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Abstract

It has been demonstrated that food intake and reproductive physiology are both simultaneously modulated to optimize reproductive 
success under fluctuating metabolic conditions. Ghrelin (GHRL) is an orexigenic peptide identified as the endogenous ligand of the 
growth hormone secretagogue receptor that is being investigated for its potential role on reproduction. Considering that data 
available so far are still limited and characterization of GHRL action mechanism on the reproductive system has not been fully 
elucidated, we studied the participation of hypothalamus in GHRL effects on sperm functional activity, plasma levels of 
gonadotropins and histological morphology in mice testes after hypothalamic infusion of 0.3 or 3.0 nmol/day GHRL or artificial 
cerebrospinal fluid (ACSF) at different treatment periods. We found that GHRL 3.0 nmol/day administration for 42 days significantly 
reduced sperm concentration (GHRL 3.0 nmol/day = 14.05 ± 2.44 × 106/mL vs ACSF = 20.33 ± 1.35 × 106/mL, P < 0.05) and motility 
(GHRL 3.0 nmol/day = 59.40 ± 4.20% vs ACSF = 75.80 ± 1.40%, P < 0.05). In addition, histological studies showed a significant 
decrease percentage of spermatogonia (GHRL 3.0 nmol/day = 6.76 ± 0.68% vs ACSF = 9.56 ± 0.41%, P < 0.05) and sperm (GHRL 
3.0 nmol/day = 24.24 ± 1.92% vs ACSF = 31.20 ± 3.06%, P < 0.05). These results were associated with a significant reduction in 
luteinizing hormone and testosterone plasma levels (P < 0.05). As GHRL is an orexigenic peptide, body weight and food intake were 
measured. Results showed that GHRL increases both parameters; however, the effect did not last beyond the first week of treatment. 
Results presented in this work confirm that central GHRL administration impairs spermatogenesis and suggest that this effect is 
mediated by inhibition of hypothalamic–pituitary–gonadal axis.
Reproduction (2018) 156 121–132

Introduction

Ghrelin (GHRL) is a 28 amino acid acylated peptide, 
mainly produced by stomach (Kojima  et  al. 1999) 
and in smaller quantities by other tissues including 
reproductive tissues, such as testicular, ovarian, uterine 
and placental tissues (Horvath et al. 2001, Barreiro et al. 
2002, Fernandez-Fernandez et al. 2004).

It has been recently demonstrated that food intake 
and reproductive physiology are both simultaneously 
modulated by multiple chemical signals. In this 
sense, there are many hormonal mediators and/or 
neuropeptides that optimize reproductive success under 
fluctuating metabolic conditions. Gonadal steroids 
affect energy balance and adiposity in a variety of 
mammalian species; alterations in nutritional status also 
markedly influence the hypothalamic–pituitary–gonadal 
(HPG) axis (Casanueva & Dieguez 1999, Tena-Sempere 
& Barreiro 2002). Biological actions recognized for 

GHRL are mostly conducted through interaction with 
its specific cell-surface receptor, GHS-R1a (Gaytan et al. 
2004). This receptor is mainly expressed in the arcuate 
and ventromedial nuclei of the hypothalamus, and it 
is also present in many peripheral organs (Guan et al. 
1997, Kojima  et  al. 2001, Gnanapavan  et  al. 2002), 
indicating multiple GHRL functions on these 
tissues (Broglio  et  al. 2003). In this line, it has been 
demonstrated the expression of GHRL receptor in rat 
testis (Tena-Sempere et al. 2002, Barreiro et al. 2003). 
Moreover, in vitro studies indicate a direct inhibitory 
action of GHRL on testicular testosterone secretion 
(Tena-Sempere et al. 2002). In this context, an increasing 
body of evidence demonstrates that GHRL represents 
an additional regulatory signal in male reproduction 
(Garcia et al. 2007). Moreover, several lines of evidence 
suggest that GHRL actions include both systemic effects 
at different levels of the HPG axis, as well as direct 
gonadal actions of locally produced GHRL (Barreiro &  
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Tena-Sempere 2004, Kheradmand et al. 2009). However, 
data available so far are still limited and characterization 
of GHRL mechanism of action on the reproductive 
system remains largely unexplored. Therefore, the 
present work attempted to recognize hypothalamus 
participation in GHRL effects on spermatogenesis, 
reproductive hormones levels (luteinizing (LH), follicle-
stimulating (FSH) and testosterone) and sperm quality 
in mice.

Materials and methods

Animals

Adult male mice (albino Swiss N/NIH), 60 days old with an 
initial body weight of ≅ 30 g were used. Colony room was 
maintained on 14:10-h light–darkness photoperiod and under 
controlled temperature (24 ± 2°C), with pelleted mouse food 
(Gepsa Feeds, Pilar, Argentina) and water ad libitum.

