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Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool exten-
sively used to probe the interaction among different pore structures, mostly in inorganic systems. The
analysis of the collected experimental data generally consists of a 2D numerical inversion of time-
domain data where T2-T2 maps are generated. Through the years, different algorithms for the numerical
inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested
and compared under different conditions of exchange dynamics; the method based on Butler–Reeds–D
awson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By con-
structing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying
the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods
under realistic experimental conditions, a challenging organic system was chosen. The molecular
exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two-
and three-site porous media. Data processed with the BRD method was found to be accurate only under
certain conditions of the exchange parameters, while data processed with the FISTA method is precise for
all the studied parameters, except when SNR conditions are extreme.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Porous materials are spread in a great variety of systems in nat-
ure and complex technological applications. Knowledge of the fluid
dynamics of a liquid imbibed in a porous medium is a central issue
in most applications, where the pore size, liquid-surface interac-
tions, and pore interconnectivity are among the main parameters
that drive the fluid dynamics. Nuclear magnetic resonance (NMR)
is considered today an indispensable tool for the study of porous
media in many research and industrial areas such as in sedimen-
tary rocks in oil industry [1,2], soil research [3] or cement pastes
[4]. For interconnected pores, a central question concerns the
migration of molecules from site to site under conditions of
detailed balance.

Two-dimensional (2D) relaxation exchange NMR is a tool that is
able to map diffusion of a fluid from one pore to another. In partic-
ular, T2-T2 correlation spectroscopy tracks changes in transverse
relaxation time T2 of molecules that change their environments
during the experimental time [4–6]. The experiment consists of
two Carr-Purcell-Meiboom-Gill (CPMG) [7,8] sequences encoding
T2, with a variable storage time in between during which mole-
cules are able to exchange sites and to relax with the longitudinal
relaxation time, T1. The resulting 2D matrix contains information
on relaxation in both dimensions and can be converted in a T2-T2
spectrum by a Numeric Laplace inversion (NLI) of the 2D data. Dif-
ferent approaches for the numeric inversion have been proposed
and many of them use the Tikhonov regularization [9–13]. After
data inversion, a T2-T2 map is generated whose main features are
the peaks present in the diagonal which, for short storage times,
reflect the number of molecules present in each environment,
weighted by longitudinal relaxation. For long storage times, given
that effectively an exchange process occurs, off-diagonal peaks
appear. From the intensity of these peaks as a function of the stor-
age time, exchange rates can be calculated [6,14].

The numerical inversion approach most widely used up to the
moment is the data compression proposed by Venkataramanan
et al. [9], using singular value decomposition of the involved kernel
matrices, which uses an adaptation of Butler-Reeds-Dawson (BRD)
method to solve 2D and 2.5D Fredholm integrals of the first class
[15]. The interpretation of the intensity evolution of off-diagonal
peaks is not straightforward, especially for systems with more than
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two coupled pores. Since exchange is a symmetric process, the T2-
T2 map should be symmetric in relation to the diagonal for every
storage time. However, this is not the case for many of the T2-T2
maps reported in the literature [4,6,16,17] and many hypotheses
were made in order to explain this phenomenon. Washburn et al.
[6] argued that the symmetry of the experiment was broken due
to T1 relaxation during the storage time. In a latter report, Mitchell
[4] showed that the observed asymmetry was, in fact, originated
during the data inversion algorithm. Additionally, the influence
of the signal to noise ratio (SNR) of the experimental data on the
NLI was presented by Fleury and Soualem [16], where synthetic
2D time-domain signals were generated for a two-site system.
There, displacements of the position of the four peaks obtained
after numerical inversion for three different values of SNR were
shown. These calculations evidenced that even with a low level
of the SNR, small off-diagonal peaks can be detected but their loca-
tions differ from the theoretical position while for high SNR (500),
the positions are the expected ones. Another effect observed when
the experiments are done with a poor SNR is the appearance of
spurious peaks. Apparently, the SNR did not affect the symmetric
character of the process in the sense that both off-diagonal peaks
are of the same amplitude. In the same work, T2-T2 relaxation maps
for a smectite gel at a clay fraction of 30% as a function of the stor-
age time were presented (see Fig. 9 in Ref. [16]). In those experi-
ments, it is clear that the non-diagonal peaks are not only
deviated from the perfect square position as predicted but also
their amplitudes are not the same. Recently, Song et al. argued that
the typical T2-T2 inversion of the signal does not place the diagonal
symmetry constraints in the data, and consequently allows for an
asymmetrical T2-T2 spectrum. They introduced a different
approach, showing that by analysing the time-domain 2D data in
a two-site system, the exchange may be determined, preventing
the presence of asymmetries [18]. The method is qualitative but
it has the potential to be improved to quantify exchange and
extended to systems larger than two-site. With a different strategy,
d’Eurydice et al. have adjusted the experimental procedure in such
a way that the exchange among different populations can be quan-
tified without the numerical 2D inversion of the data [19]. They
introduced the T2 filtered T2-T2 sequence in which the first CPMG
acts as a filter and the exchange rates can be calculated monitoring
the 1D T2 distributions as a function of the storage time.

