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A B S T R A C T

Bruce McEwen’s discovery of receptors for corticosterone in the rat hippocampus introduced higher brain cir-
cuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid
receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-
mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on con-
textualization, rationalization and memory storage of the experience. These sequential phases in cognitive
performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The
receptor activation includes recruitment of coregulators and transcription factors as determinants of context-
dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience.
Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated
action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with
five questions challenging the MR:GR balance hypothesis.

1. Introduction

Fifty years ago, Bruce McEwen discovered that receptors in hippo-
campal neurons retain with high affinity circulating 3H-corticosterone
injected as an 0.5 μg tracer dose into adrenalectomized male rats
(McEwen et al., 1968). That discovery expanded the Science of Neu-
roendocrinology into higher brain circuits. Also about half a century
ago the first volumes of Frontiers in Neuroendocrinology appeared that
were edited by Luciano Martini and William F. Ganong. It is therefore
important that this Frontiers issue is dedicated to Bruce as one of the
founders of Neuroendocrinology.

The identification of corticosterone receptors in the hippocampus
sparked a dynamic research field: the neuroendocrinology of higher
brain regions involved in coordination of emotional expressions and
cognitive performance (McEwen, 2017; McEwen et al., 2016, 2015). It
appeared that for this purpose the naturally occurring glucocorticoid
hormones corticosterone and cortisol activate during stress a dual re-
ceptor system. First, the high affinity mineralocorticoid receptors (MRs)
previously discovered by Bruce, and next, the glucocorticoid receptors

(GRs) that become gradually occupied by stress-induced rising hormone
concentrations (Reul and de Kloet, 1985; Joëls and De Kloet, 1992a,b;
Oitzl and de Kloet, 1992). These MR:GR-mediated actions need to be in
balance for maintenance of homeostasis and health (see Box 1 The
dexamethasone story).

Previously, Selye (1950) had formulated the ‘pendulum’ hypothesis
to describe the opposing actions of 'pro-phlogistic' mineralocorticoids
and 'anti-phlogistic' glucocorticoids. The MR:GR balance hypothesis
states that these opposing actions by two hormones can be achieved by
actually one single class of hormones: the naturally occurring gluco-
corticoids cortisol and corticosterone. The recognition of such MR:GR
interplay supports the view that glucocorticoids on the one hand seem
to mediate the initial stress response (Selye, 1946), while on the other
hand – as Munck et al. (1984) argued- glucocorticoids can prevent the
initial stress reactions from an overshoot that may become damaging.
Or, as the Dutch endocrinologist Marius Tausk defined already in 1952
metaphorically the potent synthetic glucocorticoids as ‘agents limiting
the water damage that has been caused by the fire brigade’ (Tausk, 1952).
In a well-cited review the actions of glucocorticoids were further
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categorized as permissive, stimulatory, suppressive and preparative to
deal with upcoming stressors, depending on physiological endpoint
(Sapolsky et al., 2000).

In this contribution we will start with some of the early neu-
roendocrine and behavioural studies that led to the recognition of the
complementary MR:GR-mediated actions (de Kloet, 1991, 2014; de
Kloet et al., 1998, 2005; Joëls and de Kloet, 2017). Then, we will argue
that at the neuronal level ‘corticosterone metaplasticity’ of the baso-
lateral amygdala may explain how, as a function of time and context,
resources can shift from limbic MR-driven neuronal networks under-
lying emotions and rapid coping decisions towards slower GR-depen-
dent cognitive processes aimed to rationalize, contextualize and store
the experience in the memory (Karst et al., 2010; Karst and Joëls, 2016;
Vogel et al., 2017; Joëls et al., 2012). The ratio in MR:GR-mediated
phases of stress-adaptation is biased by MR gene variants and (early)
stressful experiences (Sutanto et al., 1996; Klok et al., 2011a; Wirz
et al., 2017).

On the molecular level, a major breakthrough has been the identi-
fication of rapid non-genomic MR- and GR-mediated actions (Karst
et al., 2005). These non-genomic actions were discovered with elec-
trophysiology, and, in spite of encouraging results (Olijslagers et al.,
2008), so far no clear molecular basis of these rapid responses has been
defined. The genomic MR- and GR-mediated actions are much better
understood because of the identification of DNA sequences that bind
the receptors. Transcription factors and co-regulators have been iden-
tified that confer specificity to MR- and GR-mediated actions depending
on other stimuli characteristic for the environmental context. Novel
data will be presented on the role of the NeuroD transcription factor
and coregulators assigning such a context-dependent genomic specifi-
city of MR and GR (Lachize et al., 2009; van Weert et al., 2017).

Perhaps, at first glance somewhat beyond the scope of stress, neural
circuits and behavior, we report recent data showing that the hippo-
campus of the deoxycorticosterone acetate (DOCA)-salt treated rat is
damaged in a similar way as that of the spontaneous hypertensive rat
(SHR). This is to illustrate that there are also aldosterone-selective MRs
in discrete brain regions and vascular endothelial cells that drive both
the rise in blood pressure and the damage-induced microglial in-
flammatory response (Brocca et al., 2017). These data support pio-
neering work by (Frank et al., 2015) on pro- and anti-inflammatory
actions of glucocorticoids and the subsequent generation of inflamma-
somes. It seems therefore that glucocorticoid actions via MR and GR on
inflammation proceed along similar initiating, terminating and priming
phases as the mechanism underlying the influence of stress on cognitive
performance.

2. Mineralocorticoid and glucocorticoid receptors

It is well established that the naturally occurring glucocorticoids
cortisol and corticosterone can activate both MRs and GRs in e.g. the
rodent, dog and human brain (Reul and de Kloet, 1985; Sutanto and De
Kloet, 1987; Reul et al., 1990; Seckl et al., 1991). The mapping of these
receptors became feasible with immunocytochemistry and in situ hy-
bridization upon their cloning in the mid 1980s (Arriza et al., 1987). It
turned out that both receptors are expressed in neurons, glia’s and
vascular endothelial cells, but to a variable extent (Tanaka et al., 1997;
Davel et al., 2017). MRs are abundantly expressed in limbic neurons,
notably the hippocampus, lateral septum and amygdala (Arriza et al.,
1988; van Eekelen et al., 1991; Ahima et al., 1991). GRs are more
widely expressed with highest level in the typical stress-regulating
centers such as the PVN, the PFC-hippocampal – amygdala circuitry and
the ascending aminergic neuronal networks. Yet, within these regions,
there is differential expression over time; for instance, GR im-
munoreactivity is highly expressed the first week of life in hippocampal
CA3 and suprachiasmatic neurons, but then fades from these regions in
later life (Van Eekelen et al., 1987, 1991; Cintra et al., 1994).
Box 1

The dexamethasone story: a personal note of ERdK.

When ERdK forwarded an air mail to Bruce McEwen in the fall
of 1971 that in his experiments the uptake of dexamethasone
did not match that of tritium labeled corticosterone in brain
but rather preferred to accumulate in the pituitary, the return
mail two weeks later said: “Please forgive me a personal inquiry:
are you by any chance a relative of Dr. Siwo de Kloet, a biochemist
now at Florida State University? I ask because he is also from
Maarssen and was here at Rockefeller approximately 10 years
ago.” Indeed Bruce was in 1961 a student working with my
brother at Rockefeller; also it appeared that I already had met
Bruce as early as 1964 when “the American with backpack”
was visiting us in The Netherlands. This event is, therefore,
ingrained in my memory as a corner stone of my career. It was
a prelude to my postdoc period from 1973 to 1975 at the
Rockefeller University. During that time we found that low
doses of dexamethasone indeed target the pituitary rather
than the brain (de Kloet et al., 1974, 1975). Twenty years later
it appeared that the hampered penetration of dexamethasone
in brain was due to a multidrug resistance P glycoprotein in
the blood brain barrier (de Kloet, 1997; Meijer et al., 1998).
Also, in 1975 we had the idea that in brain, corticosterone
receptors are distinct from those for dexamethasone. Ten
years later this idea materialized in the description of the
brain MR and GR (Reul and de Kloet, 1985). Thus, dex-
amethasone treatment inhibits the HPA axis and leaves the
MR devoid of endogenous glucocorticoids. Currently, we test
the hypothesis that refill of MR will minimize dexamethasone
adversity in brain (Meijer and de Kloet, 2017). The dex-
amethasone story has been the root of a productive research
field and a lifelong friendship. “Bruce is Bruce, a sincere and
important person to know” according to Efrain Azmitia (per-
sonal communication), his very first PhD student. He could
not have said it better.

Receptor activation depends on the corticosterone concentration in
rat brain, which reflects the amount of free circulating hormone, i.e. not
bound to corticosteroid binding globulin (CBG; Droste et al., 2008).
MRs are promiscuous and bind with high affinity to a range of steroids,
including the mineralocorticoids aldosterone and deoxycorticosterone,
and also progesterone (McEwen et al., 1976; De Nicola et al., 1981;
Krozowski and Funder, 1983). Aldosterone circulates in a 10–100 fold
lower concentration than cortisol or corticosterone. An assessment of
immunoreactive steroid in purified cell nuclei of the rat hippocampus
revealed a tenfold higher amount of corticosterone than aldosterone
under basal conditions. This nuclear ratio of corticosterone over al-
dosterone further increases towards the circadian peak, when corti-
costerone starts to occupy GRs. During stress the exposure of hippo-
campal MRs to corticosterone relative to aldosterone is even further
increased towards 100 over 1 (Yongue and Roy, 1987). Accordingly,
the brain MR mainly is exposed to corticosterone, which binds with a
10-fold higher affinity to MR than GR (Reul and de Kloet, 1985; Reul
et al., 1987). In pharmacological doses aldosterone and corticosterone
can mutually block each other’s cell nuclear retention in the hippo-
campus, further underscoring their competition for the same MRs (de
Kloet et al., 1983). As mentioned, corticosterone and cortisol are the
main ligands for (non-epithelial) brain MR and GR.

On top of this difference in circulating hormone levels, the 11β-
hydroxysteroid dehydrogenase (HSD) type 1 reductase regenerates bio-
active glucocorticoid hormone making hippocampal cells truly corti-
costerone and cortisol responsive. When 11-HSD-type 2 is co-expressed,
the glucocorticoids are inactivated and the MR becomes responsive to
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aldosterone. Such 11-HSD-2 expressing cells exist in brain and are
discreetly distributed, but abundant in the n. tractus solitarii (NTS), in
circumventricular neurons and also in the vascular endothelial cells
(Geerling and Loewy, 2009; DuPont and Jaffe, 2017). The aldosterone-
responsive network is the substrate of the autonomous outflow in the
central regulation of cardiovascular function (de Kloet et al., 2000;
Gomez-Sanchez and Gomez-Sanchez, 2014; Evans et al., 2016). The
aldosterone-MR governed projections arising from the NTS and the
circumventricular organs innervate forebrain networks including the
PVN, hippocampus, amygdala, n. accumbens and the bed nucleus of
stria terminalis, which are also a target of corticosterone (Geerling and
Loewy, 2009). The crosstalk between the aldosterone-selective network
and the limbic corticosterone-preferring network may explain the
arousal, motivation and spatial clues used in the search for salt, the
sense of satiation and the switch from appetite to disgust when excess
salt is being ingested (see Section 5; Krause and Sakai, 2007; Geerling
and Loewy, 2009; de Kloet and Joëls, 2017).