Experiments were conducted in accordance with the 
guidelines of the experimental protocol approved by the 
Committee for the Care and Use of Experimental Animals, 
School of Medical Sciences, National University of 
Córdoba (07/07/15).

Surgery

After 2  weeks of adaptation period in the storage room, 
ventromedial hypothalamic surgery was carried out using 
osmotic pumps (Alzet, Durect, Cupertino, CA, USA), 
according to the methods described by Paxinos and Franklin 
(2001). Animals were anesthetized using a combination 
of 55 mg/kg ketamine HCl (Vetanarcol König: Laboratories 
König S.A, Argentina) and 11 mg/kg xylazine (Kensol König: 
Laboratories König S.A) and placed in a stereotaxic apparatus. 
The coordinates relative to bregma were anterior 0.15 mm, 
lateral 0.05 mm and vertical 5.5 mm. Cannulae were fixed to 
the skull surface with dental acrylic cement. Different animals 
were infused daily with ACSF or GHRL 0.3 or 3.0 nmol/day. 
After surgery, animals were housed in individual cages.

At the end of the experiments, all brains were subjected to 
histological analysis to confirm the guide cannula location 
(Fig.  1). Only animals with correct cannula position were 
considered for statistical analysis.

Drugs and treatment

GHRL (acyl-ghrelin) (Innovagen, Sweden) was dissolved in 
ACSF (0.3 or 3.0 nmol/µL), divided into aliquots and kept at 
−20°C until experimental day. GHRL was infused chronically 
in the hypothalamus employing osmotic pumps model 1007D 
(0.5 µL/h, 7 days) or model 2006 (0.15 µL/h, 42 days).

Experimental procedure

In mouse, spermatogenesis consists in a developmental period 
of 35  days from differentiated type A1 spermatogonia to 
spermatozoa (Franca et al. 1998), while each spermatogenic 
cycle length is 8.6 days (Clermont & Trott 1969). Taking this 

Figure 1 Histological confirmation of cannula location into the 
hypothalamus. (A) Coronal sections of mice brain based on the atlas 
of Paxinos and Franklin (2001). Anteroposterior locations relative to 
the bregma are indicated in each section. (B) Infusion position 
(arrow) employing osmotic pumps model 2006 (0.15 µL per hour, 
42 days). Photography obtained by spectral confocal microscope 
(FV1200 OLYMPUS), Ob: 4× with PRIOR motorized stage assembled 
to software ASW 4.0. Scale bar: 1 mm.
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into account, assessment of GHRL effects on sperm functional 
activity in mice was carried out using different experimental 
approaches. Specifically for this purpose, two sets of 
experiments were performed. They are the following.

First, in order to study hypothalamus participation in GHRL 
effects on epididymal maturation, animals were treated for 
7 days (period that covers the release of mature spermatozoa 
into the lumen of the seminiferous tubule and a series of 
cellular modifications that occur during transit along the 
epididymal tubule).

Second, in order to study hypothalamus participation in 
GHRL effects on spermatogenesis, animals were treated for 
42 days (period that covers at least one complete spermatogenic 
cycle and epididymal sperm migration).

In order to minimize potential bias of major differences in 
body weight on the different reproductive endpoints under 
analysis, food intake and body weight were daily measured 
in both experimental sets. After treatment, animals were killed 
by decapitation in a room separate from that in which the 
other animals were kept. Trunk blood was collected into EDTA 
tubes and immediately centrifuged (1700 rpm, 10 min, 4°C). 
Individual plasma samples were frozen and stored (at −20°C) 
for subsequent hormonal determination.

Spermatozoa were obtained by making incisions in the 
isolated caudal portion of the epididymis, allowing the sperm 
to extrude into 2 mL of Tyrode medium for 10 min.

Testes were immediately removed and weighed (free of 
surrounding fat). Weight is expressed as relative weight (testicular 
weight/animal weight). Histological and ultrastructural studies 
were then performed in animals treated for 42 days.

Food intake and body weight

Food intake was determined as the difference between food 
available and food remainder 24 h later between 11:00 and 
12:00 h to prevent variations determined by circadian rhythms. 
Body weight was measured daily. Data are expressed in grams 
(g) as mean ± s.e.m. n = 9–12 animals/group.

Incubation medium

Modified Tyrode’s medium (Fraser 1993) supplemented with 
4 mg/mL of bovine serum albumin (Sigma, St Louis, MO, 
USA) was employed and gametes were incubated at 37°C  
(5% CO2:95% air) and 100% humidity until use.