Recently, Teal and Eccles [10] proposed an algorithmwhich does
not require amatrix factorization. The idea of the algorithm is based
on the fast iterative shrinkage-thresholding algorithm (FISTA) [20]
but with the NMR convention, which is l2 regularization. More
recently, Zhou et al. used the FISTA algorithm for the inversion of
the 2D NMR relaxometry data using l1 regularization [21].

In the present work, two different approaches for the Numerical
Laplace Inversion of the 2D data [9,10] are contrasted for a two-
and three-site porous system. From a theoretical point of view,
2D synthetic signals are numerically generated, processed with
the studied NLI algorithms and compared with the exact analytical
solutions for different sets of parameters of the exchange dynam-
ics. For an experimental perspective, a porous polymeric network
which can be prepared with a controlled hierarchy of micro-,
meso-, and macro-porous spatial domains [22] was used as a real-
istic model. The two algorithms were studied under different con-
ditions, limiting values for the exchange parameters at which each
of the processing algorithms begins to fail were obtained.
Fig. 1. Two-dimensional pulse sequence T2-T2 for the measurement of transverse
relaxation exchange. The first CPMG encodes T2, followed by a storage period ts in
which the magnetization is along with the z-axis and relaxes due to T1. When
finalized that period, the magnetization is turned to the plane and a second CPMG
acquires the data. The 2D sequence is repeated for different storage times ts .
2. Materials and methods

In order to shed some light on the correct interpretation of the
T2-T2 NMR data, two theoretical methods will be compared: syn-
thetic 2D signals will be generated through numeric calculations,
numerically inverted with both studied algorithms, and compared
to the analytic solution of the same problem. Both theoretical
results will be contrasted with the experimental data for two-
and three-site porous media showing exchange among all of the
reservoirs involved.
2.1. NMR measurements

The NMR pulse sequence used to acquire the T2-T2 signals is
shown in Fig. 1. The experiment consists of three blocks; a first per-
iod encodes transverse magnetization which evolves under the
influence of a CPMG pulse sequence of variable duration s1. A sub-
sequent p/2 rotation stores the magnetization along with the
external magnetic field axis, where diffusion takes place together
with longitudinal relaxation, T1, during a variable storage time ts.
Finally, another p/2 pulse is applied and transverse relaxation is
detected by a second CPMG block of fixed duration s2. This
sequence is repeated using a range of storage times to observe
the movement of water between the different pools.

Measurements were carried out at 30 �C using a MagritekKea2
spectrometer operating at 60 MHz for protons and a Varian
EM360 permanent magnet. The length of the radiofrequency
pulses was set to 16 µs, the echo time tE = 0.5 ms and 8000 echoes
were acquired in the direct dimension while 32 logarithmically
spaced points, from 1 to 8000 echoes, were used for the indirect
dimension. The storage time was varied from 1 to 350 ms averag-
ing 64 scans.
2.2. Two and three-site porous media: sample preparation

The study was performed using polymer beads with hierarchi-
cal pore structure corresponding to copolymers of ethylene glycol
dimethacrylate and 2-hydroxyethyl methacrylate [poly(EGDMA-
co-HEMA)] synthesized as previously reported [22]. Polymer net-
works prepared with a cross-linker content of 33 mol% of EGDMA
were reported to render a system with hierarchically distributed
pore sizes. The system has a porosity of 84% both in the dry state
or fully saturated with water. This is an important fact as the sys-
tem is used fully and partially saturated with water in this study,
thus, it can be assured that the pore network is not modified.
The void space sizes were previously determined by mercury
porosimetry for the dry state [22] and by NMR using the Decay
due to Diffusion in the Internal Field (DDIF) sequence [23] for the
swollen state. Assuming a distribution of spherical pores three
mean sizes were reported. The relevant parameters are listed in
Table 1 [24].



