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A characterization of computation and computational explanation is 
important in accounting for the explanatory power of many models in 
cognitive neuroscience. Piccinini (2015) describes computational models 
as both abstract and mechanistic. This approach stands in contrast to a 
usual way of understanding mechanism which implies that explanation is 
impoverished by abstraction. I argue that in order to provide a useful account 
of computational explanation in cognitive neuroscience, Piccininiʼs proposal 
must be complemented by an abstraction criterion that fulfills two conditions: 
motivating abstractions enough to make a model computational and not 
motivating the omission of information that is constitutive of mechanistic 
explanation. These conditions are relevant because although there are 
computational and mechanistic descriptions of neural processes (Piccinini 
& Bahar 2013) mechanism must, as a normative theory, determine whether 
the abstractions that these models involve are well motivated. I argue that 
the abstraction criterion proposed by Levy and Bechtel (2013) is a promising 
candidate to fulfill these requirements. First, I show that this criterion can 
legitimize the omission from recently proposed neurocognitive models of 
all features that are non-computational according to Piccinini’s approach 
(although it also motivates some modifications of his characterization of neural 
computation). Second, I argue that this criterion legitimizes those models only 
if we interpret them as including all the information constitutive of mechanistic 
explanation. 
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1. Introduction

Piccinini (2015) develops a mechanistic characterization of computation. 
This approach implies that (at least some) computational explanations 
and specifically computational explanations in cognitive neuroscience can 
be mechanistic. According to Piccinini (2015), a constitutive feature of 
computational models is that they describe the relevant mechanism in an 
abstract manner. Both advocates (e.g., Kaplan) and critics (e. g., Chirimuuta 
2014 and Haimovici 2013) of mechanism maintain that many computational 
models are abstract, but consider that mechanism implies that abstraction 
diminishes explanatory power (i.e., that more detailed non-computational 
descriptions are more explanatory). I agree with Piccinini that computational 
description is abstract (in the “medium independent” sense that he proposes, 
which is explained below) and that mechanism is compatible with the 
idea that abstract (and, specifically, computational) descriptions can be 
as explanatory as more detailed descriptions of a mechanism. However, I 
consider that in order to be useful for understanding computational models 
in cognitive neuroscience, Piccinini’s approach must be complemented by 
an abstraction criterion that fulfills two conditions:  motivating abstractions 
enough to make a model computational and not motivating the omission of 
information that is constitutive of mechanistic explanation.

The second condition is important because there is information which 
cannot be omitted without making the explanation non-mechanistic. I follow 
Levy and Bechtel (2013) in the idea that an explanation is mechanistic 
only if it describes causal organization, i.e., only if it describes the different 
causal contributions of the mechanism underlying a phenomenon and how 
these contributions are integrated. Models that omit any reference to causal 
organization do not constitute mechanistic explanations. An abstraction 
criterion that legitimizes mechanistic computational models must not 
motivate the omission of causal organization. The first condition is relevant 
because although there do, in fact, exist descriptions of neural processes 
that are abstract enough to count as computational according to Piccinini’s 
notion (Piccinini and Bahar 2013) mechanism must, as a normative theory, 
determine whether the abstractions in these descriptions have an adequate 
epistemic motivation. Piccinini and Bahar (2013) argue that spike timing 
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and rate are often considered the vehicles of neural processing and that 
they possess the features constitutive of computational vehicles. But the 
mere facts that these descriptions are available and that they individuate 
relevant functional features of neural processing do not imply that the 
descriptions of neural processing that only make reference to these features 
are explanatory. In section 2, I elaborate on these two motivations for an 
abstraction criterion. 

In sections 3 and 4, I argue that the criterion proposed by Levy and 
Bechtel (2013) (“LB”) is a promising candidate to fulfill these requirements. 
Chirimuuta (2014) has recently considered some neurocognitive models that 
describe so-called “canonical neural computations” and argued that they 
are involved in explanations that cannot be characterized as mechanistic, 
in some kind of optimality explanation. She also maintains that these 
models are descriptions that are above a mechanistic level of abstraction 
and therefore cannot be employed to provide mechanistic explanations. In 
section 3, I show that LB can legitimize the exclusion from these models of 
all features that are non-computational according to Piccinini’s approach. I 
argue that their explanatory power can be accounted for by this criterion; 
that LB can show why it is relevant to omit information about the neural 
circuits underlying computational operations. I also argue that LB motivates 
some modifications of Piccinini’s characterization of neural computation. In 
particular, I show that neural coding regimes (that is, time-sensitive sparse 
coding or rate coding) are not part of neural computation, but rather of the 
underlying neural circuits. 

In section 4, I argue that LB legitimizes the models that describe 
canonical neural computations only if we interpret them as including all the 
information constitutive of mechanistic explanation. LB cannot legitimize 
them if we interpret them as describing merely mathematical relations 
between the relevant variables while omitting any reference to their causal 
relations. The models can be considered explanatory only if they do not 
merely describe a mathematical equation, but rather a set of mathematically 
characterized causal relations; for example, if “division” is not interpreted 
literally as division, but as divisive inhibition of the activity of one 
component by the activity of another.  

If this is correct, the models that describe canonical neural computations 
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can be considered both mechanistic and computational descriptions 
of neural processes. Although this argument concerns a limited set of 
neurocognitive models, its relevance can be enhanced once we realize that 
canonical computations are computational modules that are thought to 
operate in a wide variety of neural systems and are combined in different 
ways to perform different cognitive tasks. Canonical computations could 
provide a principled way or a unified language to understand neurocognitive 
function (Carandini & Heeger 2012). Although these models describe a 
limited set of neural operations, their relevance for cognition is likely to be 
very broad. 