Then, two additional points can be made. First, the action of cor-
ticosteroids shows a wide diversity in different cells; this is perhaps not
surprising because the hormone’s physiological function is to promote
stress-adaptation by coordinating and integrating various processes.
Second, the hormone acts conditional, i.e. occurs when the membrane
potential is shifted from its resting level (Joëls and de Kloet, 1992a) or
when tissue damage has triggered an inflammatory reaction (Brocca
et al., 2017). As will be shown in Section 6 the co-regulators and in-
teracting transcription factors are extremely important for under-
standing the context-dependent conditional steroid effects.

2.1. Neuroendocrinology

The HPA axis – and its corticosteroid end products - has two modes
of operation: to coordinate circadian events and to promote stress-
adaptation (Oster et al., 2016). Within the circadian cycle corticos-
terone displays an hourly (ultradian) rhythm, which helps to maintain
responsiveness of its targets (Sarabdjitsingh et al., 2010). Studies agree
that MR antagonists given in mg amounts to rats increase basal ultra-
dian- and stress-induced corticosterone levels by increasing the ampli-
tude of the secretory bouts. In contrast, GR antagonists prolong the
duration of corticosterone response to stress (Ratka et al., 1989;
Dallman et al., 1989; Young et al., 1998). This disinhibition of the HPA
axis occurs with a 100,000 fold lower doses when the antagonists are
given intracerebroventricularly (icv; Ratka et al., 1989; van Haarst
et al., 1997). Mutants with forebrain overexpression of MRs showed a
reduced stress-induced HPA axis activity peak, and also a prolonged
duration if the mice are heterozygous for a null allele of GR (GR +/−),
which expresses half of the GRs normally present in brain (Harris et al.,
2013). These findings have led us to postulate that the MR exerts a tonic
inhibitory influence on HPA axis activity, which determines the
threshold of reactivity of the axis during stress.

Site-specific conditional knockout of GR in the pituitary cortico-
trophs disinhibits HPA axis activity early postnatally, but is not effec-
tive in adulthood (Schmidt et al., 2009). This observation reinforces the
notion that pituitary GRs are protected from corticosterone by in-
tracellular CBG molecules. This barrier is bypassed by dexamethasone,
which explains why the synthetic glucocorticoid targets the pituitary in
blockade of stress-induced HPA axis activity (de Kloet et al., 1977).
However, also rapid non-genomic glucocorticoid feedback has been
reported at the level of the pituitary and even in the adrenals (Dallman
et al., 1972; Russell et al., 2010; Walker et al., 2015; Deng et al., 2015).

Conditional deletion of GR from the CRH-producing cells in the PVN
of the mouse caused increased and prolonged stress-induced corticos-
terone levels and disrupted metabolism (Laryea et al., 2013). If GRs
were deleted from extrahypothalamic limbic regions, corticosterone
secretion was generally higher and more prolonged. This disinhibition
of HPA axis activity occurred while memory storage of the stressful
experiences was prevented (Oitzl et al., 2001; Laryea et al., 2015). The

GR antagonist mifepristone (RU486) did not affect basal HPA axis ac-
tivity because of only little GR occupation during the circadian trough.
During stress, mifepristone increased and prolonged stress-induced HPA
axis activation systemically and icv, but when given intrahippocampal
the antagonist inhibited the axis. This effect might be caused because
blockade of the GRs leaves MRs occupied which inhibits HPA axis ac-
tivity (van Haarst et al., 1997). MRs and GRs also interact in the control
of the circadian rise in HPA axis activity (Spencer et al., 1998).

Thus, MRs are involved in basal activity and onset of stress-induced
HPA axis activity and GRs in its termination. Regarding termination,
several levels of feedback regulation can be distinguished (Dallman,
2011) and the circuitry involved has been documented with great
precision (Herman et al., 2016), more recently by using e.g. optogenetic
approaches (Johnson et al., 2016; de Kloet et al., 2017). In our version:
first, the rapid or rate sensitive feedback involving GR-regulated, non-
genomic actions at the pituitary and brain level (Russell et al., 2010;
Dallman, 2005; Hill and Tasker, 2012). Second, an intermediate feed-
back action that occurs with a delay of 30min to several hours in the
PVN and its afferent pathways, probably as part of the behavioural
adaptation repertoire (de Kloet, 2014). Third, a slow- and long-lasting
feedback that seems more concerned with regulation of the HPA axis
setpoint and involves both MR and GR-mediated epigenetic processes in
the PVN (Elliott et al., 2010) and its afferents (Hunter et al., 2012).
Finally, the genomic pituitary GR which seems to function rather as an
emergency brake in response to extremely high corticosterone/cortisol
levels. This pituitary GR is the principal site of action of synthetic
glucocorticoids such as dexamethasone (de Kloet et al., 1974).

2.2. Behavior

Glucocorticoids administered to rodents post-learning promote
consolidation of tasks that are motivated by reward or fear (see Section
3.4, for time- and context dependency). This includes retention of the
acquired immobility response in the forced swim test, the memory
storage of an escape route in the Morris water maze, or of the spatial
map required for collecting a reward in a hole board configuration, and
fear-motivated behaviors (de Kloet et al., 1999; Joëls et al., 2012).
These effects exerted by the steroids are mediated by GRs. They involve
corticosterone action on (i) the hippocampus to preserve the spatial and
temporal coordinates of context and (ii) noradrenergic and dopami-
nergic pathways to boost the emotional experience and to assign a
certain valence to (and in humans to rationalize) the experience.
Memory storage is impaired when GRs are deleted in the amygdala or
hippocampus. Memory impairment also occurs when GR antagonists
are administered icv or locally in the hippocampus in doses that are
100,000 fold lower than when given systemically. For this purpose the
antagonists need to be given immediately after learning, prior to con-
solidation (Micco et al., 1979; de Kloet et al., 1999; Rodrigues et al.,
2009; Roozendaal and McGaugh, 2011; Luksys and Sandi, 2011;
Schwabe et al., 2012).

GR activation after the 24 h retest of a contextual fear paradigm
facilitates extinction, a finding that was first reported by Bela Bohus
(Bohus and Lissák, 1968) in the late sixties. Such extinction occurs
because of the subsequent re-appraisal of the context at retest 24 h
later. The re-appraisal implies that fear-motivated behavior is no more
relevant in absence of the cue. Glucocorticoids facilitate reconsolida-
tion of this new experience, and thus facilitate extinction (Cai, 2006).
There is some debate in the literature regarding ‘memory impairment’ if
glucocorticoids were given briefly prior to the retrieval session (de
Quervain et al., 1998; de Kloet et al., 1999). In this debate is context a
critical determinant; stress or glucocorticoids signal threats, which
makes the retrieval of previously learned behavioural responses less
relevant (Sandi et al., 1997; de Kloet et al., 1999). Other experiments
revealed that memory retrieval rather depends on rapid MR-mediated
actions, and is blocked by MR antagonists (Oitzl and de Kloet, 1992;
Khaksari et al., 2007; Dorey et al., 2011). It cannot be excluded that
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excess GR activation causes a similar impairment of MR function by
depletion of endogenous ligand (Rimmele et al., 2013).

Obviously unaware of today’s expert behavioural studies, we won-
dered around 1980 how we could exploit the – at that time – peculiar
binding specificity of the hippocampal corticosterone receptors. In
these early experiments we used a forced extinction paradigm. This
implies that the animal was exposed to a mild electric shock in an in-
hibitory (passive) avoidance apparatus. Common practice was then to
measure the latency to re-enter the compartment 24 h later when the
animal was placed on the attached brightly lit tray. This generates a
conflict in the animal between the choice to deal with either one of the
two threats: light vs electric shock. This conflict is affected by MR
manipulation (Souza et al., 2014). However, if the animal is returned in
the shock compartment at 3 h after cue exposure, allowing exploration
of the shock-compartment (context) for 5min without experiencing the
electric shock, the inhibitory response was entirely extinguished the
next day (hence forced extinction when exposed to context only).
Adrenalectomy 1 h prior to context exposure at 3 h post-shock elimi-
nated the effect of forced extinction, which was re-instated again with a
low dose of corticosterone (systemically or icv) replacement at the time
of adrenalectomy; dexamethasone, progesterone, deoxycorticosterone
and aldosterone were not effective and even could block the normal-
izing effect of corticosterone (Fig. 1). Accordingly, we concluded at the
time that the corticosterone-dependent re-appraisal of the context
during the forced extinction procedure likely was mediated by the
‘corticosterone’ receptors (Bohus and de Kloet, 1981) which we now
know are the MRs.

In 1992, Melly Oitzl, (Oitzl and de Kloet, 1992) was the first to
demonstrate in male rats that MRs- and GRs mediate in a coordinated
manner the storage of spatial information. To arrive at this conclusion,
she used the Morris water maze and showed that adrenalectomy (but
not removal of the adrenal medulla only) impaired memory storage of
spatial information. Memory storage was also impaired when tested
24 h after icv administration of the GR antagonist mifepristone given
immediately after the learning trial; the GR antagonist was not effective
when given 15min prior to the retrieval session. The MR antagonist icv
did not affect consolidation of the spatial information, but interfered
with retrieval if given 15min before the retest. The animals not only
took more time to locate the escape platform, but when the platform
was removed – the so-called probe trial – they also used an alternative
strategy. While the control animals remained in the quadrant where
originally the platform was located, the group treated with the MR
antagonist icv switched to another strategy and explored the space to

find an alternative escape route. A similar switch in behavioural
strategy was observed in ADX animals where obviously MR is not ac-
tivated.

In subsequent experiments, Melly Oitzl and Lars Schwabe (Schwabe
et al., 2010) used another spatial test for hippocampus function: the so-
called circular hole board paradigm in which the rat could spatially
access a hole to locate a reward. The animals could use either a hip-
pocampal based spatial strategy by using distal cues to locate the re-
ward or a specific stimulus in the form of a sign (i.e. a bottle) placed
nearby the reward. Once the animals had learned the task, the stimulus
was switched to another location. After an acute restraint stress or a
corticosterone injection, part of the animals exhibited a switch from the
hippocampal spatial- to a striatal stimulus–response strategy; if these
animals were pretreated with the MR antagonist the switch from spatial
thinking to striatal doing did not occur (see Section 3.4; Schwabe and
Wolf, 2013). However, these results were obtained with male animals;
female rats actually performed better in spatial learning and memory
processes after stress (ter Horst et al., 2013a; ter Horst et al., 2013b)
reinforcing the notion of profound sex differences in brain function. See
for review (Hamson et al., 2016).

Thus, it was proposed that the action on behavior is mediated in a
complementary manner by MRs and GRs. Indeed GR deletion from the
dentate gyrus or central amygdala impaired the conditioned fear re-
sponse and direct application of a GR antagonist in the dentate gyrus
interfered with the memory storage of acquired immobility in the
forced swim test (Arnett et al., 2011; de Kloet et al., 1988; de Kloet and
Molendijk, 2016). Also, in a series of studies from the Sapolsky lab
using viral delivery of genes in the dentate gyrus of rats the potential
benefit of increasing MR signaling or decreasing GR signaling was de-
monstrated for specific aspects of cognitive function (Mitra et al., 2009;
Ferguson and Sapolsky, 2008; Dumas et al., 2010). Fig. 2 depicts a
temporal sequence of events under control of MR and GR from the onset
towards termination of the stress response followed by priming of the
brain in preparation of the future (see also Sections 3.4,5 and 7).

