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A B S T R A C T

We studied the influence of intergranular barrier fluctuations on the electrical response of 3D semiconductor
polycrystals. We first computed with a numerical simulation model the dispersion in the intergranular barrier
height on polycrystalline tin oxide due to the punctual character of the donors. Then, in order to quantify the
effects of the barrier fluctuation in the overall conductivity of the semiconductor, we added the dispersion to the
well known brick-layer model and determined the connection between impedance measurements and grain
boundary resistivity. We found that, the brick-layer model gives lower values for the real intergrain resistivity.
However, the error can be quantified indicating that the brick-layer model is not a bad approximation to de-
termine electrical properties of intergrains of a polycrystal, specially for relatively large grains.

1. Introduction

Since long ago, polycrystalline semiconductors have been of inter-
ests in many applications in which controlling the electrical properties
of the material is crucial [1–6]. Therefore, mechanisms involved in the
transport properties are of central interest. It is regularly accepted that,
in many cases, the electrical conduction of polycrystalline semi-
conductors is dominated by inter-granular potential barriers that have a
Schottky-type nature [7–16]. In particular, oxide semiconductors reg-
ularly present a dominant density of oxygen vacancies that confer an n-
type character to the grains.

In analyzing experimental results, researches often use the brick-
layer model, in which it is assumed that the microstructure can be
described by a stacking of cubic-shaped grains of the same size and that
intergranular interfaces present identical properties. Despite its lim-
itations, the bricklayer model can be considered valid in cases having a
relatively narrow distribution of grain size. Microstructure impact on
the performance of composite materials has been addressed by several
authors [17–20]. In Ref. [20], in particular, Dezanneau et al. used
Voronoi polygons or polyhedra (for a 2D or a 3D model) of progressive
disorder to build a resistor network that describes the electrical prop-
erties of the resulting microstructure. Specifically, they considered that
every node represents a grain that is connected to other grains with
resistances inversely proportional to the contact line or area (for a 2D or

3D models, respectively). Then, the electrical conductivity of the system
is determined by solving the resulting resistor network.

In the present work, we focus on another source for intergranular
resistance value fluctuations. It is customary to model the electrostatic
potential in a Schottky barrier with a one-dimensional quadratic po-
tential, as it is obtained from a jellium of charge in the depletion region.
However, the punctual character and random nature of the impurity
positions lead to inhomogeneities that can significantly affect the con-
ductivity [21]. As a consequence, the resulting resistances due to the
intergranular barriers can be different, even though grains are of the
same size and they have the same contact area. We specifically studied
the effect of inter-granular barrier fluctuations on the resistivity for a
cubic network. With a computational numerical simulation model, we
determine the spatial fluctuations of the barriers due to the discreteness
of the donors and their statistical distribution at the depletion region in
order to determine the intergrain conductivity. Then, the obtained re-
sistivity distribution is used to build a resistor network and its resulting
overall resistance is calculated for tin oxide.

2. Intergranular barriers fluctuations

The electrical properties of polycrystalline semiconductors are
usually described with a simple one-dimensional model representing
the interface between two grains, which dominates the overall
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conductivity. By solving Poisson's equation for the depletion approx-
imation, the relationship between the band bending and the depletion
region width ω is [7]

=V eN
ε ε

ω
2

,s
d

r 0
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where Vs is the band bending (in volts), Nd the doping, ε0 the vacuum
permittivity, and εr the relative permittivity.

Fig. 1 depicts the double Schottky barrier model that is generally
accepted to describe an intergranular interface for an n-type semi-
conductor. The underlying assumption in this analysis is that the po-
tential barrier has the same height and shape along the whole interface.
In fact, this is an approximation because the potential barrier arises
from the Coulomb potential due to all present charges and then fluc-
tuations are unavoidable.

