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ABSTRACT
The Los Menucos locality in Patagonia, Argentina, bears a well-known ichnofauna
mostly documented by small therapsid footprints. Within this ichnofauna, large
pentadactyl footprints are also represented but to datewere relatively underinvestigated.
These footprints are here analyzed and discussed based on palaeobiological indications
(i.e., trackmaker identification). High resolution digital photogrammetry method was
performed to achieve a more objective representation of footprint three-dimensional
morphologies. The footprints under study are compared with Pentasauropus from
the Upper Triassic lower Elliot Formation (Stormberg Group) of the Karoo Basin
(Lesotho, southern Africa). Some track features suggest a therapsid-grade synapsid
as the potential trackmaker, to be sought among anomodont dicynodonts (probably
Kannemeyeriiformes). While the interpretation of limb posture in the producer of
Pentasauropus tracks from the Los Menucos locality agrees with those described from
the dicynodont body fossil record, the autopodial posture does not completely agree.
The relative distance between the impression of the digital (ungual) bases and the distal
edge of the pad trace characterizing the studied tracks likely indicates a subunguligrade
foot posture (i.e., standing on the last and penultimate phalanges) in static stance,
but plantiportal (i.e., the whole foot skeleton and related soft tissues are weight-
bearing) during the dynamics of locomotion. The reconstructed posture might have
implied an arched configuration of the articulated metapodials and at least of the
proximal phalanges, as well as little movement capabilities of the metapodials. Usually,
a subunguligrade-plantiportal autopod has been described for gigantic animals (over
six hundreds kilograms of body weight) to obtain an efficient management of body
weight. Nevertheless, this kind of autopod is described here for large but not gigantic
animals, as the putative trackmakers of Pentasauropus were. This attribution implies
that such an autopodial structure was promoted independently from the body size
in the putative trackmakers. From an evolutionary point of view, subunguligrade-
plantiportal autopods not necessarily must be related with an increase in body size, but
rather the increase in body size requires a subunguligrade or unguligrade, plantiportal
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foot. Chronostratigraphically,Pentasauropuswas reported fromUpper Triassic deposits
of South Africa and United States, and from late Middle Triassic and Upper Triassic
deposits of Argentina. Based on the stratigraphic distribution of the ichnogenus
currently accepted, a Late Triassic age is here proposed for the Pentasauropus-bearing
levels of the Los Menucos Group.

Subjects Evolutionary Studies, Paleontology
Keywords Pentasauropus, Tracks, Therapsids, Dicynodonts, Triassic, Gondwana, Los Menucos,
Patagonia, Trackmakers

INTRODUCTION
Tetrapod tracks are valuable fossils which inform us about the anatomy (e.g., Carpenter,
1992), functional adaptations (e.g., Baird, 1980), motion (e.g., Avanzini, Piñuela & García-
Ramos, 2011) and ethology (e.g., Lockley et al., 2016) of extinct animals, greatly expanding
the potential of information that is often precluded from the body-fossil record. The
detailed analysis of tetrapod footprints is therefore significant for integrating and revising
data derived from the tetrapod body-fossil record.

The scientific study of tetrapod footprints in Argentina is relatively recent compared to
that of Europe (Duncan, 1831; Kaup, 1835a; Kaup, 1835b) and North America (Hitchcock,
1836), dating back to the first half of the twentieth century (Von Huene, 1931). One of the
most important contribution to tetrapod ichnology in Argentina is that of Casamiquela
(1964), who devoted himself to the study of Triassic and Jurassic tetrapod tracks from
Patagonia. Later, other contributions focused on important Triassic ichnofaunas from
other regions of Argentina have been published (e.g., Romer, 1966; Bonaparte, 1966;
Leonardi, 1994; Melchor & de Valais, 2006). Among the Triassic vertebrate ichnological
record, the LosMenucos ichnofauna, which is dominated by small therapsid footprints, was
repeatedly studied (Casamiquela, 1964; Casamiquela, 1975; Casamiquela, 1987; Leonardi &
De Oliveira, 1990; Leonardi, 1994; Domnanovich & Marsicano, 2006; Melchor & de Valais,
2006; de Valais, 2008;Domnanovich et al., 2008;Díaz-Martínez & de Valais, 2014). The bulk
of this ichnofauna was originally attributed to different ichnotaxa by Casamiquela (1964)
andCasamiquela (1975), but after the revisionmade byMelchor & de Valais (2006), most of
the ichnogenera erected by Casamiquela are considered synonymous with Dicynodontipus.
Moreover, an indetermined chirotheroid track (de Valais, 2008), a single track referred
to as Rhynchosauroides, and large pentadactyl footprints mentioned as Pentasauropus sp.
(Domnanovich et al., 2008) have also been reported from the Los Menucos area. From
the same locality, several slabs with pentadactyl tracks comparable to those described by
Domnanovich et al. (2008) were collected many years ago but remained unpublished until
now.

An ichnological analysis based on this material is here proposed and discussed in terms
of the palaeobiology, identity and autopodial anatomy of the trackmaker. Besides, a brief
discussion of the chronostratigraphy of this record is provided.
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MATERIAL AND METHODS
The present study is based on the direct examination of track-bearing slabs MPCA 27029-1
with three pes-manus couples, two of which incomplete (concave epireliefs, i.e., negative
relief), MPCA 27029-2 with a single left pes-manus couple (convex hyporeliefs, i.e., positive
relief), MPCA 27029-3 with two pes-manus couples and an incomplete pes (convex
hyporeliefs), MPCA 27029-4 with a single pes-manus couple (convex hyporeliefs), MPCA
27029-5 with a single track (convex hyporeliefs), MPCA 27029-9 with five pes-manus
couples, three of which incomplete (convex hyporeliefs), MPCA 27029-16 with three pes-
manus couples, one of which incomplete, and five incomplete tracks (convex hyporeliefs),
MPCA 27029-21 with two pes-manus couples and four tracks (convex hyporeliefs),
MPCA 27029-33 with two pes-manus couples (convex hyporeliefs), MMLM 1 with two
pes-manus couples (convex hyporeliefs), MMLM 2 with two incomplete pes-manus
couples (convex hyporeliefs), and MMLM 075-1 (ex MRPV 1987P.V.06 in Domnanovich
et al., 2008, hereafter MMLM 075-1) with two incomplete pes-manus couples (concave
epireliefs). Except for the specimen MMLM 075-1, the material under study was to date
unpublished. A few other slabs, both with and without label, are stored at the MPCA but
were not considered in this study due to poor preservation of the tracks. In total, about 60
footprints were analyzed. For each slab, tracks were numbered using Arabic numerals and,
when referring to single tracks in the text, they are indicated as /number following the slab
label (e.g., MPCA 27029-1/4 where MPCA 27029-1 and number 4 indicate slab and single
track, respectively). The studied material mainly consists of isolated sets or incomplete
trackways.

The provenance of the track-bearing slabs can be traced back to the Felipe Curuil ex
quarry, Yancaqueo farm, east of the town of Los Menucos (Domnanovich et al., 2008), but
the exact stratigraphic repositioning of the material is currently prevented and inherent
data are lacking in the literature.