2.3. The MR:GR balance hypothesis

Based on receptor properties and the outcome of cellular and be-
havioural studies (see also Section 3), the MR:GR balance hypothesis
was formulated. This hypothesis states that “upon imbalance of the MR-
and GR-mediated actions, the initiation and/or management of the stress
response becomes compromised. At a certain threshold this may lead to a
condition of neuroendocrine dysregulation and impaired behavioural
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adaptation, which potentially can aggravate stress-related deterioration and
promote vulnerability” (de Kloet, 1991; de Kloet et al., 1998; Holsboer,
2000). The balance hypothesis extends Selye’s pendulum hypothesis on
opposing mineralocorticoid and glucocorticoid actions during in-
flammation to the receptors for these steroids. In Section 7 the MR:GR
balance hypothesis is revisited in light of questions raised over the past
years.

Meanwhile, support for the hypothesis came from studies using
dexamethasone. The synthetic glucocorticoid decreases HPA-axis ac-
tivity and thus depletes the brain of endogenous corticosteroids, so that
corticosterone/cortisol is less available for binding to MR and loss of
MR function may result (Karssen et al., 2001, 2005). For instance, in
dexamethasone-treated animals changes in properties of cortical neu-
ronal spines occur during the sleep-wake cycle, which could be restored
with corticosterone replacement (Liston and Gan, 2011; Liston et al.,
2013; Ikeda et al., 2015). In humans dexamethasone reduced slow wave
sleep and caused dysphoric effects. Co-administration of cortisol re-
stored slow wave sleep and led to an euphoric mood likely via activa-
tion of MRs (Born et al., 1991; Plihal et al., 1996; Groch et al., 2013).
The potent MR agonist fludrocortisone was found to promote the effi-
cacy of anti-depressants (Otte et al., 2010).

Dexamethasone can have severe side effects in a subgroup of pa-
tients (Judd et al., 2014) and a recent clinical trial demonstrated the
utility of cortisol add-on in ameliorating adversity. Dexamethasone
therapy of young patients suffering from acute lymphoblastic leukemia
caused in about 30% of these patients severe adverse neuropsycholo-
gical effects and sleep disturbances, which were ameliorated by cortisol
add-on in doses used for replacement of adrenally deficient patients
(Warris et al., 2016). The benefit of this refill for the brain MR supports
the validity of the MR:GR balance concept (Meijer and de Kloet, 2017).

3. From cellular function to cognitive processing

3.1. Slow gene-mediated effects on cell signaling

As will be described in Section 6, the rodent hippocampus appears
to contain selective MREs and GREs that mediate different effects of one
and the same hormone: corticosterone. This provides a molecular basis
for an observation made more than 25 years ago, i.e. that doses of
corticosterone preferentially activating MRs generally exert very dif-
ferent effects on hippocampal cells than high doses which (in addition
to MRs) activate GRs. In subsequent years it has become evident that
the two receptors often mediate opposite actions, although there are
clear regional differences.

In CA1 hippocampal pyramidal neurons, preferential MR activation
was found to be associated with small Ca2+ currents through L-type
channels (Karst et al., 1994). Conversely, high doses of corticosterone
increased the amplitude of L-type Ca2+ currents via a mechanism in-
volving binding of GR homodimers to the DNA (Kerr et al., 1992; Karst
et al., 2000); this hinges on –at least- regulation of Ca2+ channel β4
subunit transcription (Chameau et al., 2007). Interestingly, in hippo-
campal CA1 neurons from adrenalectomized rats –where due to the
absence of corticosterone both MR and GR are unoccupied- the am-
plitude of L-type Ca2+ currents were also high, overall resulting in a U-
shaped dose-dependency. Such a dose-dependency was also observed
for cell firing frequency accommodation –a phenomenon causing cells
to gradually decrease their firing rate during a period of depolariza-
tion-, and for the so-called slow afterhyperpolarization (Joëls and de
Kloet, 1989, 1990). Firing accommodation depends (among other
things) on the activation of a Ca2+ dependent K+ current, and thus
indirectly on Ca2+ influx; deactivation of the Ca2+ dependent K+

current after a period of depolarization causes the slow after-
hyperpolarization. Other Ca2+ currents or currents mediated by Na+,
K+ or Cl- ions appeared to be less sensitive to corticosteroids, although
some effects have been described (Joëls et al., 2012).

Such opposite MR- and GR-mediated effects were also described for
hippocampal cell responses to neurotransmitters. Serotonin (5-HT)
binds to 5-HT1A receptors on CA1 hippocampal cells, which opens in-
wardly rectifying K+ channels resulting in hyperpolarization of the cell
membrane. Low corticosterone concentrations, via MR, resulted in a
small 5-HT induced hyperpolarization, whereas high levels of corti-
costerone increased the 5-HT dependent hyperpolarization, again via
GR homodimers binding to the DNA (Karst et al., 2000). Similarly,
noradrenaline-dependent changes in cell firing were found to increase
after selective activation of GRs (Joëls and de Kloet, 1989). With re-
spect to glutamate it was found that selective activation of GRs pro-
motes lateral diffusion and enhanced surface expression of AMPA re-
ceptors, particularly of subunit 2 (Groc et al., 2008; Martin et al., 2009).
This is compatible with an earlier described slow GR-induced increase
in glutamatergic responses of CA1 neurons, beit synaptically evoked or
spontaneous (Karst and Joëls, 2005).

Interestingly, the lateral diffusion of AMPA receptor 2 subunits was
found to be very similar to the effects of chemical long-term potentia-
tion (Groc et al., 2008). Convergence of corticosterone-induced effects
on the one hand and cellular changes underlying long-term potentiation
on the other hand may lead to occlusion of the latter by the former. This
may be one of the explanations for a frequently described fact, i.e. that
exposure of hippocampal CA1 cells to a high dose of corticosterone
(either by stress-induced or exogenous delivery of the hormone) ham-
pers the subsequent induction of long-term synaptic potentiation
(Pavlides et al., 1996; Kim et al., 2002; Krugers et al., 2010) – the
presumed neurobiological substrate of memory formation. If so, this
would protect the storage of stress-related information from being
overwritten by information impinging on the same circuit shortly after
the stressor (Diamond et al., 2007). In all of these phenomena, the MR
determines the trough of the U-shape (Joëls, 2006), in other words the
lower limit of the range over which the cell property under study can
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Fig. 2. MR, GR and the neuroendocrine stress response. Stressful stimuli activate CRH
and vasopressin release from the median eminence terminals of the parvocellular neurons
of the paraventricular nucleus that stimulate the synthesis of pro-opiomelanocortin
(POMC) and its cleavage product ACTH, which in turn promotes the adrenocortical se-
cretion of cortisol (human) and corticosterone (human, rodents). The binding of the
naturally occurring glucocorticoids to its mineralocorticoid receptors (MR) and gluco-
corticoid receptors (GR) procedes in the brain in three stages. 1. Onset: MR and sympa-
thetic outflow. 2. Termination: GR behavioral adaptation and recovery. 3. Priming: GR,
memory storage and inflammasome in preparation of future challenges.
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vary. This is generally considered to be a healthy state of the cell,
promoting viability (Joëls et al., 2012). The importance of the MR for
cellular stability and viability only becomes apparent when the receptor
is either inactivated, down-regulated or unoccupied due to the absence
of corticosterone.

The interplay between MR and GR on cell signaling is region-de-
pendent. For instance, activation of MR in dentate gyrus cells resulted
–similar to the CA1 region- in relatively small Ca2+ current amplitudes.
Yet, activation of GRs was ineffective in increasing the amplitude (Van
Gemert et al., 2009). The dissociation between the two areas was not
found at the level of transcripts: in both areas corticosterone increased
mRNA levels of the calcium channel-β4. However, the conversion to the
protein level was apparently impaired in the dentate since β4 protein
levels were unaffected by corticosterone in the dentate, yet up-regu-
lated in the CA1 region. The delayed effects of corticosterone on glu-
tamate transmission seen in CA1 pyramidal cells is also seen in the
prefrontal cortex (Liu et al., 2010; Yuen et al., 2011). We further argued
that in areas where MR is expressed at a much lower level than GR,
effects of corticosterone linearly depend on the hormone concentration
rather than in a U-shaped manner (Joëls, 2006). This subject, however,
is still heavily understudied.

3.2. Rapid non-genomic effects of MR

Over the past decade it has become clear that the MR can also play a
different role. When corticosterone was applied to hippocampal CA1
pyramidal cells, this did not only induce delayed changes e.g. in glu-
tamate signaling, but also rapid effects. The rapid effects were ex-
tensively studied regarding miniature excitatory postsynaptic currents
(mEPSCs), which each reflect the postsynaptic response to the sponta-
neous release of a single glutamate-containing synaptic vesicle. In 2005,
Karst et al. (2005) reported that selective activation of MRs but not GRs
rapidly increases the frequency (but not amplitude) of the mEPSCs in
CA1 pyramidal cells; mEPSC frequency was quickly restored when
corticosterone concentrations dropped back to baseline. This is clearly a
non-genomic effect for which corticosterone does not have to enter the
cell and hence is most likely mediated by MRs located close to the cell
membrane. Of note, the membrane location of such MRs is still a matter
of debate (Groeneweg et al., 2011; Groeneweg et al., 2012). In addition
to the rapid changes in mEPSC frequency, MR was also reported to
increase the mobility of AMPA receptor 2 subunits in cultured hippo-
campal cells (Groc et al., 2008). Moreover, rapid corticosteroid effects
facilitate the induction of long-term potentiation (Wiegert et al., 2006).
Interestingly, to achieve rapid effects via MR, hippocampal cells re-
quired relatively high concentrations (∼10 nM) of corticosterone (Karst
et al., 2005), a dose-range where nuclear MR are already fully occupied.
This suggests that the rapid MR-dependent actions could very well play
a role in the early phase of the stress response (Joëls et al., 2008)

Rapid MR-dependent effects on mEPSC frequency were also de-
scribed for dentate granule cells (Pasricha et al., 2011). Likewise, in
principal cells of the basolateral amygdala, corticosterone raises the
mEPSC frequency (Karst et al., 2010). Yet, in these cells the mEPSC
frequency remained high, even after wash-out of the hormone. The
prolonged nature of the response turned out to be GR- and transcrip-
tion-dependent. A similarly prolonged elevation in mEPSC frequency
was observed after animals had been stressed. Notably, exposure to a
(first) pulse of corticosterone changes the cell’s response to a sub-
sequent pulse of corticosterone. Thus, a second pulse of corticosterone
delivered> 1 h after the first pulse quickly and lastingly reduced the
mEPSC frequency, through a non-genomic GR-dependent pathway
(Karst et al., 2010; Karst and Joëls, 2016). This phenomenon was
dubbed ‘corticosterone metaplasticity’. It shows that also with respect
to the rapid corticosteroid actions, MR and GR exert opposite actions.