2. Computation and mechanism

Although there are more or less standard ways to characterize different 
types of computation, there is not widespread agreement regarding a 
general notion of computation. Piccinini (2015) proposes a notion that can 
be applied equally to the more general types of computation, i.e., a notion 
that describes the features shared by the most general kinds of computation 
(analog and digital). Generic computation is the processing of vehicles 
by a functional mechanism according to rules ([input × internal states/
output] mappings) that are sensitive only to differences between portions 
(spatiotemporal parts) of the vehicles. This feature of the rules that define 
computation implies that computational processes are abstract. When we 
define a computational process, we do not need to consider all of its specific 
physical properties. We can consider only the properties that are relevant 
according to computational rules. Given that the vehicles of concrete 
computation can be defined independently of the physical medium that 
implements them, Piccinini calls them (borrowing the term from Garson 
2003) “medium independent.” In other words, computational descriptions 
of concrete physical systems are sufficiently abstract so as to be considered 
medium independent (Piccinini 2015, pp. 121-2). 

To put it another way, if the rule that defines a computation is sensitive 
only to differences between portions of the vehicles regarding specific 
dimensions of variation (if it is insensitive to any other physical property 
of the vehicles), then the vehicle is medium independent. Rules that define 
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computation are functions of state variables associated with certain degrees 
of freedom, which can be implemented in different physical media (for 
example, mechanical, electro-mechanical, electronic, magnetic, etc.). In 
contrast, typical physical processes, such as cooking, cleaning, or exploding, 
are defined in terms of specific physical processes that involve specific 
physical and chemical components. They are not medium independent.

A common way to understand mechanistic explanations is prima facie 
incompatible with the thesis that computational descriptions are at the same 
time abstract (insofar as they describe medium independent processes) 
and explanatory. To show why, I will briefly characterize the notions of 
mechanism and mechanistic explanation. A mechanism can be defined as “[a] 
structure performing a function in virtue of its component parts, component 
operations, and their organization” (Bechtel and Abrahamsen 2005, p. 
423). Mechanisms are active structures that perform functions, produce 
regularities, underlie capacities, or exhibit phenomena, doing so in virtue of 
the organized interaction among the mechanism’s component parts and the 
processes or activities these parts carry out (Kaplan 2011, pp. 346-7).

According to mechanism, the explanatory force of the model for a 
given phenomenon depends on how accurately it describes the underlying 
mechanism. This commitment is expressed by Kaplan’s “model-mechanism-
mapping” (3M) condition (Kaplan 2011, p. 347): 

(3M) A model of a target phenomenon explains that phenomenon 
to the extent that (a) the variables in the model correspond to 
identifiable components, activities, and organizational features of 
the target mechanism that produces, maintains, or underlies the 
phenomenon, and (b) the (perhaps mathematical) dependencies 
posited among these (perhaps mathematical) variables in the 
model correspond to causal relations among the components of 
the target mechanism.

Kaplan considers that mechanism has an additional commitment. 
It requires that the description of the mechanism be as complete as 
possible. Kaplan claims that the more precise and detailed the model of 
a phenomenon is, the better it explains. One can improve the quality of 
an explanation by including more mechanistic details in the model, e.g, 
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including additional variables to represent additional components of the 
mechanism. Chirimuuta (2014) calls this requirement “the More Details the 
Better” (MDB). A given model is more explanatory if it does not describe 
only the computational processes or algorithms underlying a cognitive 
capacity, but also all biological and bio-chemical processes that implement 
them.

In the face of the contrast between understanding computational models 
as providing abstract and fully explanatory descriptions and the idea that a 
model explains better if it omits the least possible detail, Haimovici (2013) 
poses a dilemma for Piccinini’s notion of generic computation. We can 
develop it in the following way. Haimovici points out that a mechanistic 
model has to specify the causal structure of a system in terms of both 
structural and functional properties. However, generic computation barely 
appeals to structural properties, being mainly concerned with functional 
properties. This is what makes generic computation a notion that preserves 
the sense of “computation” in computer science. So, Piccininiʼs account 
faces a dilemma. If our notion of computation respects the mechanistic ideal 
of including all structural properties, the models we call “computational” 
are fully explanatory, but they are not computational in a relevant sense. If 
the notion of computation is defined mainly by functional properties, then 
it can be applied to all relevant computational systems, but computational 
models are not fully explanatory1.

I consider that Haimovici’s dilemma follows from the common way of 
understanding mechanism outlined above. For this reason, rejecting this 
form of mechanism is a crucial element in Piccinini’s response. Piccinini 
(2015) makes two points. First, he argues that computational vehicles 
are individuated not only by their functional properties, but also by 
their structural properties. I consider that this point is not a problem for 
Haimovici, as she points out that computational descriptions barely appeal 
to structural properties, implying that although some are specified, many 
are omitted. Piccinini accepts that computational description is abstract 
in some sense (that it omits at least some structural properties). Given the 
MDB requirement, this is enough to trigger the dilemma. Second, Piccinini 

1 Haimovici (2013): 152 ss. 
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considers that mechanists need not endorse something like MDB. Piccinini 
rejects the idea that mechanistic explanations require the specification of 
structural and functional properties at all levels of organization. On the 
contrary, mechanistic explanations require the specification of all functional 
and structural properties at the relevant level of the mechanism. Omission 
of lower-level information is legitimate. We can be mechanists regarding 
computation and still preserve a characterization of computational models 
as abstract mechanistic descriptions2. 

