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1 Instituto de Astronomı́a Teórica y Experimental (IATE), CONICET, Observatorio Astronómico de Córdoba,
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ABSTRACT

We present new results on gravitational lensing over cosmological Robertson-
Walker backgrounds which extend and generalize previous works. Our expressions
show the presence of new terms and factors which have been neglected in the litera-
ture on the subject. The new equations derived here for the optical scalars allow to
deal with more general matter content including sources with non Newtonian compo-
nents of the energy-momentum tensor and arbitrary motion. Our treatment is within
the framework of weak gravitational lenses in which first order effects of the curvature
are considered. We have been able to make all calculations without referring to the
concept of deviation angle. This in turn, makes the presentation shorter but also al-
lows for the consideration of global effects on the Robertson-Walker background that
have been neglected in the literature.

We also discuss two intensity magnifications, that we define in this article; one
coming from a natural geometrical construction in terms of the affine distance, that
we here call µ̃, and the other adapted to cosmological discussions in terms of the
redshift, that we call µ′. We show that the natural intensity magnification µ̃ coincides
with the standard angular magnification (µ).
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1 INTRODUCTION

This work generalizes the results of reference Gallo &
Moreschi (2011) to the cosmological framework in which
a Robertson-Walker (R-W) geometry dominates the large
scale structure of the spacetime. Therefore, we present new
expressions for the lens optical scalars explicitly in terms of
the local curvature associated to compact lenses in a cos-
mological scenario; and for the case of spherically symmet-
ric lenses, we express the scalars directly in terms of the
energy-momentum tensor distribution. We make no a priori
assumptions on the nature of the lens, so that the new equa-
tions we present here admits a very general energy-matter
content. In particular, they show the contribution from com-
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ponents of the matter distribution that have been neglected
previously.

The Universe is filled with objects and systems in mo-
tion, like black holes that have received a kick after a co-
alescence of a binary systemTichy & Marronetti (2007);
Baker et al. (2008); Civano et al. (2012); Gerosa & Moore
(2016), galaxies in a clusterLokas & Mamon (2003), moving
voidsLambas et al. (2016), etc. It is therefore important to
have at hand a formalism that allows to study systems of
gravitational lenses with motion. We therefore have made
no assumption on the nature of the motion of the lenses and
present new general expressions for the observable optical
gravitational lens scalars, that improve on previous works on
the subject of moving gravitational lensKopeikin & Schaefer
(1999); Frittelli (2003); Wucknitz & Sperhake (2004).

We also present other new results including the relation
between the intensity magnifications, that we define here,
with the standard angular magnification.
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2 E.F.Boero and O.M.Moreschi

In our previous workGallo & Moreschi (2011) on grav-
itational lenses, we have presented new general expressions
for the bending angle and the optical scalars for a congruence
of null geodesics in the regime of weak gravitational lensing
over a flat background. These formulas have the advantage
of being explicitly gauge invariant and allow us to include
more general forms of matter distributions than those dis-
cussed in most standard references on the subjectSchneider
et al. (1992); Seitz et al. (1994); Wambsganss (1998); Bartel-
mann (2010).

Systems involving gravitational lens effects appear nat-
urally in the cosmological context. And although the stan-
dard works on gravitational lens, based on a flat background,
are useful; new subtle issues arise when the gravitational
lens is studied in the cosmological framework. We improve
on the tools shown in Gallo & Moreschi (2011), and so pro-
vide with new expressions, for weak gravitational lenses, that
are useful for the study of the matter content in cosmologi-
cal astrophysical systems. Indeed, the expressions presented
below are a tool to study in more detail the missing mass
problem; since we present equations describing gravitational
lensing that describe more general situations; enabling the
characterization of more general energy momentum tensors,
in contrast to the usual Newtonian description of the dark
matter phenomena. Our expressions do not neglect space-
like components of the energy momentum tensor. In fact,
we have seen in the past that there is some suggestive evi-
dence that the inclusion of the up to now neglected spacelike
components of the energy momentum tensor turns out to be
important for the study of dark matter phenomena as it
was shown in Gallo & Moreschi (2012) where a simplified
model with this features allows for excellent description of
the matter content in clusters of galaxies, and for the veloc-
ity rotation curves in galaxies.

It is probably worthwhile to mention that all the as-
trophysical observations of the gravitational lens optical
scalars, namely of the expansion and the shear, give results
whose values are much less than the unit value. For this
reason one is convinced that pursuing calculations of weak
gravitational lenses taking into account the linear effects of
the curvature is enough to explain the observational data. In
any case our starting point will be the exact geodesic devia-
tion equation; which happened to be linear in the curvature.
To be more precise, below we will present a decomposition
of the curvature in terms of a background term, that we will
call QB , and an extra term, that will call QL. By weak grav-
itational lens effects we mean those that are deduced from
the geodesic deviation equation at first order in the extra
terms of the curvature fields: namely, QL. In this decompo-
sition of the total curvature in terms of the background plus
a lens term, it is not assumed that the additional term must
be small in any sense. For example, QL could be the fields
that represent locally a Schwarzschild black hole, or a 90%
deficit in the cosmological density in the case of a void. That
is we are not assuming at this stage any kind of perturbation;
it is just the representation of an exact geometry, without
perturbation, in terms of a decomposition with respect to
a chosen background. The details and implications of this
statement will become clear along the article. However we
advance that the effects of the background curvature will
be calculated exactly; so that our final equations will have
quadratic terms of order O(QB QL).

In this work, our main focus is to broaden the range
of validity of previous results and discussions to the case
in which the background is within the family of Robertson-
Walker geometries, proceeding in a systematic way without
introducing early assumptions of Newtonian character and
further preconditions related to the observational configura-
tion such as the well known approximation of thin lenses.
Regarding this last point, here, instead we have chosen to
consider such approximations after a general treatment of
the exact equations governing the distortion of the images
in the cosmological background. The new improvements that
we introduce require subtle but significant modifications in
the treatment of the subject, that will be described along the
article. In particular, whenever appropriate we will mark
the difference with the simplistic approach to the subject
in which all the physics of gravitational lenses is encoded
in the quotient of the projected surface mass density by
the so called critical mass density, normally denoted by
Σ/ΣcrSchneider et al. (1992, 2006). An interesting new re-
sult is for example the presence of a redshift factor correcting
the widely used expressions of thin lenses as appears in eq.
(51), part 1 of reference Schneider et al. (2006) or eq. (16)
of reference Wambsganss (1998) (See section 9). Our find-
ings are relevant to works concerning tests of fundamental
geometrical relations in observational cosmology which are
based on the use of gravitational lensing; see for example
Holanda et al. (2016); Liao et al. (2016).

Let us mention here briefly other differences of our ap-
proach to the subject of cosmic lenses with the standard
references. It has been suggested and is also widely believed
that when describing the gravitational lens optical scalars in
the cosmological framework one only needs to replace, in the
flat background discussions, any appearance of distance with
the area distance, or angular diameter distanceSchneider
et al. (2006); we point out below that this imposes severe lim-
itation on the class of systems one can treat with this tech-
nique, and provide with the general equations. In other occa-
sions the presentation of gravitational lens physics relays on
the concept of effective local index of refractionBartelmann
& Schneider (2001) which can only be defined in very espe-
cial casesSchneider et al. (1992). In contrast, our approach
is to deduced the most general gravitational lens equations
that can be used in the cosmological framework. In the pro-
cess of obtaining these equations it is essential to review the
main concepts involved in the problem of gravitational lens
so that gauge invariant quantities can be derived without
the use of initial simplifying assumptions. For this reason
we spend some time below to make this review; which al-
lows us for example to claim that the only sensible notion
of distance that one should use when referring to observ-
ables in problems involving gravitational lenses is the affine
distance as defined by the observer. This does not contra-
dict the use of area distance in calculations, rather it is in
contrast to the claim that one should only use the angu-
lar diameter distance in gravitational lens discussions in the
cosmic framework. We therefore emphasize along the article
that the derived concepts coming from gravitational lens ef-
fects concern always to comparisons referring to same affine
distances. This approach lead us to define the concept of
intensity magnification that to our knowledge has not been
used in the past.

In section 2 we spent some time reviewing the basic con-
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Gravitational lens optical scalars... 3

cepts, also with the intention to set the notation and lan-
guage used in the rest of this paper. In section 3 we discuss
null geodesics in R-W geometry and coordinates adapted to
the observations. Section 4 contains a discussion of the dif-
ferent notions of distance appearing in cosmological studies
together with the relation among them. We discuss differ-
ent notions of magnifications in section 5. Next, in section 6
we present the expression for the cosmological convergence,
valid for arbitrary angular aperture and without approxi-
mations, when the R-W geometry is considered as a gravi-
tational lens. The appearance of an additional lens over the
R-W background is discussed in section 7; where our gener-
alized expression are presented. In this section the presen-
tation deals with compact lenses of small extension in com-
parison with the cosmological dimension traversed by the
photons; and the calculations of the optical scalars are car-
ried out within the framework of weak gravitational lenses;
in which first order effects of the curvature are used. Sec-
tion 8 deals with the axially symmetric case. In section 9
we present the usual approximation of thin lenses; while in
section 10 the equations for a static spherically symmetric
lens are written in its most general form. Final comments
are included in section 11. Lastly, in the appendix we include
the geometrical structure of the cosmological background in
terms of the less common presentation associated to a null
tetrad which is widely used in our approach.

2 GRAVITATIONAL LENSES

2.1 Preliminaries

The first thing to do is to agree in the language one would use
to describe the phenomenology of gravitational lens effects.
The basic idea one has in mind is depicted in figure 1; where
it is sketched the situation of an observer, at the bottom
of the figure, receiving light from a source at the furthest
surface, which is affected by a gravitational lens, along the
path of the rays.

In the discussion of the gravitational lens effects coming
from an homogeneous cosmological spacetime, one would not
have a lens at a particular distance, since the whole space-
time acts as a lens; however we will retain the basic notions
for the observed angle θ and would observe angle β; where
the word ‘would’ refers to what the astrophysicist would ex-
pect, if there where no gravitational lens effect, and therefore
no curvature.

In any case, one can use the standard definitions of con-
vergence and shear, that comes from the relation of these
angles.

Given a related pair of directions, represented by angles
(β, θ), one can consider a small variation from them, whose
difference will be related by a linear relation. In the sphere
of directions, they can be expressed as:

δβa = Aab δθb, (1)

where the matrix Aab is in turn expressed by

Aab =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
; (2)

where the optical scalars κ, γ1 and γ2, are known as con-
vergence κ and shear components {γ1, γ2}, and have the
information of distortion of the image of the source due to
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Figure 1. This graph shows the basic and familiar angular vari-

ables in terms of a simple flat background geometry. The letter
s denote sources, the letter l denotes lens and the observer is

assumed to be situated at the apex of the rays.

the lens effects. In fact the shear is normally represented by
the complex quantity γc = γ1 + iγ2.

It should be emphasized that since the definition of δβa

and δθb refer to two different geometries, one must say at
what distance is the source in both cases. The calculations
of the gravitational lens effects are carried out using as fun-
damental variable the affine distance λ from the point of
observationGallo & Moreschi (2011), and with respect to
the four velocity of the observer. This point is also related
to the notion of angular diameter distance, that we will dis-
cuss again below for the case of homogeneous spacetimes;
but here we will only use the notion that a rod of length δl
which is observed to subtend an angle δφ defines the angular
diameter distance DA by:

δl = DAδφ. (3)

For each spacetime one has one notion of observed angular
diameter distance. In the above equation, one assumes the
observation of some object of size δl, so that one would have

δl = DA(η)δβ; (4)

and

δl = DA(g)δθ; (5)

where η is the flat metric and g the real physical metric.
In Minkowski spacetime the angular diameter distance co-
incides with the affine distance, namely: DA(η) = λ. In a
general spacetime, with metric g, one has the source at the
affine distance λs; therefore, in order to make the compari-
son in equation (1) one takes λs = λ.

2.2 The null geodesic congruence

Here we provide with a brief summary of the essentials equa-
tions needed to the treatment of gravitational lensing.

MNRAS 000, 1–23 (2017)



4 E.F.Boero and O.M.Moreschi

Let u be an scalar function such that the level sets
u =constant denote a family of null hypersurfaces; then we
define the vector field `a from the one-form

`a = ∇au = (du)a; (6)

which satisfies

`a`a = 0, (7)

and

`a∇a`b = 0. (8)

Therefore, there is a natural radial affine function r, given
by

`a =

(
∂

∂r

)a
. (9)

Let us note that by construction this congruence is twist
free.

In our construction u =constant will characterize our
past null cone.