3.3. Membrane MR as a sensor for shifts in circulating corticosterone level

In view of the concentration range and time window in which rapid
MR-dependent effects develop, these effects may be of relevance for two
situations during which rapid changes in corticosteroid level occur.

The first situation is related to the ultradian release pattern of cor-
ticosterone. The hormone is released in pulses with an inter-pulse in-
terval of approximately 1 h (Lightman and Conway-Campbell, 2010).
The pulse amplitude is high just before the onset of the active period
during the day and drops at the end of the active period, overall causing
a circadian release pattern. We showed that hippocampal cell activity
can reasonably well follow this pattern of hourly pulses. During the
pulses, mEPSC frequency, surface expression of AMPA receptor sub-
units and LTP were found to be enhanced, although some attenuation
developed during the 3rd and 4th pulse (Sarabdjitsingh et al., 2016).
This study design with a sequence of 4 pulses also showed an interesting
interaction between delayed genomic actions of corticosterone and
rapid non-genomic effects (Sarabdjitsingh et al., 2014). As stated be-
fore, a (first) pulse of corticosterone results in hippocampal neurons in
synaptic enrichment of AMPA receptor 2 subunits and increased mEPSC
frequency, hampering the ability to subsequently induce long-term sy-
naptic potentiation. Unexpectedly, a second pulse of CORT > 1 h after
the first completely normalized all aspects of glutamate transmission
investigated, thus restoring the plastic range of the synapse. This re-
storing capacity of the second pulse may ensure that hippocampal
glutamatergic synapses remain fully responsive and able to encode new
stress-related information when daily activities start.

A second situation where corticosterone levels quickly change oc-
curs during the stress response. Microdialysis studies (McIntyre et al.,
2002; Bouchez et al., 2012) showed that neurons are exposed first to a
wave of noradrenaline and with a delay of approximately 20min
(Droste et al., 2008) to a wave of corticosterone. We mimicked these
waves with various concentrations of isoproterenol (a β-adrenoceptor
agonist) and corticosterone (Karst and Joëls, 2016; Fig. 3). We mea-
sured mEPSC frequency in basolateral amygdala cells over the course of
2 h, an interval that is relevant for memory consolidation. At low to
moderate concentrations of the hormones, mEPSC frequency first in-
creased and –with a delay of approximately 1 h – decreased. However,
with high concentrations of the two compounds, the initially raised
mEPSC frequency remained high for at least 2 h. This suggests that
basolateral amygdala excitability is high for a very long time under
conditions that both β-adrenoceptor and corticosteroid receptor acti-
vation is substantial, such as may occur during severely emotional
stress situations.

Overall, these data show that neuronal activity is markedly affected
by stress and specifically corticosteroid hormones, in a (i) time-de-
pendent, (ii) receptor-dependent and (iii) region-dependent manner,
with evidence for interactions between the time-domains, receptor-
mediated actions and effects in the various brain areas. This results in a
complex picture. In general, amygdala (and to a lesser extent hippo-
campal) activity is increased shortly after stress. With a delay of ap-
proximately 1 h, activity in the prefrontal area and hippocampus is
increased, while amygdala activity is decreased (Joëls et al., 2012)
unless the stressor is very severe (Karst and Joëls, 2016).

3.4. Relevance of rapid MR effects for cognition

In view of the time-, receptor- and region-dependency of cellular
actions by corticosteroids, one can wonder how this affects cognitive
processing after stress. This was studied in a series of experiments, in
rodents and humans, in which specific cognitive domains were probed
directly after a rise in corticosteroid level or> 1 h later, at a time that
genomic actions have developed. In some cases, this was combined with
the use of selective receptor antagonists.

The current view (Fig. 4) is that directly after stress corticosteroid
hormones, via MR and in interaction with monoamines, promote
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vigilance, attention and the choice of a simple yet effective strategy to
face environmental challenges, with a focus on the ‘self’ or close ones
(Joëls et al., 2011; Schwabe and Wolf, 2013; Hermans et al., 2014;
Vogel et al., 2016). Conversely, at this point in time higher cognitive
functions, such as linking the context to the event or selecting altruistic
solutions that may be beneficial in future, are suppressed. This beha-
vioural pattern is enabled by an MR-dependent redistribution of re-
sources from the hippocampus to the amygdala and striatum (Schwabe

et al., 2013; Vogel et al., 2015, 2017).
Interestingly, starting approximately 1 h after the rise in corticos-

teroid level (due to stress or induced by exogenous administration of
corticosteroids), cognitive function is steered in a different direction.
This is not simply the normalization of the earlier phase, but an active
process, involving a new set of actions depending -as far as investigated-
on GR function. This phase is characterized by suppression of amygdala
activity and increased activity in ‘higher’ brain areas e.g. in the dor-
solateral prefrontal cortex. Behaviourally, individuals have (compared
to controls) a higher ability to contextualize information, are less dis-
tracted by emotional information and rationalize stressful events, can
store stress-related information for the future and make more altruistic
choices.

Evidently, both phases of the cognitive repertoire after stress are
important. Individuals need an appropriate first reaction to imminent
danger to survive. Being attentive, going for the quickest solution of the
situation and being self-centered all help to get through this period of
potential threat. Yet, at some time the available brain resources should
be redistributed to help processes that promote survival in the long run:
putting things in the right perspective –thus preventing generalization
of fear-related information-, building up a reference map for future use
and ‘befriending’ those that may be of help in the future. An imbalance
between these two phases, e.g. caused by lower or higher functionality
of one of the corticosteroid receptors, may compromise the rapid or
delayed response and thus increase the susceptibility of genetically
vulnerable individuals to develop diseases, including those related to
the brain. Corticosteroid receptor variants may contribute to such lower
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Fig. 3. Basolerateral amygdala cells were
exposed to waves of first isoproterenol
(green) and next corticosterone (yellow), at
various concentrations. The top panel shows
a brief wave of 0.3 μM isoproterenol (very
mild stress), the middle panel waves of 1 μM
isoproterenol followed by 30 nM corticos-
terone (moderate stress); and the lower panel
the application of 3 μM isoproterenol fol-
lowed by 100 nM corticosterone (severe
stress). Depicted is the averaged (+SEM)
frequency of mEPSCs over time. The intensity
of the bar’s color (red is highest) corresponds
with the significance of the effect. The dif-
ference between very mild and moderate
stress is characterized by the appearance of a
brief excitatory response, whereas the trans-
gression from moderate to severe stress is
associated with the appearance of a delayed
excitatory effect. Based on (Karst and Joëls,
2016).
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Fig. 4. Summary of behavioral observations in rodents (r) and human subjects (h) di-
rectly after stress/corticosteroid administration and>1 h after stress/corticosteroid ad-
ministration. The tests are arranged from those involving primarily amygdalar/striatal
circuits (top), through hippocampal circuits (middle) to prefrontal circuits (bottom).
Directly after stress monoamines and corticosteroids acting primarily via MR promote
emotional processing, at the cost of higher cognitive functions such as contextual memory
formation or reward-based decision making. At a longer interval (> 1 h after stress or
corticosteroid administration), the reverse is seen. Most of the studies are discussed in
(Vogel et al., 2016). IGT= Iowa Gambling Task.
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or higher functionality, especially under conditions of cumulating
(early) life adversity. This will be further highlighted in the context of
genetic receptor variants and psychopathology in the next section.

4. Genetic variants

A recent twin study estimated heritability of major depressive dis-
order at about 35% (Geschwind and Flint, 2015) taking gene× en-
vironment interactions into account. Yet, large scale GWAS studies have
not revealed which genes are involved leading these multi-author stu-
dies to conclude that this type of hypothesis-searching approaches
probably point to numerous genes that each contribute very little to the
overall risk of this stress-related disorder (Akil et al., 2017). Yet, using
the Google 23andme database and self-reports about depressive mood
as well as the response to antidepressants some gene associations were
identified e.g. neurodevelopmental, circadian rhythmicity and growth
factor-related genes (Hyde et al., 2016; Li et al., 2016). The Task Force
of the Hope for Depression Research Foundation (Akil et al., 2017)
concluded that ‘convergence of these genetic risk factors with tran-
scriptional abnormalities observed in rodent depression models’ might
give some perspective in the search for a molecular mechanism in de-
pression. Indeed, a recent report assigned a key role for glucocorticoid
responsive genes in resistance to anti-depressant therapy (Carrillo-Roa
et al., 2017). In addition, lasting GR epigenetic marks are known as
signatures of (early) life experiences (Turecki and Meaney, 2016).

We have studied in-depth MR genetic variation. First, in exon 2, at
codon 180, rs5522, an ATT to GTT single nucleotide polymorphism
(SNP, minor allele frequency 12%) resulted in an isoleucine to valine
change (I180V) in the N terminal receptor domain. In vitro the G allele
resulted in a loss of function MR variant at EC50 in response to cortisol,
but not aldosterone. Young male carriers of two G alleles showed a
much larger plasma ACTH, plasma and saliva cortisol, and heart rate
response in the Trier Social Stress Test, while no changes were found in
aldosterone-dependent measures (DeRijk et al., 2006). The G-allele was
associated with a reduced ability to modulate behavior as a function of
reward in the face of stress and increased amygdala reactivity in in-
dividuals with a history of early trauma (Bogdan et al., 2010, 2012),
and in combination with other functional genetic variants of HPA axis
genes (Di Iorio et al., 2017). This suggested a role in psychopathology
and indeed G allele associations were found with depressive symptoms
in an elderly cohort (Kuningas et al., 2007).

Second, at position -2, that is two nucleotides before the first ATG
start codon, a C/G SNP (rs2070951, minor allele frequency 49%) is
found. The G allele caused reduced translation and thus reduced MR
expression. The phenotype associated with this G allele is characterized
by higher systolic blood pressure, higher renin activity and higher cir-
culating levels of aldosterone (van Leeuwen et al., 2010a).

Based on the two SNPs (rs2070951 & rs5522) four haplotypes can
be expected (Fig. 5). Accordingly, allele frequencies were in vivo of
Haplotype 1 (GA) 50%, Haplotype 2 (CA) 35% and Haplotype 3 (CG)
12%. Haplotype 2 and 3 displayed highest activity and highest MR
protein expression in an in vitro transactivation assay. Lower activity
was observed with haplotype 1. However, the putative “haplotype 4”,
that would be G for rs2070951 and G for rs5522 with an expected
frequency of approximate 6%, has not been detected in the thousands of
samples we have genotyped. In addition, haplotype 4, which has been
constructed and tested, showed in vitro much lower transactivational
activity as compared to the other three haplotypes. This suggest that
perhaps a too low MR-activity is not compatible with life (van Leeuwen
et al., 2011).

We found sex dependent effects on basal levels of saliva cortisol, the
cortisol awaking rise (CAR) and in the low dose (0.25mg) dex-
amethasone suppression test (Klok et al., 2011c; van Leeuwen et al.,
2010b). Male haplotype 1 displayed a much higher CAR and more re-
sistance to dexamethasone suppression than the male haplotype 2
carriers. In haplotype 1 carriers, the males had higher CAR and a more

readily escape from dexamethasone suppression than females. In a co-
hort of school teachers, the stress-induced autonomic and HPA axis
response were associated with MR-haplotypes. Carriers of MR-haplo-
type 2 showed the highest heart rate, ACTH (in blood) and cortisol
responses (blood and saliva) in the Trier Social Stress test. Together, the
data support the notion from pharmacological studies that the human
MR is involved in the regulation of stress reactivity as shown by mea-
sures for HPA axis and autonomous activity.