Nevertheless, Piccinini does not specify the epistemic motivation behind 
the abstractions required by computational models, i.e., he does not provide 
the reason why we should explain some cognitive phenomena by appealing 
to medium independent descriptions instead of more concrete biophysical 
models. Therefore, I believe that we need an abstraction criterion to defend 
the idea that computational models are (fully) explanatory. Furthermore, I 
maintain that a criterion that legitimizes a mechanistic computational model 
must fulfill two conditions: motivating abstractions enough to make the 
model computational and not motivating the omission of information that is 
constitutive of mechanistic explanation. The second condition is important 
because there is information which cannot be omitted without making 
the explanation non-mechanistic. The first condition is relevant because 
although there are computational descriptions of neural processes (Piccinini 
and Bahar 2013), as a normative theory, mechanism must determine 
whether the abstractions in these models are well motivated3. In what 
follows, I address these two points.  

First, there seem to be pieces of information that are constitutive 
of mechanistic explanation. A criterion that legitimizes a mechanistic 
computational model must not motivate the omission of this information. 

2 Ibid. pp. 124 and 125.
3 Boone and Piccinini (unpublished) consider the relation between abstraction and 
mechanistic explanation, but they address a different (although related) question regarding 
this relation. They consider which forms of abstraction are involved in mechanistic 
explanation and what criteria motivate them. Here, I am concerned with determining 
whether an adequate criterion motivates, in some specific neurocognitive models, 
sufficient omissions for medium independence and prevents in those models the omission 
of information constitutive of mechanistic explanation.   
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Levy and Bechtel (2013) maintain that mechanistic explanations 
address organized systems. They argue that a system is organized with 
respect to a given behavior if different components of the system make 
different contributions to that behavior and the component’s differential 
contributions are integrated (i.e., each component interacts in particular 
ways with a subset of the other components) (Levy & Bechtel 2013, p. 
244). An explanation is mechanistic only if it describes organization, i.e., 
only if it describes the different contributions of the mechanism underlying 
a phenomenon and how these are integrated. This makes sense, given that 
causal organization is part of what constitutes a mechanism according to 
the definition explained above. If a model fails to refer to the constitutive 
features of a mechanism, there is no clear sense in which we can say that 
it provides a mechanistic explanation. So, an abstraction criterion for a 
mechanistic computational model must not motivate the omission of causal 
organization.  

I will argue that the criterion proposed by Levy and Bechtel (2013) is 
a good candidate. Loosely following Strevens (2008), Levy and Bechtel 
(2013) claim that a model can explain by describing only the properties 
of a mechanism that constitute the minimum conditions sufficient to 
produce the explanandum. They show that the explanatory power of some 
biological models that provide very abstract descriptions of the causal 
organization underlying a given explanandum can be accounted for by this 
criterion. Nevertheless, merely showing that it can legitimize some abstract 
mechanistic models does not suffice to argue that it legitimizes mechanistic 
computation. First, we must prove that the criterion does not motivate the 
omission of causal organization specifically in computational models. I 
address this point in section 4. Second, we must show that the criterion 
legitimizes neurocognitive models abstract enough to be computational. To 
appreciate the relevance of this second point is important to note that the 
standard description of vehicles of neural processing is, in fact, medium 
independent (Piccinini and Bahar 2013). 

Piccinini and Bahar (2013) proposed an interesting argument to show 
that neural processing is computational in the generic sense. The idea 
is that since (i) neural processes are defined over medium independent 
vehicles and (ii) the processing of medium independent vehicles constitutes 
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computation in the generic sense, then it follows that (iii) neural processes 
are computations in the generic sense. Premise (ii) is the result of Piccinini 
and Baharʼs elucidation of generic computation. They only need to argue 
for premise (i). They point out that current evidence indicates that the 
primary vehicles manipulated by neural processes are neuronal spikes (action 
potentials) and that the functionally relevant aspects of neural processes 
depend on dynamical aspects of spikes such as spike rates and spike timing. 
Only these dimensions of variation of their vehicles, not any more specific 
property, are functionally relevant for neural processes. This means that the 
vehicles of neural processing are medium independent. 

Of course, neural processing also involves specific physical properties, 
such as the electrical processes occurring in the neuron’s membrane and the 
chemical processes that allow for communication between neurons. Neural 
processing can be described at different levels of abstraction, and a certain 
level (that involving only spike timing or rate) is medium independent. 
However, the mere fact that there is a medium independent description of 
neural processes available, or even the fact that that it is usually employed 
in cognitive neuroscience, does not settle the question of whether models 
that make use of this abstract description are explanatory. Mechanism 
is a normative position regarding explanation. The 3M requirement (or 
even MDB) mentioned above determines that, even if it is found in the 
neurocognitive literature, a model that does not satisfy this requirement 
is not explanatory. If we incorporate Levy and Bechtel’s criterion as part 
of our mechanistic approach, we must show that it counts computational 
neurocognitive models as explanatory. In the following section, I address 
this point. I argue that Levy and Bechtel’s criterion can account for the 
explanatory power of neurocognitive models that are computational in 
Piccininiʼs sense. In particular, I maintain that the criterion legitimizes 
the abstractions in recent computational models that describe so-called 
“canonical neural computations” and that these abstractions involve all 
relevant non-computational features, according to Piccinini’s notion. 
Nevertheless, I claim that the application of the criterion to these models 
suggests some modifications of Piccinini’s notion of neural computation. 
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3. Minimal conditions and neural computation 

