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Abstract

In mammals, the reproductive function is controlled by the hypothalamic–pituitary–gonadal axis. During development, mechanisms 
mediated by gonadal steroids exert an imprinting at the hypothalamic–pituitary level, by establishing sexual differences in the circuits 
that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/
neonatal stage. This process is essential for the masculinization of the reproductive tract, genitals and brain. The conversion of 
androgens to estrogens in the brain is crucial for the male sexual differentiation and behavior. Conversely, feminization of the brain 
occurs in the absence of high levels of gonadal steroids during the perinatal period in females. Potential genetic contribution to the 
differentiation of brain cells through direct effects of genes located on sex chromosomes is also relevant. In this review, we will focus 
on the phenotypic alterations that occur on the hypothalamic–pituitary–gonadal axis of transgenic mice with persistently elevated 
expression of the human chorionic gonadotropin hormone (hCG). Excess of endogenously synthesized gonadal steroids due to a 
constant hCG stimulation is able to disrupt the developmental programming of the hypothalamic–pituitary axis in both transgenic 
males and females. Locally produced estrogens by the hypothalamic aromatase might play a key role in the phenotype of these mice. 
The ‘four core genotypes’ mouse model demonstrated a potential influence of sex chromosome genes in brain masculinization before 
critical periods of sex differentiation. Thus, hormonal and genetic factors interact to regulate the local production of the 
neurosteroids necessary for the programming of the male and female reproductive function.
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Introduction

The hypothalamic–pituitary–gonadal (HPG) axis is 
essential for the normal function of the reproductive 
system in both males and females. Any alteration in 
the regulation of the different hormones or receptors 
involved in this process is enough to cause infertility. If 
these alterations occur during a critical period of fetal 
or postnatal development, the effects can be permanent 
and trigger, in addition to infertility, pathologies such 
as cancer, metabolic disorders and cardiovascular 
dysfunctions that are manifested in adulthood 
(Gluckman et  al. 2008, Homburg 2009, Gore et  al. 
2015). It is remarkable that while the critical period of 
sexual differentiation includes fetal and early postnatal 
stages, the manifestation of certain pathologies and 
dysfunctions occurs later in life, beginning at puberty. 
This hypothesis, based on the developmental origin of 
adult diseases has become increasingly relevant in the 
field of reproductive endocrinology. The most significant 
cases in humans are infertility, polycystic ovary syndrome 
(PCOS), metabolic syndrome, cardiovascular diseases 
and diabetes (Gluckman et al. 2008, Homburg 2009).

In recent years, there has been growing interest in 
identifying potential adverse human health effects 
arising from environmental endocrine disruptors (Gore 
et al. 2015). The major disrupting agents described are 
those that mimic or antagonize the action of steroid 
hormones. However, endogenous hormones can also 
be considered endocrine disruptors when these are 
produced beyond the normal range of concentration 
or outside the critical time-window and may affect the 
normal development of the fetus/neonate. Pathologies 
such as congenital adrenal hyperplasia or PCOS that 
cause hyperandrogenism in the maternal environment 
are clear examples of inappropriate exposure to 
endogenous hormones during human development 
(Homburg 2009). Women exposed to excess androgens 
during early gestation exhibit hyperandrogenism, 
oligomenorrhea, polycystic ovary, in addition to LH 
hypersecretion, deficient embryonic development, 
insulin resistance with abdominal obesity, and 
hyperlipidemia (Homburg 2009). Epidemiological 
and experimental studies have revealed that in utero 
exposure to steroid hormones or endocrine disruptors 
may also influence the risk of tumor development 

-18-0054

156 4

© 2018 Society for Reproduction and Fertility https://doi.org/10.1530/REP -18-0054
ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org

mailto:srulli@ibyme.conicet.gov.ar
https://doi.org/10.1530/REP-18-0054
http://www.reproduction-online.org


