 (66)

δm = 7M⊙. (67)

With these mass parameters, the quadrupole, octupole radiative moments are

IijN ≈ 1040M⊙

[

xixj − 1

3
δijx

2
]

(68)

IijkN ≈ −112M⊙

[

xixjxk − 1

5
x2(δjkx

i + δikx
j + δijx

k)
]

(69)

J ij
N ≈ = −112M⊙

[1

2
(ǫabixjxavb + ǫabjxixavb)− 1

3
δijǫ

kabxavbxk
]

(70)

J ijk
N ≈ −48880M⊙

[1

3
(Lixjxk + Ljxkxi + Lkxixj)

− 1

15
x2(δijL

k + δkjL
i + δikL

j) (71)

− 2

15
Laxa(δijx

k + δkjx
i + δikx

j)
]

.

Explicitly the non-zero radiative moments remain,

IzzN = −1040
M⊙r

2
s

3
(72)

IxxN = 1040
M⊙r

2
s

6
[1 + 3 cos(2Ωt)] (73)

IyyN = 1040
M⊙r

2
s

6
[1 − 3 cos(2Ωt)] (74)

IxyN = IyxN = 1040M⊙r
2
s [sinΩt cosΩt] (75)

IxxxN = −112
M⊙r

3
s

2
cosΩt[−1

5
+ cos 2Ωt] (76)

IxxyN = IxyxN = IyxxN = −112
M⊙r

3
s

10
sinΩt[3 + 5 cos 2Ωt] (77)

IxyyN = IyxyN = IyyxN = −112
M⊙r

3
s

10
cosΩt[3− 5 sin 2Ωt] (78)

IxzzN = IzxzN = IzzxN = 112
M⊙r

3
s

5
cosΩt (79)

IyyyN = 112
M⊙r

3
s

2
sinΩt[

1

5
+ sin 2Ωt] (80)

IyzzN = IzyzN = IzzyN = 112
M⊙r

3
s

5
sinΩt (81)
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Jxz
N = Jzx

N = −112
M⊙r

3
s

2
Ω cosΩt (82)

Jyz
N = Jzy

N = −112
M⊙r

3
s

2
Ω sinΩt (83)

Jxyz
N = Jxzy

N = Jyxz
N = −48880

M⊙r
4
s

3
Ω sinΩt cosΩt (84)

Jyzx
N = Jzxy

N = Jzyx
N = −48880

M⊙r
4
s

3
Ω sinΩt cosΩt. (85)

Using the above formulae and inserting the relevant terms in the center of mass

equation of motion one then concludes that for this binary system both formulations

yield similar results when taking an average value over a period.
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