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Domain size polydispersity effects on the structural
and dynamical properties in lipid monolayers with
phase coexistence.

Elena Rufeil-Fiori1,2,∗ and Adolfo J. Banchio1,2

In lipid monolayers with phase coexistence, domains of the liquid–condensed phase always
present size polydispersity. However, very few theoretical works consider size distribution effects
on the monolayer properties. Because of the difference in surface densities, domains have excess
dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter–
domain interaction. This interaction depends on the domain area, and hence the presence of a
domain size distribution is associated with interaction polydispersity. Inter–domain interactions
are fundamental to understanding the structure and dynamics of the monolayer. For this reason,
it is expected that polydispersity significantly alters monolayer properties. By means of Brownian
dynamics simulations, we study the radial distribution function (RDF), the average mean square
displacement and the average time–dependent self–diffusion coefficient, D(t), of lipid monolayers
with normally distributed size domains. For this purpose, we vary the relevant system param-
eters, polydispersity and interaction strength, within a range of experimental interest. We also
analyze the consequences of using a monodisperse model to determine the interaction strength
from an experimental RDF. We find that polydispersity strongly affects the value of the interaction
strength, which is greatly underestimated if polydispersity is not considered. However, within a
certain range of parameters, the RDF obtained from a polydisperse model can be well approxi-
mated by that of a monodisperse model, by suitably fitting the interaction strength, even for 40%
polydispersities. For small interaction strengths or small polydispersities, the polydisperse sys-
tems obtained from fitting the experimental RDF have an average mean square displacement and
D(t) in good agreement with that of the monodisperse system.

Introduction
Lipid monolayers, as many model membranes, show phase coex-
istence, characterized by domains formed by lipids in an ordered
phase state, dispersed in a continuous, disordered phase1–6. The
domains interact with each other7–9, and these interactions affect
their own movement10,11 as well as that of other species present
in the monolayer12,13. Inter–domain interactions may be related
to electrostatic forces (dipolar or Coulombic repulsions), forces
related to the spontaneous curvature of the coexisting phases and
hydrodynamic forces that appear when domains are in motion.

The dipolar inter–domain interaction, which is always present,

1 Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Com-
putación, Córdoba, Argentina.
2 Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, IFEG, Córdoba,
Argentina.
∗ e-mail: rufeil@famaf.unc.edu.ar

arises from the excess dipolar density of the ordered phase with
respect to the continuous phase. Therefore, the domain dipolar
strength is proportional to its area. In contrast to monolayers,
for bilayers, due to the screening effects of the salt in the sur-
rounding medium and the symmetric geometry of the bilayer, the
strength of electrostatic interactions is significantly weakened2.
In particular, Amazon and Feigenson recently studied the effect
of electrostatic dipolar interactions on domain formation in vesi-
cles and found that the effects of electrostatics for micron–size
domains can be ignored14.

Lipid monolayers typically exhibit domain size polydispersity
15–18. In particular, Langmuir monolayers at the air–water inter-
face show a wide domain size distribution11,12,17,19. Since the
dipolar strength depends quadratically on domain radius, size
polydispersity leads to interaction polydispersity, which usually
turns out to be the most important.

Structural and dynamical properties of monolayers are mainly
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determined by inter–domain interactions and thus, for systems
where the dipolar interaction is dominant, they are expected to
be strongly affected by the presence of domains of different sizes.

To the best of our knowledge, the effects of size polydisper-
sity on the structural and dynamical properties of lipid mono-
layers have not been studied. However, for the determination
of physical parameters of the constituting lipids, size distribu-
tion has been taken into account. Mulder15 studied the use of
size distributions of circular domains in Langmuir monolayers to
determine physical parameters of surfactants. He approximates
the exact size distribution by a Gaussian distribution and uses a
simplified theoretical analysis, in which the inter–domain interac-
tions are treated approximately by considering equally sized do-
mains arranged in a regular hexagonal array. Lee et al.17 obtain
the excess dipolar density by fitting the size distribution with an
equilibrium thermodynamic expression. Their scheme assumes
no interactions between domains, and hence it is valid for suffi-
ciently diluted systems.

Size distribution effects, on the other hand, have long been
studied in colloidal systems, mainly for static properties20–22,
phase transitions23–27, crystallization28–35, glass transition36–38,
self–assembly39, drying of colloidal dispersions40, determination
of effective interactions41–44 and dynamical properties22. In par-
ticular, for quasi–two–dimensional systems, most of the works
consider binary mixture20,21,35, while a few explore polydisperse
colloidal suspensions28,41,43,44. These works study the influence
of polydispersity in the determination of an effective interaction
potential, when the polydisperse system is regarded as a monodis-
perse system.