Microfacies characterization
Two thin sections were obtained from the slab MPCA 27029-19 (its footprints are poorly
preserved and not included in this study), both parallel and perpendicular to the trampled
surface. For the description of the thin sections, Mackenzie, Donaldson & Guilford (1982),
and Scasso & Limarino (1997) were taken as a reference. Thin sections are presently stored
at the MPCA and labelled as MPCA 27029/19.1 (parallel to the trampled surface) and
MPCA 27029/19.2 (perpendicular to the trampled surface).

Measurements
Measurements related to trackmaker body dimension were obtained from slabs MPCA
27029-1, MPCA 27029-9, MPCA 27029-16 andMPCA 27029-21. From single tracks, which
are mainly represented by digit traces, measurements of footprint width were taken. Also,
track features and differential depth of impressions in some cases allowed to recognize
the footprint identity, the side of the trackway when incompletely preserved, or tracks
belonging to different trackways (e.g., MMLM 075-1), and element orientations. Track
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Table 1 Photogrammetric report.Main processing parameters of the photogrammetric models (from Agisoft Photoscan Professional reports).

3Dmodel Number of
images

Camera
altitude
(cm)

Ground
resolution
(mm/pix)

RMS reprojection error Mean key
point size
(pix)

Scale bars
total error
(m)

MPCA 27029-1 61 55 0.108 0.145637 (0.595447 pix) 3.99373 0.000211567
MPCA 27029-2 38 49.6 0.142 0.211741 (0.749639 pix) 3.83623 0.000120665
MPCA 27029-3 36 63.8 0.183 0.221627 (0.663238 pix) 3.1918 0.000101555
MPCA 27029-4 36 26.2 0.0753 0.225287 (0.695116 pix) 3.21872 0.000145928
MPCA 27029-5 25 30.2 0.0867 0.186287 (0.548475 pix) 3.41294 0.000125956
MPCA 27029-9 36 31.9 0.0916 0.206052 (0.638116 pix) 3.27202 0.000154204
MPCA 27029-16 30 52.3 0.13 0.254353 (0.874324 pix) 3.64063 0.000179922
MPCA 27029-21 59 47.3 0.127 0.273984 (0.529254 pix) 2.28824 0.000184177
MPCA 27029-33 74 50.2 0.144 0.25616 (0.993387 pix) 3.90857 0.000121254
MMLM 075-1 54 37.8 0.0898 0.196238 (0.739726 pix) 3.75732 0.000118491
MMLM 1 77 42.5 0.101 0.222075 (0.673395 pix) 3.09592 0.00332392
MMLM 2 52 33 0.0949 0.234591 (0.852769 pix) 3.78559 5.99994e–05

measurements were performed according to guidelines introduced by Leonardi (1987).
Track outlines were represented through interpretive drawings.

Digital models
High-resolution digital photogrammetry was undertaken to achieve a more objective
representation of track three-dimensional morphology, according to a recently described
standard protocol for ichnological studies (Falkingham et al., 2018). To model the studied
specimens, the software package Agisoft PhotoScan Pro (Educational License), which
enables creating 3D textured meshes by means of semi-automatic processing of images
(Mallison & Wings, 2014), was used.

The images selected for the photogrammetric process were acquired using a Nikon
Coolpix P520 camera with 4.3–7.6 focal length, resolution 4,896 × 3,672 and pixel size
ranging from 1.25× 1.25µmand 1.27× 1.27µm.Main processing parameters are reported
in Table 1. In order to correctly scale the calculated model, a metric reference marker was
applied on the surface. Three-dimensional models were converted to colour topographic
profiles using the software Paraview (version 5.4.1).

GEOLOGICAL SETTING
Continental deposits of Triassic age in Argentina were accumulated in different basins in
western and northwestern regions (Mendoza, San Juan, San Luis and La Rioja provinces) as
well as in Patagonia (northern sector of the Santa Cruz province and Río Negro provinces).
These elongated, narrow rift basins with prevalent NW-SE and NNW-SSE trends were
developed during Permian and Triassic periods and are related with the breakup of the
western margin of south-west Gondwana (Kokogian et al., 1999; Franzese & Spalletti, 2001;
Barredo et al., 2012).

The Triassic tetrapod track record of southern South America is exclusive to three
basins, namely the Ischigualasto-Villa Unión Basin (San Juan and La Rioja provinces),
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the Cuyo Basin (Mendoza and San Juan provinces) and the Los Menucos basin (Río
Negro province) (e.g., Melchor, Genise & Poiré, 2001; Melchor & de Valais, 2006; de Valais,
2008 and references therein). According to Spalletti (1999), in the northern basins (i.e.,
Ischigualasto-Villa Unión and Cuyo) the sedimentation encompasses the Lower to Upper
Triassic, while in the Los Menucos Basin the sedimentation took place in the Late Triassic,
based on the age of volcanic activity in north-central Patagonia.

After the works of Stipanicic (1967), Stipanicic et al. (1968) and Stipanicic & Methol
(1972), Stipanicic & Methol (1980), the Los Menucos Group (also as ‘Complejo Los
Menucos’—Los Menucos Complex sensu Cucchi, Busteros & Lema, 2001) was established
by Labudía & Bjerg (2001) to indicate dacitic to rhyolitic ignimbrites, mesosilicic lavas
and subordinate Triassic sedimentary rocks exposed around Los Menucos town, in the
north-western sector of the North Patagonian Massif (Río Negro province, Argentina;
Fig. 1A).

Within the Los Menucos Group, two lithostratigraphic units were defined, namely
the Vera Formation at the base and the Sierra Colorada Formation on top (Labudía &
Bjerg, 2001; Labudía & Bjerg, 2005, and references therein; Fig. 1B). The Vera Formation,
from which tetrapod tracks are historically reported, is mainly composed of volcanic and
continental deposits laid down inside small basins bordered by regional and local faults
with strike NE-SW, E-W and NW-SE (Labudía & Bjerg, 2001; Labudía & Bjerg, 2005). The
Vera Formation is mainly represented by brownish to yellowish conglomerates, white to
greenish sandstones and reddish brown to red pelites, with which volcanic ashes, tuffs and
tuffites, dacitic pyroclastic flow products and volcanic breccias are intercalated (Labudía
& Bjerg, 2001; Labudía & Bjerg, 2005). Sedimentation took place mainly in alluvial plain,
floodplain, ephemeral river and small lacustrine palaeoenvironments (Labudía & Bjerg,
2005), under seasonal climate condition with alternating periods of dry and wet conditions
(Gallego, 2010). Sedimentary and volcaniclastic levels within the Vera Formation are
characterized by a very rich palaeoflora, the so-called ‘‘Dicroidium - type flora’’ (Stipanicic,
1967; Stipanicic & Methol, 1972; Artabe, 1985a; Artabe, 1985b; Labudía et al., 1995; Labudía
& Bjerg, 2001; Labudía & Bjerg, 2005) and by an abundant tetrapod ichnofauna, preserved
on sandstones with poorly sorted grains and with a variable content of tuffaceous breccias
(Melchor & de Valais, 2006). Finds of skeletal fauna are scarce and are so only represented
by remains of an amiiform fish (Bogan, Taverne & Agnolin, 2013).

The Sierra Colorada Formation is essentiallymade of ignimbritic volcanic rocks (Labudía
& Bjerg, 2001; Labudía & Bjerg, 2005), dated at 222± 2Mawith the Rb/Sr isochronmethod
(Norian, Late Triassic; Rapela et al., 1996) and at 206.9 ± 1.2 Ma with the Ar/Ar method
(Rhaetian, Late Triassic;Lema et al., 2008). These datations donot radiometrically constrain
the base of the Vera Formation, for which a Late Triassic age was historically proposed on
the basis of the ‘‘Dicroidium-type flora’’ and the tetrapod ichnofauna.