Following Mahan [22], we calculated the electrostatic potential due
to a double Schottky barrier, arising from a random distribution of
dopants in the depletion regions. We built a parallelepiped of size
x× y× z shown schematically in Fig. 2. The width of the parallele-
piped z is 2ω, were ω is the depletion region width from Eq. (1). We
randomly distribute a finite number of doubly-charged donors inside
the parallelepiped in −ω≤ z≤ω except in the plane z=0 that cor-
responds to the grain-boundary. Then, we associate to each doubly-
charged donor two equal and opposite charges in the interface, at the
grain-boundary; with this arrangement there is charge neutrality. For
our simulations we chose an average band bending of 0.8 eV, a doping
concentration Nd=5×1023m−3, and a relative permittivity
εr=12.3, values that are commonly reported for tin oxide. Using Eq.
(1), for these values, ω can be calculated to be 46.6 nm. More details
can be found in Ref. [21].

The electrostatic potential in every point of the system was

computed as the sum of the Coulomb potentials generated by all
charges. The band bending at the interface is defined as the maximum
electrostatic potential in the direction normal to this plane (z direction)
for every point in the parallelepiped. Periodic boundary conditions
were used to avoid edge effects. We used doubly charged dopants, as
oxygen vacancies doubly ionized in metal oxides and tin oxide in par-
ticular. Sample subsections of the barrier height for different dopant
concentrations Nd as a function of position in the y direction for a fixed
x is shown in Fig. 3.

Interestingly, fluctuations are not very dependent on doping. Also,
in principle, it could be thought that fluctuations should decrease with
Nd, as observed for the larger studied dopings. However, results indicate
that, for low dopant concentrations, fluctuations increase with Nd. The
reason for this unexpected result can be unveiled by looking the result
for the lowest doping. Note that the lowest the doping, the larger the
average distance between charges and then regions relatively flat ap-
pear. Eventually, for large dopant concentrations, charges responsible
for band bending are very close, charge density is more homogeneous
and then fluctuations decrease.

3. Intergranular effective resistance

Conduction in polycrystals has been interpreted in analogy to those
in metal-semiconductor contact diodes. Accordingly, the electrical
properties of polycrystalline semiconductors are usually described with
a simple one-dimensional model representing the interface between
two grains as shown in Fig. 1. We chose an n-type semiconductor be-
cause in tin oxide oxygen vacancies are the dominant defects and they
behave as donors.

It is regularly considered that a thermionic mechanism is re-
sponsible for the sample conductivity. Thus, the transport mechanism
corresponds to the emission of electrons over the top of the barrier and
then the current density from one grain to a contiguous one is given by

= −∗J A T kTexp( Φ/ ).thermoionic
2 (2)

A⁎ is the Richardson constant that it has the value.

=∗ ∗A πm ek h4 /2 3 (3)

where m* is the effective mass and h the Planck constant.

Fig. 1. Diagram for the intergranular double-Schottky barrier model. The band
bending is eVS, ϕ is the height of the barrier, and ω is the width of the depletion
region. EC is the bottom of the conduction band and EF is the Fermi level.

Fig. 2. Schematic diagram of the numerical simulation geometry and the ar-
rangement of the punctual charges.

Fig. 3. A sample portion of the barrier height as a function of the position for a
back-to-back Schottky barriers for different dopings. Dopants are doubly
charged, and the average band bending is 0.8 eV. For clarity, curves were offset
on the vertical axis.
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Like in metal-semiconductor junctions, electrons have other ways to
be transported in a polycrystal. Indeed, electrons with energies below
the top of the barrier can penetrate the barrier and reach the other
grain. This is known as quantum-mechanical tunneling. The number of
electrons decreases exponentially with energy and the barrier to tunnel
becomes lower and thinner. Thus, many electrons cross the barrier at
energies between EC at the bulk and the top of the barrier.