The way in which the null function u grows to the future
is normalized by the condition

va`a = 1; (10)

where va is the observer’s 4-velocity. This condition implies
that we are choosing `a to be future pointing; and it also fixes
the scale of the affine parametrization, but it still remains a
freedom associated to the choice of origin; or equivalently the
freedom to make a translation in the value of r, for each null
direction in the congruence. We will fix below this freedom
by taking the natural choice which correspond to set r = 0
at the apex of the cone.

In what follows it will be useful to refer the discussion
to a null tetrad adapted to the past null cone of the observer.
The first null vector in our tetrad will be `a in the way we
have just defined. The other vectors are two spacelike vector
fields ma and m̄a tangents to the surfaces r =constant and
u =constant, and satisfying

mam̄a = −1; (11)

and the last null vector will be denoted as na which is chosen
orthogonal to ma and m̄a and satisfying

na`a = 1. (12)

2.3 The geodesic deviation equation

The main object for the quantification of the optical dis-
tortions is the deviation vector ςa which describes the be-
haviour of the congruence by computing the local separation
of different geodesics. By definition it satisfies the condition

L` ς
a = 0; (13)

that is, the Lie derivative along `a vanishes.
The equation that provides us with the information

about the distortion of images is the geodesic deviation equa-
tion for the deviation vector ςa along the congruence with
tangent `a; namely

`a∇a
(
`b∇bςd

)
= R d

abc `
aςb`c, (14)

v

l

s

v

o

Figure 2. This graph shows schematically a spacetime diagram

with the location of the observer “o”, with its velocity, a source

“s”, with its velocity, and the trajectory of a photon with null
vector `.

where R d
abc denotes the Riemann tensor. This equation is

obtained by taking a second covariant derivative to the de-
viation vector.

The deviation vector can be expressed as

ςa = ςm̄a + ς̄ma; (15)

and using the vector X build up from the components {ς, ς̄};

X =

(
ς
ς̄

)
; (16)

equation (13) can be written in the following form as

`(X ) = −PX , (17)

where the matrix P is

P =

(
ρ σ
σ̄ ρ̄

)
, (18)

and ρ, σ are the spin coefficients in the GHPGeroch et al.
(1973) notation which correspond respectively to the expan-
sion and the shear of the congruence under study. We would
like to notice that the symbol for the spin coefficient ρ should
not be confused with the symbol % that we will later use for
denoting energy density.

It can be seen that the matrix P satisfies

`(P ) = P 2 +Q; (19)

where Q is the matrix

Q =

(
Φ00 Ψ0

Ψ̄0 Φ00

)
; (20)

whose elements are the curvature components:

Φ00 = −1

2
Rab `

a `b , (21)

and

Ψ0 = Cabcd `
amb `cmd ; (22)

denoting with Rab the Ricci tensor and Cabcd the Weyl ten-
sor. The equations that describe the behavior of, what we
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now call the spin coefficients, have been discussed exten-
sively in the literature, including the seminal works of R.K.
SachsSachs (1961).

The second order differential equation coming from the
geodesic deviation equation is; using this notation:

` (` (X )) = −QX . (23)

Working with this equation has the advantage that it is ex-
plicitly given in terms of the curvature components.

3 NULL GEODESICS IN
ROBERTSON-WALKER SPACETIMES

As it is well known R-W metrics are geometries which posses
spatially homogeneous and isotropic symmetryWald (1984)
and play a fundamental role in our standard description of
the Universe at its largest scales.

The line element of such geometries can be cast in the
following form

ds2 = dt2 −A2(t)dL2
k; (24)

where t is the so-called cosmological time, i.e. the proper time
associated to the family of fundamental observers which per-
ceives isotropy and dL2

k is the line element for the spacelike
surfaces orthogonal to the preferred observers. As a conse-
quence of the symmetries dL2

k must to be one of the three
possible 3-Riemaniann metrics of constant curvature. We
distinguish them by the subindex k which takes the values
k = 1, k = 0 and k = −1 corresponding respectively to a
3−sphere, a 3−plane and a 3−hyperboloid. Three equivalent
and useful ways of write dL2

k are:

dL2
k = dχ2 + f2

k (χ)dΣ2, (25)

dL2
k =

dr2

1− kr2
+ r

2dΣ2, (26)

dL2
k =

1(
1 + k

4
r2
)2 (dr2 + r2dΣ2) ; (27)

where in equation (25) fk(χ) is given by

fk(χ) =


sinh(χ), for k = −1, 0 6 χ <∞,
χ, for k = 0, 0 6 χ <∞,
sin(χ), for k = 1, 0 6 χ 6 π.

(28)

The two-dimensional line element dΣ2 is the common metric
of the unit 2−sphere, which is often found in one of the two
following forms

dΣ2 = dθ2 + sin2(θ)dφ2, (29)

dΣ2 =
4(

1 + ζζ̄
)2 dζdζ̄ ≡ 1

P 2
0

dζdζ̄; (30)

where (θ, φ) are usual angular coordinates and
(
ζ, ζ̄
)

com-
plex stereographic coordinates on the complex plane.

3.1 Past light cone of preferred observers and
associated null tetrads

Regarding to the information inferred from observations in
our past light cone one realizes that the relevant geometrical
quantities for the description of observations are the null
rays reaching the observer and the angular deviations of such

rays. All observable quantities are constructed from them.
Then, it is necessary to have at hand an adequate description
in terms of the past light cone of the observers.

Associated to the observer one has its proper time τ ;
which for co-moving observers coincides with the standard
coordinate time t. Then, the 4−velocity va of the observer,
can be expressed as

va =

(
∂

∂t

)a
. (31)

In the following we will introduce a coordinate system
which is well adapted to the discussion that follows. We be-
gin by labeling each past light cone with a null function u
which takes constant values on the cones. In particular, this
means that the value of u can be set by the proper time τ ;
an we choose the relation

du

dτ
= 1; (32)

at the origin; but one can also use another specification for u
that is not based on the synchronization of the null function
with the proper time of the observer. In fact, we will use
below a definition based on the conformal structure of the
metric. But in any case, the physically relevant null geodesic
congruence associated to the observer, can be expressed in
terms of this null function by (6).

Let us note also that this setup can be generalized for
an arbitrary world line γ′0 with 4−velocity v′a in terms of a
general proper time τ ′.

3.1.1 The conformal advanced null function ũ

Let us introduce another null function which is very useful
for the calculations. We define ũ from

dũ =
dt

A(t)
+ dχ; (33)

where we have used tilde in order to differentiate it from the
natural choice presented before.

This choice is appropriated to the study of the asymp-
totic behaviour of the geometry Moreschi (1990) but it is
also helpful in many computation in comparison with the
choice u = τ .

The next step is to complete the coordinate system
putting coordinates on each past light cone. In this process
also a null tetrad (˜̀a, m̃a, ˜̄ma, ña) associated to this con-
struction can be selected.

First let us consider the vector ˜̀a determined by the
one-form

˜̀= dũ; (34)

which is geodesic and affinely parametrized, since ũ is null.
Now, let r̃ be the affine parameter along the cone asso-

ciated to ˜̀a, starting from the observer. This will be our sec-
ond coordinate. Then, a pair of null complex vectors m̃a and
˜̄ma can be chosen to be tangent to the surfaces ũ =constant
and r̃ =constant and satisfying

m̃a ˜̄ma = −1. (35)

To complete our coordinate system we label the genera-
tors of the null cone by the stereographic coordinates

(
ζ, ζ̄
)
.

MNRAS 000, 1–23 (2017)



6 E.F.Boero and O.M.Moreschi

Finally, we also complete our tetrad with a null vector ña

chosen such that

ñam̃a = 0, (36)

ña ˜̀
a = 1. (37)

Explicitly, in term of the usual coordinates (t, χ, ζ, ζ̄),
the vector field ˜̀a is expressed as:

˜̀=
1

A(t)

(
∂

∂t

)
− 1

A2(t)

(
∂

∂χ

)
; (38)

while for the other tetrad vectors we have:

m̃ =

√
2P0

A(t)fk(χ)

(
∂

∂ζ

)
, (39)

˜̄m =

√
2P0

A(t)fk(χ)

(
∂

∂ζ̄

)
, (40)

ñ =
A(t)

2

[(
∂

∂t

)
+

1

A(t)

(
∂

∂χ

)]
. (41)

The line element (24) with the choice (25) can be ex-
pressed in terms of the new coordinate system

(
ũ, r̃, ζ, ζ̄

)
.

We will do this with an intermediate step; using eq.
(33) one can express the geometry in terms of the coordinate
system (ũ, χ, ζ, ζ̄) to find:

ds2 = A2(t)
(
dũ2 − 2dũdχ− f2

kdΣ2) ; (42)

where here it is important to note that the vector ˜̀ is ex-
pressed as

˜̀= − 1

A2 (t(ũ, χ))

(
∂

∂χ

)
. (43)

Since also ˜̀= ∂
∂r̃

, we also have the relation

∂χ

∂r̃
= − 1

A2 (t(ũ, χ))
; (44)

so we take

r̃ = −
∫ χ

0

A2 (t(ũ, χ′)) dχ′ =

∫ t(ũ,χ)

t(ũ,χ=0)

A(t′)dt′. (45)

This is the relation that we need to cast the line ele-
ment in terms of the coordinates

(
ũ, r̃, ζ, ζ̄

)
since now we

can differentiate to obtain

dr̃ =

(
A2(t(ũ, χ)

)
−A2(t0)

)
dũ−A2(t(ũ, χ)

)
dχ; (46)

where we use the notation A(t0) to mean

A(t0) ≡ A
(
t(ũ, χ = 0)

)
; (47)

where it should be noted that t0 = t(ũ, χ = 0) need not
be the present time; but the coordinate t evaluated at the
origin.

Then, one arrives to the desired expression for the met-
ric:

ds2 =

(
2A2(t0)−A2(t)

)
dũ2 +2dũdr̃−A2(t)f2

k (χ)dΣ2. (48)

For completeness we include here the relations among
the differential of the old coordinate system in terms of the
latest one; they are given as follows:

dt =
A2(t0)

A(t)
dũ+

1

A(t)
dr̃, (49)

dχ =

(
1− A2(t0)

A2(t)

)
dũ− 1

A2(t)
dr̃. (50)

3.1.2 The inertial advanced null function u

In this case we consider the choice u = τ which will be
presented in similar way to the discussion of the previous
section. This has the advantage to help the reading and at
the same time it allows to arrive to the main expression in
a simple way using the definitions presented above.

Then, let us find the relation between both functions by
noting that

v (ũ) =
dũ

du
; (51)

along the world line of a preferred observer. Since u is nor-
malized with t at the origin, from equation (33) one has

du = A(t0)dũ = A
(
t(ũ, χ = 0)

)
dũ; (52)

which leads us to define the first null vector ` as

` = du. (53)

This gives us a congruence of future directed null geodesics,
affinely parametrized that reach the observer. The affine pa-
rameter in this case will be denoted by r and constitutes
our second coordinate. Stereographic coordinates label the
generators of the congruence as before.

The null vector ` can be expressed in the following way:

` =
A(t0)

A(t)

[(
∂

∂t

)
− 1

A(t)

(
∂

∂χ

)]
; (54)

while the other vectors of the tetrad can be taken to be

m =

√
2P0

A(t)fk(χ)

(
∂

∂ζ

)
, (55)

m̄ =

√
2P0

A(t)fk(χ)

(
∂

∂ζ̄

)
, (56)

n =
1

2

A(t)

A(t0)

[(
∂

∂t

)
+

1

A(t)

(
∂

∂χ

)]
. (57)

We left for the appendix A a discussion with the details
of the connection and the curvature of the geometry using
the null tetrad introduced above.

The metric in the advanced coordinates
(
u, χ, ζ, ζ̄

)
can

be expressed as

ds2 = A2(t)

(
du2

A2(t0)
− 2

dudχ

A(t0)
− f2

k (χ)dΣ2

)
. (58)

The affine parameter r associated to ` and the differen-
tial dr are found to be

r(u, χ) =
1

A(t0)

∫ t(u,χ)

t(u,χ=0)

A(t′)dt′, (59)

and

dr = −A
2(u, χ)

A(t0)
dχ−

(
1− A2(u, χ)

A2(t0)
+ rH(t0)

)
du; (60)

where we introduce here the Hubble function on the observer
world line

H(t0) ≡ 1

A(t0)

dA(t(u, χ = 0))

du
. (61)

One can then transform to a coordinate system in which
the radial coordinate is r instead of χ; so that now t = t(u, r)
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and χ(u, r). Note that now t0 = t(u, r = 0). Gathering to-
gether this expressions one arrives to the metric in coordi-
nates

(
u, r, ζ, ζ̄

)
:

ds2 =2

(
1− A2(t)

2A2(t0)
+ rH(t0)

)
du2 + 2dudr

−A2(t)f2
k (χ)dΣ2.