In addition, part of these effects were sex specific. For instance, in
the Dutch Arnhem Elderly Study we tested 450 subjects (aged 65–85);
MR haplotype 2 was associated with higher mean levels of dispositional
optimism in women but not in men and the effect was estimated to
explain 6% of the variance in optimism (Klok et al., 2011b). Interest-
ingly, GR haplotypes were not related to the optimism scores. In a
follow-up study in a group of young students we found that MR hap-
lotype 2 predicts fewer thoughts of hopelessness and lower levels of
rumination (Klok et al., 2011b). In another study with young female
students a significantly higher implicit happiness score of MR-haplo-
type 2 homozygotes was observed. Haploptype-2 carriers are less sen-
sitive to the effects of variations in estrogens and progesterone during
the menstrual cycle on emotional information processing. Haplotype 2
carriers are also protected against the negative mood effects of oral
contraceptives containing synthetic progestins (Hamstra et al., 2015,
2016, 2017).

Neuroticism is a vulnerability factor for psychopathology. In a
group of young students less neuroticism was found in carriers of MR
haplotype 2 (although this group in general showed low levels of
neuroticism) and lower levels of depression and anxiety. To validate
our hypothesis that higher dispositional optimism and less neuroticism
would be protective to negative mood, we performed an association
study with depression using data from the NESDA cohort and found that
MR haplotype 2 was associated with a lower risk of depression, parti-
cular in females of reproductive age. Vinkers et al. (2015) tested the
association between MR haplotypes and depression in two independent
cohorts: a population based cohort (N=665) and the clinical NESDA
sample (N=1639). Sex and early life trauma are important determi-
nants with an apparent protective effect of MR haplotype 2 in females,
but haplotype 1 and 3 were an advantage for males in this respect
(Vinkers et al., 2015).

Thus, in several different cohorts MR haplotype 2 was associated
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Fig. 5. Common functional MR-gene haplotypes. In the 5′ region of the MR-gen 3
haplotypes were constructed based on linkage disequilibrium of two SNPs, the rs2070951
(G/C: 50/50) and the rs5522 (A/G: 80/20). The G/C is located in the promotor region
two nucleotides before the translation start site (ATG) while the rs5522 is located in
codon 180 of exon 2 changing an amino acid from Isoleucine (ATT) to Valine (GTT). The
frequencies of the haplotypes as well as the frequencies of the genotypes are indicated
(latter based on a Dutch cohort (Vinkers et al., 2015). In vitro testing of the activities of
the haplotypes in a transactivation assay in CV-1 cells revealed haplotype 2 as having
highest activity, slightly less activity by haplotype 1 and lower activity by haplotype 3.
Haplotype 4 was not detected yet in vivo; haplotype 4 showed much lower expression and
transactivational activity in vitro as compared to the other three haplotypes (van Leeuwen
et al., 2011).
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with a lower risk for symptoms of depression, in line with their positive
psychological effects and increased cortisol reactivity. These associa-
tions were strongly influenced by gender and early trauma (ter Heegde
et al., 2015; de Kloet et al., 2016). In line with the increased expression
and transactivation of MR haplotype 2, heterozygous and homozygous
carriers showed during stress a shift towards striatal habit learning at
the expense of amygdala-hippocampus processing of stressful in-
formation measured with fMRI and EEG (Wirz et al., 2017). This finding
underscores the relevance of the MR in selecting a coping style during
stress, which is fundamental for understanding the pathogenesis of
stress-related disorders. Interestingly, in hippocampal tissue obtained
post-mortem from depressed patients MR mRNA levels are decreased
(Klok et al., 2011a, 2011b, 2011c).

Current transgenic animal models have been generated with con-
ditional site-specific under- or overexpression of MR and GR, but an-
imal models carrying the MR gene variants have not been generated
yet. The Brown Norway rat expresses, however, a naturally occuring
mutation identified as tyrosine to cysteine substitution (Y73C) in the N-
terminal part of the MR, providing in vitro a greater transactivational
activation in response to aldosterone, but also to progesterone
(Marissay-Arvy et al., 2004).

The MR- genetic association studies add valuable information to a
growing database of candidate genes predicting stress-related disorders
and/or efficacy of treatment strategy. Thus, genetic polymorphisms of
α2-adrenergic receptors, catecholamine-O-methyltransferase (COMT),
neuropeptide Y, the 5HT-transporter, dopamine D4 receptor and BDNF
can modify emotional and cognitive aspects of the stress response and
therefore are obvious candidates for further research (Wu et al., 2013;
Southwick and Charney, 2012). Genetic variants of FKBP5, GR and CRH
binding protein predict risk of depression and the efficacy of anti-
depressant therapy (Quax et al., 2013; Binder, 2009; Claes et al., 2003;
O’Connell et al., 2017).

Bogdan’s group (Di Iorio et al., 2017) reported recently that a bio-
logically-informed multilocusprofile score (BIMPS) of genetic variation
CRH- and cortisol receptors was found associated with the function of
these genes. This implies that a higher BIMPS score correlates with
higher HPA axis- and stress reactivity. Such a polygenic risk score, if
combined with neuroendocrine challenge tests and psychological ana-
lysis of the stress system, thus may have an important added value in
the prediction of individual stress vulnerability and resilience. As ad-
vocated by Dirk Hellhammer, this assessment of a ‘conceptual en-
dophenotype’ is promising not only as a translational tool to detect
stress pathology, but also as an assist in selection of treatment strategy
of depression and other stress-related disorders (Hellhammer et al.,
2012, 2018).

5. MR and neuro-inflammation

Several genetically selected lines have been tested for expression of
MR and GR in brain. One interesting line is the spontaneous hy-
pertensive rat (SHR) which depends on MR stimulation for its devel-
opment of hypertension at 2 – 3months of age (Okamoto and Aoki,
1963). Despite the importance of MR in this model, no MR genetic
variants were identified as risk factors in SHR, but surprisingly these
animals expressed variants of the dopamine transporter Slc6a3 gene
associated with hypertension ((Zhang-James et al., 2013). The young
SHR animals show indeed hyperactive behavior and memory impair-
ment which explains why these animals are used as model for attention
deficit hyperactivity disorder (ADHD; Meneses et al., 2011; Killeen
et al., 2012).

The SHR is a genetic rat model that reproduces several aspects of
human essential hypertension. SHR’s also demonstrate a similar neu-
ropathology of brain damage and inflammation as observed in animals
exposed to excess deoxycorticosterone acetate (DOCA) and 2% saline
drinking solution (Pietranera et al., 2006). DOCA-salt exposure in-
creases vasopressin synthesis in the brain of SHR, but not of WKY

control animals (Pietranera et al., 2004). Hypertension does not de-
velop in adrenalectomized SHR rats unless aldosterone is given, which
acts on the kidney to elevate pressure (Kenyon et al., 1981). The brain is
also involved, however, since 100 ng MR antagonist administered icv
lowered blood pressure, provided the animals were sensitised by so-
dium loading (Rahmouni et al., 2001). This effect that was abolished
after denervation of the kidney (de Kloet et al., 2000; Rahmouni et al.,
2002). Furthermore, in the adult hypertensive SHR’s, the MR is in-
creased in binding capacity and expression in the hippocampus and
hypothalamus (Sutanto et al., 1992; Pietranera et al., 2012). This in-
creased expression of MRs seems generalised in SHR because it is also
observed in heart, kidney and peripheral vasculature (Mirshahi et al.,
1998; Delano and Schmid-Schönbein, 2004; DuPont and Jaffe, 2017).

A recent study (Brocca et al., 2017) confirmed that SHR has 2.5-fold
more MR mRNA and increased immunoreactive MR in GR positive cells
of hippocampus as compared to WKY control rats. The adult SHR hip-
pocampus also displays a higher density of Iba1+ ramified as well as
hypertrophic microglia, which are markers of inflammation. In the
Brocca et al. study the steroid responsive Serum and Glucocorticoid
regulated Kinase 1 (SGK1; Artunc and Lang, 2014) as well as Cox2, an
enzyme associated with vascular inflammation (Renna et al., 2013),
and the inflammasome component Nlrp3 (Liu et al., 2015) all showed
increased expression. In contrast, the anti-inflammatory Tgfβ level
(Qian et al., 2008) and NADPH-diaphorase activity (Hojná et al., 2010)
were significantly lower in the hippocampal CA1 area of SHR. These
data demonstrate that increased hippocampal MR expression in SHR
rats is associated with a shift towards increased expression of pro-in-
flammatory genes at the expense of anti-inflammatory factors. This shift
in pro- vs anti-inflammatory factors corroborates the microglia phe-
notype of Iba1+overexpression in hypertrophied microglia which is
typical for chronic inflammation (Brocca et al., 2017).

The findings with the SHR animal model raise a number of issues.
First, although, hippocampal neuropathology of SHR is remarkably si-
milar to that of DOCA-salt animals, causality by mineralocorticoids still
needs to be proven. In this respect, oxidative stress caused by tissue
damage may play a significant role in the switch towards a pathophy-
siological MR function (Davel et al., 2017; Dinh et al., 2016). While
under healthy conditions MR is protective, it seems that during ad-
versity MR may foster inflammation (Funder, 2004).

Second, since the MR antagonist icv appeared active in SHR animals
in lowering blood pressure, it would be of interest to examine if the
same treatment attenuates damage in the hippocampus. This experi-
ment would allow to test whether the antagonist interferes with a
physio-pathological feedforward cascade starting with hypertension-
induced damage to the vasculature, development of microgliosis and
astrogliosis, production of pro-inflammatory mediators and oxidative
stress leading to inappropriate MR activation. The neuronal damage
resulting from vasculopathy-induced hypoxia would further stimulate
release of pro-inflammatory factors, which would then exacerbate
oxidative stress and further dysregulation of MR (Brocca et al., in
press). A similar chain of events was envisioned following ischemic
damage, where MR antagonists and genetic deletion of MR are pro-
tective (Frieler et al., 2011)

Third, the SHR model may provide insight in the role of the al-
dosterone-selective MR present in a in the NTS and circumventricular
organs, which regulate salt appetite and indirectly emotion and cog-
nition (see section This may explain how pharmacological amounts of
aldosterone administered to rats exert anxiogenic effects and cause
behavioural changes in coping style (Hlavacova and Jezova, 2008).
After all, a substantial number of patients with essential hypertension
actually appear to secrete relatively large amounts of aldosterone
during stress (Markou et al., 2015).