As Piccinini (2015), Levy and Bechtel (2013) have also recently argued 
that mechanism does not imply a commitment with MDB. They consider 
some abstract models in biology and suggest a criterion that could motivate 
the relevant abstractions. They focus on a set of models developed by 
Uri Alon (2007a, 2007b) and colleagues to explain the regulation of gene 
expression, principally in bacteria and yeast. The models describe the causal 
organization underlying this behavior in an abstract way, employing a set of 
tools from graph theory. These models use nodes to represent the components 
of a given mechanism and edges to represent their operations. These graphs 
can contain very little information about components and activities. A 
node usually only specifies some basic response properties of a component 
regarding other elements (especially the conditions under which it becomes 
active). Edges typically represent no more than the direction and magnitude 
of the interaction between two nodes. Thus, graph-based models represent 
connectivity in different mechanisms in a similar manner even when parts 
and operations vary with respect to many of their concrete properties. With 
these tools, Alon models patterns of connections between small numbers 
of units that have distinctive consequences for the behavior of a biological 
network. Alon calls these patterns “network motifs.”

Graphs are employed also in neuroscience to model different wiring 
patterns in neural networks. The response properties of a given neuron 
often depend on the exact wiring pattern of the network it is embedded in. 
These properties are usually explained by describing the relevant wiring 
pattern in an abstract manner; representing the different cells as nodes and 
their inhibitory or excitatory influence on each other as edges. The response 
of a neuron can be explained, for example, by a graph describing a very 
simple feedback circuit involving a principal cell and an interneuron. In a 
feedback inhibitory circuit, increased firing of the principal cell elevates 
the interneuron’s discharge frequency which, in turn, may decrease the 
principal cell’s output, providing a regulatory mechanism similar to that of 
a thermostat (Jonas & Buzaki 2007). This wiring pattern can be represented 
in a very schematic way by a graph in which the ending of each edge 
represents the direction and mode (inhibitory or excitatory) of influence 
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and the shape of the node represents the kind of cell (principal cell or 
interneuron) (fig. 1).  

More complex firing patterns result when the complexity of the network 
is increased. One common circuit recruited in different sense modalities 
(Yantis 2014) is an extension of feedback inhibition. Lateral inhibition 
occurs when the activation of a principal cell recruits an interneuron, 
which, in turn, suppresses the activity of surrounding principal cells. 
This kind of inhibition can result from different specific features of the 
relevant connections. If principal neurons A and B have a common input 
and also share a common inhibitory interneuron, a spike train of neuron A 
can prevent the spiking of neuron B when the input to principal cell A is 
stronger than the input to principal cell B, when the interneuron-principal 
cell B synapse is slightly stronger than the interneuron-principal cell A 
connection or when the input to neuron A arrives slightly earlier than the 
input to B (Jonas & Buzaki 2007). But it is the abstract wiring pattern (fig. 
2) defining lateral inhibition and not these more specific features what 
accounts for the increased autonomy by competition, or the non-linear 
“winner-take-all” process that the circuit generates.  

Fig. 1. From Jonas & Buzaki (2007), the graph for an inhibitory feedback circuit 
involving an interneuron and a principal cell. 

One may ask why these graph based models are not less explanatory than 
more detailed descriptions of the relevant mechanisms. After all, the specific 
properties (such as the strength of the interneuron-principal cell B synapse) 
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omitted from the general description of lateral inhibition are explanatorily 
relevant according to common mechanistic criteria. For example, Craver 
(2007) provides a criterion to determine when a part of a system S is a 
component of the mechanism that explains S`s ψ-in: “The hubcaps, mud-
flaps, and the windshield are all parts of the automobile, but they are not 
part of the mechanism that makes it run. They are not relevant parts of that 
mechanism. Good mechanistic explanatory texts describe all of the relevant 
components and their interactions, and they include none of the irrelevant 
components and interactions.” (Craver 2007, p. 140) 

Fig 2. From Jonas & Buzsaki (2007), the schematic representation of lateral 
inhibition, which allows independence of neural response  by suppressing the 

activity of neighboring neurons (“winner take all“).
 