Table 1
Mean pore diameter and relaxation times obtained at 60 MHz and 30 �C. The pore size
values correspond to the polymeric networks fully imbibed in water. T1 and T2
correspond to the relaxation times of water in each of the different environments.
Pore P3 was partially saturated to 25% of its volume in order to obtain a signal low
enough so as not to mask the cross-peak arising from P1 (see Fig. 6 from Ref. [25] for
the relation of relaxation times with pore-filling degree).

Site d [µm] T1 [ms] T2 [ms]

P1 10 75 4
P2 36 570 40
P3 100 1500 300

Fig. 2. T2-T2 maps for (a) three-site system and (b) two-site system with 150 ms of
storage time. The smallest pore is called P1, the intermediate P2, and the biggest one
P3. The pairs of numbers represent the pores that are correlated after the 2D NLI
with the BRD method. The presence of off-diagonal peaks indicates an effective
exchange between every pore.
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Through measurements of water evaporation kinetics, which
can be discriminated within each pore by means of T2 relaxation
measurements in homogeneous fields [25], and spatially resolved
by using a single-sided NMR-MOUSE� (MObile Universal Surface
Explorer), it can be inferred that the system is fully interconnected.
Recently, it could be demonstrated that water migration through
the pores by capillary forces provides a hydrodynamic flux that
maintains a constant level of water at the evaporating surface
while lower pores are depleted [26]. This process is known as a
funicular regime, and lasts until the continuity in the hydrody-
namic connection is lost, entering to the pendular regime [27].
For the systems used in this work, the transition from a funicular
to a pendular regime corresponds to a depletion of water from
the larger cavities, thus defining a two-site porous system [26].

Small samples of polymer beads were immersed in a vial con-
taining distilled water at room temperature for 24 h to reach the
full swelling of the network. Samples of 75 mg weight were
extracted from the vial and gently placed in a 5 mm outer diameter
NMR sample tube. For this setup, the transition from a funicular to
a pendular regime takes ca. 15 h at ambient pressure and temper-
ature conditions [25]. This enables a high precision on the prepara-
tion of a system where only the smaller and intermediate pores are
saturated with water (two-site system). After this time, the NMR
tube was sealed leak-tight and hence the system consists of a
two coupled pores polymeric network. In the same way, a tube
with the saturated system was sealed after the larger pore filling
degree was 25% (three-site system), to prevent that a higher signal
from this pore masked the cross-peaks arising from the smaller
pores. These two polymeric systems were contrasted with numer-
ical and analytical results in order to study two- and three-pore
systems.

In Fig. 2 T2-T2 maps for two- and three-site polymeric systems
are shown. The two-site system can be extended to a three-site
system and the exchange among pores 1 and 2 is almost unaf-
fected, as can be inferred from the position of the four involved
peaks. This is a clear benefit of the studied hierarchical polymeric
system which provides the appropriate scenario to compare the
exchange in the case of two and three populations, under equal
environmental conditions.

2.3. Numerical Laplace inversion

In the following, we provide a short revision on how the signal
collected during 2D experiments can be processed using a NLI,
which is known to be an ill-conditioned procedure. The data
obtained from the T2-T2 experiments can be expressed in the form
of a 2D Fredholm integral of the first kind,

Mðs1; s2Þ ¼
Z Z T2max

T2min

k1ðs1; T2Þk2ðs2; T2ÞSðT2; T2ÞdT2dT2; ð1Þ

where s1 ¼ mtE and s2 ¼ ntE (see Fig. 1). SðT2; T2Þ is the unknown
T2-T2 spectrum, M denotes the measured data, and the kernels k1
and k2 are given by, k1ðs1; T2Þ ¼ e�s1=T2 k2ðs2; T2Þ ¼ e�s2=T2 .
Experimental data is collected at discrete values of time and Eq.
(1) is typically given as:

M ¼ K1SK
T
2 þ E;

where E represents white Gaussian noise, with zero mean and vari-
ance r2. By defining m = vec(M), s = vec(S) and g = vec(E), and
K ¼ K2 � K1 the equation to be solved is:

m ¼ Ksþ g: ð2Þ
As the matrices K1 and K2 are ill-conditioned, solving Eq. (2) is a
very ill-posed problem. A traditional approach to solve these prob-
lems uses Tikhonov regularization, with the solution to s given by

s ¼ argmin
s

km� Ksk2 þ aRðsÞ

with a > 0 the regularization parameter and R the regularization
matrix. The approach proposed by Venkataramanan et al. [9] uses
singular value decomposition and after truncation of singular val-
ues, new ~K1 and ~K2 vectors are obtained, which drastically reduce
the number of rows when compared to K1 and K2. After this dimen-
sion reduction, the algorithm uses an adaptation of Butler-Reeds-
Dawson [15] method to solve the regularization problem. In the
present work, we will refer to the BRD method when this approach
is used. Relaxation maps were constructed using a 2D NLI software
provided by Petrik Galvosas, from the University of Wellington,
New Zealand.
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The second algorithm studied in the present paper is the one
proposed by Teal and Eccles [10]. This method uses a version of
the FISTA algorithm [20] restricted to NMR convention, which is
l2 regularization. With this version, a faster algorithm with results
comparable to the results produced by the BRD methods was
obtained. The FISTA method does not require matrix factorization
and iterations are performed using the kernel matrices K1 and K2,
without the use of the much larger K matrix. This provides signif-
icant speed advantages and convergence facilities. Teal and Eccles
[10] compare the l2 regularization methods, for both simulated and
measured data in terms of convergence. In this work, the algorithm
provided by Paul Teal was used. The efficiency gained with the pro-
posed FISTA algorithm allows for better resolution of the 2D maps.
For the analysis shown in the following sections, maps with 32 �
32 pixels were constructed with the BRD method while with FISTA
algorithm the maps had up to 100 � 100 points. Changes in the
resolution using the FISTA algorithm from 32 � 32 to 100 � 100
points did not show any significant changes in the observed beha-
viour of the relaxation cross-peaks.

2.4. Theoretical calculations

In this section, we provide the line out for the theory of
exchange among different pores within a sample studied by means
of a T2-T2 NMR experiment. The NMR signal results from the super-
position of the magnetization components MiðtÞ on the plane
transverse to the longitudinal field:

sðtÞ ¼
X
i

½MiðtÞ �Meq
i �; ð3Þ

where Meq
i stands for the equilibrium magnetization, Meq

i ¼ M0
i for

longitudinal relaxation, and Meq
i ¼ 0 for transversal relaxation. The

evolution of the magnetization during the pulse sequence of the
whole sample is collected in a vector that follows the differential
equation [28]:

d
dt

½MðtÞ �Meq� ¼ �ðRþ KÞ½MðtÞ �Meq�; ð4Þ

where R is a diagonal matrix containing the relaxation rates, which

are defined as Rð1Þ
i ¼ 1=T ð1Þ

i and Rð2Þ
i ¼ 1=Tð2Þ

i for a spin bearing parti-
cle i subject to longitudinal or transverse relaxation. K is the kinetic
matrix that describes the exchange between different sites which,
for a three-site problem can be written as

K ¼
k11 �k12 �k13
�k21 k22 �k23
�k31 �k32 k33

2
64

3
75; ð5Þ

where kij is the exchange rate between sites i and j. As K only mixes
magnetization, detailed mass balance requires that a lost compo-
nent must be recovered by another one, such that:

KMeq ¼ 0: ð6Þ
This leads to the condition k11 � k21 � k31 ¼ 0 that is, the sum of the
columns of K is zero. From the initial nine exchange constants, only
four remain independent. The solution of Eq. (4) is:

MðtÞ �Meq ¼ exp½�ðR þ KÞðt � t0Þ�½Mðt0Þ �Meq�; ð7Þ
where the exponential operator, known as time evolution operator,
can be obtained by diagonalizing the matrix Rþ K . The eigenvalues
of this matrix for the two-site problem are already complicated
expressions [4] and for more than two pores can be analytically
solved only under some particular conditions. In the present work,
the equations for the three-site exchange under the detailed bal-
ance among pairs condition were analytically solved and compared
to numerical results.
For the calculations, the equations here depicted are solved,
either in a numerical or analytical manner for the three blocks of
the T2-T2 experiment. The relaxation and exchange parameters in
the calculations can be chosen to fit the experiments or can be
known from previous experiments. After the complete evolution,
a synthetic 2D signal is generated and processed in the same
way as the experimental data, by inverting the data through the
NLI.