AUTHOR COPY ONLY
S B Rulli and othersR102

Reproduction (2018) 156 R101–R109 www.reproduction-online.org

in adult life (Halakivi-Clarke et  al. 2000, Palmer 
et  al. 2006). However, the relationship between the 
intrauterine exposure and tumorigenesis is still poorly 
understood, and the identification of these mechanisms 
is of particular interest. Experimental animal models 
with excess of natural or synthetic steroid hormones 
have been instrumental in deciphering their impact on 
the reproductive physiology, both in males and females 
(Hakim et al. 2017, Paixao et al. 2017). The induction of 
prenatal hyperandrogenism in female Rhesus monkeys 
by testosterone administration has been pivotal for 
understanding the basis of PCOS (Abbott et al. 2009). 
Studies on sheep and rodents have also provided 
important information on this subject (Padmanabhan & 
Veiga-Lopez 2013, Paixao et al. 2017).

The precise mechanisms by which steroid hormones 
program the reproductive neuroendocrine axis and 
cause reproductive dysfunctions are not completely 
understood and are still under investigation. In contrast to 
the experimental models with exogenously administered 
androgens, which can exceed the physiological levels, 
the challenge is to identify the pattern of response 
to endogenously produced steroids under different 
experimental conditions. In addition to the gonadal 
hormones, recent evidence indicates that numerous 
sex-specific, genetic and epigenetic factors modulate 
sex differences in the brain and other tissues during 
development and may impact on the reproductive and 
metabolic processes in adulthood (Arnold et al. 2013, 
Arnold 2017).

In this review, we will summarize the neuroendocrine 
changes affecting the reproductive axis in genetically 
manipulated male and female mice. A transgenic mouse 
model with endogenously elevated sex steroids induced 
by human chorionic gonadotropin (hCG) became a 
useful tool to study the influence of gonadal steroids on 
the developmental programming of the hypothalamic–
pituitary–gonadal function in males and females (Rulli 
et al. 2002, 2003, Gonzalez et al. 2011, 2014). On the 
other hand, studies with the ‘four core genotypes’ (FCG) 
mouse model demonstrated a potential influence of 
sex chromosome genes in brain masculinization before 
critical periods of sex differentiation and contribute to 
discriminate between the effects of sex chromosome 
complement and the gonadal phenotype (Arnold 
& Chen 2009, Cisternas et  al. 2015, Itoh et  al. 2015, 
Cisternas et al. 2017).

The influence of steroids on the neuroendocrine 
regulation during development

The onset of the reproductive function in mammals 
comprises a series of events that include the activation 
of the gonadotropic axis, the sexual differentiation 
of the brain and the development of the reproductive 
tract. Proper functioning in adulthood depends on 
adequate development of the axis during a critical 

time-window, which, in rodents ranges from fetal to 
early postnatal stage (Weisz & Ward 1980, Rhoda 
et  al. 1984, Huhtaniemi 1994, O’Shaughnessy et  al. 
1997, O’Shaughnessy et  al. 1998, Arnold 2017). This 
phenomenon is sexually dimorphic and depends on 
gonadal steroids (Negri-Cesi et  al. 2008, Gore et  al. 
2015): prenatal androgens masculinize the reproductive 
tract and perinatal estradiol (derived from testosterone) 
masculinizes the brain. Previous to this critical time 
window in which hormones have a key role, a genetic 
sex-chromosome component appears to be involved in 
the brain sexual differentiation (Cisternas et  al. 2015, 
Arnold 2017).