Craver builds his proposal regarding constitutive explanatory relevance 

considering the limitations of experimental strategies that neuroscientists 
employ to determine whether an entity, activity, property or organizational 
feature is relevant to the behavior of the mechanism as a whole. He 
considers that constitutive relevance can be determined by the combination 
of bottom-up and top-down interventions on a mechanism. Bottom-up 
interventions have limitations that top-down interventions can help to 
overcome. Bottom-up experiments that Craver mentions are interference 
and stimulation experiments.  In the firsts one intervenes to diminish, 
disable, or destroy some putative component in a lower-level mechanism 
and then detects the results of this intervention for the explanandum 
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phenomenon. The underlying supposition is that if X’s φ-ing is a component 
in S’s ψ-ing, then removing X or preventing it from φ-ing should have 
some effect on S’s ability to ψ. (p. 147). In stimulation experiments one 
intervenes to excite or intensify some component in a mechanism and then 
detects the effects of that intervention on the explanandum phenomenon. 
The assumption is that if X’s φ-ing is a component in S’s ψ-ing, then one 
should be able to change or produce S’s ψ-ing by stimulating X.(p. 149). 
Although I will not enter into the details of the proposal and its motivation, 
is important to point out that these experiments are not sufficient to 
determine whether a component is explanatory relevant because of two 
limitations. First, sometimes mechanisms compensate for an inhibitory 
or excitatory intervention and so the intervened component has no effect 
on the behavior of the system. Second, an intervention can influence the 
behavior of a system indirectly. These facts make necessary to complement 
the approach to constitutive relevance with top-down interventions. I will 
not enter here in the debate on constitutive explanatory relevance. I want 
only to emphasize that, according to Craver, excitatory and inhibitory 
bottom-up interventions are relevant (although not sufficient) to determine 
the explanatory relevance of the component of a mechanism. It is clear then 
that an inhibitory or excitatory bottom-up intervention on, for example, the 
strength of an interneuron-principal cell synapse could modify the behavior 
of a circuit that exhibits lateral inhibition. Therefore, Craverʼs criterion 
implies that this information must be included in the model of such a 
circuit.   

However, Levy and Bechtel (2013) propose an abstraction criterion that 
could motivate or legitimize the abstractions involved in these kinds of 
graph based mechanistic models. They consider that some models aim to 
track the features of a system that make a difference to the behavior being 
explained (p. 256). These models can explain by describing the minimum 
conditions that constitute the organizational schema sufficient to produce 
a given behavior: “Altering the details of the components (as long as they 
meet the minimum conditions for fulfilling the role in the organizational 
schema) does not change the behavior, whereas altering the organization 
(changing what is connected to what) does” (p. 253). Their main idea is that 
an explanatory model can omit all the properties of a given mechanism that 



14   Abel Wajnerman Paz 

can be changed or replaced without modifying the behavior of the system 
as a whole. In what follows, I will call this criterion “LB.”

We saw that lateral inhibition of a principal neuron B by a principal 
neuron A can be produced by different properties of the circuit they 
constitute. Although the modification of the strength of the interneuron-
principal cell B synapse can prevent lateral inhibition from occurring (and 
therefore is a feature that has constitutive relevance), this behavior can also 
be produced by manipulating the relative time of Aʼs and Bʼs inputs. Given 
that the strength of the connections can be altered without modifying the 
behavior of the system, this information can be omitted from the model, 
according to LB.  

In what follows I will determine whether LB can legitimize some 
abstract neurocognitive models that describe computational features of 
neural processing. In particular, I will focus on the case of the so-called 
“canonical neural computations” (CNCs). Chirimuuta (2014) argues that the 
abstractions involved in these models are motivated by a non-mechanistic 
framework, by the rules of a kind of optimality explanation: efficient coding 
explanation. I show that without appealing to the framework of optimality 
or efficient coding explanations, but only to LB, we can account for the 
explanatory power of CNC models. This means that there are mechanistic 
computational neurocognitive models. 

Normalization is perhaps one of  the most studied CNCs. The 
normalization model is a model that mathematically explains how simple 
cells in the primary visual cortex respond to specific stimuli in specific 
orientations (Heeger 1992). One important phenomenon that the model is 
intended to explain is cross-orientation suppression (COS) (Bonds 1989). 
COS is the phenomenon that when a non-preferred stimulus of a simple 
cell in V1 (e.g. a vertical bar) is presented at the same time as the preferred 
stimulus (e.g., an horizontal bar), the response of the cell is smaller than 
its response to the preferred stimulus alone. This phenomenon implies that 
simple cell response is non-linear and therefore cannot be accounted for 
by the original model proposed by Hubel and Wiesel (1962). The basic 
idea of Heeger’s model is that each simple cell has a linear excitatory input 
from LGN but also an inhibitory input from adjacent neurons in the visual 
cortex. The relation between these inputs and their output is defined by an 
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equation that constitutes the normalization model:  

Where Ēi is the normalized response of a simple cell, t is the time, σ2 is a 
parameter that governs the contrast at which the neuron is saturated, and 
is the ΣE is the sum of responses of all simple cells in the local population. 
The normalizer term ΣE in the denominator is what explains phenomena 
such as COS. Carandini and Heeger (2012) present normalization as a 
CNC. These are defined as standard computational modules that apply the 
same operations in a variety of contexts. Other examples of CNC are linear 
filtering, recurrent amplification, associative learning, and exponentiation. 
They are presented as a toolbox of computational operations that the brain 
applies in different sensory modalities and anatomic regions and that can be 
described at a level of abstraction above their bio-physic implementation. 