Fourth, studies with the SHR animal may shed light on the interplay
between the corticosterone responsive MR in neurons, and possibly
astrocytes and microglial cells (Hwang et al., 2006), with the discrete
aldosterone-selective MR. Regarding neuronal MR, SHR rats show
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alterations in corticosteroid negative feedback (Gómez et al., 1998).
Furthermore, in experiments mimicking the presumed excessive release
of cytokines during neuro-inflammation, we found in Wistars that
hippocampal MR binding of corticosterone is increased with about 60%
after a systemic or icv challenge with IL-1. At the same time, the affinity
for corticosterone decreases as is evidenced by a poor nuclear retention
of 3H-corticosterone in hippocampal neurons in vivo. This decrease in
hippocampal nuclear binding is associated with less inhibitory input to
the HPA axis, and increased circulating levels of corticosterone.
Learning of the Morris water maze was not affected, but the IL-1 treated
animals showed altered spatial navigation in the Morris maze re-test
24 h after learning (Oitzl et al., 1993; Schöbitz et al., 1994). This
finding suggests that microglia’s cytokine release may affect neuronal
function.

In conclusion, the pendulum hypothesis states that pro-phlogistic
mineralocorticoids increase the risk for inflammation, while the anti-
phlogistic glucocorticoids increase vulnerability to infection. In the
above experiments, excessive activation of aldosterone-selective MRs
produces undesirable effects including the induction of salt appetite,
hypertension and damage to the vasculature. Alternatively, excessive
corticosterone-preferring MR-mediated actions enhance sympathetic
drive, and affect neurogenesis and neuronal plasticity. It is still un-
known to what extent the aldosterone-selective and corticosterone
preferring actions via the brain MR cooperate in the feedforward cas-
cade of oxidative stress and inflammation involving glial cells and
neurons (Vallee et al., 1995; Sabbatini et al., 2002; Pietranera et al.,
2006; Lopez-Campistrous et al., 2008; Gomez-Sanchez and Gomez-
Sanchez, 2014; Tayebati et al., 2016; DuPont and Jaffe, 2017).

6. About receptors, coregulators and GRE’s

To further understand the mechanistic underpinning of the steroid
effects on brain function and behavior, MRs and GRs, as members of the
superfamily of nuclear receptors, mediate powerful effects on gene
transcription and subsequently on expression of enzymes, receptors,
pumps, ion channels, structural proteins and other transcription factors
that may affect excitability, proliferation, differentiation and cell death.
Early studies on the molecular factors underlying the effects of gluco-
corticoids on the brain focused on regulation of neurotransmitter
synthesis, and – upon the availability of radioligands – their receptors.
In 1969, Efrain Azmitia, demonstrated that corticosterone stimulates
the activity of tryptophan hydroxylase activity, the rate limiting en-
zyme for 5HT synthesis (Azmitia and McEwen, 1969). Subsequently,
glucocorticoids were shown to have effects on 5HT turnover (de Kloet
et al., 1982) and receptor binding (de Kloet et al., 1986; Mendelson and
McEwen, 1992), and after cloning, on receptor mRNAs. Meanwhile, it
had become clear that the hippocampal response to 5HT1A receptor
activation was under bimodal control of corticosterone. As discussed in
detail in Section 3, MR activation suppresses, while GR activation sti-
mulates the response to the 5HT1A receptor activation in hippocampal
CA1 pyramidal cells (Joëls et al., 1991; Section 3). Accordingly, one
prominent gene that emerged as a likely transcriptional target, based on
mRNA suppression, was the 5HT1A receptor gene (Chalmers et al.,
1993; Meijer and De Kloet, 1994). Although its regulation by corti-
costerone has not fully explained the effects that were observed for
cellular excitability to 5HT, the 5HT1A mRNA suppression was among
the very first transcriptional effects that are regulated via the MR
(Meijer and De Kloet, 1995; Meijer et al., 1997, 2000a, 2000b).

6.1. Interactions with the DNA

To this date, the MR-mediated intrinsic genomic effects of corti-
costerone on neuronal excitability remain unexplained. As these effects
can be opposite to those of GR, comparing activities of MR and GR has
been a strategy to understand MR function. During the early 1990s, it
was discovered that GRs affect transcription in two fundamentally

different ways. The first mechanism is via direct binding to gluco-
corticoid response elements (GREs) in the DNA. As MR and GR have a
DNA binding domain that is almost (96%) identical, and the isolated
DNA binding domain is able to bind identical DNA sequences (Nelson
et al., 1999), until recently the existence of specific ‘MRE’ sequences on
the DNA was not a favoured hypothesis. Indeed, transcriptional reg-
ulation via binding of MR and GR to the same GREs occurs for genes
such as Sgk1 (Webster et al., 1993; Chen et al., 1999) and Gilz
(Soundararajan et al., 2005; D’Adamio et al., 1997). In fact, steroid
receptors bind as dimers or even tetramers to GREs (Presman and
Hager, 2017). MR and GR have been shown to heterodimerize in vitro
(Liu et al., 1995; Trapp and Holsboer, 1996), and were indeed found to
occupy the same GREs in the hippocampus (Mifsud and Reul, 2016).
The second mechanism of GR-mediated action is via protein-protein
interactions with other, non-receptor transcription factors such as AP-1
and NF-kB. This form of protein–protein interaction attracted much
attention, because of its role in transrepression of pro-inflammatory
genes in the immune system (Yang-Yen et al., 1990; Schüle et al., 1990;
Jonat et al., 1990). Soon after the discovery of the protein-protein in-
teraction mechanism, Pearce & Yamamoto demonstrated that MR was
much less potent at repressing AP-1 activity than GR (Pearce and
Yamamoto, 1993). Thus for a decade or so, most researchers assumed
that differential MR/GR effects were caused by such ‘classical transre-
pression’ mechanisms that would be mediated by GR but not MR.

With more recent genome wide analysis of receptor binding in a
diversity of cell lines, both GR and MR were demonstrated to bind to
DNA motifs that point to protein-protein interactions, independent of
direct DNA binding (Le Billan et al., 2015; John et al., 2011). For some
target genes, MR binding to SP-1 sites was shown in cell lines, pre-
sumably by tethering to SP-1 protein (Meijer et al., 2000a, 2000b,
2013). However, with a few exceptions (Kovács et al., 2000), not much
evidence for transrepression by cortisol on neuronal transcription was
found, be it via GR, or MR. Both GR and MR binding in the hippo-
campus of rats was found to be almost exclusively associated with GREs
after ChIPseq analysis (Polman et al., 2013; Pooley et al., 2017; van
Weert et al., 2017). Therefore, at least in neurons in healthy animals
direct binding to GREs seems to be the dominant mode of action for
both hippocampal MR and GR. For GR, these data corroborate earlier
findings that GR binding to DNA is indispensible for GR-dependent
effects on neuronal excitability and learning and memory (Karst et al.,
2000; Oitzl et al., 2001). Thus, cellular context (cell type, cell cycle
state, or inputs e.g. inflammation) seems to be important to determine
whether MR and GR use their ability to engage in ‘transrepression’
mechanisms.

Although the large majority of hippocampal MR/GR binding sites
depends on GREs, there does seem to be crucial cross talk on the
genome, notably with transcription factors that bind in the vicinity of
the steroid receptors. For hippocampal GR this was first shown by
comparing potential GRE-like sequences in proven corticosterone
regulated genes (Datson et al., 2013). The potential binding sites could
be divided in either functional GREs or non-functional GRE-like se-
quences. Actually, GR binding GREs exclusively harboured binding sites
for a number of other transcription factors in their vicinity, such as
MAZ-1. Non-functional identical sequences lacked these fingerprints.
Thus, proteins that bind these accessory sites (be it MAZ-1 or related
transcription factors) may interact with GR, and determine whether or
not GR can stably bind to the chromatin to affect gene transcription
(Datson et al., 2011).

The approach that led to the identification of MAZ-1 sites was based
on GR binding in the vicinity of genes that were actually regulated by
corticosterone. This represents only a modest subset of all GREs where
GR binds. The ChIPseq approach identifies GR/MR binding sites at a
genome wide scale, but these sites cannot necessarily be directly linked
to actual transcriptional target genes. Analysis of two hippocampal
genome wide DNA binding profiles for GR revealed the presence of
binding sites for transcription factor NF-1 in about 50% of the cases. It
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remains to be established if and how transcription factors that bind
these sites affect GR binding and signaling, but at present these data
give cues to potential cross talk between cortisol and other signaling
pathways. Apparently, it is not direct DNA binding ‘or’ but rather ‘and’
interaction with other transcription factors that determines the out-
come of MR/GR activation for transcriptional regulation. It is also un-
clear whether GRs in these cases enhance NF-1 binding and function, or
rather vice versa.

A notable finding from hippocampal genome wide MR binding is
that all MR binding was predicted to have an additional binding site for
NeuroD factors within 250 nucleotides up- or downstream of the GRE
(van Weert et al., 2017). The proteins NeuroD1, 2 and 6 are expressed
in principal neurons of the adult hippocampus; each of these proteins
can bind to this sequence. NeuroD factors are basic Helix-Loop-Helix
(bHLH) type transcription factors. Similar to MyoD factors they are
critically involved in cellular differentiation (Fong et al., 2015), and
may in a combinatorial way determine the exact phenotype of the
principal hippocampal neurons that express them (Mo et al., 2015).
Hippocampal GR binding was also associated with the NeuroD element
in< 20% of the sites, which may reflect heterodimerization with MR
(Mifsud and Reul, 2016). Thus, somehow, corticosterone via MR links
to factors that are important for the exact neuronal identity of the
different principal neurons in the hippocampus. In reporter assays,
NeuroD factors potentiate transcriptional activity of both MRs and GRs,
when a GRE and a NeuroD site are present in a promoter. This confirms
a functional interaction, but does not explain the observed prevalence
of MR-NeuroD pairing in vivo.

And so, 25 year or so after the discovery of differential intrinsic
effects of MR and GR on hippocampal excitability, we know that there
are indeed MR-specific loci on the hippocampal chromatin. Somewhat
surprisingly, MR and GR specificity does not seem to hinge on trans-
repression via DNA-binding independent interaction with other tran-
scription factors, but rather on selective MREs and GREs that represent
two of the subsets of functional MR and GR binding DNA sequences.
The cross talk partners, and the target genes that are associated with the
specific binding sites may help us to understand the nature of bimodal
MR/GR action in the hippocampus.

6.2. Coregulators

DNA binding is only the first step to transcriptional regulation via
MR and GR. The actual signal transduction upon binding to the DNA
consists of the recruitment of transcriptionally active protein complexes
that either remodel local chromatin structure, or lead to formation of
transcription initiation complexes (for positively regulated genes).
These downstream proteins form a large group, known as transcrip-
tional coregulators, that may be either coactivators, corepressors, or
both (O’Malley, 2007). GR and MR may directly interact with scores of
coregulators (Zalachoras et al., 2013). In turn, these coregulators may
interact with any number of nuclear receptors, and other transcription
factors, and have been considered ‘hubs’ that integrate signals from
many different steroid and non-steroid pathways (O’Malley, 2007). A
case in point for the stress system is the joint regulation of the Crh gene
in hypothalamus by both glucocorticoids and BDNF, which is me-
chanistically linked at the level of the coregulator CRTC2 (Jeanneteau
et al., 2012).