(62)

3.2 Deviation vector for a radial congruence of
null geodesics

In the R-W geometries, the behaviour of the deviation vec-
tor, is easily found by considering the ordinary linear differ-
ential equation (13) on the past null cone:

`(X ) = −ρX . (63)

Let us note here that we can use `a or ˜̀a as vector field
tangent to the congruence since the description is indepen-
dent of the affine parametrization.

In the coordinates (u, r) of section 3.1.2 the convergence
ρ takes the simple and transparent expression:

ρ = − 1

A(t)fk(χ)
` (A(t)fk(χ)) . (64)

This means that the deviation vector is given by:

X = A(t)fk(χ)V0; (65)

where the integration constant V0 has the meaning of the
angle measured by the fundamental observer between two
neighbour null geodesic.

Since this factor will appear frequently we define

DA(t, χ) ≡ A(t)fk(χ); (66)

which will be identified below to the angular diameter dis-
tance.

4 DIFFERENT NOTIONS OF DISTANCE

Since the notion of distance plays a central role in the dis-
cussion of gravitational lenses, and it is fundamental to all
the discussions in this paper, it is convenient that we re-
view here the usual notions of distance that appear in the
cosmological framework.

4.1 The redshift

The observer o defines the redshift associated with the event
s by the expression

1 + z =
(lava)s
(lava)o

; (67)

where la is the tangent vector to a null geodesic connecting
the two events and va denotes either the 4−velocities of the
source s or that of the observer.

Although the redshift is an indication of different proper
times measures it is also used as an indication of distance
in R-W spacetimes. When the source and the observer are
both fundamental observers of a R-W spacetime, one has

1 + z =
A(t0)

A(t)
. (68)

In other words, the redshift can be used as a notion of dis-
tance if one has at hand a given family of cosmological ob-
jects with known motion.

4.2 Geometric distance or normalized affine
distance

Given an observer with 4-velocity va, there is a natural no-
tion of distance λ defined on any past directed null geodesic
on any spacetime; which is identified with the affine param-
eter so chosen that normalization (10) holds, and is zero at
the observer position. In the case of a R-W spacetime, this
distance is related to the coordinate and affine parameter r,
by

λ = −r. (69)

To differentiate from other definitions we will call this the
geometric distance or normalized affine distance. By defini-
tion it increases monotonically along every past directed null
geodesic from the observer.

A fundamental concept in the study of gravitational
lenses is the comparison of an image that is observed, with
the unaffected image, for which gravitational effects can be
completely neglected. But, then, it is crucial to compare the
images in both situations when the source is at the ‘same’
distance. It is here that the definition of the distance that
one should use, becomes important, and we claim that the
appropriate notion is the one given by the definition of nor-
malized affine distance, or geometric distance. This is the
concept that appears as the dynamical parameter in the fun-
damental equation (23), that is always well behaved (it in-
creases monotonically as the objects are further away) and
it can be applied to any situation and spacetime (with or
without symmetries), and that we use as the fundamental
notion of distance in this work.

4.3 Angular diameter distance and future angular
distance

4.3.1 Angular diameter distance and area distance

The so called ‘angular diameter distance’, DA, is defined as

dl = DAdθ; (70)

where dl is the projected size of the object, perpendicular to
the line of sight, at the place of the emitter, and dθ is the
subtended angle measured in the sky by the observer.

This definition is closely related to the area distance;
which is defined from:

dA = |D+D−|dΩ; (71)

where dA is the projected area of the object, perpendicular
to the line of sight, at the place of the emitter, D+ and
D− are the angular diameter distances along the principal
directions of the areaPerlick (2004), and dΩ is the solid angle
seeing by the observer; and the area distance Darea is defined
by

Darea =
√
|D+D−|; (72)

so that now one can write

dA = D2
area dΩ. (73)
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Let us note that this measure of distance does not de-
pend on the peculiar velocity of the emitter, it depends only
on the 4−velocity of the observerPerlick (2004).

It is probably important to emphasize that in the dis-
cussion on R-W spacetimes the area distance coincides with
the angular diameter distance; for this reason in the remain-
der of the paper will just use DA(= Darea) to denote both
distances, in the case of R-W spacetimes.

For fundamental observers in R-W geometries this no-
tion of distance is explicitly given by those presented in equa-
tion (66):

DA = A (t(u, r)) fk (χ(u, r)) . (74)

From its definition, one notes that the area distance is re-
lated to the expansion of a thin bundle of null geodesics
leaving the observer and reaching the source; in fact, in a
R-W spacetime one can see this fact explicitly by looking at
equation (64). In this particular case one has

dDA
dr

= −ρDA; (75)

and the second order differential equation

d2DA
dr2

= −Φ00DA. (76)

It can be seen that in general ρ has a value r∗ for which
it vanishes and then change its sign. Then, the value of DA
reaches an stationary value at r∗; which is a maximum, since
Φ00 is positive when the usual energy conditions are consid-
ered to hold.

For this reason this notion of distance is not really a
distance; since in particular it tends to zero when the source
is at the farthest distance, i.e. at the beginning of the Uni-
verse; where A → 0. But in any case it is a useful concept
that can be employed to describe the behaviour of gravita-
tional lenses.

4.3.2 Future angular diameter distance and future area
distance

Let us also note that there is a notion of future angular
diameter distance dA, which is related to the angular diam-
eter distance calculated by the emitter to reach an object of
projected size dlo at the place of observer, perpendicular to
the direction of the path of a photon. More concretely, one
defines dA by the relation

dlo = dA dθs; (77)

where dθs is the angle measured by a fiducial observer at
the source with the same 4−velocity as the source.

We can also generalize to the notion of future area dis-
tance; which is defined from:

dAo = |d+d−|dΩs; (78)

where dAo is the projected area of the object at the place
of the observer, and dΩs is the solid angle generated at the
source position, d+ and d− are the future angular diameter
distances along the principal directions of the area; and the
future area distance darea is defined by

darea =
√
|d+d−|. (79)

Also in the case of a R-W geometry the future area

distance coincides with the future angular diameter distance
and so one can use dA(= darea) for both notions.

We will discuss in section 4.4 the existing relation be-
tween the future area distance dA and the area distance DA.
For the moment, we will mention that in the most general
case of an unresolved non-isotropic radiating source at red-
shift z which emits with a luminosity L(θs, φs) in the direc-
tion (θs, φs), pointing out into the observer direction, one
predicts that the flux F (θo, φo) measured by the observer is
given by

F (θo, φo) dAo =
1

(1 + z)2
L(θs, φs) dΩs; (80)

where the left hand side is the expression for the energy mea-
sured by the observer per unit time in the direction of the
source (θo, φo), collected in the surface element dAo, and
the right hand side is the expression for the energy emit-
ted by the source per unit (local)time in the direction of
the observer, in the solid angle dΩs, with the corresponding
redshift factor that takes into account the difference in local
proper times, and the local energy measures. To clarify the
notation, let us remark that if we call L0 the total luminos-
ity, and if the source where radiating isotropically, then one
would have L = L0/(4π).

Let us note that another way to write (78) is:

dAo = d2
area dΩs : (81)

so that one finally has

F (λ, z) =
L(θs, φs)

(1 + z)2 d2
area(λ)

; (82)

where we are emphasizing that the flux depends on the dis-
tance λ and on the state of motion of the source, character-
ized by the redshift factor of expression (67).

Let us note that (82) is valid in a general space-
time and that what we call future angular diameter dis-
tance is what other authors call ‘corrected luminosity dis-
tance’Perlick (2004): but we prefer our wording because it
is more natural for the discussion of the reciprocity theorem
that we present below.

4.4 The Etherington theorem and the reciprocity
corollary

It is worthwhile to mention that the definition of area dis-
tance Darea and future area distance darea have been pre-
sented for a general spacetime. For the general case there
is a purely geometric result due to EtheringtonEtherington
(1933) which establishes thatEllis (1971):

dAo dΩ = (1 + z)2 dAdΩs; (83)

which is known as the Etherington theorem. An interest-
ing corollary of this result is derived from (73) and (81),
since one can prove the relation between the area distances,
namely

darea = (1 + z)Darea. (84)

This is a fundamental relation between the future area
distance darea and the (observed) area distance Darea, also
known as the reciprocity relation, which is only deduced from
considerations of thin bundles connecting the source and the
observer.
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Also, relation (84) is the main tool to prove the distance-
duality relation, that we recall next.

4.5 Luminosity distance and the distance
duality-relation

Let us return to the relation between the observed flux and
the total luminosity of an unresolved emitter, shown in equa-
tion (82). This relation gives rise to the notion of lumi-
nosity distance DL which is defined in term of F (θo, φo)
and L(θs, φs) in a completely analogous way than in a flat-
spacetime, namely

DL ≡

√
L(θs, φs)

F (θo, φo)
; (85)

from which one can see that:

DL = (1 + z) darea. (86)

Although this definition has been presented for unre-
solved sources; estimates of distances from extended sources
can be based on the same principle. In such cases the prob-
lem to infer distance for resolved or extended objects involves
the consideration of the so called surface brightness. We will
discuss these topics elsewhere.

4.5.1 Distance-duality relation

The combination of equation (86) together with the geomet-
ric relation established by the reciprocity theorem (84) gives
as a corollary, the so called distance-duality relation:

DL(z) = (1 + z)2 Darea; (87)

which links the luminosity distance with the area distance.
It is worthwhile to remark that this relation, valid for a

general spacetime, has been derived just from a couple of as-
sumptions, namely: that photons follow geodesics and that
the number of photons is conserved. Since, the geodesic mo-
tion of photons is sustained by the undisputed equivalence
principle, any observed deviations from the distance-duality
relation would imply a non-conservation of the mean number
of photon along null geodesicsBassett & Kunz (2004).

5 DIFFERENT NOTIONS OF
MAGNIFICATIONS FOR GENERAL
SPACETIMES

5.1 Angular magnification

In a general spacetime the angular magnification µ, which
is normally addressed just as the magnification, is defined as
the ratio between the solid angles subtended by the “lensed”
and the “unlensed” image. When using the principal direc-
tions of the lensed image, one has the relations

δβ− = (1− κ− γ) δθ−, (88)

and

δβ+ = (1− κ+ γ) δθ+; (89)

from which one can also deduce that

µ =
1

(1− κ)2 − γ2
; (90)

where γ2 = γ2
1 +γ2

2 is the square of the module of the shear.
For most astrophysical situations one has κ << 1 and

γ << 1. If we multiply, let us say, (88) by λ we obtain

dl− = λδβ− = λ (1− κ− γ) δθ− = D−δθ−, (91)

and similarly with the + case. Then it is deduced that one
can also express

µ =

(
λ

Darea(λ)

)2

; (92)

since the area distance in flat spacetime is just λ. This ex-
pression, valid for a general spacetime, coincides with the
definition found in eq. (42) of the reference Perlick (2004).

5.2 The intensity magnifications

In this subsection we present the natural physical intensity
magnification, that we will denote with µ̃, and that we just
call intensity magnification; but also it is convenient to in-
troduce the astrophysical motivated cosmic intensity mag-
nification, that we will denote with µ′c(z). The behavior of
these intensity magnifications will be discussed below after
the introduction of a couple of cosmic examples.

Let us denote again with F the observed flux of an
unresolved object at distance λ and relative motion deter-
mined by the redshift z, in a general spacetime. We will use
F0 to denote the flux that one expects to collect from the
same object at the same distance λ in Minkowski spacetime
with the same relative motion. Then, we define the intensity
magnification µ̃ by the quotient of these two fluxes, namely:

Definition 5.1 Intensity magnification:

µ̃(λ) ≡ F (λ, z)

F0(λ, z)
=

(
darea0(λ)

darea(λ)

)2

; (93)

where, taking into account equation (82), one can see that
actually µ̃ turns out to depend only on the distance λ, and we
use the subindex 0 to denote quantities in Minkowski space-
time.

It is probably worthwhile to remark that we are using
here the same philosophy that one applies to the basic notion
of gravitational lens in equation (1), where one compares an-
gles in the sphere of directions between the lensed situation
and the unlensed one (flat case).

It is crucial here to recall the reciprocity theorem, since
it allows us to prove the following theorem, valid for a general
spacetime:

Theorem 5.1 The intensity magnification coincides with
the (standard angular) magnification; namely:

µ̃ = µ. (94)

Proof: We have seen above that a corollary of the Ether-
ington theorem, presented in 4.4, is the reciprocity relation
(84); so that in the expression for the intensity magnifica-
tion above one can replace the future area distances by the
observed area distances, and express

µ̃(λ) =

(
Darea0(λ)

Darea(λ)

)2

=

(
λ

Darea(λ)

)2

= µ; (95)

where, we have used equation (92).
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It should be noted that this is a relation valid in a gen-
eral spacetime which relates the here defined observable in-
tensity magnification, with the standard angular magnifica-
tion; instead the usual discussion is done relating the stan-
dard magnification with the non-observable luminosity dis-
tance as applied in spherically symmetric spacetimes. This
is normally carried out in Robertson-Walker geometries that
are spherically symmetric around every point of the space-
time. If the exact geometry of the Universe where repre-
sented by a Robertson-Walker geometries then it would be
a matter of personal choice, whether one would like to use
the concept of luminosity distance or of the observed flux;
but we do know that the Universe is not homogeneous nor
isotropic, and therefore it is important that theorem 5.1 is
true for general spacetimes.