I mentioned earlier that LB motivates the omission of properties or 
components of a mechanism that can be changed or replaced without 
modifying the behavior of the system as a whole. Therefore, we can 
determine that LB legitimize the normalization model if there is a kind 
of behavior that, in different systems, results from normalization and if 
normalization is implemented in these different systems by circuits that 
have no relevant similarities. This would imply that all features other 
than normalization can be modified without changing the behavior of the 
system, i.e., that the normalization model captures the minimum conditions 
sufficient to produce such behavior. As it happens, systems that exhibit 
normalization fulfill these conditions. First, normalization is implemented 
by completely different mechanisms in different systems. For example, 
shunting inhibition and synaptic depression are completely different 
mechanisms that implement normalization in different brain regions. 
Synaptic depression is a form of short term plasticity, i.e., the phenomenon 
that synaptic efficacy changes over time in a way that reflects the history 
of presynaptic activity. Synaptic depression is caused by depletion of 
neurotransmitters consumed during the synaptic signaling process at the 
axon terminal of a pre-synaptic neuron (Tsodycs & Wu 2013).  On the 
other side, shunting inhibition is generated by inhibitory synapses located 
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close to the soma of a post-synaptic neuron. These synapses increase 
post-synaptic membrane conductance and therefore locally reduce the 
input resistance (and thus spiking) (Silver 2010). These different neural 
mechanisms do not share any relevant property besides the fact that they 
can produce an inhibitory divisive effect on a post-synaptic neuron. Second, 
despite these differences, mechanisms that implement normalization can 
serve the same function, exhibit the same behavior. Normalization helps 
to maintain the specific calibration of simple cells regarding a small range 
of stimulus orientations, independently of stimulus contrast (Heeger 1992). 
Normalization maintains fixed stimulus selectivity. 

These two points imply that in the same way as, for example, lateral 
inhibition regarding a winner-take-all operation, normalization constitutes 
the set of minimum conditions that a system has to fulfill to maintain 
stimulus selectivity. The information omitted (e.g., the description of the 
shunting inhibition mechanism) is about features that can be changed 
without modifying the behavior of the circuit. If this is so, the normalization 
model is an explanatory abstract model according to LB.

What is most important for our present purposes is that the abstractions 
in the normalization model that can be legitimized by LB are enough 
to make the description medium independent, i.e., computational. The 
information that LB can determine as irrelevant for the explanandum is 
precisely the information about the specific physical processes that underlie 
normalization. The mechanism of shunting inhibition, for example, is a 
mechanism whose activities constitute a specific electrical process, namely, 
a short-circuit generated by an inhibitory neuron in the post-synaptic 
membrane. Shunting inhibitory synapses are often located close to the 
soma, where their conductance can have a large effect on somatic input 
resistance (and thus spiking) because of the proximity to the spike initiation 
zone. As mentioned above, the increase in membrane conductance that these 
synapses introduce short-circuits excitatory synaptic currents by locally 
reducing the input resistance. These shunting inhibitory conductances 
scale down post-synaptic excitatory potentials in a multiplicative manner, 
in accordance with Ohm’s law. Thus, LB legitimizes the abstraction of 
all specific physical processes and principles underlying, for example, 
stimulus selectivity, and therefore makes the model that explains it medium 
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independent. 
An important consequence of using LB as a criterion to legitimize 

computational neurocognitive models is that it can help us to clarify the 
notion of neural computation itself. As we have seen, Piccinini and Bahar 
(2013) claim that neural processes are computational because their vehicles 
are medium independent. They support this claim by stating that spike time 
and rate are the vehicles of neural processing and that these are medium 
independent. But the normalization model describes neural computational 
processes without specifying a coding regime (without specifying whether 
the neural signal is rate- or time-coded). There is a good reason for this. 
Neural computations are “coding regime independent,” i.e., they can 
be performed by circuits that operate under different coding regimes. 
Specifically, divisive normalization can be performed by sustained rate-
coded signals or sparse temporally correlated signals (Silver 2010). On the 
contrary, code specification is relevant for some of the underlying non-
computational mechanisms since they can only operate under one specific 
coding regime. For example, changes in shunting inhibition, in concert 
with high levels of synaptic-input-dependent noise, synaptic short-term 
depression, and dendritic Na+ channels (which can produce a depolarizing 
after potential), can only control neural gain under sustained rate-coded 
signaling regimes since conductance changes produce additive shifts 
during temporally correlated signaling (Shu, Hasenstaub, Badoual, Bal, & 
McCormick 2003). Therefore, coding regime is relevant to characterizing 
neural circuits and not computations. 

It is important to emphasize that this does not mean that there is a 
single computational level in neural mechanisms4. Medium independent 
descriptions are appropriate for different levels of a neural mechanism. 
Many cortical areas and other large neural systems that perform 
computations have components that also compute. The more limited 
computations that columns and nuclei perform are component processes 
of the computations performed by their containing systems. There are 
different computational levels before we reach a purely biophysical level 
(Boone and Piccinini 2015). Coding regime independence may constitute 
4 I thank Piccinini (personal communication) for pointing out that, in order to work, my 
argument must not have this implication.   
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one or more computational levels. However, neural code is not part of any 
of these computational levels if it is only relevant (i.e., it is a difference 
maker) for processes that are not medium independent (such as shunting 
inhibition). To show that neural code belongs to a computational level we 
should determine its relevance for a task that does not involve specific 
physical properties or principles.     

To conclude this section, it is worth noting that omitting information about 
circuits underlying neural computation makes that information available 
for other explanatory uses which are different from explaining certain 
informational tasks. For example, this information can be incorporated by 
an inferior-level model to explain neural computation itself. This is exactly 
the use of neural circuits we find in the literature. For example, there are 
specific features of shunting inhibition that explain why the inhibition is 
specifically divisive. Classical theoretical work (e.g., Blomfield 1974 and 
Vu & Krasne 1992) suggests that the arithmetic operations resulting from 
shunting inhibition depend on the size and location of the conductance: 
inhibition may have a divisive effect on the EPSP if the conductance is 
large and located close to the soma, but may have a subtractive effect if the 
conductance is small and spatially distributed (fig. 2). 