Similar to interacting transcription factors, the role of MR and GR
coregulators is of great interest to understand the cellular context in
which corticosteroids act. For example, the Crh gene that is pivotal to
both the HPA axis and emotional regulation, is regulated in opposite
directions by glucocorticoids in the hypothalamus (repression via GR)
and amygdala/bed nucleus stria terminalis (BNST) (induction via GR;
Makino et al., 1994). MR and GR coregulators are differentially dis-
tributed in different brain areas and cell types (Mahfouz et al., 2016).
The brain region specific machinery that is available to MR and GR to
regulate particular target genes may explain cell type specific effects of

corticosteroids on the Crh gene and other genes (Meijer et al., 2000a).
While many coregulators are shared between MR and GR, such as

the Steroid Receptor Coactivators 1, 2 and 3 (Meijer et al., 2005), others
may differentially interact with MRs and GRs. This suggests a me-
chanism for MR and GR specific effects, even after binding to similar
response elements. For example, the coregulator ELL was shown to
enhance MR-, but inhibit GR-dependent transcription (Pascual-Le
Tallec et al., 2005). Moreover, coregulators may even distinguish be-
tween aldosterone-bound MR and cortisol-bound MR (Fuller et al.,
2017). However, examples of specific coregulators are sparse, as they
likely interact with the N terminal domain of the receptors, which is
difficult to study (McEwan et al., 2007).

Lastly, coregulators act in a gene specific manner at MR and GR. At
individual promoter and enhancer regions, specific transcriptional
complexes are formed to affect gene expression, which leads to gene-
dependent requirement of coregulators for MR and GR target genes
(Grenier et al., 2004; Meijer et al., 2005). In mice lacking Steroid Re-
ceptor Coactivator-1 (SRC-1), Crh and Pomc mRNA regulation via GR
was abolished, but regulation of other genes was intact, and functional
consequences were very modest, due to redundancy in coregulators
needed for GR-mediated gene expression and developmental compen-
sation in the knockout mice (Lachize et al., 2009). Selective GR-re-
sistance of the Crh gene was later demonstrated after selective knock-
down of a SRC-1 splice variant in the central nucleus of the amygdala –
suggesting that targeting coregulator pathways is a strategy to interfere
in mood- and anxiety-related disorders (Zalachoras et al., 2016; Fig. 6).

The diversity in interacting transcription factors and coregulators
not only defines an intricate context that allows coordinated responses
to corticosteroids, but also forms an opportunity for directed inter-
ventions. The basis for protein-protein interactions is the specific con-
formation of the receptor after binding of full agonists of the receptor,
such as cortisol, corticosterone and dexamethasone. While such ago-
nists allow all possible interactions between receptors and downstream
partners, there are also synthetic (and perhaps natural – (Morgan et al.,
2017)) ligands that allow only part of the interactions, and in that way
combine agonism and antagonism. In immune disease, this concept has
been pursued extensively, inspired by the hope to separate anti-in-
flammatory actions from other effects by separating classical ‘transre-
pression’ from ‘transactivation’ (De Bosscher et al., 2003). More re-
cently, compounds that separate GR-mediated effects based on
differential coregulator recruitment were developed, and these may be
of benefit in treating stress-related and neurodegenerative disorders in
which glucocorticoids play a role (Zalachoras et al., 2013; Pineau et al.,
2016).

6.3. Variations on the theme: context & history

The generic mode of transcriptional regulation via MR and GR is by
binding to the DNA and subsequent recruitment of coregulators. This
then leads to regulation of the MR- or GR- ‘transcriptome’ in a

SRC-1e 

SRC-1a
GR 

Ligand

… 

Crh gene  
UP-regulation

Crh gene  
DOWN-regulation

Fig. 6. Coregulators mediate the effects of MR and GR on transcription in a cell
type, gene, and ligand dependent manner. As an example, Crh expression upregulation
in the central nucleus of the amygdala was shown to depend on the 1E splice variant of
the steroid receptor coactivator-1 (Zalachoras et al., 2016). SRC-1a seems necessary for
Crh and Pomc downregulation in the core of the HPA axis (Winnay et al., 2006; Lachize
et al., 2009).
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particular brain area or cell type. However, there are many variations
on this theme. For example, the MRs or GRs themselves may be subject
to posttranslational modification, e.g. as a consequence of BDNF sig-
naling, and this in turn affects the transcriptome of the receptor
(Lambert et al., 2013).

An important issue is that there is not a simple dose-response re-
lationship in terms of target genes: there is a substantial range of EC50

values for gene induction by corticosteroids (Reddy et al., 2012), per-
haps because the GR – GRE interactions are also defined by affinities of
receptor for the DNA binding sites. In fact, ChIPseq analysis of GRs in
the hippocampus showed a discrete population of GREs that only gets
occupied at very high circulating levels of hormone (Polman et al.,
2013). This differential target gene sensitivity makes sense, in that se-
vere stressors should induce changes that are not only quantitatively,
but also qualitatively different from for example modest circadian
variations (Meijer, 2006; Chatzopoulou et al., 2015).

The GR-occupied loci that are sensitive to only high elevations of
hormone most likely have particular roles in adaptation to stress, which
may require short or long term changes in behavioural, neuronal and –
underlying – transcriptional reactivity to stimuli. In other words: ex-
posure to high levels of glucocorticoids may act as a switch to neuronal
reactivity. Such (re-)programming effects are likely strongest during
early life, but can also occur during adulthood. These programming
effects have been observed as a consequence of stress, at different ages
and time scales (Turecki and Meaney, 2016; Nasca et al., 2015a,
2015b). The contribution of GR (and MR) to such stress-related repro-
gramming is often unclear, but may well be there. If so, the program-
ming ‘switches’ may be targets for GR antagonists to reinstate previous
regulations, and one of these molecular switches in the hippocampal
dentate gyrus may be CREB-BP (Oomen et al., 2007; Datson et al.,
2012).

While in cell systems, GR mostly requires ‘open’, or active, chro-
matin in order to bind, GRs can also open up chromatin, and act as local
‘pioneers’ to activate genomic loci (John et al., 2011). Such a me-
chanism would constitute a mechanism for permissive actions of cor-
tisol. In the hippocampus, work from the McEwen laboratory showed
that there are large scale epigenomic changes even after short term GR
activation (Hunter et al., 2012). Vice versa, changed responsiveness as a
consequence of earlier stress, even during adulthood, has profound
consequences for the transcriptional response to corticosteroids. In a
collaboration with Bruce McEwen, Nicole Datson found that in the
laser-dissected dentate gyrus of the rat hippocampus, half the tran-
scriptional changes to corticosterone treatment were unique to either
naïve or earlier stressed animals (Polman et al., 2012; Datson et al.,
2013). Thus, both early and late life stressors impact on neuronal re-
activity and on subsequent adaptations to stressors. In fact, in our ex-
perimental designs over the past decades many response characteristics
of acute stressors were investigated in rodents that previously had been
exposed to chronic repeated stressors or chronic variable stressors
(Karst and Joëls, 2003; Datson et al., 2013; Gray et al., 2014), see for
review (Joëls et al., 2007).

Long term adaptations and switches are – logically – considered to
be the consequence of either exposure to stressors or inflammatory
conditions that conditionally activate MR and/or GR (Joëls et al., 2012;
Vogel et al., 2015; Brocca et al., 2017; Funder, 2017) in combination
with high levels of corticosteroids that saturate of even supersaturate
GR (Kaouane et al., 2012). Changes in membrane potential, oxidative
stress and altered redox potential activate the MR, which is otherwise
not considered to play a role in such programming effects. Whether or
not this is the case during particular phases of life remains to be ad-
dressed, however. In recent studies on chromatin occupancy by MR,
there was a surprisingly broad dose range that extended beyond the
assumptions from direct ligand-receptor binding studies (Mifsud and
Reul, 2016) suggesting that also receptor turnover should be taken into
account (Conway-Campbell et al., 2007). In any case, it is clear that
corticosteroids affect via transcriptional mechanisms the organization

and activity of chromatin in the brain, which forms, in cross talk with
other signals, the genomic basis for the response to stressors (Fig. 7).

7. Questions raised about the MR:GR balance hypothesis

7.1. Is MR always occupied?

Or in other words, are the much lower levels of free rather than total
CBG-bound CORT perhaps within the nuclear MR signaling range? This
question refers to early statements that MR is already occupied for
80–90% with basal a.m. trough corticosterone levels of 1 μg%
(∼30 nM; Reul and de Kloet, 1985; Reul et al., 1987; Spencer et al.,
1990), which corresponds to a hippocampal free steroid concentration
∼0.3 nM as measured with microdialysis (Qian et al., 2012). Although,
these free corticosterone levels are indeed around the Kd of MR at 0 °C,
occupancy of the receptor depends, however, on the hourly pulses of
corticosterone. Such a pulse can be mimicked by a bolus injection.
Thus, saturation of nuclear bound MR occurred at one hour after in-
jection of a tracer dose of 0.7 μg 3H-corticosterone/100 gr body weight
to ADX rats (McEwen et al., 1968; de Kloet et al., 1975), which results
1 h later in circulating corticosterone levels in the range of the ultradian
trough (Reul and de Kloet, 1985). The binding affinity of the MR is so
high that immunoreactive (ir)MR stays in the hippocampal nucleus in
vivo during the 1 h interpulse interval. In contrast, irGR nuclear trans-
location reflects the ultradian rhythm (Sarabdjitsingh et al., 2009;
Sarabdjitsingh et al., 2010) and imposes cyclic gene expression patterns
(Conway-Campbell et al., 2010). The distinct differences in occupancy
and translocation between the two receptor types led us to propose that
the nuclear MR is important for tonic control maintaining the threshold
or sensitivity of the stress system, while GR is subsequently essential for
recovery and stress adaptation (De Kloet and Reul, 1987). For MR, re-
ceptor turnover and activity seem the rate-limiting factors rather than
the concentration of the ligand as is the case for GR.

There are however, two new facts to consider in the receptor oc-
cupancy story. One fact refers to the ChIPseq studies which suggest that
the capacity of some genome binding sites for MR exceeds the ligand
binding capacity of the receptor (Polman et al., 2013; Mifsud and Reul,
2016). Although part of this phenomenon can be explained by the
formation of MR:GR heterodimers (Mifsud and Reul, 2016), it also
highlights that under in vivo conditions the rate of synthesis and de-
gradation rather than the absolute levels of the receptors are important.
Accordingly, the receptor turnover (Conway-Campbell et al., 2007)
rather than the receptor levels assessed by radioligand binding,

Gene 1 Gene 2 Gene 3 

MR 

GR 

NF-kB or AP-1 
transrepression 
Anti‐inflammation 

MR-specificity  
through NeuroD 
Stress responsiveness 

Amplification of Glu/NA- 
activated pathways 
via co-activator complexes 
Contextualization 

GR depending on MR 
(permissive action?) 

Fig. 7. Genomic action of MR and GR through multiple mechanisms. These me-
chanisms are (perhaps non-exclusively) linked to particular types of glucocorticoid ac-
tions (mentioned in italics). Transrepression of proinflammatory factors is clearly a re-
active, dampening mode. MR-dependent activity includes pro-active signaling, setting the
stage for stress responsiveness. Heterodimerization is conceptually ill understood, and
may involve increasing the dynamic range of responses, and permissive action of basal
steroid levels for stress responses. Lastly, co-activator-mediated interactions with other
signaling pathways may form a basis for contextualization of the – by itself generic’
glucocorticoid signal to affect those cells and circuits that are relevant for a particular
stress situation.
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immunoreactivity or hybridization assays probably will determine how
much of the steroid receptor complex eventually will accumulate at the
MR (and GR) binding sites in the genome. This of course does not take
into account yet the on-off DNA-receptor binding kinetics observed
with molecular imaging (Voss et al., 2011; Groeneweg et al., 2014).