The normal fetal testis is steroidogenically active and 
produces substantial levels of androgens that, in rodents, 
peak at the end of gestation (days 17–18 in mice; 18.5–
19.5 in rats) (Weisz & Ward 1980, Huhtaniemi 1994, 
O’Shaughnessy et al. 1998). This process is necessary for 
the masculinization of the reproductive tract, and can be 
exerted directly through the androgen receptor, either by 
testosterone or by its metabolite 5α-dihydrotestosterone 
(DHT), synthesized by the enzyme 5α-reductase 
(Wilson & Davies 2007). A second surge of testosterone 
occurs soon after birth (Rhoda et al. 1984). Neonatally 
produced testosterone is aromatized to estradiol by the 
enzyme P450 aromatase in the brain, thus allowing 
estradiol to exert its effect through estrogen receptors 
(McCarthy 2008, Ruiz-Palmero et  al. 2013).The 
conversion of gonadal testosterone to locally produced 
estradiol is crucial for the male sexual differentiation of 
the brain and affects sexual behavior (Negri-Cesi et al. 
2008, Konkle & McCarthy 2011). Castration of males 
during the critical period of neonatal differentiation 
causes brain feminization (acquisition of typically 
female responses) or brain demasculinization (loss of 
typically male responses) (McCarthy 2008, Negri-Cesi 
et al. 2008).

In female development, the absence of testicular 
hormones is considered sufficient to achieve the 
differentiation of a brain with female characteristics. 
Although it has been proposed that the fetal ovary is 
relatively quiescent compared to the testis, androgens 
and estrogens have been shown to be detectable in the 
late fetal stage (Wilson & Davies 2007). Interestingly, 
the brain feminization is maintained by the active 
suppression of masculinization via DNA methylation 
(Nugent et al. 2015). In females, abnormal exposure to 
testosterone during critical periods of differentiation may 
cause masculinization (acquisition of typically male 
responses) or defeminization (loss of typically female 
responses), ovulatory and virilizing genital alterations. 
Depending on the time window of exposure, behavioral 
and ovulatory dysfunctions can coexist without virilized 
genitalia, such as during late prenatal stage (Gorski 
1985, Rhees et al. 1997, Robinson 2006).

During gestation, the fetus is exposed to its own 
hormones, placental steroids and hormones of maternal 
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origin that are capable of crossing the placental barrier. 
However, the α-fetoprotein produced by the fetus and 
the yolk sac has affinity for estradiol and sequesters 
it, thus protecting the female brain from the effects of 
maternal or placental estrogens (Bakker et  al. 2006). 
During a period between birth and puberty, estrogens 
play a role in feminization of neural and behavioral 
traits of female rodents (Bakker & Baum 2008).

The ‘FCG’ model: a transgenic mouse model for 
studying the sex chromosome influence

A genetic contribution of sex chromosomes to the 
differentiation of brain cells has been demonstrated 
with the FCG mouse model (Carruth et al. 2002, Scerbo 
et  al. 2014, Arnold 2017). In this model, the testis-
determining Sry gene is deleted from the Y chromosome 
and inserted onto an autosomal chromosome. The Y 
and autosomal chromosomes segregate independently 
and give rise to four different genotypes (Fig.  1). As a 
result, mice bearing the Sry gene develop testes and 
are masculinized, whereas mice lacking the Sry gene 
develop a female phenotype, irrespective of their sex 
chromosome (De Vries et al. 2002, Arnold & Chen 2009). 
This model allows comparing the effects of gonadal sex 
and chromosome sex complement.

The first neural phenotype reported to be influenced by 
sex chromosome was the expression of the rate-limiting 
enzyme in catecholamine biosynthesis, the tyrosine 
hydroxylase, in mesencephalic neurons harvested from 
embryonic day 14 (before the critical period of brain 
masculinization). Using the FCG mouse model, Carruth 
et al. (2002) demonstrated that XY cultures have more 
tyrosine hydroxylase-immunoreactive neurons than XX 
cultures irrespective of the gonadal type of the embryos. 
At the same time, the FCG model was used to study 
sexually dimorphic brain and behavioral phenotypes in 
adulthood. Most of the sexually dimorphic phenotypes 