The current density due to quantum-mechanical tunneling can be
calculated summing up the contribution of all electrons arriving to the
barrier,

∫=
∗

J A T
k

F E P E dE( ) ( ) ,tunneling
eV

0

s

(4)

where F(E) is the Fermi-Dirac distribution and P(E) is the transmission
probability. P(E) can be calculated using the Wentzel-Kramers-Brillouin
approximation as
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where a and b correspond to the values of z where E equals the elec-
trostatic potential and α is given by
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After integrating Eq. (5) for a parabolic barrier, P(E) is
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where h=h/2π.
Now, Eq. (4) can be applied using any regular computing method.
A double Schottky barrier model is widely accepted to describe

polycrystalline semiconductor intergrains. However, many researchers
consider grain boundaries of essentially zero width, while others take
into account a non-negligible disordered layer at the grain boundaries,
such that the electron transport occurs in two steps [23]. Since the main
conclusions of this work will not differ, for the sake of simplicity we
adopted here the second assumption. Depending on the dopant con-
centration and temperature, the tunneling contribution can be the most
relevant conduction mechanism in many cases. In the present case, both
contributions are of similar magnitude.

With Eqs. (2) and (4), the thermionic and tunneling contributions to
conduction can be figure out. These equations are valid for specific
barriers. As discussed in Section 2, barriers fluctuate at the intergrain as
shown in Fig. 3. Therefore, we need to integrate the contributions to
conduction along the intergrain surface to determine the overall con-
ductance. This means that the total current crossing an interface of area
A is

∬=I
A

I x y dxdy1 ( , ) ,tot (8)

where A is the intergrain area and I(x,y) the current at (x,y) of the
intergrain surface. The integral must be carried out over the intergrain
area A. The effective resistance can be determined by applying a small
voltage (say 0.001 V) and determining the current through the inter-
grain along the whole surface.

Barrier fluctuations depend on the specific donor distribution within
depletion regions. Since donors are randomly distributed, barriers
fluctuations are different for any specific intergrain and then the ef-
fective resistance does not have always the same value but it presents
dispersion around a mean value. Fig. 4 shows the resulting histograms

for intergrains of side L=40 nm and 179 nm, normalized to the
average resistance. As we can expect, the dispersion reduces with the
intergrain size because barrier heights result from a random distribu-
tion of charges. The larger the grain, the larger the interface area, which
is equivalent to have a larger sample implying smaller fluctuations.

We found that results of Fig. 4 can be very well fitted with a log-
normal distribution, which is the statistical realization of the multi-
plicative product of many independent random variables. The log-
normal distribution presents the following general form
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In Fig. 5 we present the normalized resistance distributions with the
intergrain size L as a parameter fitted with log-normal functions. Note
that the distributions become narrower and more symmetric with the
intergrain size.

4. Results and discussion

In order to test the influence of intergranular barrier fluctuations on
the total conductivity of the polycrystal, we used the bricklayer model
(BLM), which consists of a simple cubic resistor network, where the
bonds between the nodes at the vertexes of the cubes are connected
with resistances [24–27]. We incorporated to the BLM a dispersion to
the resistances, with a log normal distribution as shown in Fig. 5. Each
of the resistances in the resistor network represents the interface be-
tween the grains of the polycrystal.

First we build a cubic structure composed by a network of resistors
of size n× n× n, then we assign to each resistor in the network a value
of resistance taken from the log-normal distribution with parameters μ
and σ given in Fig. 5. A scheme of the built structure is shown in Fig. 6.
It can be seen that the nodes N(i,j,k) are the vertexes of each cube
connected by resistances. These nodes are enumerated according of its
position in the main cubic structure (see Fig. 6), which represents the
grains bulk. The first index i is increased in the direction of the z axis of
Fig. 2, i.e. the direction perpendicular to the intergrain.