A very important point to remark is that astrophysicists
normally think in the relation of the fluxes as a function of
the observed redshift; so that from the observational point
of view, it might become useful also to define

Definition 5.2 Cosmic Intensity Magnification:

µ′c(z) ≡
F (z)

FMilne(z)
=

(
1 + z

1 + z

)4(
DA0(z)

DA(z)

)2

=

(
λMilne(z)

DA(z)

)2

;

(96)

where more specifically in this case one uses the flat Milne
cosmological model, in order to have a relation λ(z).

Here it should be remarked that although the definition
of this intensity magnification also involves the quotient of
the same fluxes; the definition (93) gives a different function
because it involves a different parametrization of the scalars.
For this same reason, the right hand side of (96) will not co-
incide with the corresponding cosmic magnification µc that
it will be defined below in equation (109). In particular, since
in the flat spacetime case we need a relation between the dis-
tance λ and the redshift z, one makes use of the cosmological
model given by the flat Milne Universe, that is recalled in
the next subsection.

The reason we introduce the intensity magnification µ̃
is because it is directly related to observations; since astro-
physicists measure relative apparent magnitudes, as given
byBradt (2004)

m2 −m1 = −5

2
log

F2

F1
. (97)

The collecting apparatus normally does not receive all the
photons but those on a limited band; we assume here for the
sake of simplicity in the discussion that all photons are col-
lected; but one can generalize these concepts to the realistic
situation.

To obtain intrinsic information, one can also use the so
called absolute magnitude M ; which is defined as the mag-
nitude of the object if it were at the standard distance of
10 parsecs. The relation of the apparent magnitude and the

absolute magnitude is given by

m−M =− 5

2
log

F (λ, z)

F (λ10, z10)
= 5 log

DL(λ, z)

DL(λ10(z10), z10)

=− 5

2
log

(
F (λ, z)

F0(λ, z)

F0(λ, z)

F0(λ10, z10)

F0(λ10, z10)

F (λ10, z10)

)
=− 5

2
log µ̃(λ) + 5 log

(
λ(1 + z)2

λ10

)
;

(98)

where the first term in the last line corresponds to the first
factor in the logarithm, the second term corresponds to the
second factor in the logarithm, and we have neglected the
contribution coming from the ratio F0(λ10)

F(λ10)
; since the cosmic

incidence to the curvature for distances up to 10pc can be
completely ignored.

We have used here the notation that F refers to the flux
measured in the real (general) spacetime and F0 refers to
the flux measured in the situation of empty (flat) spacetime.

It is important to emphasize that the left hand side of
equation (98) is known as distance modulus, and that it can
be completely expressed in terms of the gravitational lens
optical scalars, since due to theorem 5.1 one can write

m−M = −5

2
logµ(λ) + 5 log

(
λ(1 + z)2

λ10

)
; (99)

where the magnification µ(λ) can be understood in terms of
(90) or (92); which are valid for general spacetimes. Let us
also note that the second term in the right hand side of (99)
has kinematical information, and has no dependence on any
possible cosmological background.

Let us now express the relation between magnifications
when the redshift is used as the single variable to denote
distance, as is normally done in cosmological studies. The
previous expression involving the absolute magnification is
now given by:

m−M =− 5

2
log

F (λ(z), z)

F (λ10(z10), z10)

= 5 log
DL(λ(z), z)

DL(λ10(z10), z10)

=− 5

2
log

(
F (λ(z), z)

FMilne(λ(z), z)

FMilne(λ(z), z)

FMilne(λ10(z10), z10)

FMilne(λ10(z10), z10)

F (λ10(z10), z10)

)
=− 5

2
logµ′c(z) + 5 log

(
λMilne(z) (1 + z)2

λ10

)
;

(100)

where again we have neglected the cosmic effects at the short
distance of 10pc. One can see that in this case the expression
is given in terms of the intensity magnification, µ′c(z).

6 ROBERTSON-WALKER SPACETIME AS A
GRAVITATIONAL LENS

6.1 The fundamental concepts in the cosmological
context

It is important to remark that the basic notion of a gravita-
tional lens is encoded in equation (1), in which the variation
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angle δβa refers to an unaffected spacetime, and therefore
Minkowski; while the variation angle δθb refers to the real
spacetime, in this case R-W. Then, when one considers this
spacetime as a gravitational lens, this is not located at a
particular position, it rather fills the whole spacetime. It is
because of this reason that one has to be very careful with
the interpretation of the optical scalars, as defined in equa-
tion (2).

We are thinking in the case of an observer within a R-W
spacetime which, when studying the variations of deviation
angles, he must relate the observed angle δθa with angle
δβa, when the source is at the ‘same’ distance; where as
usual, the second angle refers to an observation where no
gravitational effects are present. Therefore it is crucial to
have a clear understanding of the notion of distance, that one
must use. From all the notions of distance that are employed
in the literature and that we have mentioned in section 4,
the most fundamental one, that requires the least structure
is the geometric distance λ; since it only uses the information
of the 4-velocity of the observer and the null geodesic coming
from the source. In fact, it can be applied to any spacetime
and any past directed null geodesic and is the dynamical
parameter of the fundamental equation (23). Consequently,
it constitutes the natural notion of distance in such context.

Then, for a source of size X at a distance λ along the
past null cone this observer would expect to see, in the ab-
sence of gravitational effects, that the source is subtending
an angle δβ:

δβ =
X
λ
. (101)

However, in R-W geometries equation (65) tells us that

X = A(t)fk(χ)δθ. (102)

Then, from equation (66) one has the simple relation

δβ =
DA
λ
δθ. (103)

The relation between the observed angle δθ and δβ is
understood as the lensing effect produced by the R-W cos-
mology. In the usual language of weak lensing this constitute
a very peculiar lens since the whole spacetime acts as a lens
which is not placed at a particular distance. Furthermore, in
the R-W gravitational lens there is no bending angle due to
the fact that it is an homogeneous and isotropic spacetime.
In spite of this, one still has a non-trivial meaning of the
optical scalars.

It is important to remark this fact because it is a source
of confusion. For instance, the diagram appearing in figure
1 comes from the normal situation one encounters for a lo-
calized gravitational lens. However, in the case in which the
whole spacetime is acting as a lens (which is not localized)
the diagram must be understood in the conceptual way us-
ing the definitions of δβ and δθ as the angles measured with
no lens, and with lens, respectively. This issue is completely
missed in approaches based on the bending angle concept, as
is normally done in textbooksSchneider et al. (1992, 2006).

Another essential point that one should also note is that
equations (102) and (103) are exact equations valid also for
large values of δθ. This means that one can regard the R-W
lens in a non-perturbative way Frittelli et al. (2000a,b).

6.2 The cosmic convergence and angular cosmic
magnification

Equation (103) is telling us that no cosmic shear is present,
and that the cosmological convergence κc can be deduced
from

δβ = (1− κc) δθ; (104)

so that one has

κc = 1− DA(λ)

λ
. (105)

We emphasize again that the cosmic convergence κc can
not be defined using the standard approach to gravitational
lenses bases on the bending angle concept.

In general, DA(λ) < λ holds for all values of λ and
for close objects one has that κc � 1. In fact, this is the
common situation that one finds in the discussion of weak
gravitational lenses in which the magnitudes of the optical
scalars are always much smaller than the unit value and eq.
(1) represents an approximation for small variations from
chosen angular directions. However as indicated above, in
the R-W geometry the cosmic convergence is exactly given
by (105), which goes to the unit value as one approaches the
initial cosmic singularity.

The behaviour of κc close to the observer can be inves-
tigated taking an expansion of DA in terms of λ; we found:

κc = κ(2)
c λ2 + κ(3)

c λ3 + O
(
λ4) ; (106)

where

κ(2)
c =

1

3!
Φ00

∣∣∣∣
λ=0

, (107)

κ(3)
c = − 2

4!
` (Φ00)

∣∣∣∣
λ=0

. (108)

From the previous discussion of angular magnification
in general spacetimes, one can now see that the cosmic mag-
nification µc, is given by

µc =
1

(1− κc)2 =

(
λ

DA(λ)

)2

. (109)

It is probably worthwhile to emphasize that the con-
tent of the previous equation coincides with equation (103);
which as mentioned before it is an exact equation valid even
for large values of δθ.

When the previous theorem, on the relation between
magnification and intensity magnification, is applied to the
cosmological scenario, one obtains:

µ̃c = µc. (110)

Let us notice that µc diverges as the source is considered
close to the initial singularity; which in turns indicates that
κc approaches the unit value, and therefore it can not be
assumed to be small at large distances.

6.3 Example 1: Milne Universe

As a simple illustration of the family of cosmological R-W
lenses we consider the simplest one which corresponds to
the Milne Universe; which is the case of an empty cosmol-
ogy, which is interpreted as the limit of vanishing density
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of an open dust model. For these reason, the whole Milne
Universe, defined by the coordinates of the R-W metric, is
identical from the point of view of the geometry to a portion
of Minkowski spacetime. This geometry is characterized by
k = −1 and A(t) = ct, since we are assuming A has units of
length; although we use units for which the universal con-
stant c is one. In terms of co-moving coordinates the relevant
distances for the discussion of lenses are

λMilne =
1

2

A2(t0)−A2(t)

A(t0)
= A(t0) z

1 + z
2

(1 + z)2
, (111)

DA = λ, (112)

DL =

(
A(t0)

A(t)

)2

λ; (113)

which then yield a vanishing cosmological convergence as
expected:

κc = 0, (114)

µc = µ̃c = µ′c = 1. (115)

6.4 Example 2: Friedman Universes

We concentrate in this subsection on the non-flat(4-
dimensional sense) Friedman Universes; in particular we will
focus on the models that involve only dust, radiation and
cosmological constant.

In general, analytical expressions for the optical quan-
tities can not be obtained, however we content our self with
the study of the behaviour in a neighbourhood of a funda-
mental observer.

The curvature component Φ00 and its derivative with
respect to ` have the expressions:

Φ00 =
4πG

c2
A2(t0)

A2(t)

(
%(t) +

P (t)

c2

)
; (116)

` (Φ00) =
4πG

c3
A3(t0)

A3(t)

[
d%

dt
+

1

c2
dP

dt

− 2H(t)

(
%(t) +

P (t)

c2

)]
;

(117)

where G is the gravitational constant, c is the speed of light,
%(t) and P (t) the matter density and pressure of the cosmic
fluid respectively and H(t) is the Hubble’s rate of expansion
defined as

H(t) ≡ 1

A(t)

dA

dt
. (118)

For convenience in this section and in all our final results we
show the appearance of the Universal constants.

We can write all quantities of the fluids and the geomet-
ric functions, as for example H(t), in terms of the so-called
density parameters (Ωm,Ωr,ΩΛ) and the critical density %cr:

%(t) = %cr

(
Ωm

A3(t0)

A3(t)
+ Ωr

A4(t0)

A4(t)
+ ΩΛ

)
, (119)

P (t)

c2
= %cr

(
Ωr
3

A4(t0)

A4(t)
− ΩΛ

)
, (120)

H2(t)

H2(t0)
= − kc2

H(t0)2A(t)2
+ Ωm

A3(t0)

A3(t)
+ Ωr

A4(t0)

A4(t)
+ ΩΛ .

(121)

The evaluation of A(t0) is through the equation

1 = − kc2

H(t0)2A(t0)2
+ Ωr + Ωm + ΩΛ; (122)

which is just the evaluating of (121) at the present time. In
the case k = 0 one has a freedom in the value of A(t0) which
can be taken as A(t0) = c

H(t0)
.

This yields,

Φ00 =
4πG%cr
c2

A5(t0)

A5(t)

(
Ωm +

4

3
Ωr
A(t0)

A(t)

)
, (123)

` (Φ00) = −4πG%cr
c3

A6(t0)

A6(t)
H(t)

(
5Ωm + 8Ωr

A(t0)

A(t)

)
. (124)

Then, the cosmological convergence κc, near the ob-
server, behaves in the following way:

κc (λ) =
4πG%cr

3!c2

(
Ωm +

4

3
Ωr

)
λ2

+
8πG%cr

4!c3
H0

(
5Ωm + 8Ωr

)
λ3 + O

(
λ4) . (125)

It is probably interesting to remark that the only optical
scalar that appears in the gravitational lens study of the
R-W geometry is independent of the cosmological constant
contribution ΩΛ.