(male copulatory behavior, social exploration behavior 
and sexually dimorphic neuroanatomical structures in 
the hypothalamus and lumbar spinal cord) correlated 
with the presence of ovaries or testes, and therefore, 
reflect the hormonal output of the gonads. However, 
the density of vasopressin-immunoreactive fibers in the 
lateral septum of both male and female mice with XY sex 
chromosomes were more masculine than XX mice (De 
Vries et al. 2002), indicating that sex chromosome genes 
contribute directly to the development of a sex difference 
in the brain. Moreover, another sex chromosome effects 
have also been detected on aggression, body weight, 
habit formation and response to brain injury (Arnold & 
Chen 2009, Forger et al. 2015). Importantly, many reports 
indicate that sex chromosomes impact the incidence 
and progression of diverse models of brain diseases such 
as multiple sclerosis (Palaszynski et  al. 2005, Smith-
Bouvier et  al. 2008), systemic lupus erythematosus 
(Smith-Bouvier et al. 2008), major depressive disorders 
(Seney et al. 2013a,b) and neural tube closure defects 
(Chen et al. 2008).

Recently, we have demonstrated sex chromosome-
induced differences in P450 aromatase expression 
in the developing mouse brain as early as gestational 
day 16 (GD16) (Cisternas et al. 2015). Using the FCG 
mouse model, we found that XY mouse embryos show 
higher P450 aromatase expression than the brain of XX 
embryos, independently of gonadal sex. Furthermore, 
estradiol or DHT increases P450 aromatase expression 
in cultures of anterior amygdala neurons derived from XX 
embryos, but not in those derived from XY embryos. The 
mechanism of P450 aromatase regulation by hormones 
involves ERβ since the antiandrogen flutamide is not 
able to prevent P450 aromatase increase by DHT, while 
the ERβ antagonist PHTPP blocked the effect of both 
estradiol and DHT (Cisternas et al. 2017). In addition, 
3β-diol, which has been reported to preferentially bind 
ERβ (Kuiper et al. 1998), mimics the effects of estradiol 
and DHT on P450 aromatase expression (Cisternas et al. 
2017). Thus, hormonal and genetic factors interact to 
regulate the expression of the key enzyme necessary for 
brain masculinization during development. Differences 
in the local production of estradiol by aromatization 
of testosterone due to genetic factors could impact on 
the arrangement of neural circuits underlying male and 
female behavior.

Transgenic mice hypersecreting hCG: a mouse 
model for endogenously elevated gonadal steroids

An increased gonadal response to luteinizing hormone 
(LH) or hCG leads to enhanced steroidogenesis through 
the LH/hCG receptor. hCG has a higher receptor 
affinity and a longer circulating half-life than LH, 
due to the carbohydrates associated to its molecule 
(Banerjee & Fazleabas 2011, Choi & Smitz 2014). hCG 
is normally secreted by the human trophoblastic cells  

Figure 1 Four core genotypes (FCG) mice obtained by crossbreeding 
XX females with XY-Sry transgenic males. Representative figure 
showing the genotypes of XX and XY mice with testes (XXSry, 
XY−Sry) and XX and XY mice with ovaries (XX, XY−).
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(Fishel et al. 1984), being essential to maintain progesterone 
production by the corpus luteum of pregnancy. Various 
investigations have demonstrated the presence of  
LH/hCG receptors in numerous fetal and adult organs, 
as well as tumor tissues (Iles et al. 2010). Of note is the 
presence of these receptors in the brain, adipose tissue, 
pancreas, uterus and endothelial cells, in addition to the 
gonads (Lei et al. 1993, Cole & Butler 2012). However, 
the physiological relevance of these extra-gonadal  
LH/hCG receptors is not completely understood.

We have generated a transgenic mouse model 
carrying the common α- and hCGβ subunit genes 
(hCGαβ+ mice) under a constitutive promoter that leads 
to the transgene expression from GD10.5 (Rulli et al. 
2002, 2003). These mice hypersecrete hCG, are infertile 
and suffer significant alterations on the neuroendocrine 
regulation of the gonadotropin axis, particularly due to 
an increased gonadal steroid production (Rulli et  al. 
2002, 2003, Gonzalez et al. 2011, 2014). Even though 
males and females exhibit substantial differences in 

their phenotypes, steroid hormones induce important 
alterations on the gonadotropin synthesis and 
secretion in both sexes. The main differences appear 
to be based on the time window in which each sex 
is particularly sensitive to hormonal changes during 
development. Whereas the functional LH/hCG receptor 
is normally expressed from GD17 in the mouse testis 
(O’Shaughnessy et al. 1998), it occurs at PND5 in the 
mouse ovary (O’Shaughnessy et  al. 1997). Therefore, 
males and females exhibit differential responses to 
elevated hCG-induced steroids during development: 
prenatal/neonatal changes in the male and postnatal 
in the female.