More recent results indicated an age of 257 ± 2 Ma (Wuchiapingian, Late Permian) for
a rhyolitic ignimbrite, 252 ± 2 Ma (Changhsingian, Late Permian) for an andesite, and 248
± 2 Ma (Olenekian, Early Triassic) for a dacitic ignimbrite (Luppo et al., 2017) of the Los
Menucos Group. These new data predate the main volcanic activity to an about a 10 Ma
period between the Late Permian and the Early Triassic, making the lower part of the Los
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Figure 1 The Los Menucos area. (A) Location map and geological sketch of Los Menucos area (from
Labudía & Bjerg (2005), redrawn and slightly modified). White star indicates Estancia Yancaqueo, from
which the Pentasauropus footprints come. (B) Simplified stratigraphic section of the Los Menucos Group
(from Labudía & Bjerg (2005), redrawn and slightly modified). Dashed lines with quotation marks indi-
cate the possible position of Pentasauropus-bearing strata.

Full-size DOI: 10.7717/peerj.5358/fig-1
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Figure 2 Thin sections (MPCA 27029/19.1 andMPCA 27029/19.2) of track-bearing slabMPCA 27029-
19. Inequigranular, epiclastic texture with anhedral and subhedral phenocrysts at the base (A) and middle
portion (B) of the track-bearing slab MPCA 27029-19. (C, D) Equigranular less epiclastic texture indicat-
ing a minor sedimentary reworking of the trampled surface.

Full-size DOI: 10.7717/peerj.5358/fig-2

Menucos Group coeval with the La Esperanza Plutono-Volcanic Complex (González et al.,
2017; Luppo et al., 2017).

Sedimentological observations
Track-bearing slabs consist of yellowish to greenish, medium to mainly coarse grained and
poorly sorted volcaniclastic sandstone lacking of sedimentary structures in hand samples,
neither on the surface or cross-section.

The observed texture ranges from inequigranular/equigranular (Figs. 2A, 2B) to
predominantly equigranular (Fig. 2C). Phenocrysts, mainly subhedral and anhedral,
range in dimension from 0.5 mm to 1.5 mm and show in one case incipient orientation.
Phenocrysts are represented mainly by plagioclase, quartz, alkaline feldspar, biotite,
amphibole (hornblende), orthopyroxene (enstatite) and calcite floating in a mafic,
glassy matrix.

The dominant epiclastic texture observed at the base of the trampled surface (thin
section MPCA 27029/19.2), mainly represented by fragments of quartz and some lithics
displaying attrition and rounded to sub-angular shape, suggesting sedimentary reworking
of an original tuff of probable dacitic composition. The texture observed in the thin section
MPCA 27029/19.1 instead indicates a limited sedimentary reworking (Fig. 2D). In section,
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a faint normal gradation can be observed most likely indicating short sedimentation events;
on the whole, the track-bearing slabs can be related to a proximal fluvial environment.

TRACK RECORD
Track preservation
Specimen MMLM 075-1 is composed of four slabs, two as negative (concave) relief,
labeled as MMLM 075-1/1a, /2 and /3a, and two as their positive (convex) filling, labeled
as MMLM 075-1/1b and 3/b. There are no evidences of any layer between the concave
and the convex reliefs and the shape of both concave epireliefs and convex hyporeliefs
are exactly complementary (Fig. 3). Therefore, and taking into account that the tracks
preserved similarly (i.e., sub-circular/sub-ovoidal to pointed digit impressions; roughly
sub-circular to elliptical pad tracks; very thin displacement rims in the pad and well-marked
in the digit impressions; Figs. 4–9), in our opinion the concave epireliefs are true tracks
(sensu Marty, Falkingham & Richter, 2016) and the convex hyporeliefs are their natural
casts (sensu Marty, Falkingham & Richter, 2016).

In general, the tracks studied here are moderately well preserved (grade 1 sensu Belvedere
& Farlow, 2016), and the true tracks are not elite tracks (sensu Lockley, 1991). In addition,
they are not modified true tracks (sensu Marty, Falkingham & Richter, 2016) because
they lack evidence of physiochemical (e.g., weathering) and/or biological influences
after they were made. Thereby, the shape of these tracks is mainly conditioned by the
substrate consistency (grain size and water content). Recently, Falk et al. (2017) performed
neoichnological experiments that compared the shape of tracks impressed in three different
sediments (fine, medium and coarse sand) with different moisture contents (wet, moist
and dry). They concluded that wet and dry coarse sediments preserve tracks without fine
details, but moisture coarse sediment might preserve the overall track shape and details as
claw impessions. As has been previously commented, the tracking surface is a medium to
coarse sandstone, and tracks have depth digit impressions with extruded rims.

Therefore, and according to the Falk et al. (2017)’s experiments, the trackmakers most
likely walked on humid, not waterlogged nor dry, coarse sediments with a moderately
plastic behaviour, able to record the main anatomical features of the autopods.

Track description
The material are manus and pes tracks with very low dimensional heteropody (i.e.,
condition in which the autopods are dimensionally and morphologically different), mainly
preserved as tetradactyl impressions, although pentadactyl tracks are also present (MPCA
27029-1/4/6,MPCA 27029-2/2,MPCA 27029-4/2,MPCA 27029-16/10,MPCA 27029-33/2,
MMLM 075-1) (Figs. 4, 5E–5H, 7A–7D, 8), as well as tridactyl ones displaying only the
central digits (MPCA 27029-9/2, MPCA 27029-16/8, MPCA 27029-21/3, MMLM 1/1,
MMLM 2/3) (Figs. 6G–6H, 7, 9). Morphologically, manus and pes tracks are strongly
symmetrical. Digit traces are commonly arranged to shape an arcuate pattern that is
convex anteriorly, according to which the digit III trace (the central one) or digit III and
IV traces are the most projecting. Variability affecting the number of digits can occur on
the same slab (e.g., MPCA 27029-21, MMLM 2; Figs. 7E–7H, 9E–9H ). In the material
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Figure 3 Tracks mode of preservation. Convex hyporeliefs (A, C) fitting with concave epireliefs (B, D)
preserved on slab MMLM 075-1 (true tracks and natural casts, respectively).

Full-size DOI: 10.7717/peerj.5358/fig-3

under study the degree of curvature of the arcuate pattern is variable and appears more
pronounced in some smaller tracks (e.g., MPCA 27029-16/7/9/10; Figs. 7A–7D) than in
larger ones (e.g., MPCA 27029-1/4, MMLM 075-1, MMLM 2/2; Figs. 4, 8E–8H, 9E–9H).
In the smaller tracks (e.g., MPCA27029-16, interpreted as left by a juvenile individual), the
morphology of digit traces, their relative spacing and orientation, as well as the position
of pes and manus impression is comparable with that of the larger tracks. When present,
also the sole pad trace resembles that observed in the footprints of larger dimension. Thus,
apart from the degree of curvature, the general morphology remains consistent despite
dimensional differences (see Figs. 4A–4D and 7A–7D).