As a second theoretical method, the equations are solved ana-
lytically and the magnetization as a function of the storage time
is exactly obtained. The results are contrasted with the experimen-
tal and numerical ones. For the two-site case, no approximations in
the dynamics need to be done and the equations can be analyti-
cally solved [4,14] and the eigenvalues for each of the three periods
of evolution in the T2-T2 experiment can be obtained. Eq. (4) is
solved considering the detailed balance, and the amplitude of the
four peaks is obtained exactly. For the three-site case, the analyti-
cal solution can be obtained under some approximations, in this
paper, the detailed balance among pairs is considered; this is:

k12M
eq
1 ¼ k21M

eq
2 ; k13M

eq
1 ¼ k31M

eq
3 ; k23M

eq
2 ¼ k32M

eq
3 ð8Þ

When the detailed balance is considered, differential equation
(7) can be solved by calculating the corresponding eigenvectors
and eigenvalues. The analytical expressions are extremely compli-
cated but can be easily obtained in a closed form by means of a
symbolic computing environment (Maple). The validity of this
approximation for the studied cases is empirically demonstrated
in the following section.

Notice that the experimental and numerical results are pro-
cessed with the same algorithm while the analytical results do
not require data inversion. In the following section both theoretical
methods will be compared for the same set of parameters and used
to fit the experimental results.
3. Results and discussion

3.1. Two-site system

There are several parameters that determine an exchange pro-
cess, such as the number of involved populations, the exchange
rates, the initial and relative initial populations, etc. In order to test
the numerical Laplace inversion under different conditions, we
begin by analysing how different exchange rates influence the out-
come for a two-site system resembling Fig. 2b, with initial popula-
tion values Meq

1 ¼ 1;Meq
2 ¼ 5. The exchange rate parameter was

varied from k12 = 2 � 10�4 ms�1 to 5 � 10�2 ms�1 with the analo-
gous k21 defined by the detailed balance condition (Eq. (8)). In each
case, the synthetic 2D signal was numerically calculated and a T2-
T2 map created using either the BRD or the FISTA algorithm. To
quantify the exchange processes, the quantities A12 and A21 were
obtained by evaluating the amplitude of the respective off-
diagonal peak and normalized to the total system magnetization
at each time. To study the influence of the inversion algorithm in
the asymmetries, Fig. 3 is constructed by evaluating the asymptotic
ratio A12/A21 as a function of the exchange rate. In the case of the
BRD algorithm, for all of these exchange rates, the amplitudes of
the cross peaks are not equal, with ratios of the asymptotic values
ranging from 0.4 for low rates to 0.9 the higher exchange rates. On
the contrary, in the case of data processed with the FISTA algorithm
A21 and A12 peaks are very similar for every exchange parameter
tested. That is, as expected, exchange peaks on either side of the
T2-T2 diagonal have equal intensities for all times [14].

The results in Fig. 3, show a quantitative asymmetry when data
is analyzed with the BRD algorithm. In the following, for a qualita-
tive comparison, each exchange amplitude A12 and A21 was nor-



Fig. 3. Amplitude ratio of the cross-peak asymptotic amplitudes, for a simulated
two-site system obtained by inversion with the BRD and FISTA methods.
Meq

1 ¼ 1;Meq
2 ¼ 5. No noise addition.

86 E.V. Silletta et al. / Journal of Magnetic Resonance 286 (2018) 82–90
malized to its maximum value and studied as a function of the
storage time, ts. In Fig. 4a and b the parameters A12 and A21

obtained with the BRDmethod are plotted as a function of the stor-
age time ts. It is clear that for low exchange rates a great asymme-
try in the peak amplitudes is present and the time evolution of the
numerically inverted data do not represent the system’s dynamics.
Notice that in those cases, neither A12, A21 nor their average, should
be used to quantify the exchange rate of a system. It can be
observed, however, that for exchange rates higher than 5 � 10�3

ms�1 both cross-peaks describe accurately the system’s time evo-
lution, even though the amplitudes differ by 10%.
Fig. 4. Normalized intensities of the exchange peaks as a function of storage time obtaine
(a) A12 and (b) A21 intensities after applying the BRD algorithm. (c) Signals processed wi
respectively. (d) Analytical solutions for the same set of parameters without NLI.
In Fig. 4c the parameters A12 and A21 obtained with the FISTA
algorithm are plotted and match the analytically solved differential
equation (Eq. (4)), as can be seen by comparison to Fig. 4d. From
these simple calculations, it can be concluded that, even in the
absence of noise, when the exchange dynamic is slow, the data
processed with the BRD algorithm does not describe the system
evolution. On the other hand, data processed with the FISTA algo-
rithm is in full agreement with the analytical results for all range of
exchange parameters studied here.