Males

As a consequence of elevated hCG, transgenic hCGαβ+ 
males show high levels of testosterone and progesterone, 
accompanied by an increased weight of androgen-
dependent organs, such as the prostate and seminal 

Figure 2 Effect of castration on the hypothalamic-pituitary axis of transgenic male and female mice hypersecreting hCG (hCGαβ+). Serum FSH 
levels and gene expression of hypothalamic Cyp19a1 and Kiss1, and pituitary Gnrhr of prepubertal WT and hCGαβ+ mice after gonadectomy 
(Cx for males, Ovx for females) are shown. Intact prepubertal WT and hCGαβ+ males and females were used as controls. The relative mRNA 
expression was carried out by qRT-PCR (n = 4). Data are presented as mean ± s.e.m. Two-way ANOVA, followed by Bonferroni’s post hoc test. 
Different letters indicate a value of at least P < 0.05 (adapted from Gonzalez et al. 2011, 2014).
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vesicles (Rulli et al. 2003, Gonzalez et al. 2011). These 
males exhibit reduced testicular size and develop 
Leydig cell adenomas derived from the fetal Leydig cell 
population (Ahtiainen et al. 2005). The hypothalamic–
pituitary function of prepubertal hCGαβ+ males is also 
affected, as manifested by the high hypothalamic GnRH 
concentration and accelerated GnRH pulse frequency, 
which induces downregulation of the GnRH receptor 
and reduction of FSH synthesis and secretion at the 
pituitary level (Gonzalez et al. 2011). Other transgenic 
models of LH/hCG overexpression (Matzuk et al. 2003) 
or constitutive activation of LH/hCG receptor (Meehan 
et al. 2005) also showed low levels of FSH and reduced 
testicular weight.

Kisspeptin (Kiss1) and its G protein-coupled receptor 
54 (Kiss1r) are essential components of the HPG axis 
and the onset of puberty, by controlling gonadotropin 
secretion through GnRH stimulation. Different studies 
show that kisspeptin control of GnRH occurs by 
modulating the negative feedback mechanism of 
gonadal steroids in both sexes (Clarkson 2013, Poling & 
Kauffman 2013). Neonatal administration of estrogenic 
compounds results in a dose-dependent decrease of 
Kiss1 expression in prepubertal males and females 
(Navarro et  al. 2009). Prepubertal hCGαβ+ males 
exhibit reduced hypothalamic levels of Kiss1 expression, 
which is consistent with the suppressive action of high 
circulating levels of testosterone and locally converted 
estrogens through an increased hypothalamic P450 
aromatase expression (Cyp19a1) (Fig.  2) (Gonzalez 
et al. 2011). It was demonstrated that estradiol is able to 

alter the morphology and synapses of glial cells in the 
arcuate nucleus (Garcia-Segura et al. 2008). Since GnRH 
neurons express ERβ and LH/hCG receptor, elevated 
levels of agonists may alter the physiology of these 
neurons (Chu et al. 2009). Even though a direct effect 
of hCG in vivo cannot be discarded, studies performed 
on fetal hypothalamic neurons in vitro showed that 
Cyp19a1 expression was not directly affected by hCG 
(Gonzalez et al. 2014).