In a previous work19, we proposed a novel way of estimat-
ing dipolar repulsion, using a passive method that involves the
analysis of images of the monolayer with phase coexistence. The
method is based on comparing the pair correlation function ob-
tained from experiments with that obtained from simulations of
systems of monodisperse domains interacting by a dipolar density
pair potential. We also studied the point dipole approximation
for the dipolar density pair potential, and determined an effective
point dipole interaction strength that reproduces the structural
properties of a system with dipolar density pair potential.

In this work, we use Brownian dynamics simulations to investi-
gate the effects of polydispersity on the structure and dynamics of
lipid monolayer models, with parameters chosen within a range
of experimental interest. For this purpose, we study the pair cor-
relation function, the average mean square displacement and the
average time–dependent self–diffusion coefficient, as functions
of polydispersity and dipolar interaction strength. In addition,
we study how polydispersity would affect determination of dipo-
lar repulsion strength from experimental data, when we use the
method proposed in Ref.19, which was originally developed for
monodisperse model.

Model and Theory

Polydisperse domain interactions

We consider a monolayer in its two–phase liquid–condensed (LC)
and liquid–expanded (LE) coexistence region, where the LC phase

forms domains in the LE phase, which occupies the larger area of
the monolayer. Because of the difference in surface densities, the
LC domains possess an excess dipole density, σ , with respect to
the surrounding LE phase1, resulting in an inter–domain dipolar
repulsive interaction. We model the mixed monolayer as a uni-
form layer with permittivity εm that lies between two different
semi–infinite uniform media (air and water) with permittivities
εa and εw, respectively. This layer is composed of a 2D–dispersion
of circular domains that interact through a dipolar pair potential.
We consider only dipole components perpendicularly oriented to
the interface, and we approximate the uniform excess dipole den-
sity of each domain by a point dipole in its center. The dipole den-
sity model would prevent close contact between domains, while
the point dipole approximation would not. Therefore, we have
added a hard–core potential to prevent domain merging. The
resulting pair potential between domain i and domain j can be
described by:

ui, j(r) = uhc(r)+ud(r), (1)

where uhc(r) is a hard core repulsive potential, and

ud(r) =
µiµ j

4πε0ε∗
1
r3 , (2)

where µi is the dipole moment of the domain i representing the
dipole density σ over the domain area Ai, µi = σAi, r center–to–
center domain distance, ε0 is the vacuum permittivity and ε∗ is
an effective permittivity45:

ε
∗ =

ε2
m(εw + εa)

2εwεa
. (3)

This expression assumes that the dipole lies within the monolayer,
and it is valid for center–to–center distances much larger than the
monolayer thickness. We consider polydisperse circular domains
of radius Ri, accordingly Eq. 2 becomes:

ud(r) =
σ2

4πε0ε∗
π

2R2
i R2

j
1
r3 . (4)

This expression shows how the dipolar inter–domain interaction
varies with the domain radius. As a consequence, domain size
distribution results in interaction polydispersity.

For convenience, we define a dimensionless interaction
strength:

f =
σ2

4πε0ε∗
Rm

kBT
, (5)

where kB is the Boltzmann’s constant, T the absolute temperature
and Rm the mean value of the radii distribution. Note that, f kBT
can be interpreted as the energy between two circular domains
of radius Rm separated by a distance of about 2.14 Rm. Then, the
dimensionless dipolar pair potential takes the form:

ud(r)
kBT

= f
π2R2

i R2
j

R4
m

(
Rm

r

)3
. (6)

Domain size distribution

Most experiments on lipid monolayers present domain size poly-
dispersity6,10,16,17,19. The functional form of the domain size dis-
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tribution is clearly crucial to the structural and dynamical proper-
ties of the monolayer. Here, we approximate the size polydisper-
sity by a truncated normal distribution function,

P(R) =
a√
2πΣ

e−
1
2 (

R−Rm
Σ

)
2

, 0 < R < 2Rm, (7)

where Rm is the mean or expectation of the distribution, Σ is the
standard deviation, and a is a normalization constant which arises
from symmetrically truncating the normal distribution function to
exclude negative domain radii. The system polydispersity, ω, is
characterized by the ratio of the width of the distribution to its
mean; ω = Σ/Rm. Our choice of a Gaussian distribution is based
on the simplicity to vary the standard deviation and the mean
value separately. For some experimental system it has been ob-
served that a Gaussian curve fit is reasonable16, while in general
the domain size distribution show qualitatively different distribu-
tions10,19.