For the two-site porous polymeric system, both methods pro-
vide reliable information as the exchange rate of water between
the pores is high enough to be described by BRD, even in the
presence of noise. It must be taken into account that the total mag-
netization decays with the storage time, consequently, the SNR is
not a constant value in the complete exchange experiment. As a
reference, the SNR observed for the shortest ts = 30 ms was used
(SNR = 800). The normalized amplitudes A12 (solid circles) and
A21 (open circles) are plotted as a function of ts after numerical
data inversion performed with both the BRD (Fig. 5a) and FISTA
(Fig. 5b) algorithms. The dotted line corresponds to the analytical
solution with k12 = 0.03 ms�1 which provides a good description
of the experimental data. It can be concluded from the data that
even in presence of experimental noise, the exchange rate govern-
ing the dynamics is in the safe zone for which both inversion algo-
rithms performed in agreement with the theoretical expectations.

3.2. Three-site system

The number of involved population pools is another parameter
determining the exchange dynamics. In this section, we move to
the three-site system which also gives the opportunity to study
simultaneously other influencing parameters such as different ini-
tial magnetization amplitudes. Van Landeghem et al. [28] have
d by numerical inversion of synthetic data sets.Meq
1 ¼ 1;Meq

2 ¼ 5. No noise addition.
th FISTA algorithm, where close and open symbols represent A12 and A21 intensities



Fig. 6. (a) Theoretical calculation of the intensities of the exchange peaks for the three-site system; Meq
1 ¼ 1;Meq

2 ¼ 5;Meq
3 ¼ 2; k12 ¼ 0:03 ms1;

k13 ¼ 1� 103 ms1; k23 ¼ 1� 105 ms1. (b) Solid line, SNR estimated for the synthetic signal with noise addition, for the total signal available. In symbols, the SNR
discriminated for each exchange peak. The dotted line represents the threshold value in the SNR necessary for the FISTA algorithm to obtain accurate results. Notice that S13
remains lower than the threshold for the whole storage time range studied.

Fig. 5. Normalized experimental intensities of the exchange peaks for the two-site system using (a) BRD and (b) FISTA algorithm. Experimental data (symbols) are in good
agreement with the analytical solution (dotted line) for an exchange rate k12 = 0.03 ms�1. SNR = 800 for ts = 30 ms.
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addressed the three-site exchange problem only by numerical sim-
ulations. They argued that a source of asymmetry in experimental
data can be linked to the sensitivity of the NLI algorithm to noise
and baseline. However, as it was shown for the two-site system,
the asymmetries appear even when the data have neither noise
nor baseline when the BRD algorithm is used. In order to get quan-
titative information on the exchange rates, the three-site system
equations were solved and the detailed balance between pairs
approximation (Eq. (8)) was used. Following the same procedure
used in the two-site exchange, the analytical solution for each pair
of pores is compared to numerical calculations. The values used for
the numerical and analytical calculations are:

Meq
1 ¼ 1;Meq

2 ¼ 5;Meq
3 ¼ 2; k12 ¼ 0:03 ms1; k13 ¼ 1� 103 ms1; k23

¼ 1� 105 ms1

as will be shown, these are accurate representations of the experi-
mental data. Three pairs of exchange peaks are identified in the 2D
maps shown in Fig. 2a. The analytical equation (4) is solved under
the approximation of Eq. (8) and following the procedure presented
for the two sites case by Monteilhet [4], the magnetization ampli-
tude corresponding to the diagonal peaks (A11, A22, A33) and to
the exchange peaks (A12, A13, A23) can be calculated. Fig. 6a shows
the amplitude of the exchange peaks, normalized to the total mag-
netization amplitude ATotðtsÞ ¼

P
i;jAijðtsÞ at each time. As the mag-

netization fraction assigned to the second population M2 is the
largest, the associated quantities A12 and A23 show higher intensi-
ties. The data corresponding to exchange between the smallest
and largest pores (A13) present a much lower intensity due to both,
lower M1 and slower exchange rate.