Digit traces can be characterized by a sub-circular/sub-ovoidal morphology (e.g., MPCA
27029-9, MPCA 27029-16, MPCA 27029-21; Figs. 6E–6H, 7), while in other cases they
are markedly pointed (e.g., MPCA 27029-2, MPCA 27029-4, MPCA 27029-5, MPCA
27029-33; Figs. 4E–4H, 5E–5H, 6A–6D, 8A–8D). These two morphologies can co-exist
on the same slab and within the same set or trackway, thus pertaining to the spectrum of
internal variability of the material under study. When pointed, the most medial digit traces
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Figure 4 Photos, three-dimensional models and interpretative drawings of the studied material. (A)
Track-bearing slabs MPCA 27029-1; (B) solid three-dimensional model of (A); (C) colour topographic
profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA 27029-2; (F) solid three-
dimensional model of (E); (G) colour topographic profile and (H) interpretative drawing of (E). In (A)–
(D), footprint 2 and 5, note the non-impressed area between the sole pad trace and the base of digit traces.
In (E)–(H) note the displacement areas behind digit traces, interpreted as the result of the thrust of digit
pushing the sediment backwardly.

Full-size DOI: 10.7717/peerj.5358/fig-4
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Figure 5 Photos, three-dimensional models and interpretative drawings of the studied material. (A)
Track-bearing slabs MPCA 27029-3; (B) solid three-dimensional model of (A); (C) colour topographic
profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA 27029-4; (F) solid three-
dimensional model of (E); (G) colour topographic profile and (H) interpretative drawing of (E). Note the
digit trailing marks slightly affecting the digit traces of footprint 2 in (A)–(D), which are absent in foot-
prints showed in (E)–(H) where digit traces are roughly sub-circular in morphology.

Full-size DOI: 10.7717/peerj.5358/fig-5
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Figure 6 Photos, three-dimensional models and interpretative drawings of the studied material. (A)
Track-bearing slabs MPCA 27029-5; (B) solid three-dimensional model of (A); (C) colour topographic
profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MPCA 27029-9; (F) solid three-
dimensional model of (E); (G) colour topographic profile and (H) interpretative drawing of (E).

Full-size DOI: 10.7717/peerj.5358/fig-6
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Figure 7 Photos, three-dimensional models and interpretative drawings of the studied material. (A)
Track-bearing slabs MPCA 27029-16 produced by a juvenile trackmaker; (B) solid three-dimensional
model of (A); (C) colour topographic profile and (D) interpretative drawing of (A). (E) Track-bearing
slabs MPCA 27029-21; (F) solid three-dimensional model of (E); (G) colour topographic profile and (H)
interpretative drawing of (E). The general morphology and structure of footprints 6–10 in (A)–(D), left by
a juvenile trackmaker, is identical to that characterizing larger footprints even when preserved only as digit
traces.

Full-size DOI: 10.7717/peerj.5358/fig-7
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Figure 8 Photos, three-dimensional models and interpretative drawings of the studied material. (A)
Track-bearing slabs MPCA 27029-33; (B) solid three-dimensional model of (A); (C) colour topographic
profile and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 075-1; (F) solid three-
dimensional model of (E); (G) colour topographic profile and (H) interpretative drawing of (E). In (E)–
(H) note the long and sharp digit trailing marks.

Full-size DOI: 10.7717/peerj.5358/fig-8
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Figure 9 Photos, three-dimensional models and interpretative drawings of the studied material. (A)
Track-bearing slabs MMLM 1; (B) solid three-dimensional model of (A); (C) colour topographic pro-
file and (D) interpretative drawing of (A). (E) Track-bearing slabs MMLM 2; (F) solid three-dimensional
model of (E); (G) colour topographic profile and (H) interpretative drawing of (E). In (A)–(D) note the
long and sharp digit trailing marks affecting footprints 2 and 4, resembling those of Figs. 8E–8H.

Full-size DOI: 10.7717/peerj.5358/fig-9

(i.e., digit I or II imprints and, to a lesser extent, digit III and IV imprints), both of manus
and pes tracks, can be affected by drag marks. These extramorphological features (see
Peabody, 1948) qualitatively range from weakly hinted and short (e.g., MPCA 27029-1/6,
MPCA 27029-2/1, MPCA 27029-3/1/2, MPCA 27029-4/2, MPCA 27029-5, MPCA 27029-
9/4/6; Figs. 4–6) to highly sharp and long (e.g., MMLM 075-1, MMLM 1 and MMLM 2;
Figs. 8E–8H, 9A–9D).

Central digits are commonly the most deeply and uniformly impressed, both in manus
and pes tracks (e.g., MPCA 27029-4, MPCA 27029-5, MMLM 1; Figs. 5F–5G, 6B–6C,
9B–9C). When a certain degree of variability is observed, digit III and IV imprints are

Citton et al. (2018), PeerJ, DOI 10.7717/peerj.5358 15/36

https://peerj.com
https://doi.org/10.7717/peerj.5358/fig-9
http://dx.doi.org/10.7717/peerj.5358


the most deeply imprinted (e.g., MPCA 27029-1, MPCA 27029-3, MPCA 27029-16;
Figs. 4B–4C, 5B–5C, 7B–7C), followed by digit II and I imprints. The digit V trace, when
preserved, is shorter and closer to the pad trace than the other digit traces and is only
faintly imprinted (e.g., MMLM 075-1, Figs. 8E–8H; but see MPCA 27029−16/9/10 for a
different configuration of the digit depth of impression, most likely due to the reaction of
the substrate and water content of the sediments at the time of impression, Figs. 7B–7C).

Behind the digit traces, a roughly sub-circular to elliptical sole pad trace can be preserved
(e.g.,MPCA27029-1/2/4/5/6,MPCA27029-5,MPCA27029-16/10,MMLM075-1,MMLM
1/2/4, MMLM 2/1; Figs. 4A–4D, 6A–6D, 7A–7D, 8E–8H, 9). The sole pad trace lies at a
short distance from the base of the central digit traces and commonly approximates the
most medial and lateral digit imprints (e.g., MPCA 27029-1; Figs. 4A–4D). Commonly, the
sole pad trace is separated from central digit traces ahead by a non-impressed area, which
appears as a groove or as a ridge depending on the mode of preservation, tapering towards
the most medial and lateral digit imprints. This should not be confused with displacement
areas of similar morphology, which are instead related to digit traces (i.e., thrust of digit
pushing the sediment backwardly; Fig. 10), where this area is not impressed (e.g., MPCA
27029-2, MPCA 27029-3/1/4, MPCA 27029-4, MPCA 27029-9/3/5, MPCA 27029-21/4,
MPCA 27029-33/1/2/3, MMLM 2/3; Figs. 4E–4H, 5, 6E–6H, 7E–7H, 8A–8D, 9E–9H).

The sole pad trace is more deeply impressed in its central portion; depth of impression
slightly decreases toward the lateral and distal portion (i.e., close to the non-impressed
area behind digit traces, MPCA 27029-1, MMLM 075-1, MMLM 1; Figs. 4B–4C, 8F–8G,
9B–9C).