In our simulations we use a discrete counterpart of P(R) (see
Fig. 1), where we chose a number of domain species Npol , and a
bin width s, such that the radii distribution of the system is de-
scribed by the set {Rα ,Nα/N}, α = 1,Npol , where Nα is the num-
ber of domains of type α and N is the total number of domains.
For the system with the largest polydispersity studied, ω = 0.4,
1% of the domain radii fall outside the histograms.

Radial distribution function

A key quantity for characterizing the structure of the monolayer
is the radial distribution function (RDF), g(r). Considering a dis-
tribution of domains in the monolayer plane, g(r) is related to
the probability of finding a domain at a distance r from another
domain chosen as a reference point:

g(r) =
1

N2

Npol

∑
α=1

Npol

∑
β=1

Nα Nβ gα,β (r) , (8)

where gα,β (r) are the partial radial distribution functions, defined
as:

gα,β (r) =
A

Nα Nβ

〈
Nα

∑
i=1

Nβ

∑
j=1
j 6=i

δ (~r−~ri +~r j)

〉
, (9)

with A = L2 the total monolayer area and the angular brackets
indicating an equilibrium ensemble average. Note that ρβ gα,β (r)
is the probability density of finding a β particle at a distance r
from an α particle, where ρβ = Nβ /A is the number density of
domains with radius β .

Diffusion

In order to evaluate the effects of polydispersity on the system
dynamics, we studied the mean square displacement (MSD) and
self–diffusion of domains. The mean square displacement of a
domain of type α with its center at position ~r1,α (t) at time t is
given by:

Wα (t) =
1
4

〈[
~r1,α (t)−~r1,α (0)

]2〉
, (10)
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Fig. 1 Size distributions used for the polydisperse systems (histograms)
and their Gaussian counterpart.

where the angular brackets indicate an equilibrium ensemble av-
erage, and the factor 1/4 has been included to avoid prefactors
in the definition of the time–dependent self–diffusion coefficient.
However, many experimental results do not differentiate between
domain radii. Hence, we evaluate the average MSD as a represen-
tative quantity:

W (t) =
Npol

∑
α=1

xαWα (t), (11)

where xα = Nα/N is the molar fraction of domains of type α.
The time–dependent self–diffusion coefficient, Dα (t), is defined

as the time derivative of Wα (t). The short–time limit of Dα (t)
corresponds to the free domain diffusion coefficient, which in this
work is approximated by the diffusion coefficient of a disk in a
two–dimensional simple fluid:

D0
α =

kBT
4πηRα

(12)

where η is the viscosity of the fluid. It is important to note that,
in our simulations, only the ratios between the different D0

α are
relevant.

The long–time self–diffusion coefficient is defined as:

DL
α = lim

t→∞
Dα (t). (13)

Analogously, the average time–dependent self–diffusion coeffi-
cient, D(t), is obtained from the time derivative of W (t), and the
corresponding limits are:

D0 =
Npol

∑
α=1

xα D0
α , (14)

DL =
Npol

∑
α=1

xα DL
α = lim

t→∞
D(t). (15)

Simulations
We model the mixed monolayer as a two–dimensional Brown-
ian suspension of interacting hard disks with polydisperse radii
immersed in an effective fluid, each disk representing an ideal-
ized lipid domain. The inter–domain interactions are described

Journal Name, [year], [vol.], 1–9 | 3

Page 3 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
2 

Fe
br

ua
ry

 2
01

8.
 D

ow
nl

oa
de

d 
by

 F
or

sc
hu

ng
sz

en
tr

um
 J

ue
lic

h 
G

m
bh

 o
n 

16
/0

2/
20

18
 1

4:
42

:4
8.