6.5 Typical values for the cosmic convergence and
magnification functions

The last examples allow to estimate the effect of the R-W
spacetimes as a gravitational lens in a simple way. In this
section we present the values of the cosmic convergence and
magnification functions for a couple of representative cosmic
models; one based on the data of the Planck Collaboration
and the other just coming from the primordial nucleosyn-
thesis calculations.

6.5.1 Values from Planck Collaboration

The following values, used and reported by the Planck Col-
laboration in reference Ade et al. (2014), were employed to
compute the different quantities associated to the lens effect;
that we show below in table 1.

Ωm = 0, 314± 0, 020, (126)

ΩΛ = 0, 686± 0, 020, (127)

H0 = 67, 4± 1, 4
km

s ·Mpc
, (128)

k = 0. (129)

In the above list we have also included the correspond-
ing values for z0; i.e. the value that would take the redshift
if the universe where the flat Milne spacetime, for a given
geometric distance λ.

Then, it is curious that while the convenient astrophys-
ical intensity magnification µ′c shows a fainter behavior for
this range of redshift values, in qualitative agreement with
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Table 1. Planck ΛCDM model

λ [Mpc] z0 z κc µ̃c = µc µ′c
43.95 0.010 0.01 7.85 × 10−6 1.00002 0.99481

169.55 0.040 0.04 0.00013 1.00025 0.98043
395.164 0.103 0.10 0.00078 1.00157 0.95642

591.27 0.167 0.16 0.00200 1.00401 0.93785

788.85 0.245 0.23 0.00411 1.00826 0.92189
935.68 0.314 0.29 0.00647 1.01307 0.91231

1179.06 0.459 0.41 0.01266 1.02581 0.90235

1311.31 0.561 0.49 0.01776 1.03649 0.90127
1474.92 0.722 0.61 0.02668 1.05557 0.90624

1735.04 1.131 0.88 0.05107 1.11055 0.93905
1915.09 1.680 1.18 0.08261 1.18821 0.99991

2121.16 3.629 1.85 0.15795 1.41034 1.19321

Table 2. Baryonic Low density model

λ [Mpc] z0 z κc µ̃c = µc µ′c
41.04 0.010 0.01 1.06 × 10−6 1.00000 1.00021

157.07 0.040 0.04 0.00002 1.00003 1.00087

361.12 0.100 0.10 0.00010 1.00020 1.00223
560.36 0.170 0.17 0.00028 1.00057 1.00391

748.05 0.249 0.25 0.00059 1.00118 1.00592
884.86 0.319 0.32 0.00093 1.00187 1.00776

1114.46 0.467 0.47 0.00189 1.00378 1.01191

1232.04 0.565 0.57 0.00266 1.00534 1.01483
1379.10 0.720 0.73 0.00409 1.00824 1.01969

1619.77 1.121 1.15 0.00872 1.01767 1.03341

1793.70 1.684 1.77 0.01701 1.03491 1.05540
1913.14 2.503 2.77 0.03215 1.06754 1.09353

observationsRiess et al. (1998); Perlmutter et al. (1999);
Riess et al. (2004), the more physical intensity magnifica-
tion µ̃c implies a brighter behavior for the same range. This
emphasizes the fact that the notions of fainter or brighter,
which are very common in the observational language, are
rather relative; since they depend on what setting one is
assigning these concepts.

6.5.2 Values from primordial nucleosynthesis calculations

Here we consider the set of parameters that come just from
the primordial nucleosynthesis calculations and independent
observation of the Hubble parameter, and others, that are
shown next.

Ωm = 0, 042569, (130)

Ωr = 4.7647× 10−5, (131)

ΩΛ = 0, (132)

H0 = 72
km

s Mpc
, (133)

k = −1. (134)

In table 2 below, we present the result of the calcula-
tions for the different quantities associated to the cosmic
lens effects, using these values.

As expected, this model which is practically devoid of
matter, presents a behaviour with small deviations from the
trivial flat Milne Universe. We also note that the intensity
magnification µ′c is always greater than one in the whole
range of the affine parameter.

PlanckH0=67.4

Baryonic H0=72.0

0 500 1000 1500 2000
λ0

2

4

6

8

μc (λ)

Figure 3. Since in general λ > DA(λ) the cosmic magnification

is greater than one and divergent near of the initial singularity,

except in the trivial case of flat spacetime.

PlanckH0=67.4

k=-1, Ωm=0.314, H0=72.0

Baryonic H0=72.0

Minkowski
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z
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μ′
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Figure 4. The astrophysical magnification µ′c(z) is shown for
the Planck and Baryonic models. Milne Universe and an open

universe with only matter content Ωm = 0.314 are also shown.

6.5.3 Plots for these previous models

In this subsection we present a graph illustrating the be-
haviour of the physical intensity magnification µ̃c = µc in
terms of the geometric distance, together with the graph
of the intensity magnification µ′c(z); as used in astrophysi-
cal works. One can see in these graphs how the notion of
‘brighter’ and/or ‘fainter’ depends in the way the observa-
tional data is studied.

7 THE PRESENCE OF AN ADDITIONAL
LENS OVER THE COSMOLOGY

7.1 The main exact equation

In the previous section we have shown that a R-W space-
time can be thought as a weak gravitational lens. In the
current section we will deal with additional lenses on the
geometry. We mean by this an alteration of the completely
homogeneous and isotropic cosmological background where
the size of the additional lens must be much smaller that
the cosmological scale, since otherwise it would change the
cosmology one is discussing. This means that normally the
time of flight of photons trough the additional lens would
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be considered small compared with the total time of flight.
By time of flight we mean more precisely the lapse of the
geometric affine distance.

In order to compute distortions due to the presence of
inhomogeneities we will consider the exact equation (23)
with the source of curvature component decomposed in
terms of the cosmological background and the lens contri-
bution, in the following way:

` (` (X )) = − (QB +QL)X ; (135)

where we have included the subindex B to denote intrin-
sic quantities of the background and L to denote quantities
associated to the additional lens. In other words, the com-
ponents of the curvature appearing in Q in equation (23) is
now expressed as

Q = QB +QL. (136)

In particular QL is the matrix containing the difference from
the background curvature which is given in terms of the
scalars:

QL =

(
ΦL00 ΨL

0

Ψ̄L
0 ΦL00

)
. (137)

As mentioned in the introduction, it is worthwhile to
emphasized that in the decomposition of the total curvature
in terms of the background plus a lens term, it is not assumed
that the additional term must be small in any sense. That is
we are not assuming at this stage any kind of perturbation;
it is just the representation of an exact geometry, without
perturbation, in terms of a decomposition with respect to
a chosen background. This becomes more clear when we fix
the issue of gauges in the next subsection.

7.2 A treatment of the main equation without
room for gauges

As usual, referring quantities with respect to a background,
lead us to deal with the delicate issues associated to the
gauge freedom. So, with the aim to clarify the way in which
equation (136) should be understood, it is pertinent to
present a short explanation before tackling the problem of
solving the equation.

A gauge choice in the sense of Stewart & Walker (1974);
Stewart (1990); Bardeen (1980) is a correspondence between
a fiducial background (namely a R-W one) and the real in-
homogeneous spacetime. In the context of cosmological per-
turbations the problem of how to specify this map appro-
priately has been called the “fitting problem”Ellis & Stoeger
(1987). A good understanding of the way in which one fully
specifies the gauge is crucial at the moment to interpret ten-
sor fields quantities that are regarded as departure from the
backgroundEllis & Bruni (1989).

In the simpler case of weak lensing over a flat back-
ground, the meaning of QL is always well defined since the
curvature is gauge invariant in such case. It is because of
this specific fact that in referenceGallo & Moreschi (2011)
one prefers to express the optical scalar in terms of the cur-
vature.

The discussion of gauge invariance is subtle, and one
should have a clear picture of the geometrical and physical
framework one is using. For example in references Stewart
& Walker (1974); Stewart (1990) they discuss the notion of

identification gauge invariant(i.g.i) quantities. Then, since
i.g.i. quantities should vanish on the background, one would
deduce that while ΨL

0 is i.g.i, the curvature scalar ΦL00 is not.
However their treatment does not apply to our setting, as
we now explain.

In our work, all these gauge issues are solved when the
curvature components QB is taken from observation. The
measurements we have in mind are all the cosmological ob-
servations, as for example Plack’s CMB measurement, or the
supernovae observations, mentioned in references Perlmutter
et al. (1999); Riess et al. (1998), where researchers used the
cosmological observation of luminosity and redshift of su-
pernovae to fit a Robertson-Walker geometry to the actual
spacetime. After the parameters determining the Robertson-
Walker geometry are fixed from observation, and the direc-
tion and magnitude of our velocity with respect the CMB is
determined; the RW geometry is completely determined in
our past null cone; this means metric, connection and curva-
ture. In other words, the RW cosmic background is uniquely
defined on our past null cone in terms of observations; and
therefore there is no gauge freedom allowed in this respect.

Then, since (135) is an exact equation in terms of the
exact geodesics, and Q is therefore unambiguously defined;
one concludes thatQL also does not have room for any gauge
freedoms. In our framework QL is the contribution to the
curvature that is needed to explain the gravitational lensing
observations. That is, both curvature terms QB and QL are
determined from independent set of observations; where no
gauge freedoms intervene.

Since one has at hand the back ground RW geometry,
one can also decompose the exact metric in terms of gab =
gabB + hab; where gabB is the metric of the RW geometry, and
hab is the needed tensor to complete the metric. Therefore we
have at our disposal the complete RW geometry, including
metric and solutions of geodesic equations; that we will use
next. We should probably remark that at this stage we do
not assume a particular form for hab, since we only require
to describe the observed QL.

7.3 The technique for solving the main equation

Let us mention again that equation (135) is exact, and there-
fore it uses the exact geodesics; however, in order to find
solutions it is more convenient to carryout the calculation,
at the linear order in the curvature QL, using the back-
ground geodesics. This forces us to estimate the magnitude
of the error involved in this procedure. So, in the following
we present an estimate of this error.

Let us begin denoting by XE the exact solution along
the exact null geodesic, which we indicate as xαE(λ). Then,
the integral version of equation (135) is

XE(λ) = `(XE) ‖0 (λ− λ0)

−
∫ λ

λ0

∫ λ′

λ0

(QB +QL) (xαE(λ′′))XE(xαE(λ′′))dλ′′dλ′.

(138)

Now, let us also consider the above expression computed
along the geodesics of the background which we will indicate
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by xα(λ); we mean

X (λ) =`(X ) ‖0 (λ− λ0)

−
∫ λ

λ0

∫ λ′

λ0

(QB +QL) (xα(λ′′))X (xα(λ′′))dλ′′dλ′;

(139)

where in order to differentiate the result from the exact one,
we have omitted the subindex E for the vector X (xα(λ))
which contains the components of the deviation vector (15).
To simplify the notation we are using the same symbols for
the curvature components but it should be remarked that
there is a slight change in the null tetrads. The relation
between the exact geodesics and those of the background
will be denoted as xαE(λ)− xα(λ) ≡ δxα(λ).