Reproductive parameters

Sperm concentration, motility and maturity were measured in 
a Makler counting chamber (Sefi-Medical Instruments, Haifa, 
Israel) under an inverted microscope (Olympus CK2) at 200× 
magnification (Makler 1980). Concentration is expressed 
in millions of spermatozoa per mL of sperm suspension. 
Motility results are expressed as a percentage of motile 
cells (progressive plus non-progressive spermatozoa). No 
less than 100 gametes were examined (Fiol de Cuneo  et  al. 
1994). To evaluate sperm maturity, percentages of bending 
spermatozoa (with a marked flagellar angularity of 90–180° 
toward the tail in the sperm head or midpiece), spermatozoa 

with cytoplasmic droplets (a remnant of germ cell cytoplasm 
in the sperm tail), and those with both characteristics were 
quantified. n = 9–10 animals/group.

Sperm viability

Sperm viability was evaluated by supravital staining with 
Hoechst 33258 (H258) (3 mg/mL in isotonic solution) 
(Calbiochem) (Yelian & Dukelow 1992). Using appropriate 
ultraviolet fluorescence optics (Axiolab, Zeiss, Germany), 
spermatozoa showing bright fluorescent nuclei were scored as 
dead and cells that excluded the H258 were scored as viable. 
Viability of at least 100 cells was assessed; results are expressed 
as a percentage of viable spermatozoa. n = 9–10 animals/group.

Hypoosmotic swelling test

As previously described (Ruiz  et  al. 1996), 0.1 mL of sperm 
suspension was mixed with 1 mL of the hypoosmotic solution 
(100 mosmol/L) for 45 min (37°C). Evaluations were made 
by phase-contrast microscopy at a magnification of 400×; 
100 or more cells were observed; results are expressed as 
the percentage of spermatozoa that showed tail swelling 
(n = 9–10 animals/group).

Acrosomal integrity

Samples were treated as stated by Puechagut  et  al. (2012). 
Acrosomal integrity was evaluated with double staining 
with Pisum sativum agglutinin labeled with fluorescein 
isothiocyanate (FITC-PSA) (Sigma) and Hoechst 33258. 
Only viable cells were scored; results are expressed as the 
percentage of acrosome-intact cells (n = 9–10 animals/group).

Hormone assays

Gonadotropins assay

Luteinizing hormone and stimulating follicle hormone 
concentrations in plasma samples were determined using a 
commercial ELISA kit following the manufacturer’s instructions 
(MyBioSource, USA). The range of detection for the LH kit 
was 0.78–50 mIU/mL and for FSH kit 3.12–100 mIU/mL. The 
minimum detectable Mouse LH up to 0.08 mIU/mL and the 
lowest detection limit for FSH was 1.0 mIU/mL. Intra- and 
interassay coefficients of variation for LH were ≤8% and 
≤12% respectively. Both intra- and interassay coefficients 
of variation for FSH were <15%. Results were expressed in  
mIU/ml. n = 5–7 animals/group.

Testosterone assay

Testosterone concentrations in plasma samples were 
determined by enzyme immunoassay (EIA) test, using 
polyclonal antibodies, standards and their corresponding 
horseradish peroxidase conjugates (anti-Testosterone R156/7, 
Department of Population Health and Reproduction, C. 
Munro, UC Davis, CA, USA). Antibody cross-reacts with 
5-α-dihydrotestosterone (57.4%), androstenedione (0.27%), 
androsterone (0.04 %), cholesterol (0.03%) and <0.02% with 
all other steroids tested. Assays were performed according to 
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general technique described by Munro and Lasley (1988). 
Briefly, plasma samples were assayed in duplicate using flat-
bottom microtiter plates (Nunc Maxisorp, VWR, Mississauga, 
ON, Canada). Plates were first coated with 50 µL of the 
antibody stock diluted in coating buffer (50 mM bicarbonate 
buffer, pH 9.6, 1:10,500), covered with acetate sealers 
to prevent evaporation and incubated overnight at 4°C. 
After 16–24 h, plates were washed to remove any unbound 
antibody with 0.02% Tween 20 solution using a Bio-Tek ELx 
405VR microplate washer (Bio-Tek Instruments, Winooski, 
VT, USA). Immediately after washing, 50 µL of samples, 
standards and controls were added in duplicates, followed 
by 50 µL of horseradish peroxidase conjugate diluted in EIA 
buffer (1:20,000). Plates were then covered and incubated 
at room temperature (21°C) for 2 h. Following incubation, 
the plates were washed and blotted dry, and 100 µl of 
substrate solution (50 mM citrate, 1.6 mM hydrogen peroxide 
and 0.4 mM 2,20-azino-di-(3-ethylbenzthiazoline sulfonic 
acid) diammonium salt, pH 4.0) were added to each well 
(Munro  et  al. 1991). Absorbance was measured at 405 nm 
using a microplate reader (Thermo Electron Corporation, 
Thermo Fisher Scientific, Waltham, MA, USA). Accepted 
intra- and interassay coefficients of variation for the high and 
low control samples were <10 and <15%, respectively, in all 
hormonal determinations. Assay sensitivity was 2.4 pg/well. 
Results were expressed as Log10 of the plasma testosterone 
concentration in ng/mL (n = 9–10 animals/group).