 

View Article Online
DOI: 10.1039/C7SM02099F

http://dx.doi.org/10.1039/c7sm02099f


by the point dipole pair interaction Eq. (6) plus a hard disk re-
pulsive part. Hydrodynamics interactions are disregarded. To
study the static and dynamical properties of the mixed monolayer
model, we performed Brownian dynamics (BD) simulations. In
this scheme, the finite difference equation describing the in-plane
displacement of N Brownian disks immersed in a fluid during the
time step ∆t is given by46

~rα,i(t +∆t)−~rα,i(t) =
Npol

∑
β=1

D0
β

kBT

Nβ

∑
j=1

FP
β , j∆t +~Xα,i , (16)

where~rα,i(t) is the position of domain i of type α at time t, FP
β , j is

the force on disk i of type α due to the disk j of type β and ~Xα,i

a random displacement vector of domain i of type α originating
from solvent particle collisions. ~Xα,i is sampled from a Gaussian
distribution with zero mean and covariance matrix:〈

~Xα,i~Xβ , j

〉
= 2D0

α Iδα,β δi, j ∆t, (17)

where I is the identity matrix, and δi, j the Kronecker delta.
The simulated systems consisted of N disks with radii distribu-

tion {Rα ,Nα/N} under periodic boundary conditions, using the
minimum image convention.

The size of the simulation box, L, was determined from the
condensed area fraction, φ , defined as:

φ = ∑
α

φα ; φα =
Nα πR2

α

L2 . (18)

The system is completely characterized by the following pa-
rameters: the interaction strength f (or equivalently, the dipolar
density σ), the size distribution {Rα ,Nα/N} and the total area
fraction φ .

Throughout this work, the area fraction is fixed at the value
φ = 0.20, which was chosen as a typical value of experimental
monolayer micrographs.

In Figure 1, we show the distributions used in our studies and,
in Table S1 of the electronic supplementary information (ESI),
the size distribution {Rα ,Nα/N} of each system studied can be
found. We have carried out simulation studies with four distinct
polydispersities: ω = 0.1,ω = 0.2,ω = 0.3 and ω = 0.4. These
systems are compared with simulations of perfectly monodisperse
domains.

The bin width of the size distribution, s, was chosen as s/Rm =

0.2. This choice leads to a small number of domain types for each
polydispersity, and at the same time reproduces the distribution
shape qualitatively well. For a typical experimental average ra-
dius of Rm = 5 px, the bin width s = 1 px is in the range of typical
optical microscopy experimental error. We verified that, for the
systems studied, the Gaussian distribution is well–described by
the selected discretization {Rα ,Nα/N}. The RDF and the average
MSD do not change substantially if half of the bin width value is
used.

Finally, the interaction strength f was varied such that the sys-
tem remains in its fluid phase and the peak value of the radial dis-
tribution function lies in a range typically found in experiments.

The time scale used in the simulations is R2
m/D0

m. In our simu-

lations, we used ∆t D0
m/R2

m = 10−3,5.12 10−4,2.16 10−4,6.4 10−5

and 8 10−5 for monodisperse, ω = 0.1,0.2,0.3 and 0.4, respec-
tively. These values were selected so that the dynamics of the
smallest domain in each system is well–resolved. For all systems
we used N = 676 domains. The number of domains of each type
for the systems considered are specified in Table S1 of the ESI.
For the systems studied, we verified that there is no system size
dependency.

Results and Discussions

Effects of polydispersity on g(r) and MSD(t)

With the aim of analyzing the effect of polydispersity, we consider
systems with four different interaction strengths, which corre-
spond to the liquid regime for the selected area fraction (φ = 0.2).
For each interaction strength we vary the polydispersity from
ω = 0 (monodisperse) to 0.4. Here we present the results for
f = 6 and 24, and, in the ESI, the intermediate values of f = 12
and 18 are shown (Fig. S1).

Figure 2 shows the pair correlation function for f = 6 (a) and
24 (b), for ω = 0,0.1,0.2,0.3 and 0.4. In both cases, we observe a
decrease and a broadening of the first peak as the polydispersity
grows. Furthermore, there is a shift of the peak position to greater
distances and g(r) starts to show correlations for shorter dis-
tances. In general, polydispersity softens the peaks and minima
of the g(r). It is remarkable that for highly interacting systems,
even for 40% of polydispersity, there are still a well–developed
first minimum and a second maximum. This can be attributed to
the fact that the interaction strength grows with the fourth power
of the domain size.