Then, we will consider the difference δX (xα(λ)) ≡
XE(xαE(λ)) − X (xα(λ)) between the exact result, namely
equation (138) and the alternative procedure given by equa-
tion (139) and we will show that such difference is lower
order than X (λ). Defining δX in this way it is implicit that
we are using the same procedure to define the auxiliary vec-
tor m and m̄ for both geodesics. Notice that δ quantities are
of order O (QL). Explicitly, we have

δX =−
∫ λ

λ0

∫ λ′

λ0

(QB +QL) (xαE(λ′′))XE(xαE(λ′′))dλ′′dλ′

+

∫ λ

λ0

∫ λ′

λ0

(QB +QL) (xα(λ′′))X (xα(λ′′))dλ′′dλ′

=−
∫ λ

λ0

∫ λ′

λ0

[
QB(xαE(λ′′))−QB(xα(λ′′))

]
X (xα(λ′′))dλ′′dλ′

−
∫ λ

λ0

∫ λ′

λ0

[
QL(xαE(λ′′))−QL(xα(λ′′))

]
X (xα(λ′′))dλ′′dλ′

−
∫ λ

λ0

∫ λ′

λ0

(QB +QL) (xαE(λ′′))δX (xα(λ′′))dλ′′dλ′;

(140)

where the initial derivatives of X do not appear since, they
represent the values of the observations, that are the same
for both calculations; in other words, we are here comparing
two calculation for the optical scalars in terms of curvature
QL that is determined by the existence of the lens. Also,
let us remember that in weak lensing computations one is
interested in the first order effects of the curvature QL. We
will see below that the expressions for X will involve terms
up to order O (QBQL). In any case, one can see that just
keeping linear terms in QL, from the previous expression one
obtains:

δX =−
∫ λ

λ0

∫ λ′

λ0[
QB(xαE(λ′′))−QB(xα(λ′′))

]
X (xα(λ′′))dλ′′dλ′

−
∫ λ

λ0

∫ λ′

λ0

QB(xα(λ′′))δX (xα(λ′′))dλ′′dλ′

+ O
(
Q2
L

)
;

(141)

where only QB appears explicitly.
First of all, let us note that δX appears only in the

second term of the right hand side; so that a first estimate of
it is just the first term. Then, let us also see that the exact
null vector ` can always be expressed with respect to an
appropriately chosen null geodesic vector of the background
with a slight correcting conformal factor. To this, let us add
that although QB refers to an homogeneous spacetime, both
geodesics are different in the lens and therefore have different
affine length in the lens. Both effects are of the same nature
and can be estimated by the difference in the affine length
of the geodesics inside the lens. Let us call this difference
δλL. If α is the deviation angle for a typical geodesics; then
one could estimate δλL from δλL = δl(1 − cos(α)) where
δl is the characteristic radial size of the lens. Let us apply
this to a spherical distribution of matter, and to a photon
trajectory with impact parameter J , such that a quantity
M of matter is contained in a sphere of radius J ; then one
would have α = 4M

J
, using geometric units. For a typical

α � 1 one would have δλL ∼= δl
α2

2
= δl

8M2

J2 . Proceeding
with the calculation we now estimate

−
∫ λ

λ0

∫ λ′

λ0

[
QB(xαE(λ′′))−QB(xα(λ′′))

]
X (xα(λ′′))dλ′′dλ′

∼= (λs − λl)QB(λl)X (xα(λl))δλL

= (λs − λl)QB(λl)X (xα(λl))δl
8M2

J2
.

(142)

Typically we will take J ≈ δl
2

. Let us apply this to a typical
situation in which the lens has a radshift zl = 0.06, while
the lens has redshift of zs = 0.33, for a galaxy we take δl ∼
200kpc and M ∼ 10−8Mpc; while for a cluster of galaxies we
take δl ∼ 1Mpc and M ∼ 10−5Mpc. Then we obtain for a
galaxy δX

X ∼ 10−11, and for a cluster of galaxies δX
X ∼ 10−6.

We conclude then that using the null geodesics of the
cosmological background to carry out the calculation in-
volves deviations of the values that are completely negligible;
and therefore it is safe to use this technique.

After corroborating the feasibility of the path integra-
tion technique, let us concentrate in the details of how to
handle the algebra of the computation. Let us recall that
from the physical point of view, one integrates equation
(135) from the position of the observer along the past null
cone. Therefore, although one could start with finite values
of X , we are only interested on initial conditions that have
the information of the null cone, and so, our X ’s start with
a diverging behavior; dictated by the observing angle. For
this reason we look for solutions of the form

X = MDAV0 (143)

where M is a well behaved 2 × 2 square matrix and V0

has the same meaning than before; it is the observed angle
subtended by the image: V0 ≡ δθ. This ansatz is reminiscent
of the solution (65), since one recognizes the background
solution XB = DAV0.

It is probably interesting to point out that in the weak
lensing regime, the matrix M can be related to the optical
scalars matrix A mentioned in (1); since taking the relation
λ δβ = X one has

A =
DA
λ

M = (1− κc) M. (144)

In other words, the total gravitational lens combines the
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global cosmic convergence κc with the ‘local’ lensing effects
contained in M .

In writing equation (144) we should note that we have
change the basis in which the matrix A is represented; since
the matrix Aab of equations (1) and (2) refer to a base in
the sphere of observed directions, while A in (144) refers to
the complex components of X . In order to relate both rep-
resentations it is necessary to give an explicit relation of the
complex vectors m and m̄ in terms of directions that can
be expressed in turn in terms of directions in the sphere of
observation. To fix ideas, let us consider the expression (27)
of the space line element and consider the beam of light is
coming from the positive y direction, of a conformal Carte-
sian frame. Then, at any point we have at our disposal an
orthonormal frame which respects the conformal Cartesian
frame directions, and we express the null tetrad adapted to
the incoming null geodesic by:

la =(1, 0,−1, 0),

ma =
1√
2

(0, 1, 0, i),

m̄a =
1√
2

(0, 1, 0,−i),

na =
1

2
(1, 0, 1, 0);

(145)

which is a slight different notation that the one used in Gallo
& Moreschi (2011).

Now, in order to compare with the usual expressions
for the lens scalars κ, γ1 and γ2, let us recall that they are
defined via the relations (1) and (2); but since it is a linear
relation, one can relate the deviation vectors by the same
matrix, namely

ςis = Aijς
j
o ; (146)

where {ςis, ςio} are the spatial vector associated with {ςs, ςo}
respectively. In this expression, it is needed to determine the
meaning of the indices (i, j) of the two dimensional space of
the images. For the purpose of connecting the natural Carte-
sian orientation we identify the first component of the two
dimensional space with the x direction, and the second com-
ponent with the z one. We need then, to know the compo-
nents of the spatial vectors ςao generated by ςo and similarly
by ςs in a Cartesian like coordinate system. In the case of
ςao , it is given by

ςao =ςom̄
a + ς̄om

a

=
1√
2

(ςo(0, 1, 0,−i) + ς̄o(0, 1, 0, i))

=
1√
2

(0, (ςo + ς̄o), 0, i(ς̄o − ςo))

=
2√
2

(0, ςoR, 0, ςoI) ;

(147)

and a similar expression is obtained for ςas .
Therefore, by replacing into eq.(146), we obtain

ςsR = (1− κ− γ1)ςoR − γ2 ςoI , (148)

ςsI = −γ2 ςoR + (1− κ+ γ1)ςoI ; (149)

which has a direct physical interpretation in the plane of
the image, since the real component represents horizontal
direction and the imaginary component the vertical one.

The equation satisfied by M is found from equation
(135):

`
(
` (MDAV0)

)
= `
(
` (M)DAV0 +M` (DAV0)

)
= `
(
` (M)

)
DAV0 + 2` (M) ` (DAV0)

+M`
(
` (DAV0)

)
=
(
`
(
` (M)

)
− 2` (M)PB

)
DAV0

−MQBDAV0

= − (QB +QL)MDAV0;

(150)

which simplifies to

`
(
` (M)

)
− 2` (M)PB +QLM = 0. (151)

Now, using the fact that for R-W geometries one has the
following important relation

PB = I ρ = −I
`
(
D2
A

)
2D2

A

; (152)

one arrives to the final equation:

`
(
D2
A` (M)

)
+QLD

2
AM = 0. (153)

7.4 Solving the matrix equation

In order to proceed to the integration of equation (153) the
initial conditions must be specified. One can see that the
appropriate ones for our problem are:(
D2
A `(M)

)∣∣
r=0

= 0, (154)

M |r=0 = I. (155)

Using the first initial condition we obtain

` (M) = − 1

D2
A

∫ r

0

QLD
2
AM dr′; (156)

while in the next step we found

M = I−
∫ rs

0

(
1

D2
A

∫ r′

0

QLD
2
AM dr′′

)
dr′; (157)

where rs denotes the position of the emitting source.
Let us remember that the affine parameter r takes neg-

ative values when it approaches to the source; due to this
fact we prefer to use the normalized affine distance λ to
parametrize the geodesic. With this choice we rewrite the
last equation to

M = I−
∫ λs

0

(
1

D2
A

∫ λ′

0

QLD
2
AM dλ′′

)
dλ′. (158)

Since we are only considering first order effects of QL
one can use iterations to solve this integro-differential equa-
tions in orders of the curvature deviation. One can see that
the leading order is

M = I−
∫ λs

0

(
1

D2
A

∫ λ′

0

QLD
2
A dλ

′′

)
dλ′. (159)

This is the main equation which describes the distor-
tions at first order of isolated distributions over the cosmo-
logical background here considered.
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7.5 Optical scalars

It was mentioned before that the matrix A containing the
optical scalars is given by:

A = (1− κc)M. (144)

It will be used together with equation (159) to obtain the op-
tical scalars. This task is most easily done working with the
real and imaginary parts of the deviation vector ς; namely
ς = ςR + iςI and the real and imaginary parts of the Weyl
curvature scalar, ΨL

0 = ΨL
0R + iΨL

0I .
One finds the following structure in the optical matrix

A = (1− κc)
(

1− κL − γ1L −γ2L

−γ2L 1− κL + γ1L

)
; (160)

where the intrinsic optical terms to the additional lens
(κL, γ1L, γ2L) are explicitly

κL =

∫ λs

0

(
1

D2
A

∫ λ′

0

ΦL00 D
2
A dλ

′′

)
dλ′, (161)

γ1L =

∫ λs

0

(
1

D2
A

∫ λ′

0

ΨL
0RD

2
A dλ

′′

)
dλ′, (162)

γ2L =

∫ λs

0

(
1

D2
A

∫ λ′

0

ΨL
0I D

2
A dλ

′′

)
dλ′; (163)

where the matrix in (160) refers to the physical frame in the
image plane.

The subindex L is introduced at this moment to distin-
guish quantities depending on the isolated inhomogeneities
in contrast to background quantities such as κc.

Then, one can write the optical scalars for the whole
system of an additional lens regarded over a R-W spacetime:

κ = (1− κc)κL + κc, (164)

γ1 = (1− κc) γ1L, (165)

γ2 = (1− κc) γ2L. (166)

One can see that the contribution of the background is
two fold; on one hand, it is present in the intrinsic optical
scalar trough the geometric distance and the area distance
and, on the other hand it also appears by means of the mod-
ulating factor (1− κc).

The above expressions are the generalization for the op-
tical scalars of a lens in the standard cosmological context.

In the simpler case of a Minkowski or a Milne back-
ground spacetime, where DA = λ, one arrives at the ex-
pression already presented in Gallo & Moreschi (2011); they
are:

κ =
1

λs

∫ λs

0

λ (λs − λ) ΦL00 dλ
′, (167)

γ1 =
1

λs

∫ λs

0

λ (λs − λ) ΨL
0R dλ

′, (168)

γ2 =
1

λs

∫ λs

0

λ (λs − λ) ΨL
0I dλ

′; (169)

in which the double integral has been expressed into a single
one by means of a integration by parts.

8 THE AXIALLY SYMMETRIC CASE

The expressions presented in the last sections do not involve
any assumption on the nature and geometry of the source;

in this section, instead, we discuss models with axial sym-
metry, in which the axis of symmetry lies along the line of
sight passing through the central region of the distribution.
We are interested then in the study of a photon traveling
along a direction parallel to the axis of symmetry which
has an impact parameter J with respect to the centre of
the distribution. For this purpose we will take an adapted
coordinate system to the situation in which two mutually
orthogonal directions x and z are considered. They are also
orthogonal to the direction y in which the photons travel.
Due to the symmetry of the lens it will be also useful to
work in terms of the angle ϑ between the z−axis and the
path of the photon.

Then, with this setting one notes that the component
ΨL

0 is a spin zero real quantity, and it depends on the (J, λ)
coordinates, while the component ΨL

0 is a spin two complex
quantity and it has the functional dependence

ΨL
0 = |ΨL

0 |e2iϑ+phase; (170)

where the phase is gauge dependent.
As it was mentioned in Gallo & Moreschi (2011), it is

usual to define the real quantity ψL0 (J, λ) associated to the
Weyl contribution from

ΨL
0 (J, λ, ϑ) = −ψL0 (J, λ) e2iϑ. (171)

With this definition one writes for the intrinsic optical
scalars of the lens:

κL(J) =

∫ λs

0

(
1

D2
A

∫ λ′

0

ΦL00(J, λ)D2
Adλ

′′

)
dλ′, (161)

γcL(J, ϑ) = −e2iϑ

∫ λs

0

(
1

D2
A

∫ λ′

0

ψL0 (J, λ) D2
Adλ

′′

)
dλ′;

(172)

where the complex shear is normally expressed in terms of
its real and imaginary parts, namely γcL ≡ γ1L + iγ2L.

The complex form for the shear components invite us
to define the real quantity γL (J) as(
γ1L + iγ2L

)
(J, ϑ) ≡ −γL (J) e2iϑ; (173)

so that one simply has

γL (J) =

∫ λs

0

(
1

D2
A

∫ λ′

0

ψL0 (J)D2
Adλ

′′

)
dλ′. (174)

9 THE THIN LENS APPROXIMATION

The common situation in the cosmological scenario is the one
in which the typical size δl of the lens is much smaller than
the distance from the observer to the lens λl, and than the
distance from the lens to the source λls. This configuration
is referred to as a thin lens.