When possible, we tried to define the orientation of the footprint axis with respect to the
trackwaymidline. The axis of pes tracks is in some cases rotated inwardly with respect to the
trackway midline but it can also be parallel to the trackway midline (e.g., MPCA 27029-9,
27029-16), while manus tracks show a wider range of variability, being both inwardly
and outwardly rotated with respect to the hypothetical trackway midline (e.g., MPCA
27029-1 and MMLM2, respectively). When possible, measurements and ratios were taken;
measurements were performed taking into account digit III as the homologous point, both
for manus and pes tracks. Results are reported in Tables 2 and 3. In general, footprints
are wider than long with oblique pace length ranging between 60% and 80% of the stride
length. Pace angulation ranges from 70◦ to 101◦. Gleno acetabular distances, measured
considering an amble gait (other gaits are reported in Table 2), indicate trackmakers with
trunk length approximately of 37.4 cm (MPCA 27029-16), 63.1 cm (MPCA 27029-9) and
91.6 cm (MPCA 27029-1). The proximal margin of the digit traces lies at less than 3 cm
from the distal margin of the sole trace (Table 3).

Remarks
The footprints from the Los Menucos ichnosite are characterized by having the following
features: homopodic manus and pes tracks with low dimensional heteropody, up to five
digit imprints aligned, forming an anteriorly convex arch, a sole pad trace more impressed
centrally or centro-laterally. On the basis of these general features, the specimens from Los
Menucos are tentatively referred to as Pentasauropus.
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Figure 10 Morphological and extramorphological features identified on the studied material. (A)
Manus track MPCA 27029/2 and (B) interpretative drawing. (C) Pes track MPCA 27029-1/5 and (D) in-
terpretative drawing. Extramorphological features are in blue and grey; morphological features are in
black.

Full-size DOI: 10.7717/peerj.5358/fig-10

The ichnogenus Pentasauropus (Ellenberger, 1970) was established on the basis of
material collected and described years before (Ellenberger, 1955) from the Upper Triassic
lower Elliot Formation (StormbergGroup) of theKarooBasin of Lesotho (SouthernAfrica).
Five ichnospecies were originally included in the ichnogenus, namely Pentasauropus erectus,
Pentasauropus incredibilis, Pentasauropus maphutsengi, Pentasauropus morobongensis and
Pentasauropus motlejoi, which remained unchanged in the subsequent formal listing
(Ellenberger, 1970; Ellenberger, 1972). Material from the Ellenberger collection referred
to this ichnogenus is housed at the University of Montpellier (France) and represented
by six casts originally mentioned as Pentasauropus incredibilis (LES 054 1-3, LES 054 4),
Pentasauropus morobongensis (LES 005) Tetrasauropus gigas (LES 038), plus some missing
specimens (see D’Orazi Porchetti & Nicosia, 2007, and reference therein for a complete
assessment of inventory numbers).

After the original and subsequent publications of Ellenberger (1955), Ellenberger (1970),
Ellenberger (1972), the ichnogenus was considered as valid by Olsen & Galton (1984),
Lockley & Meyer (2000), D’Orazi Porchetti & Nicosia (2007), Bordy, Abrahams & Sciscio
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Table 2 Meanmeasurements (in cm) of track and trackway parameters.

Specimen Fl Fw Mpl Ppl Mpa Ppa Msl Psl ETW ITW ETW/SL GAD Psl/GAD

MPCA 27029-1 10.6
12.8
8.9

10.3
12.2

42.2
33.3

41.7
40.5

101◦ 99◦ 59.5 62.4 50.0 3.65 0.82 46.2 (a)
47.8 (b)
91.6 (c)

1.01

MPCA 27029-2 / 15.7
13.5

/ / / / / / / / / / /

MPCA 27029-3 / 12.7
14.7

/ / / / / 63.5 / / / / /

MPCA 27029-4 / 12.6
13.3

/ / / / / / / / / / /

MPCA 27029-5 6.6 11.6 / / / / / / / / / / /
MPCA 27029-9 / 7.4

10.9
28.5 37.0

32.5
/ 81◦ / 45.5 36 7.36 0.79 40.0 (a)

46.9 (b)
63.1 (c)

0.91

MPCA 27029-16 5.6 8.1
7.1

21.0
15.0

22.5 100◦ / 28.5 / 23.0 4.40 0.81 26.0 (a)
33.1 (b)
37.4 (c)

/

MPCA 27029-21 / 10.7 / 37.0
34.0
34.5

/ 70◦ / 37.5
41

38.5 5.85 1.03 / /

MPCA 27029-33 / 15.4
12.8

/ / / / / 63.5 / / / / /

MMLM 075-1 10.2
11.8

13.6
9.8

/ / / / / 57.3 / / / / /

MMLM 1 10.2
10.9

13.5
14

/ / / / 52.0 / / / / / /

MMLM 2 / 12.2
11.4

/ / / / 40.5 / / / / / /

Notes.
ETW, external trackway width; Fl, footprint length; Fw, footprint width; GAD, gleno-acetabular distance: (a), ‘primitive’ alternate pace (the trunk length of the producer is
underestimated); (b) alternate pace; (c) amble (a, b, c, considering primary overlap sensu Leonardi, 1987); ITW, internal trackway width; Mpa, manus pace angulation; Mpl,
manus pace length; Msl, manus stride length; Ppa, pes pace angulation; Ppl, pes pace length; Psl, pes stride length; Psl/GAD, pes stride length/gleno-acetabular distance ra-
tio; ETW/SL, external trackway width/stride length ratio.

(2017), and Hunt, Lucas & Klein (2018). D’Orazi Porchetti & Nicosia (2007) emended the
diagnosis of the ichnogenus to appoint the type ichnospecies and considered the five
ichnospecies as synonyms of Pentasauropus incredibilis. Differences in track pattern were
considered as originated by dimensional constraints and/or behavioural factors, and the
main footprint characteristics (e.g., number and arrangement of digits, heteropody) do not
justify an ichnospecies separation (D’Orazi Porchetti & Nicosia, 2007). Moreover, agreeing
with Lockley & Meyer (2000), the same authors assigned tracks originally referred to as
Tetrasauropus gigas to Pentasauropus.

In agreement with the emended ichnogeneric diagnosis by D’Orazi Porchetti & Nicosia
(2007), the arcuate pattern of manus and pes tracks derived from the five equally spaced
claw or ungual traces (those of imprints of digit II, III and IV are the largest). In other cases
a roughly rounded sole pad is observed behind claw or ungual traces (LES 053 A, B, C in
Ellenberger, 1972, pl. IV and V, and LES 038). According to D’Orazi Porchetti & Nicosia
(2007), the axis of the pes impressions is always inwardly rotated, while that of the manus
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Table 3 Sole pad-ungual trace distance.Distance (in cm) between the distal margin of the sole pad trace
and the proximal margin of the digit traces in complete Pentasauropus footprints. The measurements most
likely indicate a raised and inclined position of the metapodial elements of fore and hind foot in the Pen-
tasauropus trackmaker.