Synthetic signals were constructed in order to compare the ana-
lytical results to those obtained after signal processing with ILT.
Two sets of synthetic signals were numerically generated, one
without noise addition and a second with noise. In Fig. 6b the
SNR relationship for the synthetic 2D magnetization is shown for
a SNR = 120 corresponding to the lowest exchange time. As
expected the SNR decays with the storage time due to relaxation.
A great advantage in the combination of analytical and synthetic



Fig. 7. Numerical calculation intensities of the off-diagonal peaks obtained with the BRD algorithm (symbols) compared with the analytical solution (color lines) for (a) 1–2,
(b) 1–3 and (c) 2–3 pairs without noise. (d–f) Synthetic data with noise addition. Every data set is normalized to its own maximum value for visualization purposes. All of the
solid symbols represent the data from one side to the diagonal, while the open symbols represent the other side, see Fig. 2. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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data is that the individual contributions of each cross-peak can be
analyzed without the use of a numerical inversion. In this way, an
estimate of the SNR for the time domain contributions can be
determined. As SNR is defined as the ratio between the initial data
in the 2D data set to the RMS noise and using the fact that the mag-
netization at each ts is the addition of the nine contributions Aij, [4],

an individual SNRij can be defined for each population as Aij=
ffiffiffiffiffiffi
r2

p
.

For instance, in Fig. 6b SNR = 115 for the total magnetization at ts =
100 ms while the SNR12 ¼ 8, SNR23 ¼ 1:5 and SNR13 ¼ 0:5.

In Fig. 7a–c the numerical calculation intensities after process-
ing with the BRDmethod is contrasted with the analytical data. For
comparison purposes, every data set is normalized to its maxi-
mum. In Fig. 7a the exchange peaks A12 (solid circles) and A21

(open circles) show good agreement with the analytical data. How-
ever, as in the two-site case, when the exchange parameter
becomes smaller, an asymmetry in the amplitude of the paired
exchange peaks appears, leading to an incorrect description of
the system time evolution. It can be seen that A13 remains zero
until ts = 160 ms (solid circles in Fig. 7b), while A31 starts growing
at a lower value of ts = 50 ms (open circles). Data for the 3–2 cross-
peak A32 (open circles in Fig. 7c) starts growing after a storage time
of 100 ms, while a storage time of 200 ms elapses before A23 (solid
circles) is observable. Noticeably, neither of the off-diagonal peaks
obtained through BRD numerical inversion reflects the true beha-
viour for the 1–3 and 2–3 pairs due to the slow exchange rate.
Fig. 7d–f shows the inversion of the synthetic data with noise addi-
tion (Fig. 6b). As expected, the most affected signals are those cor-
responding to exchange between pores 1 and 3, due to its lower
intensity. According to Fig. 6b the SNR13 is always lower than 0.6.
On the other hand, when the data are processed with the FISTA
algorithm, the results for the exchange peaks provide a better rep-
resentation of the analytical solutions, as shown in Fig. 8. For data
without noise addition (Fig. 8a–c), the numerical inversion slightly
fails to describe the data only in the case of A13, where the associ-
ated magnetization is very small. Fig. 8d–f shows the synthetic
data with noise addition processed with the FISTA algorithm. The
behaviour obtained for the pair 1–2 is still in good agreement with
the analytical result. Still, accurate information on the evolution of
the 1–3 pair could not be obtained, presumably due to the low
SNR13. The most interesting behaviour is observed in Fig. 8f, in
the case of the 2–3 peak. Here the SNR23 increases with the storage
time and the results describe the data evolution for storage times
larger than ts = 100 ms. From these observations, a threshold value
in the SNR necessary for the FISTA algorithm to obtain accurate
results can be estimated to be approximately 1.5 (dotted line in
Fig. 6b), which in principle is independent of the exchange rate.

As in the two-site system, a realistic case is tested by using the
polymeric network described in the sample preparation section;
care was taken in order to fill the larger pore to a 25% degree to
prevent the masking of the smallest pore signal. For the shortest
storage time, a SNR = 900 was estimated for the total magnetiza-
tion at ts = 30 ms. In Fig. 9a–c, the amplitude of each of the six
exchange peaks obtained after numerical inversion with the BRD
algorithm is shown as a function of ts. It is clear that in the case
of 1–3 and 2–3 pairs, data is corrupted by the process of numerical
inversion. It is worth noting that the rate of exchange in the 1–2
pair is very similar as the one in the two-site system, reflecting
the fact that the pore size distribution of the polymer matrix is



Fig. 8. Numerical calculation intensities of the off-diagonal peaks obtained with the FISTA algorithm (symbols) compared with the analytical solution (color lines) for (a) 1–2,
(b) 1–3 and (c) 2–3 pairs without the addition of noise. (d–f) Synthetic signal with noise addition. Every data set is normalized to its own maximum value for visualization
purposes. All of the solid symbols represent the data from one side to the diagonal, while the open symbols the opposite side, see Fig. 2. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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not affected by the evaporation of water from the larger cavities. As
in the simulated data, the exchange among the 1–3 and 2–3 pairs
are not feasible to be fitted to an analytical solution. A13 and A31

evolve differently and are not observable for short storage times
(see Fig. 9b). The behaviour is similar to the numerical results pre-
sented in Fig. 7b. The asymmetry among A23 and A32 is very evident
in the T2-T2 maps; A23 is not visible until the very long storage
times are reached, Fig. 9c.