To analyze how polydispersity affects the dynamical properties
of the monolayer, we calculated the average MSD and the aver-
age time–dependent diffusion coefficient. Results for the selected
systems are presented in Fig. 3. For the weak interaction f = 6
(Fig. 3a), we observe that the average short–time diffusion coef-
ficients of polydisperse systems are larger than that of monodis-
perse system. This is a direct consequence of the inverse radius
dependence of the short–time coefficient diffusion, D0

α , and of
the symmetry of the radii distribution. Here, for the more poly-
disperse case, ω = 0.4, the difference is about 20%. For the av-
erage long–time diffusion coefficients we find a similar ordering,
but with slightly larger differences. In particular, for ω = 0.4 the
difference reaches 40%. However, the relative decrease of the av-
erage long–time diffusion constant with respect to the short–time
limit, DL/D0, differs by less than 15%. For all polydispersities,
D(t)/D0 diminishes roughly 50% at the long–time limit. In the
inset of Fig. 3a, the respective average MSDs are shown. Note
that, within the logarithmic scale, the polydisperse systems ap-
pear very similar to the monodisperse system, except for a slight
translation to larger values.

Figure 3b shows the average diffusion quantities for f = 24.
For these systems, the same qualitative behavior is observed as
in previous ones. In particular, the short–time limits are identical
since they have identical radii distribution. In addition, the av-
erage long–time diffusion coefficients are smaller, because of the
stronger interactions.
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Fig. 2 Radial distribution function for monodisperse and polydisperse
systems with (a) f = 6, and (b) f = 24.

Comparing the most polydisperse system, ω = 0.4, with the
monodisperse one, it is found that the average long–time dif-
fusion coefficient is of the order of 60% larger, while the ratio
DL/D0 is roughly 30% larger. In general, an enhancement of av-
erage diffusion is observed as polydispersity increases. This effect
is stronger in the long–time regime and is also more pronounced
for systems with stronger interactions.

To describe the structure of the polydisperse system in more
detail, we show, for the system with ω = 0.3 and f = 24, the par-
tial radial distribution functions gα,α (r) in Fig. 4a and g1,α (r) in
Fig. 4b. They show that the partial RDFs start to differentiate
from zero at distances larger than the respective contact values,
i.e., domains do not come into contact. Note that the distance
between the first and the second neighbor shell and the first min-
imum depth are very similar for different domain sizes. This is
clearly seen in the inset of Fig. 4a, where we have plotted gα,α (r)
horizontally shifted by their respective peak positions, rmax. Con-
sidering the spatial correlation between the smaller domains and
the other domain types, as shown in Fig. 4b, it is observed that the
probability of finding the smallest domains (type α = 1) around
domains of other types increases with domain sizes. However,
the first minimum depth of g1,α (r) decreases with domain type
α. The other gα,β (r), not shown here, also indicates that small
domains are more probably found close to larger ones.

Focusing now on the time dependent diffusivities, in Fig. 5
we show the time dependent diffusion coefficient for each do-
main type, Dα (t), and the corresponding average, D(t). Here,
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Fig. 3 Average diffusion coefficient D(t) and average MSD (inset) for
monodisperse and polydisperse systems with (a) f = 6, and (b) f = 24.
In the insets, the dashed line indicates the low–density limit for the
monodisperse system, W (t) = D0

m t.

to compare the relative slowdown of the dynamics between the
different types, the diffusivities are normalized by their corre-
sponding short time limit, D0

α . It is observed that, except for
the smallest domain type, the self–diffusion of the different do-
main sizes slows down similarly, reaching a long–time limit of
roughly DL

α/D0
α ' 0.29. There is a remarkably large difference in

the behavior of the smallest domains, which show a much smaller
slowdown than the others, i.e., they are able to leave the neigh-
bor cages more easily. This could be attributed to the fact that
the dipolar strength of the domains grows quadratically with the
radius.

Monodisperse vs. polydisperse models
In lipid monolayers with phase coexistence, the dipolar repulsion
σ ( f ) is not usually a known parameter. One method to deter-
mine it consist in fitting the experimentally measured RDF with
one obtained from simulations, using σ as the only adjustable pa-
rameter19. This assumes a monodisperse distribution of domain
radii, and thus monodisperse inter–domain interactions. There-
fore, it is important to assess the effects of polydispersity on the
determination of σ using this method. For this purpose, we used
the g(r) from the monodisperse systems studied in this work as
the reference RDF, as if they were previously fitted to experimen-
tal data sets. Then, we fitted the reference g(r) with the polydis-
perse systems shown in Fig. 1 (as was already stated, φ = 0.2 for
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Fig. 4 Radial distribution function g(r) and partial RDFs gα,α (r) (a) and
g1,α (r) (b) for ω = 0.3 and f = 24. The vertical arrows indicates the
contact distances. Inset: the data have been horizontally shifted to
match the first peak position.

all systems) and we analyzed how the interaction strength varies
with ω. Note that, as in our previous work19, only the first peak
height of the reference g(r) is considered in the fitting procedure.