Digit I Digit II Digit III Digit IV Digit V

MPCA 27029-1
Footprint 2 1.35 1.41 1.84 1.22 /
Footprint 4 1.68 1.66 1.84 1.91 /
Footprint 5 / 1.26 1.45 1.52 1.20
Footprint 6 1.2 1.25 2.18 2.24 1.33

MPCA 27029-5
Footprint 1 / 0 0.96 1.13 0.4

MPCA 27029-16
Footprint 10 0.92 0.9 1.1 0.94 0.79

MMLM 075-1
Footprint 1 1.65 2.09 2.94 2.56 1.45
Footprint 3 / 1.41 1.68 2.19 1.63
Footprint 4 1.95 2.25 2.45 2.25 1.58

MMLM 1
Footprint 2 1.88 2.53 2.73 2.25 /
Footprint 4 1.59 1.86 2.25 2.12 /

MMLM 2
Footprint 1 1.66 2.37 2.02 2.27 /

impression can range from slightly inwardly rotated (LES 052 B and LES 053 A) to slightly
outwardly rotated (LES 038 and LES 052 A). Although long and complete trackways are
not represented, this feature seems to characterize also the studied material based on the
reconstruction of an hypothetical midline (e.g., Figs. 4A–4D, footprints 4 and 6; Figs.
5A–5D, footprint 2). In some cases (e.g., MPCA 27029-9 and MPCA 27029-21, Table 2)
short stride length in relation to overall footprint dimension could indicate a primary
overstepping. However, in our opinion this trackway characteristic cannot be ensured on
the basis of thematerial under study andmost probably, taking into account the complexity
of the dynamic of locomotion, cannot be inferred only from the stride lengths and footprint
dimensions. Thus, for the time being, we prefer not to stress the interpretation about the
overstepping. Additionally, overprinting in the studied material is absent; in some cases
(e.g., MPCA 27029-3 and MPCA 27029-33, Figs. 5B, 8B) interferences indicate that the
hind print in the set was left after the fore print. For these cases, overstepping is not
sustainable.

Outside of the Southern Africa, tracks tentatively referred to the ichnogenus were
reported from Upper Triassic Chinle Group of Utah (Lockley & Hunt, 1995; Hunt-Foster et
al., 2016) and Colorado (Gaston et al., 2003, Fig. 12B), both USA.Moreover, tracks possibly
referable to Pentasauropus were found in the Gettysburg Shale of the Gettysburg Basin of
the Newark Supergroup (Baird pers. comm in Olsen & Galton, 1984). In Argentina, apart
from the report from the Triassic Vera Formation (Río Negro province, Domnanovich et
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al., 2008), tracks referred to as Pentasauropus were described from the Carnian Portezuelo
Formation (‘Type Q2’ sensu Marsicano & Barredo, 2004). In addition, tracks with similar
morphology to Pentasauropus were also reported from the Middle Triassic Cerro de Las
Cabras Formation (Mendoza province, as cf. Pentasauropus in de Valais, Melchor & Bellosi,
2006) and from the Portezuelo Formation (San Juan province) as ‘huellas cuadrúpedas tipo
C’ (i.e., quadrupedal tracks type C; de Valais, 2008) but, for the time being, this material
remains in open nomenclature.

Zoological attribution
Several attempts to identify the trackmaker of Pentasauropus have been made. The
ichnogenus was originally attributed to amphibians, basal melanorosaurid, ornithischian,
anapsid and basal sauropod (Ellenberger & Ellenberger, 1958: p. 67; Ellenberger, 1970;
Ellenberger, 1972). Moreover, Haubold (1974); Haubold (1984) referred Pentasauropus to a
sauropod or therapsid trackmaker. A dicynodont was also proposed as producer by Olsen
& Galton (1984), Anderson, Anderson & Cruickshank (1998) and Lockley & Meyer (2000).
Galton & Heerden Van (1998) attributed Pentasauropus to large anomodont dicynodonts.
D’Orazi Porchetti & Nicosia (2007) accepted the attribution to a dicynodont, observing a
good match between the skeletal autopodia of Triassic dicynodonts and the structure of
digital impressions of the manus and pes, apart from the strong homopody and the limb
posture (see also Walter, 1986). Recently, the kannemeyeriiform dicynodont Pentasaurus
goggai from the lower Elliot Formation of South Africa has been referred as probable track-
maker of Pentasauropus tracks from the same lithostratigraphic unit (Kammerer, 2018).

The studied material from the Los Menucos locality presents some features that allow
corroboration of the therapsid interpretations about trackmaker identity. At the same
time, constraining the identity of the putative trackmaker opens the way for new inferences
about the posture of the autopodia.

Limb posture kept by Pentasauropus trackmakers during the step cycle can be tentatively
inferred from the trackway pattern (Peabody, 1948; Peabody, 1959; Kubo & Benton, 2009;
Kubo & Ozaki, 2009), even if this interpretation is often far from being simple and linear
(Crompton & Jenkins Jr, 1973). For example, it must be noted that non therapsid-synapsids
with sprawling posture could have left trackways in which the left and right tracks lie
near to the axial midline (i.e., narrow internal trackway width mirroring a semi-erect to
erect posture of the trackmaker) by adopting side to side flexion of the trunk (Hopson,
2015). The same was described for a therapsid trackway by Smith (1993). Some degree
of lateral undulation of the vertebral column causing swing of the hips has been also
described on the basis of skeletal remains (Fröbisch, 2006: p. 1305). However, in sprawling
trackmakers adopting trunk flexion and producing narrow trackways, tracks are mainly
inwardly oriented with respect to the trackway midline (see Hopson, 2015: Fig 8.1). In the
studied material, the orientation of footprint axis (passing through digit III) is parallel to
the travel direction. This feature, combined with the extremely narrow internal trackway
width measured from pes tracks (see Table 2 and Figs. 4A–4D, 5A–5D, 6E–6H, 7A–7D),
allow to exclude a sprawling posture and most likely indicate a semi-erect posture for the
trackmaker hind limbs. A lateral trunk undulation during the step cycle could have been

Citton et al. (2018), PeerJ, DOI 10.7717/peerj.5358 20/36

https://peerj.com
http://dx.doi.org/10.7717/peerj.5358


also adopted by the Pentasauropus trackmaker and it would account for the variable pace
angulation measured in manus tracks, possibly coupled with low trackmaker velocity.

A more upright posture with respect to that of non-therapsid synapsids is also indirectly
sustained by the symmetry of manus and pes tracks. This feature mirrors a symmetry of
the trackmaker’s autopods, a feature combined with the acquisition of upright posture
and limbs parallel to the sagittal plane of the trackmaker during locomotion (Romer, 1956;
Hopson, 1995).

Number of digit imprints, symmetry of manus and pes track, and the morphology of
unguals enable us to corroborate previous interpretations and suggest a dicynodont as
the most probable trackmaker of Pentasauropus. Also the limb posture as supposed from
tracks sufficiently matches those discussed for Triassic dicynodonts by Fröbisch (2006).

Pentasauropus producers, based on the type specimens, were characterized by a very
low dimensional heteropody and morphological homopody. Thus, mainly based on
these characters, a quite confident match can be found, among dicynodonts, with
Kannemeyeriiformes (see, for example, the descriptions and reconstructions of the
autopods ofDinodontosaurus byMorato (2006: Fig. 30), Tetragonias njalilus by Cruickshank
(1967: Fig. 17) and by Fröbisch (2006: Fig. 9). Kannemeyeriiformmanual and pedal skeletal
elements are in fact generally homomorphic and conservative into the clade, as recently
stated by Kammerer (2018). Variation in manus morphology among kannemeyeriiforms
is only limited to minor differences in ungual shape (Lucas, 2002). Digit traces are here
considered roughly compatible with broad ungual phalanges characterized by rounded
tips but the exact shape cannot be determined. The morphological variability of ungual
traces most likely relates to substrate conditions at the time of impression and, as discussed
below, from the dynamics of the locomotion of the producers.