Fig. 3. From Blomfield (1974), shunting inhibition may have a divisive effect on 
the EPSP if the conductance is large and located close to the soma.
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At least regarding the case of neural arithmetical operations, the features 
omitted from the computational explanation of some informational tasks 
can be recycled by the model that explains neural computation itself. 
Mechanisms such as shunting inhibition are part of a hierarchy in which 
circuits explain computations that explain informational tasks. This is 
relevant because integration is a central feature of mechanistic explanation. 
Mechanism is opposed to the view that abstract computational explanations 
of cognitive phenomena are isolated from low-level descriptions of 
underlying neural processes. The multilevel approach (see Boone & 
Piccinini 2015) affirms that neurocognitive explanation is constituted by 
an integrated hierarchy of models that address different mechanistic levels. 
At least for the model we are considering, LB is compatible with this 
characteristic. The information whose omission it motivates can be recycled 
by connected lower-level explanations.   

4. Mathematical descriptions and mechanistic computation

In the previous section, I argued that LB legitimizes some computational 
neurocognitive models. However, this does not imply that these models are 
mechanistic. The criterion states that an explanatory model describes the 
minimum conditions sufficient to exhibit a given behavior. In the case of 
lateral inhibition (as in the case of the biological models considered by Levy 
and Bechtel), these conditions are the abstract pattern of causal connections 
described by a graph. But perhaps this is not necessarily so. The minimum 
conditions for some behaviors could be given by a pattern of, for example, 
purely mathematical relations. If this is the case of the normalization 
model considered above, then we cannot affirm that LB legitimizes a 
mechanistic computational model. In this section, I show that LB motivates 
a mechanistic interpretation of normalization. 

Chirimuuta (2014) considers that a distinction must be made between 
models that describe CNCs and models that describe neural mechanisms. 
She does not deny that mechanistic models can be abstract. Chirimuuta 
considers that there is a class of abstract models, which she calls “A-minimal 
models,” that can provide mechanistic explanations. But she insists that 
models that describe CNCs are not abstract in this sense and that they 
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are non-mechanistic. Chirimuuta points out that the distinction between 
computation and mechanism is endorsed by Carandini and Heeger 
themselves (p. 141). This distinction is in fact frequently employed in 
the neurocognitive literature, but I believe that it could be motivated also 
by the idea that mechanistic explanation requires specification of causal 
connectivity. It seems that the normalization model, for example, is a purely 
mathematical and not a causal description of the behavior responsible for 
stimulus selectivity. Normalization is apparently represented as an equation 
in which the normalized response Ēi of a simple cell is equal to the input 
from the LGN (or the non-normalized response Ei) divided by the sum 
of responses ΣE of all simple cells in the local population. Furthermore, 
Carandini and Heeger show that normalization can be implemented by 
different abstract mechanisms. They describe different abstract wiring 
patterns that can implement the equation. 

As Carandini and Heeger point out (p. 58), it is well known to electrical 
engineers that gain control can be implemented using either a feedforward 
or a feedback system. A feedback circuit has been traditionally proposed for 
primary visual cortex, where signals in the denominator of the normalization 
equation have been thought to originate from lateral feedback within V1, or 
from feedback from higher visual areas (fig. 4 b). However, normalization 
could also be implemented by a feedforward network that taps the non-
normalized signals before they have been subjected to normalization. Such 
an arrangement has been proposed for the visual system of the housefly, for 
the olfactory system of the fruitfly and for some aspects of normalization in 
the mammalian visual cortex (fig. 4 a).

5 The question of whether the normalization model includes all the information needed 
for a fully explanatory mechanistic model (i.e., whether the abstractions involved 
diminish explanatory power) is different from the question of whether the normalization 
model can be part of non-mechanistic explanations (such as an optimality or efficient 
coding explanation). I agree with Chirimuuta (2014) that the normalization model can be 
employed by non-mechanistic explanations of why a system presents a given behavior or 
trait. What I claim (against Chirimuuta) is that the model includes enough information 
to be considered fully explanatory (i.e., that it is not merely a mechanism sketch). For 
example, when Heeger 1992 uses the model to explain- among other things – how SOC is 
performed, this can be taken to be a fully explanatory mechanistic model. 
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Fig 4. From Carandini & Heeger (2012), feedback and feedforward connectivity 
patterns can implement the neural gain control that constitutes normalization. 

If LB legitimizes the normalization model and this model omits 
information about the relevant connectivity pattern, i.e., about the abstract 
causal organization that can be described by a graph, then we cannot say 
that LB legitimizes a mechanistic computational model. Nevertheless, in 
what follows, I will show that if normalization is interpreted in purely 
mathematical terms, then it is not legitimized by LB or, alternatively, that 
it is legitimized only if we endorse a mechanistic interpretation of the 
model. To demonstrate this point, I will briefly characterize the arithmetic 
operations performed by neurons and consider different ways of describing 
them5. 

Given three responses N1, N2, and N3 from three different neurons 
or neural populations, these perform an arithmetic operation if N1 is a 
response driven by N2 and if the input-output relation between N1 and N2 is 
modulated by N3 (Silver 2010). An addition occurs, for example, when N3 
modulates the relation between N1 and N2 in an additive way, i.e., when N3 
excites (causes an increase in the value of) N1 in such a way that the value 
of N1 is equal to the value of the driving input N2 plus the value of the 
modulating input N3. 