Testicular histology

Testes were fixed in Bouin’s solution for 48 h, dehydrated 
and embedded in paraffin. Histological sections (5 mm) were 
stained with hematoxylin and eosin (H&E). All sections were 
observed with optical Zeiss Primo Star trinocular microscope 
(Gottingen, Germany) connected to Zeiss Axio Cam ERc 5s 
digital camera. The H&E-stained sections were used to identify 
different stages of the seminiferous epithelium cycle, Leydig 
and Sertoli cells. Differential cell counts were gathered from 
every 20th section to provide a 5% sample selection per 
testis. Histomorphometry was conducted by counting of 20 
seminiferous tubules in each slide (Kheradmand et al. 2009). 
Results are expressed as percentage of each germ cell type 
per animal and Leydig and Sertoli cells as number of cell per 
animal (n = 5 animals/group).

Testicular morphometry analyses were performed taking into 
account 50 round or nearly round seminiferous tubules from 
each mouse (Duan et al. 2014). Seminiferous tubular diameter 
and epithelium height were measured with AxioVision 4.0 
V 4.8.2.0 image analysis system. Results are expressed in 
micrometers (n = 5 animals/group).

Transmission electron microscopy

As stated by Diaz de Barboza (2014), testes were fixed by 
immersion in a mixture of 2% (v/v) glutaraldehyde and 4% 
(v/v) formaldehyde in 0.1 M cacodylate buffer, treated with 
1% w/v osmium tetroxide for 2 h, dehydrated and embedded 
in Araldite resin at 60°C for 48 h. For ultrastructural studies, 
thin sections were cut with a diamond knife on a JEOL JUM-7 

ultramicrotome and examined in a Zeiss LEO-906E electron 
microscope (Oberkochen, Germany) (n = 3–5 animals/group).

Statistical analysis

Data were analyzed using STATISTICA – Stat Soft (version 10) 
statistical package. Normality and homogeneity of variances 
were corroborated; when statistical assumptions were 
violated, data were transformed to Log10. Data are expressed 
as mean ± s.e.m.; P values lower than 0.05 were considered 
statistically significant.

Reproductive parameters and hormone assays data were 
analyzed by one-way ANOVA and LSD test for post hoc 
comparison was performed when appropriate. When data 
were expressed as percentages, they were analyzed using chi-
square test.

Food intake and body weight data were analyzed using 
a repeated-measure ANOVA and LSD post hoc test was 
performed when appropriate.

Differential cell counts from histological data were analyzed 
by multi-way ANOVA and LSD post hoc test was performed 
when appropriate.

Results

Food intake and body weight

Effects of 7-day hypothalamic GHRL administration on 
mice food intake and body weight

Quantification of food intake carried out during the 
experimental period is shown in Fig.  2A. As can be 
seen, GHRL 3.0 nmol/day treatment induced significant 
differences in the amount of daily food consumed 
only between the second and the fifth day of treatment 
(P < 0.05). Repeated-measures ANOVA also revealed 
a significant interaction between treatment and time 
(F = 2.60, df = 12, P < 0.05), significant effects of treatment 
(F = 6.73, df = 2, P < 0.05) and significant effects of time 
(F = 51.70, df = 6, P < 0.05).

In relation to body weight (Fig.  2B), the higher 
intrahypothalamic GHRL dose employed for 7 days induced 
significant change on body weight at the end of treatment 
(ACSF: 33.16 ± 0.81 g, n = 11 vs GHRL 3.0: 39.95 ± 1.17 g, 
n = 9 animals/group; F = 7.89, df = 2, P < 0.05).

Effects of 42-day hypothalamic GHRL administration on 
mice food intake and body weight

Quantification of food intake carried out daily during 
the experimental period is shown as weekly food intake 
in Fig. 3A. Repeated-measures ANOVA test revealed a 
significant interaction between GHRL treatment and 
time (F = 3.72, df = 10, P < 0.05), significant effects of 
time (F = 10.65, df = 5, P < 0.05) and no significant 
effects of treatment (P > 0.05). As can be seen, GHRL 
3.0 nmol/day treatment induced significant increase in 
the amount of food consumed only during the first week 
of treatment (P < 0.05).