Among the other possible producers already mentioned in the literature, are excluded:
(i) an amphibian trackmaker, because of the pentadactyl manus and general morphology;
(ii) an anapsid trackmaker for the trackway configuration and footprint axis orientation;
(iii) a sauropodomorph and sauropod trackmaker for the trackway configuration, footprint
axis orientation and morphological homopody.

The posture of the autopodia of the Pentasauropus trackmaker that can be inferred from
the ichnological material differs from that inferable from the description by Cruickshank
(1967). In those Pentasauropus tracks that show an impression of the sole or palm, a
negligible distance between the distal margin of the sole/palm pad trace and the proximal
margin of the central digit traces, further reducing towards digits I and V, was observed
(Table 3). This feature most likely indicates that not all of the foot bones contacted the
ground during locomotion, at the same time constraining the orientation of metapodial
and basipodial elements, and also that of the more proximal phalanges, in the articulated
autopod. Thus, the reconstruction proposed here contemplates an inclined position of
pedal and manual elements in the autopods of Pentasauropus producers. The sub-circular
to elliptical pad trace behind the digit traces is consequently considered compatible with
an extended fleshy pad below the basipodials and likely metapodials of the autopods of the
producer (Fig. 11).
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Figure 11 Limb and autopod posture in the Pentasauropus trackmaker. Simplified reconstruction of
limb posture in back (A) and lateral (B) views. Simplified reconstruction of zeugopodials and hind auto-
pod in lateral (C) and bottom (D) views. In colour the possible extension of the fleshy cushion on which
the basipodials rested, ensuring support during locomotion. See the supplementary video to get a more
complete view of the reconstruction. Artwork by Fabio Manucci.

Full-size DOI: 10.7717/peerj.5358/fig-11

DISCUSSION
The autopod posture of Pentasauropus trackmaker
Compared to the ichnogenus Pentasauropus, tracks from LosMenucos Group have allowed
us to verify previous ichnological interpretations based on the reference material from
Lesotho and have enabled us to corroborate the identification of a putative trackmaker and
its limb posture. Moreover, the studied material sheds light on the trackmaker autopod
posture. The smaller tracks (e.g., MPCA27029-16) are here interpreted to have been left by
a juvenile trackmaker and allowed to appreciate that track morphology and structure are
uniform in different ontogenetic stages of the same type of producer.

Number of digit imprints, symmetry of manus and pes track, morphology of
ungual traces, limb posture and morphologically homopodic manus and pes tracks
indicate the producer of Pentasauropus to be sought among dicynodonts of the clade
Kannemeyeriiformes (Fröbisch, 2009). Within this panorama and accepting the proposed
palaeozoological attribution, Pentasauropus tracks represent a valuable datum, further
enriching the dicynodont record of the Triassic of Argentina (Cox, 1962; Bonaparte, 1969;
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Bonaparte, 1971; Bonaparte, 1981; Lucas, 1998; Lucas, 2010; Lucas, 2018; Rogers et al., 2001;
Zavattieri & Arcucci, 2007; Fröbisch, 2009; Domnanovich & Marsicano, 2012; Abdala et al.,
2013;Mancuso et al., 2014).

The studied tracks enabled us to improve the knowledge of the therapsid faunas from
south-western Gondwana, especially about their locomotion and functionality of fore and
hind autopods. The inferred limb posture of the Pentasauropus trackmaker finds a match
with the osteological data provided by the therapsid record (e.g., King, 1981a; Fröbisch,
2006) and allows to corroborate interpretations derived from body-fossils. Meristic and
qualitative track characteristics and trackway parameters, if jointly considered, suggest that
the Pentasauropus trackmaker had a semi-erect to erect posture, especially the hind limbs
(Figs. 11A–11B).

Contrarily to what was stated about therapsid posture in the past (Charig, 1980;
Bonaparte, 1982), therapsid-grade limb osteology was characterized by several important
modifications, which indicate a more parasagittal stance of the limbs (Romer, 1956;
Boonstra, 1967; Jenkins Jr, 1971), especially if compared with the prevalent sprawling
posture of non-therapsid synapsids (Romer, 1956; Hopson, 2015). Modifications of the
scapula and the glenoid have allowed the elbow to rotate inwardly, bringing the humerus
closer to the sagittal plane (Walter, 1986). The iliac blade was expanded anteriorly and
allowed the insertion of a larger iliofemoralis muscle (i.e., the muscle that allows movement
of the femur with respect to the hip), enabling femoral retraction (Romer, 1956; Walter,
1986).Moreover, the femoral head foldedmedially and enabled amore parasagittal position
of the propodial (Romer, 1922; Walter, 1986).

Concerning the dynamics of locomotion in non-mammalian therapsids, Kemp (1978)
proposed a dual-gait condition, intermediate between the plesiomorphic gait of amniotes
(Sumida & Modesto, 2001) and the mammalian erect gait, based on the therocephalian
Regisaurus jacobi. This condition has proved to be not possible for derived dicynodonts,
such as Kingoria nowacki (sensu King, 1985) and for kannemeyeriiformes dicynodonts,
all characterized by an ankle joint inhibiting extensive rotational movements needed
for dual-gait locomotion (Fröbisch, 2006). In dicynodonts, the forelimb step cycle was
performed in an abducted (i.e., sprawling) posture, whereas the hind limb step cycle passed
from a primitive abducted posture in earlier members, such as Robertia broomiana (see
King, 1981b) to an adducted (i.e., erect) posture in more derived taxa (Walter, 1986), such
as Dicynodon trigonocephalus and Tetragonias njalilus (e.g., King, 1981a; Fröbisch, 2006).

The autopod posture proposed for the studied tracks quite differ from the information
and reconstructions derived from the body-fossil record. As stated before, the alleged
autopodial structure inferred from Pentasauropus tracks is dictated by the relative distance
between the proximal portion of digital (ungual) traces and the distal edge of the sub-
circular pad trace, which has been inferred to relate to a fleshy pad behind the basipodial.
The observed track morphology seems to imply that, except for acropodial and the fleshy
pad, no other bony elements of the producer’s autopods were imprinted on the substrate,
indicating that they were likely raised in position. Such a configuration is considered
valid for the foot bones in a static-state and would fall at least within a subunguligrade
posture, implying that the phalanges were the only bony pedal elements contacting the
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ground in a static stance. However, if the three-dimensional footprint morphology is
considered (i.e., ungual traces and pad trace behind them) concurrently with spatial data
regarding pad trace/digit trace distance (Table 2), it is evident that the unguals were not
the only pedal elements performing the cycle of locomotion. Thus, the foot cannot be
regarded as subunguligrade from a dynamic point of view. During locomotion, the body
weight of Pentasauropus producers was not carried only by phalanges but, most likely, the
entire foot supported the load (Figs. 11 and 12). The fleshy pad behind the basipodials
actively contacted the ground most likely during the touch-down and weight-bearing
phase, as was already inferred from footprint depth of impression in other producers (e.g.,
Romano, Citton & Nicosia, 2016; Citton et al., 2017). Thus, from a functional standpoint,
the autopod posture of the Pentasauropus trackmaker can be regarded as plantiportal (sensu
Michilsens et al., 2009) and it is considered to have been maintained during different gaits.
Such a posture could have been accompanied by an arched configuration of the articulated
metapodials and at least of the proximal phalanges (Kümmell & Frey, 2012) (Figs. 11C–
11D). Metacarpals forming an arched configuration when articulated were described in a
specimen of Tetragonias njalilus (Cruickshank, 1967), and this kind of configuration could
have been accompanied by little movement capabilities (Rubidge & Hopson, 1996) of the
metapodials and could have dictated the observed relative position of the ungual traces.
A manual/pedal structure like the one here hypothesized could have maintained a large
surface in contact with the ground by means of cartilaginous elements and fleshy cushions
on which the basipodials rested, ensuring a supportive role of the whole autopods during
the cycle of locomotion and particularly during the maximum load. Digit traces were
formed by phalanges deeply penetrating into the substrate during the final weight-bearing
phase, kick-off and thrust. This could explain the different depth of the impression that is
observed in completely preserved tracks. Among digits the series II-IV, and with a lesser
extent digit I, played a major role in performing the end of the cycle of locomotion. Drag
traces affecting the most medial digits could be formed during the recovery of the autopod
at the end of the step.