If the description of the relation between the responses of three neurons is 
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given by the equation 
(1) Nn + Nm = Nl 
And (1) is understood in a purely mathematical manner, i.e., abstracting 
away from the fact that Nl is the input of a process that has Nn and Nm as 
inputs; representing only the mathematical relations between those three 
variables, then N1, N2, and N3 satisfy (1) but also satisfy the equation:  
(2) Nn = Nl – Nm 

If the description is purely mathematical, then we can make all the 
transformations that this kind of description allows. Now, let us suppose that 
we have three neural responses N4, N5, and N6 that do not form a excitatory 
circuit, as N1, N2, and N3, but an inhibitory one, in which N6 subtractively 
modulates the input-output relation between N4 and N5, i.e., in which N6 
inhibits (causes a decrease in the value of) N4 in such a way that the value 
of N4 is equal to the value of the driving input N5 minus the value of the 
modulating input N6. As (1) and (2) represent only mathematical relations, 
responses N4, N5, and N6 (in the same way as N1, N2, and N3) satisfy these 
two equations. This implies that a purely mathematical description of a 
neural arithmetic operation is insufficient to determine whether the circuit 
performs an inhibitory or an excitatory arithmetical operation.

This purely mathematical description can be opposed to description that 
represents a causal processes that implements a mathematical function. 
In this description, the terms on one side of the “equation” are the inputs 
of the process, and the result on the other side is the output. Under 
this interpretation, “equation” (1) can represent the process of additive 
modulation that has Nl as output and Nn and Nm as inputs. The same process 
cannot be represented by certain equations equivalent to the mathematical 
interpretation of (1). For example, the process that implements (1) does not 
implement (2). This process has Nl and not Nn as an output, and the output 
is the sum and not the difference of the inputs. Under this interpretation, 
Nn + Nm = Nl can represent the circuit composed of N1, N2, and N3, but not 
the one composed of N4, N5, and N6. In the same way, Nn = Nl – Nm can 
represent the circuit composed of N4, N5 and N6 but not that composed of 
N1, N2, and N3.

For the same reason, if  a normalization equation represents a 
mathematical and not a causal structure, then it can be satisfied by a 
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circuit in which the response of a neuron is not divisively inhibited but 
multiplicatively excited. The variables in this circuit maintain mathematical 
relations equivalent to those between the variables in the normalization 
equation. However, the circuits that present this causal organization cannot 
explain some inhibitory phenomena, such as COS, that normalization is 
supposed to explain. As we have seen, COS is a phenomenon which occurs 
when a response is decreased when the preferred stimulus is presented with 
a non-preferred stimulus. This implies that the modulatory input must be 
inhibitory. Therefore, if normalization constitutes the minimum conditions 
sufficient to produce COS, then it cannot describe merely a mathematical 
organization, but causal relations and their quantitative properties. This is 
why LB motivates a mechanistic interpretation of the modeling of neural 
arithmetic operations that define different CNCs.

If this is correct, the models that describe canonical neural computations 
can be considered both mechanistic and computational descriptions 
of neural processes. Although this argument concerns a limited set of 
neurocognitive models, its relevance can be enhanced if we emphasize 
the fact that the small set of neural operations that constitute canonical 
computations has a widespread relevance for cognition. Carandini and 
Heeger (2012) present normalization as a canonical neural computation. 
These computations are defined as standard computational modules 
that perform the same operations in a wide variety of contexts (p. 51). 
Normalization was proposed in the early 1990s to explain non-linear 
properties of neurons in the primary visual cortex. However, evidence that 
has been accumulated since then suggests that normalization plays a part in 
a wide variety of modalities, brain regions, and species. The normalization 
model has been successfully applied to a very wide variety of neural 
systems: the olfactory system in invertebrates, the retina (photoreceptors, 
bipolar cells, and retinal ganglion cells), V1 and superior visual areas (MT, 
V4, IT), the auditory cortex (A1), multisensory integration (MST), visual-
motor control (LIP), and attention. This means that providing an argument 
for a mechanistic characterization of canonical computations implies 
an important step towards a general mechanistic framework for neural 
computation. 
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5. Conclusion

I have argued that we must provide an adequate abstraction criterion if 
we wish to claim that (at least some) neurocognitive models are, at the 
same time, computational and mechanistic. I have shown that the LB 
criterion is a promising candidate in this respect. First, I argued that the 
abstractions it motivates in some neurocognitive models are sufficient for 
medium independence. This point is important because although medium 
independent descriptions are employed in neurocognitive models, as a 
normative approach, mechanism must determine whether these abstractions 
are well motivated. Furthermore, a consequence of the application of LB 
to the modeling of neural computation is that this is not only medium 
independent but also coding regime independent. Second, I argued that LB 
can also motivate a mechanistic interpretation of the considered models. 
Although there is a common distinction between neural computation and 
neural mechanisms, I maintained that LB legitimizes the computational 
normalization model only if we consider that it includes all the information 
necessary for mechanistic explanation, and that this interpretation is in 
consonance with the current neurocognitive interpretation.

It is important to emphasize that although the claims defended here intend 
to blur the distinction between computational and mechanistic explanations 
(and therefore to expand the scope of the mechanistic approach) they 
are not in conflict with a pluralistic perspective about neurocognitive 
explanation. Furthermore, they can constitute a contribution to pluralism 
as they can help to draw more accurate distinctions between different 
kinds of explanations. Specifically, they can show that although there is a 
set of non-mechanistic neurocognitive explanations (such as the efficient 
coding explanations considered by Chirimuuta 2014), not all computational 
explanations are part of this set.
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