Figure 6 shows the results for systems with g(rmax) = 1.35 (a)
and g(rmax) = 2.01 (b) (monodisperse models with fm = 6 and
24, respectively). In the ESI, systems with g(rmax) = 1.63 and
g(rmax) = 1.84 ( fm = 12 and 18, respectively) are shown (Fig. S3).

The RDF from the monodisperse system with g(rmax) = 1.35
(Fig. 6a) is qualitatively well captured by the polydisperse sys-
tems, except for short distances, where the g(r) start to grow at
shorter distances. This difference becomes more pronounced for
larger polydispersities. In the inset, we have plotted the g(r) hor-
izontally shifted so that the first peak position coincides. This
clearly shows that the distance between the different neighbor
shells and the depth of minima are very similar for all polydisper-
sities. This agreement is striking, since we are comparing systems
with polydispersities as large as 40%.

For the more structured system with g(rmax) = 2.01, shown in
Figure 6b, we observe a similar behavior. However, for polydis-
persities larger than 20%, the depth of the first minimum starts to
differentiate, at the same time as the third peak position begins to
dephase. This can be seen in the inset. Note that, already for 40%
polydispersity, the fit is not possible, i.e., there is no interaction
strength for which the resulting g(r) reaches the maximum value
of 2.01.

In general, to reach a certain value of g(rmax) a larger interac-
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Fig. 5 Normalized diffusion coefficient for each type of particle
Dα (t)/D0

α and for the average D(t)/D0 for ω = 0.3 and f = 24.

tion strength is needed as the polydispersities increase. However,
not all the values of g(rmax) can be obtained for systems with large
polydispersity. Figure 7 shows g(rmax) as a function of the inter-
action strength f for the different polydispersities studied here.
It can be seen that the values g(rmax) tend to saturate for high
interaction strength.

For experimental systems with φ = 0.20 and approximately
Gaussian size distributions, Figure 7 can be used as a working
curve to estimate f (or σ) directly from the experimental g(r)
without implementing any simulation, generalizing the method
presented in Ref.19 to polydisperse systems.

At this point, we introduce a new parameter Γ, which combines
the number density, ρ = N/A, and the interaction strength, f , in
one independent dimensionless parameter. Namely,

Γ = f π
2 R3

m
r3
m
, (19)

where rm = ρ1/2 is the mean geometrical distance between do-
mains.

Systems for which the hard disk interactions can be disre-
garded (i.e., strongly interacting or low density systems) are com-
pletely determined by Γ, the scaled domain radii of the differ-
ent species, λα = Rα/Rm, and their corresponding molar frac-
tions, xα = Nα/N. Note that the parameter space { f ,φ ,Rα ,xα}
is mapped to {Γ,λα ,xα}.

Given that, for the systems studied here, the effects of the hard
disk interaction on the g(r) turned out to be irrelevant, Fig. 7
may be recast to show the maximum of the RDF as a function of
Γ, as shown in Fig. 8. In this way, if the size polydispersity can
be described by a Gaussian distribution with {ω,Rm}, and g(rmax)

and ρ are determined from the experiments, the Γ value could be
estimated directly from this figure, and subsequently the dipolar
density can be obtained.

To further study how polydispersity affects the structure, Fig-
ure 9 shows the interaction strength needed to obtain a cer-
tain g(rmax) as a function of ω. The curves for g(rmax) = 1.35
and g(rmax) = 2.01 correspond to the RDFs shown in Fig. 6 a
and b, respectively. Here, it can be clearly seen that the inter-
action strength for a given g(rmax) increases notably faster for
more structured systems and, in particular, for g(rmax) = 1.35 and
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Fig. 6 Radial distribution function for systems with (a) g(rmax) = 1.35 and
fm = 6 (monodisperse), f = 6.5 (ω = 0.1), f = 8 (ω = 0.2), f = 12
(ω = 0.3), and , f = 18 (ω = 0.4), and (b) g(rmax) = 2.01 and fm = 24
(monodisperse), f = 27.5 (ω = 0.1), f = 47.5 (ω = 0.2) and f = 125
(ω = 0.3). Inset: the data have been horizontally shifted to match the
first peak position.