A functionally plantiportal posture has been described in several mammals regardless
of body-weight (e.g., South-American coati, aardvark, armadillo, coypu, among others;
seeMichilsens et al., 2009) but also can represent a functional strategy, co-occurring with a
graviportal structure of the limbs. A subunguligrade-plantiportal foot implies a complex
set of associated characters in the autopodial anatomy of the Pentasauropus producer.
Body mass of taxa similar to the alleged producer of Pentasauropus have been estimated
to be 23–32 kg (based on a juvenile individual of Dinodontosaurus; see Morato, 2006), 170
kg (based on an adult specimen of Dinodontosaurus brevirostris; see Mancuso et al., 2014)
up to 362 kg (based on an adult individual of Dinodontosaurus platyceps; see Mancuso et
al., 2014). The subunguligrade-plantiportal autopod posture was most likely promoted
in these dicynodonts and in the putative producer of Pentasauropus regardless of the
body-dimension. Thus, this character not necessarily implies an increase in body size but
it is a pre-requisite for those lineages which experienced an increase in body-dimension.
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Figure 12 Speculative in vivo reconstruction (based onDinodontosaurus) of a kannemeyeriiformes
dicynodont, a most probable producer of Pentasauropus tracks. Reconstruction in back (A) and lat-
eral (B) view of the trackmaker walking in amble gait. See the supplementary video to get a more complete
view of the reconstruction. Artwork by Fabio Manucci.

Full-size DOI: 10.7717/peerj.5358/fig-12

The Vera Formation and the track record: chronostratigraphical
observations
As before stated, Pentasauropus or Pentasauropus-like footprints were reported to date
mainly from Upper Triassic units. In Argentina, Pentasauropus tracks were reported both
from Upper Triassic unit (e.g., Portezuelo Formation) and from late Middle Triassic
unit (Cerro de Las Cabras Formation). In Lesotho (Southern Africa), Pentasauropus
was reported from the lower Elliot Formation (Stormberg Group), which lies above the
Carnian Molteno Formation. The lower Elliot Formation was considered Upper Triassic
by Ellenberger (1970), Norian-Rhaetian by Olsen & Galton (1984) and Norian by Knoll
(2004), Lucas & Hancox (2001) and Lucas (2018), based on fossil remains, both bones and
trace fossils. Recently, the Elliot Formation (lower and upper) was discussed by means of
magnetostratigraphy, and fixed as Upper Triassic - Lower Jurassic by Sciscio et al. (2017).
The same authors confirmed a Norian-Rhaetian age for the lower Elliot Formation and
correlated the unit with the Los Colorados Formation in the Ischigualasto-Villa Union
Basin of Argentina (Sciscio et al., 2017). A Late Triassic age of Pentasauropus-bearing levels
of the Vera Formation (most probably the upper portion of this lithostratigraphic unit) is
here accepted based on the currently shared distribution of the ichnogenus.

At the same time, the recent datations provided by Luppo et al. (2017) contrast with the
Late Triassic age historically proposed for the whole Vera Formation and in particular for
the deposits bearing the ‘Dicroidium’ flora and the ichnogenus Dicynodontipus. On the
basis of the new isotopic ages, Luppo et al. (2017) concluded that at least some of the levels
bearing the ‘Dicroidium’-type flora (Artabe, 1985a; Artabe, 1985b) are intercalated between
deposits dated 252 ± 2 Ma (Changhsingian, Late Permian) and 248 ± 2 Ma (Olenekian,
Early Triassic). These authors also suggested that the stratigraphic position of the deposits
exposed in the Tchering quarry, west of Los Menucos town, where Dicynodontipus (sensu
Melchor & de Valais, 2006) come from, is not yet completely clear. Nevertheless, this
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quarry is spatially close to the outcrops where geochronological data were provided by
Luppo et al. (2017). On the other hand, the Yancaqueo farm from which the Pentasauropus
footprints come, is located east of Los Menucos town and lacks detailed geochronological
and geological studies.

Thus, taking into account these new data and the chronostratigraphical distribution of
Dicynodontipus (e.g., Haubold, 1983; Ceoloni et al., 1988; Retallack, 1996; De Klerk, 2002;
Marsicano et al., 2004; Hunt & Lucas, 2007; Klein & Lucas, 2010; Costa da Silva, Sedor &
Sequeira Fernandes, 2012; Fichter & Kunz, 2013; Díaz-Martínez et al., 2015; Francischini et
al., 2018), the historically proposed Late Triassic age for the the strata of the Vera Formation
bearing Dicynodontipus (most likely the lower portion of the unit) is here questioned.

CONCLUSIONS
Large pentadactyl tracks from the Upper Triassic Vera Formation of the Los Menucos
Group (Río Negro province, North Patagonia, Argentina) were studied and discussed in
terms of palaeobiological attribution.

The tracks are currently referred to as Pentasauropus (Ellenberger, 1970), an ichnotaxon
established from the Upper Triassic lower Elliot Formation (Stormberg Group) of Karoo
Basin (Lesotho, Southern Africa).

Material under study allowed us to more effectively appreciate ichnotaxon variability
and proved to be significant for a better definition of the locomotor dynamics of the
producer and particularly of its foot anatomy.

Track and trackway parameters indicate a dicynodont as the most probable producer,
and a relationship with the South-American members of the clade Kannemeyeriiformes is
proposed.

An affinity between the Gondwanan therapsid ichnofauna and that from South Africa
is evident, as well as functional features of the autopods of the producer are considered
significantly similar and may be related to the same autopodial anatomy shared by the
clade.

The autopod posture for the Pentasauropus trackmaker has been interpreted as
subunguligrade in static posture and plantiportal during locomotion. A large pad of
connective tissue behind the basipodials and partially metapodials can be proposed for
the heavy-footed producers of Pentasauropus. The cushion allowed to decrease the stress
transferred to the bones and spread it on a larger area during the touch-down and
weight-bearing phase of the locomotion cycle.

Finally, a Late Triassic age for the Pentasauropus-bearing levels of the Vera Formation
is accepted, based on the age of other lithostratigraphic units bearing Pentasauropus in
South Africa and United States. At the same time, a detailed stratigraphic study of the
lower strata of the Vera Formation, bearing-Dicynodontipus, is needed to corroborate
palaeontological and geochronological data and to account the validity of the Vera
Formation as lithostratigraphic unit.
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