Interestingly, FSH levels remain low after prepubertal 
castration in hCGαβ+ males, thus indicating that the 
FSH response to the androgen feedback regulation is 
severely affected in these mice. The mRNA expressions 
of pituitary Gnrhr, hypothalamic Cyp19a1 and Kiss1 
also remain unaltered under these conditions (Fig.  2; 
Gonzalez et al. 2011). Since the testosterone surge by 
the time of birth is essential for the establishment of 
the male sexual behavior and reproductive physiology 
in mice, the next step was to analyze the effect of 
androgen deprivation perinatally. The administration 
of the antiandrogen flutamide to pregnant mothers 
from GD18 and then from birth to 28  days of age to 
hCGαβ+ males induced a recovery of FSH synthesis 
and secretion, accompanied by a normalization of 
hypothalamic Cyp19a1 (Fig. 3; Gonzalez et al. 2011). 
These findings identified a critical time window in 
which androgens, by acting through their receptor, 
modulate the activation of the hypothalamic-pituitary 
axis in these mice. During this period, elevated levels 
of androgens would induce an irreversible impairment 
of the hypothalamic function, along with the synthesis 
and secretion of gonadotropins, processes in which 
kisspeptin and GnRH receptor regulation play a key role. 
In normal conditions, GnRH stimulates the gonadotropic 
response and cell proliferation during early pituitary 
differentiation. Moreover, a correct connection between 
the hypothalamus and the pituitary is necessary for 
the development of a normal number of thyrotropes 
and gonadotropes during late gestation, as was shown 
in sheep (Szarek et  al. 2008). On the other hand, the 
absence of fetal GnRH signaling specifically inhibits the 
differentiation of FSH-producing gonadotropes (Wen 
et al. 2010).

This evidence shows that the low levels of FSH 
associated with the persistently elevated hCG would not 
be solely due to the negative feedback exerted by gonadal 
steroids, but to a failure in the perinatal programming 
exerted by androgens and/or their locally-produced 
neurosteroids on the developing hypothalamic-pituitary 
unit of hCGαβ+ males. All these changes ultimately 
impact on the fertility of these mice at adulthood.

Females

Numerous studies have been published about the 
effect of androgens on the female developmental 

Figure 3 Hypothalamic aromatase after flutamide administration in 
transgenic mice hypersecreting hCG (hCGαβ+). In males, flutamide 
normalized aromatase expression when administered from 
gestational day 18 (GD18) to postnatal day 28 (PN28); analyzed by 
qPCR. In females, flutamide normalized aromatase expression when 
administered from PND6 to PND21; analyzed by western blot. Data 
are presented as mean ± s.e.m. Two-way ANOVA, followed by 
Bonferroni’s post hoc test. Different letters indicate a value of at least 
P < 0.05.
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programming, which in turn would impact on the 
metabolic, behavioral and reproductive function at 
adulthood. Administration of testosterone propionate 
to female rats induces several reproductive alterations, 
depending on the time window of administration, that 
is, fetal, neonatal or late postnatal age (Tyndall et  al. 
2012, Paixao et  al. 2017). Prenatal administration of 
testosterone or DHT to mice or rats induces acyclicity, 
advanced puberty and infertility at adulthood. 
Additionally, the early postnatal exposure to androgens 
is also capable of inducing ovulatory dysfunctions and 
alterations in mating behavior. Thus, early exposure 
to an excess of androgens during fetal or postnatal 
life would induce long-lasting alterations on the 
reproductive programming.

As demonstrated in males (Gonzalez et  al. 2011), 
the regulation of the hypothalamic-pituitary unit is 
also affected in transgenic hCGαβ+ females (Gonzalez 
et al. 2014). These females show elevated testosterone 
levels at least from PND14 onward. These are expected 
to be high by the second week of life, considering that 
the LH receptor is active by PND5 in the mouse ovary 
(O’Shaughnessy et  al. 1997). In normal conditions, 
a FSH surge occurs during the first two weeks, when 
the pituitary-gonadal feedback regulation is not fully 