Downloaded from Bioscientifica.com at 12/15/2021 04:56:38PM
via free access



Central ghrelin effect on reproduction 125

www.reproduction-online.org Reproduction (2018) 156 121–132

Concordantly with increased food intake, a 
significant increase in body weight in GHRL 3.0 nmol/
day vs ACSF group was detected only in the first week of 
treatment (Fig. 3B) (F = 2.98, df = 2, P < 0.05). However, 
no significant variations were found between final and 
initial weight for each animal (P > 0.05).

Reproductive parameters

Effects of 7-day hypothalamic GHRL administration on 
mice sperm functional activity

Evaluation of seminal parameters showed no significant 
modification in the parameters evaluated between 
groups (sperm concentration, motility, viability, response 

to hypoosmotic shock and acrosomal integrity, P > 0.05). 
Moreover, there were no significant differences in 
sperm maturity parameters like percentages of bending 
spermatozoa, spermatozoa with cytoplasmic droplets or 
those with both characteristics (Table 1).

Relative testicular weights were similar in all the three 
groups (4.97 ± 0.20; 5.79 ± 0.12, 5.54 ± 0.16 mg in ACSF, 
GHRL 0.3 and GHRL 3.0 nmol/day animals respectively).

Effects of 42-day hypothalamic GHRL administration on 
mice sperm functional activity

Figure  4 shows the effects of hypothalamic GHRL 
treatment for 42  days on sperm concentration (upper 
panel) and percentage of sperm motility (lower panel), 
respectively. As can be seen, GHRL 3.0 nmol/day 
significantly reduces sperm concentration (F = 3.93, 
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Figure 2 Ghrelin (GHRL) effect on daily food intake (A) and body 
weight (B) in mice chronically treated for 7 days (mean (g) ± s.e.m.). 
Animals were infused into hypothalamus with GHRL or artificial 
cerebrospinal fluid (ACSF) employing osmotic pumps model 1007D 
(0.5 μL per hour, 7 days). n = 9–12 animals/group. *Significant 
differences in comparison to ACSF animals, P < 0.05.

 

 

Figure 3 Ghrelin (GHRL) effect on weekly cumulative food intake (A) 
and body weight (B) in mice chronically treated for 42 days (mean 
(g) ± s.e.m.). Animals were infused into hypothalamus with GHRL or 
artificial cerebrospinal fluid (ACSF) employing osmotic pumps model 
2006 (0.15 μL/h, 42 days). n = 9–10 animals/group. *Significant 
differences in comparison to ACSF animals, P < 0.05.
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df = 2, P < 0.05) and motility (F = 12.82, df = 2, P < 0.05). 
There were no significant differences between groups 
in the other parameters evaluated (viability, response to 
hypoosmotic shock and acrosomal integrity) (Table 2).

GHRL effect on plasma levels of gonadotropins in mice 
chronically treated for 7 or 42 days

Figure  5 shows GHRL effect on FSH plasma levels in 
animals treated for 7 (Fig.  5A) or 42 (Fig.  5B) days. 
Similar FSH plasma levels were observed in animals 
treated with GHRL in relation to ACSF administered 
mice (P > 0.05).

Figure 6 shows GHRL effect on plasma LH levels in 
animals treated for 7 (Fig. 6A) or 42 (Fig. 6B) days. As 
can be seen, 7-day treatment produced no significant 
changes in plasma LH levels (P > 0.05) while GHRL 
3.0 nmol/day treatment for 42 days significantly reduced 
this variable (F = 4.21, df = 2, P < 0.05).

GHRL effect on plasma testosterone levels in mice 
chronically treated for 7 or 42 days

Figure 7 shows GHRL effect on plasma testosterone levels 
in animals treated for 7 (Fig. 7A) or 42 (Fig. 7B) days. As 
can be seen, 7-day treatment produced no significant 
changes in testosterone plasma levels (P > 0.05) while 
GHRL 3.0 nmol/day treatment for 42 days significantly 
reduced this variable (F = 4.98, df = 2, P < 0.05).

In line with results previously presented, linear 
correlation analysis showed significant correlation 
between epididymal spermatozoa concentration 
(106 cells/mL) and the log10 of plasma testosterone 
concentration (ng/mL) (r = 0.8386) and between sperm 
motility (%) and the log10 of plasma testosterone 
concentration (ng/mL) (r = 0.8031) (Fig. 8).

Testicular histology and ultrastructural morphology

Effects of 42-day hypothalamic GHRL administration on 
mice testicular histology

Figure 9 shows GHRL effect on cell spermatic cycle. As 
can be seen, only GHRL 3.0 nmol/day treatment induced 
significant decrease in the percentage of spermatogonia 

and sperm (F = 3841.96, df = 4, P < 0.05) and an increase 
in the intermediate stages, spermatocytes and spermatids 
(P < 0.05). There were no significant differences between 
GHRL doses (P > 0.05). No significant differences were 

Table 1 Functional activity of caudal epididymis sperm from mice treated for 7 days with artificial cerebrospinal fluid or Ghrelin.