Following the same lines presented in article Gallo &
Moreschi (2011) we will assume that the scalars of curvature{

ΦL00,Ψ
L
0

}
, denoted generically as C̄L will be sharply peaked

around λl, where the lens is located. This implies that the
following approximation must to hold

C̄L(λ) ≡
∫ λ

0

δC(λ′)dλ′ ∼=

{
0, ∀λ < λl − δl
ĈL, ∀λ ≥ λl + δl

; (175)

where δl � λl, δl � λs and δl � λls (λls = λs − λl).
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We make use of this assumption to simplify the inte-
grand inside of parenthesis in the expressions in equations
(161, 162, 163). Let us note that

1

D2
A

∫ λ

0

CLD2
Adλ

′ = ĈL − 1

D2
A

∫ λ

0

dD2
A

dλ′
C̄L(λ′)dλ′

= ĈL − ĈL

D2
A

(
D2
A −D2

A(λl)

)
= ĈL

D2
A(λl)

D2
A

;

(176)

where it is clear that one must have λl 6 λ. Then, one can
take another integral to arrive at reduced expressions for the
optical scalars; one finds∫ λs

0

(
1

D2
A(λ′)

∫ λ′

0

CLD2
Adλ

′′

)
dλ′ = ĈLD2

A(λl)

∫ λs

λl

dλ′

D2
A

;

(177)

where we have neglected terms of order O
(
δl
λl

)
.

Since the factor in the last equation will appear recur-
rently we define, for the sake of simplicity in the notation,
the symbol:

Dls ≡ D2
A(λl)

∫ λs

λl

dλ′

D2
A(λ′)

. (178)

Then, the intrinsic optical scalars of the lens acquire a
simpler form:

κL = DlsΦ̂
L
00, (179)

γ1L = DlsΨ̂
L
0R, (180)

γ2L = DlsΨ̂
L
0I ; (181)

while the optical scalars of the whole system

κ = (1− κc) DlsΦ̂
L
00 + κc, (182)

γ1 = (1− κc) DlsΨ̂
L
0R, (183)

γ2 = (1− κc) DlsΨ̂
L
0I ; (184)

where, from the above notation one is using:

Φ̂L00 =

∫ λs

0

ΦL00dλ
′, (185)

and

Ψ̂L
0 =

∫ λs

0

ΨL
0 dλ

′. (186)

Notice that since κc is order O(QB), and κL and γL are
order O(QL); one finds terms of order order O(QB QL) in
equations (182)-(184).

In section 10.1 we will show the connection of the above
expressions with usual formulae present in the literature. For
the moment, let us note that, in the limit of no cosmological
background one has that DA converges to λ and

Dls →
λlλls
λs

; (187)

so that in this way one arrives at the usual expressions
found in the studies of gravitational lenses over a flat back-
groundGallo & Moreschi (2011).

It is worthwhile to remark that the expressions (179)-
(181) are built out of two distinctive factors; namely the Dls

and the hated quantities that are calculated from the cur-
vature of the lens. The first factor does not depend on the
possible motion of the lens, and it only depends on the cos-
mological scenario. Instead the hated quantities depend on
the possible motion of the lens; which is unavoidable in the
cosmological context. In the next two subsection we concen-
trate on both factors.

9.1 Alternative expression for the factor Dls

The term, Dls, which only contains information about the
cosmology, can be written in a more clarifying form using
the coordinates (u, χ) discussed in section 3.1.2. In fact, we
show that the integrand appearing in equation (178) is a
total derivative along the null geodesic.

Let us note that from equation (60) and the fact that
∂
∂λ

= −` one has the following relation

dλ =
A2(u, χ)

A(t0)
dχ; (188)

which means that

Dls =
D2
A(χl)

A(t0)

∫ χs

χl

dχ

f2
k (χ)

=
D2
A(χl)

A(t0)

fk(χs − χl)
fk(χs)fk(χl)

=
1

(1 + zl)

DA(χs − χl)DA(χl)

DA(χs)
;

(189)

where it must be understood that zl is the redshift at the
place of the lens and DA(χs − χl) is the angular diameter
distance measured by a fundamental observer at the coordi-
nates (u, χl)

DA(χs − χl) = A(u, χs)fk(χs − χl). (190)

In what follows we will use a short notation in which we only
retain the subindex of the coordinate χ, namely:

Dls =
1

1 + zl

DAlsDAl
DAs

. (191)

Let us observe that the presence of the redshift factor
1+zl could be source of confusion if one consider the case of
a Milne (vacuum) spacetime where DA = λ but zl 6= 0 since
in this case it appear that we will not recover the expression
(187). This is just apparent since in this case one has that
equation (190) becomes (1 + zl)(λs − λl) as one can easily
check. This is due to the fact that the area distance depends
on the motion of the observer which in this case correspond
to the comoving cosmic observer. In other words, one has
for Milne spacetime

DAls → λ̄s − λ̄s = (1 + zl)(λs − λl); (192)

where λ̄ refers to the affine parameter defined by equation
(10) respect to the worldline of the comoving cosmic ob-
server.

9.2 Integration on the curvature for moving lenses

In principle, expressions (185) and (186) have all the infor-
mation one needs to complete the calculation of the optical
scalars. But in the case the lens is moving one might like to
refer the calculation to its intrinsic rest frame. To do this
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one can think in leaving the null frame of the observer fixed
an calculate the curvature of moving sources, or one can
think in leaving the geometry unaffected and only change
the frame of observation by the appropriate boost. From
the GHP formalismGeroch et al. (1973) one knows that both
integrands have boost weight 2. Then, taking into account
the change in the affine parameter for the boosted frame,
one deduces that for a local stationary piece of of spacetime
which is moving relative to the observer with four velocity
va, the expressions (185) and (186) are related with respect
to the non-moving case by a factor

1

` · v = 1 + zv. (193)

Let us emphasize that zv does not need to agree with zl.
Then, one can see that expressions (179)-(181), have all

the same structure; namely, if oLv is the optical scalar for a
lens with velocity v, one can express

oLv = DlsĈ
L
v

= Dls(1 + zv)ĈL

=
(1 + zv)

(1 + zl)

DAlsDAl
DAs

ĈL

=
(1 + zv)

(1 + zl)
oL;

(194)

where we are using the notation ĈLv for the moving lens and
ĈL for the lens at rest with respect to the observer.

The simplicity of equation (194), and in its derivation,
should not hide that this is a noteworthy expression that
synthesizes all that one needs to take into account in the mo-
tion of the lenses; therefore in this way we simplify previous
worksKopeikin & Schaefer (1999); Frittelli (2003); Wucknitz
& Sperhake (2004) on the subject of moving gravitational
lenses, and generalized its application to the cosmological
scenario.

A note regarding Σcr:
At this point we would also like to take the opportu-

nity to make a remark regarding the notion of critical mass
density used in several previous works and textbooks.

We have noticed before that the contribution to the
optical gravitational lens scalars appearing in (179)-(181)
are composed of two distinctive factors involving direct con-
tributions from the cosmological background and the lens
respectively. When comparing with the textbookSchneider
et al. (1992, 2006) recipe based on the Σ/Σcr approach, we

should relate our Dls with 1/Σcr and ĈLv with Σ. Let us
point out that in a strict sense, we have found that Dls does
not coincides with 1/Σcr as defined bySchneider et al. (2006)

1

Σcr
≡ 4πG

c2
DA(χs − χl)DA(χl)

DA(χs)
; (195)

since, up to the numerical factor with the physical constants,
we note that the factor involving the redshift of the lens is
missing. This is important because in reference Schneider
et al. (2006) it has been claimed that to do calculations in
the cosmological context, one ‘only’ needs to replace the flat
area distances with the cosmological ones.

A note regarding Σ:
Furthermore, in the textbook Schneider et al. (1992),

near their equations (4.19) and (4.20), it is calculated that

the deflecting angle is unaffected, by first order effects on the
velocity of the lens. Then since the quantity Σ used in these
references is just linear in the deflecting angle, one would
deduce that Σ is unchanged by the motion of the lens. We
have shown above that this is not correct.

This means that it is wrong to generalize the common
expressions appearing in weak lensing studies in the case
of a flat background to the cosmological scenario, just by
changing distances to angular diameter distances. We will
return to this point below when presenting basic examples.

10 STATIONARY SPHERICALLY
SYMMETRIC MOVING THIN LENSES

Let us consider the case in which locally, the gravitational
lens, is represented by a stationary spherically symmetric
line element. Then, in a neighbourhood of the lens, we can
set a coordinate system where the line element of the geom-
etry can be expressed as:

ds2
L = e2Φ(r)dt2− dr2

1− 2M(r)
r

− r2 (dθ2 + sin2(θ)dφ2) ; (196)

which is completely determined by the functions M(r) and
Φ(r).

It is important to emphasize that the thin lens approxi-
mation as given in expressions (179)-(181) can be applied to
this situation. When this is done one notes also that the in-
formation provided by the underlined cosmology will appear
only trough the factor (191) containing the angular diameter
distances and the redshift.

Furthermore, comparing the above equations (179)-
(181) with equations (78)-(80) of reference Gallo & Moreschi
(2011), and realizing that in the thin lens approximation,
what matters is the impact parameter J from the center;
one can note that all the discussion of section V of Gallo
& Moreschi (2011) can be applied also to the cosmologi-
cal scenario; taking into account the motion of the lens dis-
cuss previously. This means that we can express the optical
scalars in terms of the energy-momentum components and
the function M(r) as:

κL (J) =
4πG

c2
Dls(1 + zv)

∫ ∞
−∞

[
%(r) +

Pr(r)

c2

+
J2

c2r2

(
Pt(r)− Pr(r)

)]
dy,

(197)

and

γL (J) =
G

c2
Dls(1 + zv)

∫ ∞
−∞

J2

r2

[
3M(r)

r3

−
(
%(r) +

Pt(r)

c2
− Pr(r)

c2

)]
dy;

(198)

where % denotes the energy density of the distribution and
Pr(r) and Pt(r) are the spacelike components of the energy-
momentum tensor. In order to simplify the notation we are
omitting the upper indices ‘L’ in the curvature expressions.
The integration variable y is defined as in Gallo & Moreschi
(2011):

r2 ≡ J2 + y2. (199)
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It is probably worthwhile noting that the standard as-
sumption in cosmological studies is to neglect the spacelike
components of the energy-momentum tensor.

Equations (197) and (198) are very useful expressions
which allow us to write in a simple manner a relation be-
tween the optical scalars of the gravitational lens and the
matter content; and constitute the generalization of the pair
of equations (183) of Gallo & Moreschi (2011) to the cosmo-
logical context.

In the static spherically symmetric lens discussed above,
we have assumed that locally the geometry has this behavior
so that we can use the standard line element, where the cur-
vature need not be small with respect to the cosmological
background. However one could also deal with the situa-
tion in which one has a local static spherically symmetric
distribution of matter which is small with respect to the
local cosmic energy density. In this situation, we can still
use the above expressions, now with the understanding that
the quantities refer with respect to the cosmological back-
ground. So that, for example, in the discussion of the energy
density, if we denote with %c the cosmological energy den-
sity corresponding to the position of the lens, one would use
%L instead of ρ in the above expressions, and would have
%L = %proper − %c.

10.1 Examples

In this subsection we apply the generalized expressions for
the optical scalars of a monopole mass, for the well known
isothermal mass density distribution, and we also present
a peculiar geometry of lens. We take the opportunity to
point out an interesting relation that this unusual distri-
bution shares with the isothermal one.

10.1.1 A monopole mass (Schwarzschild)

Let us consider here a monopole mass characterized by a
mass M =constant; which it could be moving with velocity
v with respect to the observer. For a such lens one finds that

κL = 0, (200)

γL =
4G

c2
Dls(1 + zv)

M

J2
; (201)

then the total convergence and shear are:

κ = κc, (202)

γ = (1− κc)
4G

c2
Dls(1 + zv)

M

J2

=
4G

c2
(1− κc)
(1 + zl)

DAslDAl
DAs

(1 + zv)
M

J2
.

(203)

10.1.2 The isothermal profile

The isothermal profile is characterized by a mass density
function of the form

%(r) =
σ2

2Gπr2
. (204)

This distribution appears in many astrophysical studies
in which it is often used as profile for stellar dynamics models
and for the study of the differential rotation of galaxies whit

dark matter among other applications. The parameter v ≡√
2σ has unit of velocity and it is assumed to satisfy v� c;

which implies that pressures in this model can be neglected.
This characteristic velocity of the isothermal profile should
not be confused with the possible velocity of the lens v.
Then, the matter content is characterized by

M(r) =
2σ2

G
r, (205)

Pr(r) = Pt(r) ≈ 0; (206)

together with equation (204).
It yields the following intrinsic optical scalar for the

lens:

κL =
Dls

c2
(1 + zv)

2πσ2

J
, (207)

γL =
Dls

c2
(1 + zv)

2πσ2

J
; (208)

and if we include the proper contribution from the back-
ground we obtain:

κ = (1− κc)
Dls

c2
(1 + zv)

2πσ2

J
+ κc

=
(1− κc)
(1 + zl)

DAslDAl
c2DAs

(1 + zv)
2πσ2

J
+ κc,

(209)

γ = (1− κc)
Dls

c2
(1 + zv)

2πσ2

J

=
(1− κc)
(1 + zl)

DAslDAl
c2DAs

(1 + zv)
2πσ2

J
.