Secondly, the cubic structure is excited using an ideal voltage gen-
erator of 1 V placed between the union of the nodes represented as N
(0,j,k) and N(n,j,k). Consequently, a DC current and equivalent re-
sistance is obtained. We compute the resistance Rpolycrystal for different
sizes of the resistor network n=3, 4, 5, 10, 20 using the log-normal
distribution parameters (μ and σ) as a function of the intergrain size L
found previously (see Fig. 5). In order to take into the account the
boundary conditions, resistors with the same statistical properties were
included in the simulations between each pair of nodes N(i,0,k)-N
(i,n,k), and N(i,j,0)-N(i,j,n). Also, to reduce statistical effects, which can
bias the simulations, for each combination of L and n, 10 executions of
the simulation were performed and results were averaged. Then, as a
reference for each value combination of L and n, a cubic structure
composed of equal resistors whose value is the mean of each log-normal
distribution (RBLM), was implemented.

Fig. 7 presents the resistance of polycrystals related to that of the
BLM (Rpolycrystal/RBLM) as a function of intergrain size L, for different
values of the resistor network n. We observe that Rpolycrystal/RBLM has a
quick but limited increase with L for all values of n. This behavior was
expected, since as the grain size increases, not only the mean values of
the resistance decrease, but also the resistance distributions become
narrower and more symmetric (see Fig. 5), and therefore the dispersion
in the resistance is reduced. Thus, as expected, the ratio Rpolycristal/RBLM

tends to 1 as the intergrain size increases due to the dispersion decrease.
What is more, it is expected that and increasing in the dispersion of the
values of the resistors, gives lowest values of Rpolycristal, since the lower
resistance dominates the value of the equivalent resistor.

We can also see from Fig. 7 that, for a fixed intergrain size, the
relation Rpolycrystal/RBLM changes for the different values of n, due to
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finite size effects. In the inset of Fig. 7, we plot, as an example,
Rpolycrystal/RBLM as a function of n, for a fixed intergrain size of 40 nm,
and we can see that there is a significant variation for small n, but

Rpolycrystal/RBLM quickly converges to a fixed value, indicating that finite
size effects are meaningful for sizes of the resistor network n bigger than
10.

In summary, we can see that differences for the brick-layer model
with and without dispersion in the resistances (Rpolycrystal and RBLM re-
spectively) become relevant for very small intergrain sizes. With in-
tergrain size the ratio Rpolycrystal/RBLM converges to 1, indicating that, in
order to obtain electrical properties, the brick-layer model without
dispersion becomes a good approximation of a polycrystal structure for
relatively large intergrains.

5. Conclusions

We have analyzed the effects of inter-granular barrier fluctuations
on the electrical conductivity of polycrystalline tin oxide. Barrier fluc-
tuations due to the discreteness of the donors and their statistical dis-
tribution at the depletion region of a back-to-back Schottky barrier
were studied with a computational numerical model. We found that the
barrier height fluctuations leads to a Log-Normal distribution for in-
tergrain resistances that becomes narrower with the system size.

Then we proposed a modified brick-layer model, were the values of
the resistances in the cubic structure are taken from the log-normal
distribution found before, simulating an intergrain surface. We found
that only for small intergrain sizes the brick-layer model with and
without dispersion differ appreciably, indicating that the brick-layer
model without considering the dispersion due to the fluctuations in the
barrier height in the polycrystal, can be in many cases a good

Fig. 4. Distributions of resistance values for two intergrain with sizes (a) L=40 nm and (b) L= 179 nm. Numerical data (circles) were fitted with log-normal
functions (lines).

Fig. 5. Resistance values distributions for different intergrain sizes fitted with
log-normal functions. Used values for (μ, σ) are: (−0.314, 0.807) for L=40 nm,
(−0.097, 0.465) for L=80 nm, (−0.0349, 0.279) for L=138 nm, (−0.0229,
0.216) for L=179 nm, (−0.0237, 0.179) for L=211 nm, and (−0.027,
0.1394) for L=265 nm.

Fig. 6. Scheme of the resistor network with cubic structure. Each one of the cubes that form the main structure is composed of eight nodes linked by resistances.
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approximation to obtain electrical properties of a polycrystal intergrain.
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