The results are different when the FISTA algorithm is used for
the NLI, see Fig. 9d–f. There is no evidence of asymmetries in the
exchange peak amplitudes, in agreement with the theoretical
results. When comparing the results reported in Fig. 9c and f it
becomes evident how the FISTA algorithm performs better than
the BRD algorithm for slower exchange rates without the creation
of spurious asymmetries due to data processing. In this case when
the processed data is used to estimate each pair SNR the values
SNR12 = 6.7, SNR23 = 1.6 and SNR13 = 0.03 for ts = 100 ms are
obtained. The FISTA algorithm is unable to describe the 1–3
exchange, Fig. 9e. As occurred when noise was added to the calcu-
lations, the SNR13 is lower than the minimum SNR necessary for
the FISTA to be accurate.

The 2D relaxation experiments studied here are commonly
applied in the inorganic system, as rocks, cement, etc. In this paper,
we show that even in a complex organic system, where process as
swelling can take place which induces changes in the pore struc-
ture, it is possible to measure the molecular exchange rates. The
exchange rates give information about the connectivity among dif-
ferent environments and can be used to elucidate the system tor-
tuosity. The rates were estimated for the three different cavity
pools, obtaining the values k12 ¼ 0:03 ms�1;k23 ¼ 1� 10�5 ms�1.
Due to its extremely low SNR value the exchange rate k13 can
not be accurately determined. These results suggest that the
exchange dynamics with the smallest pore is the most efficient
which is in total agreement with the hierarchical pore structure
observed previously by SEM [22]. This is a confirmation of the pre-
viously reported pore distribution in these hierarchical porous
media [25]. There small pores (P1) belong to a population corre-
sponding to the polymer mesh, accessible mainly through the sur-
face of the polymer beads. The remaining cavities are due to the
agglomeration of the beads. Water confined in the larger pores,
corresponding to P3, must travel longer distances in order to
exchange with water molecules confined in superficial pores (P1),
and even longer times to exchange with connected, intermediate
cavities (P2).
4. Conclusions

We presented an analysis of the performance of two different
methods to carry out the numerical inversion of T2-T2 relaxation
data: the well-established BRD method and the recently intro-
duced FISTA algorithm. The two- and three-site exchange was ana-
lyzed; for the two-site exchange problem both methods perform
comparably for the fast exchange rates and high SNR tested values.
We observed that FISTA outperforms BRD for low exchange rates,
as BRD presents asymmetries in the cross-peak amplitudes for
rates below 1 � 10�3 ms�1 while FISTA provides an accurate
description of the exchange peaks intensity evolution. In the case



Fig. 9. Analytical solution (color line) compared with experimental intensities (symbols) of the off-diagonal peaks obtained with the BRD algorithm for (a) 1–2, (b) 1–3 and (c)
2–3 pairs and with the FISTA algorithm for (d) 1–2, (e) 1–3 and (f) 2–3 pairs. The analytical solution reproduces perfectly the 1–2 exchange process obtained with both
numerical algorithms while the 2–3 pair behaviour is reproduced only when FISTA is used. The 1–3 exchange process is in any case inadequate to be analytically fitted. SNR =
900 for ts = 30 ms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of three-sites, synthetic data generated with values similar to those
observed in a water-saturated porous polymer matrix were used.
Additionally, a threshold value in the SNR was observed for the
pool with the lowest signal intensity. The exchange rates for two
pairs of sites, 12 and 23 in the water saturated porous polymer
matrix could be clearly identified. However, the signal intensity
corresponding to the third exchange rate is below the SNR thresh-
old in the whole range studied. This is a powerful tool in order to
tailor functional properties in these types of materials.

In summary, the FISTA algorithm appears to be a very suitable
tool for the discrimination of relaxation times in 2D NMR
experiments due to its stability upon low exchange rates, low
SNR requirements and the possibility to reconstruct a larger num-
ber of points due to its low computational cost.
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