(210)

10.1.3 Peculiar anisotropic solution

The last example is an exact solution of the Einstein equa-
tion which describes very well the phenomenology of the
dark matter in astrophysical systems which was presented
in Gallo & Moreschi (2012). It posses a non-conventional
energy-momentum tensor whose components are:

%(r) = 0, (211)

Pr(r) =
c4

4πGr2 ln
(

r
µ

) , (212)

Pt(r) = 0; (213)

with µ a constant of the distribution. The solution satisfies
the weak and strong energy conditions and it was shown
that the total mass of the distribution M(r) vanishes.

In different application of this geometry to problems in-
volving dark matter it was found that in the range of interest
ln r was much smaller than − lnµ. This means that for any
practical purposes, the log factor could be identified with a

constant; in other words one could take 4∆2 ∼= c2

ln
(

r
µ

) . Then,

by using equations (197) and (198) one arrives at:

κL (J) =
Dls

c2
(1 + zv)

2π∆2

J
, (214)

γL (J) =
Dls

c2
(1 + zv)

2π∆2

J
. (215)

Therefore we see that this type of models behave as an
isothermal profile with velocity dispersion v =

√
2∆ when it
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is regarded as a gravitational lens. The shear and the con-
vergence are

κ = (1− κc)
Dls

c2
(1 + zv)

2π∆2

J
+ κc

=
(1− κc)
(1 + zl)

DAslDAl
c2DAs

(1 + zv)
2π∆2

J
+ κc,

(216)

γ = (1− κc)
Dls

c2
(1 + zv)

2π∆2

J

=
(1− κc)
(1 + zl)

DAslDAl
c2DAs

(1 + zv)
2π∆2

J
.

(217)

It is probably valuable to remark that if one were to
use the textbook recipe, based on the Σ/Σcr quantities, one
would obtain zero for all the optical scalars in this case, since
Σ = 0.

A note on the examples:
These examples give the opportunity to show the main

differences of our general expressions with the paradigm
based on the Σ/Σcr approach. The first two examples show
that our expressions include the cosmic contribution by the
factor involving the cosmic convergence gravitational lens
scalar κc and the contribution of the general velocity of the
lens by the factor involving the redshift zv. For lenses which
are comoving with the fundamental observers of the back-
ground R-W frame, one has a cancellation of this factor with
the denominator involving the cosmic background redshift;
but the contribution from the the cosmic convergence grav-
itational lens scalar remains, so that even in this case, our
results do no agree with the simplified model based on the
Σ/Σcr recipe.

In standard presentations of the above mentioned
paradigm the issue of possible motion of the lens is com-
pletely neglected, so that they omit the two effects that pro-
duces the two factors shown above; and therefore their can-
cellation, for the case of a comoving lens, has gone unnoticed
in previous works.

Notably the last example demonstrate the inability of
the mentioned paradigm to deal with geometries that have
been shown to be useful for the description of the dark mat-
ter phenomena.

11 FINAL COMMENTS

In this work we have presented a detailed systematic study of
gravitational lens optical scalars in the cosmological context.
We have also included new expressions for them, which allow
for a general energy-momentum content of the lens and at
the same time they contain the corrections due to the motion
of the lens. We also have presented new formulae for the
relation of the observed magnitudes with the optical scalars
through the intensity magnifications we define here.

In our approach we follow the usual framework for the
study of gravitational lens effects, in which one compares the
lensed situation with the unlensed one; in which no curva-
ture is present. In order to take into account the subtleties
appearing in the discussion of lenses over a curved space-
times, such as R-W, it was necessary to review the basic
language and interpretation of observations; which has been
done in section 2. In particular we have remarked that the
natural and universal notion of distance, that can be applied
to any spacetime, is the affine distance λ.

It is interesting to note that the whole R-W geometry
can be characterized as a gravitational lens in its own right;
which is thick, only producing convergence but not shear.
It is also worthwhile to remark that our expressions for the
cosmic convergence are valid for arbitrary large observing
angles.

We have studied also the existence of an additional lens
in a R-W scenario, and have presented the new general ex-
pressions for the optical scalars, namely equations (161)-
(166). One should note that in several works sometimes the
effects of additional lenses are presented only with respect
to a R-W background, which corresponds only to equations
(161)-(163); but in this case one would miss some effects of
cosmological origin, that we include here explicitly.

Although there are excellent textbooksSchneider et al.
(1992, 2006) in the literature that present a complete view of
the subject of gravitational lens in a clear pedagogical way,
they rely on simplifying assumptions that severely limit their
use in detailed research of general astrophysical situations.
In particular they assume a typical lens is of Newtonian
nature and not moving. So, our new expressions possess the
interesting feature that they are not restricted to Newtonian
like distributions of massive scatterer, nor are confined to be
at rest; instead, they allow for a very general class of energy-
momentum tensors which make these formulas a useful tool
to address some of the difficulties related to the missing mass
problem in the Universe. In this way we generalize expres-
sions appearing in textbooksSchneider et al. (1992, 2006), re-
viewsWambsganss (1998); Bartelmann & Schneider (2001);
Bartelmann (2010) and premises of research articlesKling &
Frittelli (2008); Liao et al. (2016); Holanda et al. (2016).

It is worthwhile to remark that our expressions for the
gravitational lens optical scalar are presented in terms of
curvature components; that is, prior to the choice of the
field equation one would like to use. But in all the examples
we have discussed, we have used the Hilbert-Einstein field
equations.

The thin lens approximation has provenFrittelli & Kling
(2011) to be a good working hypothesis for a variety of sys-
tems. Surprisingly, when the thin lens approximation is con-
sidered we have noticed the appearance of a factor involving
the redshift of the lens; as is indicated in equation (189);
which has not been considered previously. This means that
the straightforward change of angular diameter distance,
used in the case of flat background, to the angular diameter
distance used on a R-W background, is not enough to obtain
the complete expression. We remark this because several au-
thors have suggested this wrong technique, as for example in
reference Schneider et al. (2006); where the factor involving
the redshift is missing. In order to remark the conceptual
difference of our approach to those found in standard text-
books, we have presented the general situation in which the
lenses might be moving with arbitrary velocity. This in turn
includes another redshift factor associated to the motion of
the lens which of course need not coincide with the veloc-
ity of the assumed fundamental cosmic observers of a R-W
background.

These equations are additionally useful and relevant to
works concerning test of fundamental geometric relations
in observational cosmology; which are based on the use of
gravitational lensingHolanda et al. (2016); Liao et al. (2016).

We have considered few classic examples of static and
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spherically symmetric lenses, and applied the equations for
the gravitational lens optical scalars. This is easily done,
since we have provided with expressions that relate the op-
tical scalars to the matter content of the lens.

It is probably worthwhile to point out that in our pre-
sentation we have not used the notion of bending angle at
all; since it is not essential, but it is useful to show the differ-
ence with the standard approach based on this concept. For
those that would like to read a discussion of both concepts
for the case of gravitational lens with symmetries, we refer to
our previous article Gallo & Moreschi (2011). In relation to
this, let us also mention that in the Σ/Σcr paradigm, which
is based in the bending angle concept, one can not discuss
the cosmic convergence κc appearing in R-W spacetimes;
since there is no bending of the light rays in this case (See
also Pyne & Birkinshaw (1996)). For this reason within this
paradigm there appear no discussions of the observations of
supernovae; instead we have shown here that the luminosity
observations of a supernova can be expressed in the terms
of the gravitational lens optical scalar of the cosmological
spacetime.

The connection with the observed magnitudes is done
with our introduction of the intensity magnification µ̃, de-
fined in terms of the fluxes, and we have also provided with
an expression of the distance modulus m −M , in terms of
it, given in equations (98) and (99). In order to make con-
tact with the way in which the community describes the
behavior of the distance modulus, we have also introduced
an astrophysical cosmic intensity magnification µ′c that is
thought as a function of redshift. One can also express the
distance modulus in terms of this magnification as we have
done in (100). It is important to remark that the physi-
cal intensity magnification µ̃ turns out to depend only on
the affine distance λ; and that it coincides with the gravita-
tional lens magnification µ. Therefore the distance modulus
as expressed in equation (99), valid in a general spacetime,
only depends on the gravitational lens scalars and kinemat-
ical data. Instead, when expressing the distance modulus in
terms of the astrophysical cosmic intensity magnification µ′c,
it requires the assumption of a cosmological model, so that a
distance-redshift relations can be applied. It is for this rea-
son that something very peculiar happened with the way
in which the data of supernovae has been studied, namely:
one can see from equations (99) and (23) that, since in the
calculation of the gravitational lens optical scalars only in-
tervene the traceless part of the Ricci tensor and the Weyl
tensor, the observations of the supernovae fluxes do not de-
pend on a possible cosmological constant, which only affects
the trace of the Ricci tensor. However in celebrated works,
as Riess et al. (1998); Perlmutter et al. (1999), the authors
have studied the relation between the behavior of the su-
pernovae fluxes with redshift, by the use of equation (100)
with the assumption of a cosmological model, and argued
that a cosmological constant explains the observations. The
peculiarity is also related to this: from tables 1 and 2 one
can see that the physical intensity magnification µ̃ is always
greater than one; so that if one applies (99) to describe the
observed luminosity supernovae, one would find that they
are brighter than in the flat case; instead, in the analysis
of Riess et al. (1998); Perlmutter et al. (1999) the claim is
that since the observed luminosity of supernovae is fainter

(See table 1) than expected as a function of redshift, then a
cosmological constant would account for it.

It should be noticed that our arguments leading to the
new expression (99), should not be confused with the stan-
dard arguments involving the statements of constant surface
brightness as appear in textbooksSchneider et al. (1992).
Our argument relies on the validity of the Etherington the-
orem, which is applicable to general spacetimes and classes
of lenses.

Let us note that in our direct approach to the study of
gravitational lens scalars, the discussion of moving lenses is
straight forward and it can be done in few lines, as expressed
in the deduction of equation (194). Instead in previous ap-
proaches based on the bending angle concept, the discussions
require much more complicated algebraKopeikin & Schaefer
(1999); Frittelli (2003); Wucknitz & Sperhake (2004).

Within the approximation of thin lenses we have con-
sidered configurations with a single lens but the treatment
can easily be extended to complex arrangements of several
lenses. That is, one could consider having N lenses, placed at
cosmological distances λ1, . . . , λN , and apply the techniques
explained above. We will tackle this problem in a further
work.
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APPENDIX A: GEOMETRY IN THE
COORDINATE SYSTEMS ADAPTED TO THE
PAST LIGHT CONE

In this appendix we present a list of the geometric quantities
that we have employed for the description of the R-W space-
time in terms of the GHP formalism Geroch et al. (1973).
We have taken the most relevant null tetrad for our purpose,
namely those presented in subsection (3.1.2). For simplicity
we present the expressions in terms of comoving coordinates.

Since Robertson-Walker geometries are conformally
flat, its geometry is characterized only by its connection and
the Ricci curvature since its Weyl tensor vanishes.

A1 The connection and the curvature for the null
tetrad associated to the null function u

A1.1 Connection in terms of spin coefficients

ρ = −A(t0)

A(t)

(
H(t)

c
−
√

1− kf2
k (χ)

A(t)fk(χ)

)
, (A1)

ρ′ = − A(t)

A(t0)

(
H(t)

c
+

√
1− kf2

k (χ)

A(t)fk(χ)

)
, (A2)

β = −i
√

2

4

ζ

A(t)fk(χ)
, (A3)

β′ = i

√
2

4

ζ̄

A(t)fk(χ)
, (A4)

ε′ =
A(t)

2A(t0)

H(t)

c
. (A5)

A1.2 Ricci curvature scalar

Φ00 =
A2(t0)

c2A2(t)

(
kc2

A2(t)
+H2(t) + q(t)H2(t)

)
, (A6)

Φ11 =
1

4

A2(t)

A2(t0)
Φ00, (A7)

Φ22 =
1

4

A4(t)

A4(t0)
Φ00 =

A2(t)

A2(t0)
Φ11, (A8)

ΛGHP =
1

4c2

(
kc2

A2(t)
+H2(t)− q(t)H2(t)

)
. (A9)

Some of these equations are found in Moreschi (1990)

This paper has been typeset from a TEX/LATEX file prepared by
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