ACSF GHRL (0.3 nmol/day) GHRL (3.0 nmol/day)

Sperm concentration (1 × 106/mL) 23.59 ± 1.90 18.53 ± 2.06 25.11 ± 6.11
Motility (%) 75.00 ± 5.25 81.80 ± 2.24 76.94 ± 2.45
Viability (%) 75.89 ± 5.78 77.50 ± 5.09 87.89 ± 1.84
Hypoosmotic swelling test (%) 74.72 ± 3.62 80.82 ± 1.60 79.56 ± 1.94
Acrosomal integrity (%) 67.89 ± 6.77 67.40 ± 6.70 78.67 ± 6.28
Bending (%) 2.67 ± 0.85 4.40 ± 1.63 3.28 ± 0.68
Cytoplasmic droplets (%) 11.17 ± 2.50 13.10 ± 3.52 15.00 ± 5.96

Animals were infused with Ghrelin (GHRL) or artificial cerebrospinal fluid (ACSF) into hypothalamus employing osmotic pumps model 1007D 
(0.5 µL/h, 7 days). Results are expressed as mean ± s.e.m. n = 9–10 animals/group.

Figure 4 Ghrelin (GHRL) effect on sperm concentration (1 × 106/mL) 
(A) and percentage of sperm motility (B) in mice chronically treated 
for 42 days. Animals were infused into hypothalamus with GHRL or 
artificial cerebrospinal fluid (ACSF) employing osmotic pumps model 
2006 (0.15 µL/h, 42 days). Results are expressed as mean ± s.e.m. 
n = 9–10 animals/group. *Significant differences in comparison to 
ACSF animals, P < 0.05.
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found in the number of Sertoli cells or Leydig cells 
(P > 0.05) (Table 3).

The ANOVA revealed no significant differences on 
morphometric parameters in mice treated with GHRL 
when compared with control animals (P > 0.05) (Table 4).

No significant differences were found in relative 
testicle weights (4.97 ± 0.18, 5.15 ± 0.13, 4.99 ± 0.17 mg 
in ACSF, GHRL 0.3 and GHRL 3.0 nmol/day 
animals, respectively).

Effects of 42-day hypothalamic GHRL administration on 
mice testicular ultrastructure

As can be seen in Fig. 10, animals treated with GHRL 
3.0 nmol/day showed changes in spermatozoa nucleus 
where chromatin presented an abnormal condensation 
pattern. In addition, the morphology of the acrosome was 
altered. Also, a large amount of elongated spermatids 
can be observed, which is evidenced by the presence of 
a transient structure called the manchette (microtubules 
that extend parallel to the major axis of the cell around 
the posterior part of the nucleus and the upper part of 
the flagellum).

In addition, no morphological differences 
were observed in Leydig cells in both control and 
treated groups.

Discussion

Studies performed to date regarding the GHRL role in 
reproductive physiology have been mostly restricted 
to direct gonadal actions of locally produced GHRL 
or peptide effects on reproductive hormones, while 
central effects on functional sperm activity have not 
been fully elucidated so far. The present work studies the 
effect of chronic GHRL administration on reproductive 
hormones concentration, spermatogenesis and sperm 
quality in mice. We found that hypothalamic GHRL 
3.0 nmol/day administration for 42  days decreased 
caudal epididymal sperm concentration and motility, 
without affecting sperm viability and parameters related 
with sperm membrane functionality, such as response 
to hypoosmotic swelling test and acrosomal integrity. 
Results also show that GHRL significantly reduced 
LH and testosterone plasma levels and, moreover, 
decreased the percentage of spermatogonia and sperm 
but increased the intermediate forms, spermatocytes 
and spermatids after 42  days of treatment. These 
results provide evidence that chronic central GHRL 

administration impairs spermatogenesis and that this 
effect is potentially mediated by inhibition of the HPG 
axis, since we observed a reduction on plasmatic levels 
of LH. Function of the HPG axis, and hence of the 
gonads, depends on strict hormonal control to generate 
fertilizable gametes and ensure male fertility (Saez 
1994, Abou Heif  et  al. 2010). Increasing evidence 
suggests that GHRL may participate in such regulatory 

Table 2 Functional activity of caudal epididymis sperm from mice treated for 42 days with artificial cerebrospinal fluid or Ghrelin.