active (Dullaart et  al. 1975). In hCGαβ+ females, 
this early FSH surge is suppressed, together with a 
reduced gene expression of Fshb, Lhb and Gnrhr at 
the pituitary level (Fig.  2; Gonzalez et  al. 2014). In 
addition, precocious puberty is accompanied by a 
transient surge of estradiol. This evidence suggests that 
the negative feedback regulation of the gonadotropin 
axis occurs prematurely in these females. A similar 
phenotype was found in the bLHβ-CTP mouse model 
with chronically elevated LH, where high testosterone 
was present at 14 days of age and led to precocious 
puberty and transient estradiol elevation (Risma et al. 
1997). The expressions of Cyp19a1 and Kiss1 in the 
preoptic area, which is the sexually-differentiated 
hypothalamic area that controls the ovulatory LH surge 
and displays estradiol-induced positive feedback, are 
elevated in 21-day-old transgenic females (Fig.  2). 
In contrast to the phenotype observed in males, 
hCGαβ+ females are able to respond to ovariectomy 
at PND14 by increasing serum FSH levels (Fig.  2) 
and gene expression of pituitary Fshb and Lhb, and 
also prevents the premature vaginal opening in these 
mice (Gonzalez et  al. 2014). However, as was also 
demonstrated in hCGαβ+ males, castration was 
unable to affect the hypothalamic Kiss1 and Cyp19a1 
expression in hCGαβ+ females (Fig.  2). Interestingly, 
when the antiandrogen flutamide is administered to 
hCGαβ+ females from PND6 until puberty, aromatase 
from the preoptic area is normalized (Fig. 3; Gonzalez 
et al. 2014). These results show that, in females, early 
exposure to androgens during a critical time- window 
between the second and third week of life induces 
sex-specific changes on the hypothalamus that 
alter the P450 aromatase expression at peripuberty. 
Consequently, changes in the locally-produced 
steroids may have implications in the occurrence of 
abnormal ovulatory LH surge of the reproductive cycles 
at adulthood, thus culminating in female infertility.

Conclusions

Differently from experimental models where 
hyperandrogenism is induced by exogenous 
administration, transgenic hCG-hypersecreting mice are 
a useful tool to study how the endogenously produced 
gonadal steroids in vivo may impact on the male or 
female reproductive axis (Fig.  4). Nevertheless, the 
precise mechanisms by which early exposure to steroid 
hormones affect the reproductive function in males and 
females are still under debate, even in the light of the 
new evidence showing the existence of genetic factors 
that precede gonadal influences during the genesis 
of differences between the sexes in brain structure 
(Cisternas et  al. 2015, 2017, Arnold 2017). In males, 
information about the possible influence of elevated 
androgens on the developmental programming of the 
hypothalamic-pituitary axis is limited, probably because 

Figure 4 Summary of the impact of persistent hCG stimulation on the 
developmental programming of the hypothalamic-pituitary axis in 
both transgenic hCG hypersecreting male and female mice (hCGαβ+; 
perinatal in males, and postnatal in females). Cyp19a1, P450 
aromatase (Gonzalez et al. 2011, 2014); E2, estradiol; FSH, follicle 
stimulating hormone; GD 16–18, gestational day 16–18; Gnrhr, 
Gonadotropin releasing hormone receptor; Kiss1, kisspeptin 1; LHR, 
luteinizing hormone receptor; PND6, postnatal day 6; SV, seminal 
vesicles; T, testosterone.
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males are normally exposed to androgens from early 
stages of fetal development and throughout their lives. 
Evidence derived from transgenic hCG males show 
that excess of endogenous androgens during a critical 
time- window between GD18 and PND14 induces 
long-lasting changes on the reproductive axis, resulting 
in a premature activation of the hypothalamus and a 
concomitant silencing of the pituitary gonadotropin 
production and seems to be the cause of infertility in 
adulthood. In females, early exposure of steroids during 
a critical period between PND6 to 14 induces sex-
specific organizational changes of the hypothalamus. 
These changes would have an effect at the preoptic 
area and alter the P450 aromatase expression, which in 
turn, would have an impact on the ovulatory cycles and 
fertility at adulthood. In both sexes, androgens and their 
locally produced neurosteroids might play a key role in 
the dysregulation of the hypothalamic–pituitary function 
during development.
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