ω = 0.3, f/ fm = 2 and for g(rmax) = 2.01 and ω = 0.3 f/ fm = 5.21.
The dotted line for the case g(rmax)= 2.01 indicates that no system
with ω = 0.4 is able to reach this peak height.

Finally, we consider the dynamics of the systems shown in Fig-
ure 6. The corresponding average diffusion coefficient and MSD
are shown in Figure 10.

It is remarkable that, for the less structured system (Fig. 10a),
polydispersity slightly affects the intermediate and long–time av-
erage dynamical quantities. However, a completely different sce-
nario occurs for the more structured system (Fig. 10b). In this
case, up to ω = 0.1, the average diffusion coefficient behaves sim-
ilarly to that of the monodisperse system. On the other hand, for
larger polydispersities, D(t) strongly deviates from the monodis-
perse system. The system reaches the sub–diffusive regime faster,
as polydispersity increases. Besides, the long–time average diffu-
sion coefficient is smaller for larger polydispersities. This is prob-
ably a consequence of the dependence of the interaction strength
on the domain sizes, which is more evident for strongly interact-
ing systems.

Conclusions
In this work, we studied the influence of domain–size polydis-
persity on the structure and dynamics of model lipid monolay-
ers with phase coexistence at the air–water interface. The size–
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Fig. 7 Maximum of g(r) as a function of the interaction strength for
monodisperse and polydisperse models. The lines are a guide for the
eye.
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Fig. 8 Maximum of g(r) as a function of Γ for monodisperse and
polydisperse systems. The lines are a guide for the eye.

polydispersity was modeled as a discretized Gaussian distribu-
tion.

Studying the monolayer structure, we found a decrease and
a broadening of the first peak of the RDF as the polydispersity
increases. Furthermore, a shift of the peak position to greater
distances and the occurrence of correlations for shorter distances
were observed. Notably, highly interacting systems ( f = 24) pre-
sented a well–developed first minimum and second maximum,
even for 40% of polydispersity. For all the systems studied, the
partial RDF starts to differentiate from zero at distances larger
than the respective contact values. This indicates that domains
do not come into contact and hence that the hard–disk interac-
tion is not relevant. Regarding the spatial correlation between
the smaller domains and the other domain types, it was observed
that the probability of finding the smallest domains around do-
mains of other types increases with domain sizes.

Analyzing the domain dynamics, we found an enhancement of
the average diffusion as polydispersity increases. This is more
pronounced in the long–time regime. For systems with stronger
interactions the overall enhancement is more noticeable. It was
also found that the self–diffusion of the smallest domains shows
a much smaller slowdown than for the other domain sizes, i.e.,
they are able to leave the neighbor cages more easily.

We also studied the effects of polydispersity in the determi-
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Fig. 9 Interaction strength of the polydisperse models that lead to a
similar structure to that of the monodisperse model, for different
monodisperse systems. The lines are a guide for the eye.

nation of f (or σ) by the method proposed in Ref.19, where a
monodisperse model is used to fit the experimental RDF. For the
systems considered, it was found that polydispersity strongly af-
fects the value of f , which is greatly underestimated if polydisper-
sity is not considered. However, it is still a useful approximation
for experimental systems with small polydispersities and/or weak
interactions.

It is remarkable that, even for large polydispersities, the fitted
RDFs result in good agreement with the reference one; they have
the same second and third peak heights and neighbor shell dis-
tances. They mainly differ in the depth of the first minimum and
in the distance where the g(r) starts to grow.

With regard to the dynamics, on the other hand, only for
weak interactions or small polydispersities does the average time–
dependent diffusion coefficient agree with the reference system.
For stronger interactions or larger polydispersities, a noticeable
slow–down is observed in the average dynamics.

Finally, the method proposed in Ref.19 may be straightfor-
wardly generalized to include polydispersity by directly fitting
the experimental g(r) with a model that accounts for the domain
size distribution measured in the simulations. Alternatively, us-
ing a Gaussian size–distribution model and for a selected range
of { f ,ω}, a set of figures, like Fig. 7, can be generated for dif-
ferent values of φ , for later use as working curves to estimate f
(or σ) directly from the experimental data without implementing
any simulation. In particular, for a system in which the hard disk
interaction can be disregarded, only one working curve is needed
(Fig. 8).
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