ACSF GHRL (0.3 nmol/day) GHRL (3.0 nmol/day)

Viability (%) 83.40 ± 2.09 79.55 ± 2.33 78.30 ± 2.00
Hypoosmotic swelling test (%) 71.91 ± 2.42 72.91 ± 2.81 69.05 ± 3.98
Acrosomal integrity (%) 71.00 ± 6.23 71.78 ± 4.36 68.40 ± 7.37

Animals were infused into hypothalamus with Ghrelin (GHRL) or artificial cerebrospinal fluid (ACSF) employing osmotic pumps model 2006 
(0.15 µL/h, 42 days). Results are expressed as means ± s.e.m. of the percentage. n = 9–10 animals/group.
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Figure 5 Ghrelin (GHRL) effect on plasma FSH concentration  
(mIU/mL) in mice chronically treated for 7 (A) or 42 (B) days. Animals 
were infused into hypothalamus with GHRL or artificial cerebrospinal 
fluid (ACSF) employing osmotic pumps model 2006 (0.15 µL/h, 
42 days). Results are expressed as mean ± s.e.m. n = 5–7 animals/
group. *Significant differences vs ACSF animals, P < 0.05.
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network (Tena-Sempere  et  al. 2002, Tena-Sempere 
2005, 2007). Thus, central GHRL could be regulating 
the cellular remodeling that occurs as spermatozoa 
migrate across the epididymis, acting through 
hormonal control of the HPG axis. Modifications during 
epididymal transit result in the acquisition of motility 
and the ability to become capacitated for fertilization 
(Sullivan  et  al. 2007). Decreased motility observed 
in sperm of animals treated with Grh 3.0 nmol/day 
suggests that GHRL effect could be related to changes 
in testosterone levels induced by the peptide. These 
results are supported by high correlation between 
the concentration of epididymal spermatozoa and 
testosterone concentration in plasma.

Production of fertile spermatozoa is the result of 
numerous stages of cell differentiation. In the testis, 
seminiferous tubules and interstitial tissues cooperate 
in spermatogenic process. Leydig cells are the major 
interstitial cells and synthesize testosterone for 
spermatogenesis (Ozawa  et  al. 2002). It has been 
demonstrated that intratesticular GHRL injection in vivo 
is able to inhibit proliferative rate of immature Leydig 
cells (Barreiro  et  al. 2004). In this line, subcutaneous 
injection of GHRL (1 nmol/day for 10  days) in adult 
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Figure 6 Ghrelin (GHRL) effect on plasma LH concentration (mIU/
mL) in mice chronically treated for 7 (A) or 42 (B) days. Animals were 
infused into hypothalamus with GHRL or artificial cerebrospinal fluid 
(ACSF) employing osmotic pumps model 2006 (0.15 µL per hour, 
42 days). Results are expressed as mean ± s.e.m. n = 5–7 animals/
group. *Significant differences vs ACSF animals, P < 0.05.

Figure 7 Ghrelin (GHRL) effect on plasma testosterone concentration 
in mice chronically treated for 7 (A) or 42 (B) days. Animals were 
infused into hypothalamus with GHRL or artificial cerebrospinal fluid 
(ACSF) employing osmotic pumps model 2006 (0.15 µL/h, 42 days). 
Results are expressed as log10 of the plasma testosterone 
concentration in ng/mL. n = 9–10 animals/group. *Significant 
differences vs ACSF animals, P < 0.05.
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rats showed a decreased number of different spermatic 
cells as well as Sertoli or Leydig cells and numerous 
intracellular changes that confirm the suppression of 
the functional capacity of these cells (Kheradmand et al. 
2009). In contrast with this, our results did not show 
changes either in the number of Sertoli or in Leydig cells, 
supporting the hypothesis that the changes observed in 
our experimental model could be a consequence of 
reproductive hormone regulation by GHRL. Differences 
in experimental models, administration protocols 
(acute, sub-chronic or chronic), doses or administration 
time could be responsible for some inconsistencies in 
the reports.

It is well known that both FSH and LH are necessary for 
the initiation of spermatogenesis and the establishment 
of fertility in men (Matthiesson et al. 2006). It has been 
reported that spermatogonial maturation is largely FSH 

dependent (Weinbauer  et  al. 1991, Haywood  et  al. 
2003, Meachem  et  al. 2005); spermiogenesis appears 
to be reliant on LH/intratesticular testosterone 
(O’Donnell et al. 1994, 1996), whereas spermiation, the 
process by which mature sperm are released from the 
Sertoli cell into the lumen of the seminiferous tubule, 
requires both hormones (Saito  et  al. 2000). Regarding 
this, loss of both FSH and LH action in the GnRH-
deficient mouse (Singh et al. 1995) or LH action alone 
(Lei  et  al. 2001, Zhang  et  al. 2001, Ma  et  al. 2004) 
results in germ cell arrest at spermatocyte or spermatid 
stages. Thus, germ cell development in the mouse can 
be completed in the absence of FSH but not androgen 
action (Matthiesson  et  al. 2006). Such data support 
results observed in our experiments about spermatid 
retention in relation to the overall reduction of sperm 
production caused by low plasmatic testosterone 
concentration dependent on LH stimulation. Therefore, 
current findings are similar to results previously 
discussed, and GHRL effects on reproductive axis seem 

Figure 8 Correlation between log10 plasma testosterone 
concentration (ng/mL) and epididymal sperm concentration  
(A, spearman rank correlation coefficient r = 0.8386; P < 0.05) or 
sperm motility (B, r = 0.8031; P < 0.05) in mice chronically treated  
for 42 days.

Figure 9 Ghrelin (GHRL) effect on percentage of germ cell types 
present in the seminiferous epithelium in mice chronically treated for 
42 days. Animals were infused with GHRL or artificial cerebrospinal 
fluid (ACSF) employing osmotic pumps model 2006 (0.15 µL/h, 
42 days). Differential cell counts were gathered counting of at least 
20 seminiferous tubules in each slide. Results are expressed in 
percentage of each cell type as mean ± s.e.m. n = 5 animals/group. 
*Significant differences in comparison to ACSF animals, P < 0.05.

Table 3 Ghrelin effect on number of Leydig and Sertoli cells in mice 
chronically treated for 42 days.

ACSF
GHRL  

(0.3 nmol/day)
GHRL 

(3.0 nmol/day)

Leydig cells 65.60 ± 7.15 78.40 ± 6.33 70.20 ± 7.77
Sertoli cells 11.80 ± 1.20 11.20 ± 2.96 12.60 ± 1.83

Animals were infused into hypothalamus with Ghrelin (GHRL) or 
artificial cerebrospinal fluid (ACSF) employing osmotic pumps model 
2006 (0.15 µL/h, 42 days). Differential cell counts were gathered 
counting of at least 20 seminiferous tubules in each slide. Results are 
expressed as mean ± s.e.m. n = 5 animals/group.
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to be more likely related to reduce circulating levels of 
LH rather than FSH levels.

It is well known that spermatogenesis is a complex 
process that requires the correct interplay and timing 
of cellular modifications to produce functional and 
motile sperm. During this process, spermatogonia 
undergoes a series of transformations, culminating 
with the hypercompaction of DNA into the sperm 
head by replacing histones with a specialized DNA-
binding protein, protamine (Kanippayoor  et  al. 2013). 
Ultrastructural observations of treated animals in our 
experiments showed an abnormal pattern of chromatin 
condensation and altered morphology of the acrosome. 
These alterations could be another possible alternative to 
explain the changes observed in motility in our research.

On the other hand, hypothalamic GHRL administration 
for 7  days did not modify spermatogenesis, neither 
in number nor in functional activity, expressed as 

motility, viability, response to hypoosmotic swelling 
test and functionally intact sperm membrane for the 
correct performance of this gamete. As stated before, 
epididymal maturation, necessary for the presentation 
of straight morphology and the acquisition of motility, is 
an androgen-dependent process (Fernandez et al. 2008) 
and treatment for 7  days was not enough to produce 
significant changes in testosterone levels, consequently, 
the quality of the gametes was unaffected.

As GHRL is an orexigenic peptide, we daily measured 
body weight and food intake in order to minimize 
potential bias of major differences in body weight that 
could affect reproductive endpoints under analysis. 
Results presented here confirm that GHRL increases 
food intake, which was previously demonstrated in 
some reports (Tschöp et al. 2000, Nakazato et al. 2001, 
Wren et al. 2001); however, the effect did not last beyond 
the fifth day of treatment. These results are in line with 
other authors that have shown that chronic elevation 
of GHRL in the hypothalamus produces an increase in 
food intake that leads to an increase in body weight, 
but this effect seems to be only transient and normalizes 
after a few weeks (Qi  et  al. 2015). In addition, there 
are some authors who state that GHRL is not a critical 
orexigenic factor, based on the observation that mice 
deficient in either ghrelin or its receptor exhibit normal 
feeding behavior (Sun et al. 2003, 2004, Wortley et al. 
2004, Sato  et  al. 2008). According to this, chronic 
effects observed on reproductive parameters cannot be 
attributed to this variable.

In conclusion, this study provides new evidence about 
deleterious effect of centrally administered GHRL on 
functional sperm activity and sex steroids production and 
suggests that this effect is mediated through hypothalamus 
by inhibition of HPG axis. However, futures studies 
are necessary to contribute to the understanding of the 
molecular mechanisms of GHRL actions.
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