The other novel fact is that MR and GR can mediate rapid non-
genomic actions of corticosterone. The action of corticosterone on
mEPSC frequency of limbic neurons has an approximately ten fold
higher EC50 for corticosterone than can be predicted from the Kd of
steroid binding to the nuclear form of these receptors (Karst et al.,
2005). Since the membrane receptor is not yet available for binding
studies, we are left with the notion that the membrane rather than the
nuclear variant of the MR is capable to sense changing corticosterone
concentrations during stress and the circadian / pulsatile rhythm. This
membrane MR likely mediates the rapid corticosterone effects on
coping styles and cognitive processing.

7.2. Is the MR:GR balance not too simple a concept?

In other words, this question would imply that a stochiometric re-
lationship of MR and GR would be too simple to predict the outcome of
corticosterone-regulated molecular, cellular and behavioural responses.
We entirely agree that this could be inferred at face value from the
simple ‘MR:GR balance’ stochiometry. However, the actual hypothesis
refers to a ‘balance in MR- and GR-mediated actions’ (Section 2.3). At
the molecular level this accounts for the context-dependent recruitment
of transcription regulators, factors and specificity conferring mechan-
isms as outlined in the previous section. At the cellular level MR- and
GR mediated actions are complementary, often in a U-shape as in the
hippocampal CA1 neurons, but also sigmoidal as in dentate gyrus
neurons or linear as in PVN or aminergic neurons where mainly GR is
present. As pointed out (Joëls, 2006), these widely divergent effects
may depend on local bio-availability of the ligand, receptor diversity
and the above-mentioned complexity of the genomic machinery. The
importance of the MR:GR balance on the organismic level is addressed
below.

7.3. Does the MR:GR balance account for the enormous diversity in
hormone action?

We argue that the function of the glucocorticoid hormone is pri-
marily aimed to coordinate widely divergent cellular and tissue reac-
tions and to integrate their outcome over time with one specific goal: to
promote coping and adaptation. It is therefore of interest that MR-
mediated actions –in interaction with effects by other quickly acting
stress mediators- are prominent in the onset of the stress response and
are linked to coordination of vigilance, attention, fear, appraisal pro-
cesses and selection of an appropriate coping strategy to deal with a
stressor. These actions are all directed to defend the ‘self’. Subsequently,
after MR-dependent encoding of the experience, the GR-mediated ac-
tions coordinate contextualization, rationalization and memory storage
of the experience with the goal to promote adaptation and recovery
from the stressor (Sections 2 and 3).

Thus, acute stress involving MR first activates a salience network
and over time GR redistributes resources to an executive network en-
hancing cognitive processes (Henckens et al., 2012; Hermans et al.,
2014). Finally, memory storage can be considered a GR-mediated ac-
tion that primes brain circuits for coping with future encounters. There
is still very little understanding how these complementary MR- and GR-
mediated actions can coordinate the emotional and cognitive aspects of
the stress response within the spectrum of other signals involved (e.g.
neurotransmitters, neuropeptides and growth factors). A glimpse of the
underlying mechanism towards integration over time has become ap-
parent from the recently discovered phenomenon of metaplasticity
(Section 3) (Joëls et al., 2012; Karst and Joëls, 2016). Thus, we have
begun to dissect the hormone-dependent mechanism of resource

allocation that coordinates and integrates distinct phases of defense,
adaptation and priming of the brain under stress.

MR and GR also interact over time. While GR activation promotes
memory storage, the retrieval of this memory trace in the right context
at a later time depends on rapid MR-mediated actions. MR antagonists
administered prior to re-testing individuals can block the retrieval of
previously learned behavior (Oitzl and de Kloet, 1992; Khaksari et al.,
2007; Dorey et al., 2011; Vogel et al., 2016; Wirz et al., 2017). Also in
the immune defense domain, the pendulum hypothesis illustrates how
mineralocorticoids and glucocorticoids have sequentially opposing pro-
and anti-inflammatory responses over time. The priming phase was
uncovered by the pioneering research of the Maier lab: the formation of
the inflammasome involved among others GR-mediated activation of
NLRP3 (Frank et al., 2015).

7.4. What is the role of MR and GR in long-term priming effects?

The late Seymour Levine (Levine, 2005) discovered in the mid
1950s that early life experience is one of the most profound primers of
life-long changes in brain circuits. As was first reported by Michael
Meaney, Moshe Szyf and coworkers (Weaver et al., 2004) these priming
events at least involve epigenetic modification of DNA encoding GR
expression. Since this epigenetic programming is a topic deserving a
whole review by itself (McEwen, 2017), we will just allude to a few
fundamental principles.

The first issue is that early life experience is an important determi-
nant of individual differences in cognition and emotion in later life and
hence also depends on the testing conditions in adulthood. Generally,
whole litters are exposed in numerous studies to a variety of paradigms
based on variations in maternal care or neglect. That has led to the
notion that increased maternal care reduces stress reactivity in later
life. However, when these well-groomed animals were exposed to se-
vere stressful challenges in later life, they were unable to cope. This
contrasted with their neglected littermates who outperformed them in
e.g. fear-motivated behavior, a phenomenon known as the ‘mismatch’
hypothesis (Champagne et al., 2008; Daskalakis et al., 2013).

The second issue concerns amplification of individual differences at
later life. For instance, Brown Norway rats exposed to maternal depri-
vation at postnatal day 3 for 24 h show a remarkable trajectory of
cognitive aging. While at senescence most of the control animals are
partially impaired, albeit with some poor and some excellent perfor-
mers, this is not the case with the deprived rats. Deprivation of ma-
ternal care drives at senescence cognitive performance to the extremes
(either impaired or non-impaired) at the expense of the average par-
tially impaired performance (Oitzl et al., 2000; de Kloet and Oitzl,
2003; Sandi and Touyarot, 2006).

While these two examples demonstrate that DNA methylation is
very important for long-term priming of the brain, this at the same time
raises the third issue, i.e. whether there are windows during life to
modify such enduring effects. In recent experiments it appeared that the
priming effect induced by an unstable maternal environment (Rice
et al., 2008) – a procedure that evokes an inappropriate corticosterone
release - appears reversible by treatment with the GR antagonist mi-
fepristone several weeks after early life adversity during early puberty
(Arp et al., 2016).

These examples demonstrate the importance of epigenetics for
priming brain circuits in an enduring manner. Evidence is accumulating
for DNA methylation of GR as well as other stress signaling molecules
including the GR-dependent programming switches discussed in
Section 6.3, but results for the MR are still lacking.

7.5. Which ratio of MR:GR signaling is favorable for coping and
adaptation?

In a healthy individual MR:GR signaling adapts to demand. This
implies that a given ratio of MR and GR activities may become
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maladaptive when the individual is faced with challenges that exceed
coping resources or when either one of the receptors becomes defunct.
For instance, MR signaling in hippocampus modulates the initiation and
magnitude of the stress reaction (Ratka et al., 1989; Harris et al., 2013)
and its dysregulation may affect coping. If, GR signaling is inadequate
the stress response becomes prolonged and recovery is hampered which
is unfavorable for stress adaptation (Sapolsky et al., 2000).

There are different strategies in learning to cope with a stressor (see
section 2 and 3). Under mild stressful conditions most individuals use a
hippocampal-based cognitive strategy, but with more severe stressors
the striatal stimulus-response performance (habit learning) is preferred.
Such stressor exposure increases hippocampal and prefrontal MR ex-
pression (Gesing et al., 2001; Workel et al., 2001; Brydges et al., 2014;
Zhang et al., 2012). Also, individuals with genetically determined
higher MR expression prefer a stimulus-response strategy as is observed
with human carriers of MR haplotype 2 (Wirz et al., 2017). These
functional magnetic resonance imaging (fMRI) and electro-
encephalography (EEG) studies showed that the selection of habit
learning coincided with a bias towards amygdala-striatal connectivity
at the expense of hippocampal function (Wirz et al., 2017, Schwabe
et al., 2013).

Stress-sensitive DBA mice with high hippocampal MR expression
display an active coping style in the forced swim test. These DBA mice
show increased amygdala-striatal connectivity as opposed to C57Bl6
mice, which use a passive hippocampus-linked strategy (Colelli et al.,
2014). The genetic trait for high MR expression is also found in
dominant ‘short attack latency’ mice that learn an active coping style
(Veenema et al., 2003). In humans and rodents habit learning can be
reversed to a hippocampal spatial strategy by MR antagonist treatment
(Schwabe and Wolf, 2013; Vogel et al., 2016). The MR antagonist also
attenuates sympathetic outflow, aggressive behavior and anxiety (de
Kloet et al., 2000; Korte et al., 1995; Kruk et al., 2013). It seems that
high limbic MR activity favors an active coping style and habit learning.

Activation of nuclear and membrane MRs enhances excitatory
transmission (Joëls et al., 2012). High MR signaling was found to cor-
respond with low mGlu2 receptor expression in mice selected for an-
xiety and a passive coping style in the forced swim test following ex-
posure to chronic stress (Nasca et al., 2015a, 2015b). The finding was
recapitulated with the Flinders stress-sensitive mouse model for de-
pression which shows besides a passive coping style and anxiety, also
insulin resistance. Administration of acetyl-L-carnitine -an acetyl donor
and rapidly acting candidate antidepressant- increased mGlu2 receptor
expression, decreased MR expression, and reversed the behavioural and
metabolic phenotype (Nasca et al., 2013, 2015a, 2015b). Interestingly,
the Flinders mice that were resistant to acetyl-L-carnitine, were not
affected in glutamate homeostasis and the high MR expression was not
reduced (Bigio et al., 2016). It thus seems, that in these mice in spite of
the high MR signaling, the switch to the active coping strategy during
stressor exposure does not occur.

In post-mortem brain tissue of depressed patients MR expression is
decreased (Klok et al., 2011a), while antidepressants increase MR (and
GR) expression (Seckl and Fink, 1992). Furthermore, mice with fore-
brain overexpression of MR generally show improved cognitive func-
tion and less anxiety (Rozeboom et al., 2007; Mitra et al., 2009; Harris
et al., 2013). In these mutants, MR overexpression partly protected
against the adverse outcome of chronic (early life) stress on spatial
memory, neurogenesis and synaptic function (Kanatsou et al., 2015;
Kanatsou et al., 2017). Likewise, rats exposed as pups to enhanced
maternal care have increased hippocampal MR (and GR) expression and
showed improved hippocampal cognitive performance (Champagne
et al., 2008). However, if these animals are faced with severe stressors
they show increased anxiety and impaired hippocampal learning.

A testable hypothesis is, therefore, that limbic MR signaling protects
under healthy conditions, but may switch during adversity to a pro-
verbial ‘disease’ receptor (Jaisser and Farman, 2016) if the ability to
select an efficient coping style fails. By testing this hypothesis, MR

signaling should be aligned with the function of the ventral tegmental
dopamine circuitry in stress coping, which depends on limbic afferents
(Belujon and Grace, 2017).

8. Concluding remarks

And so, half a century after the discovery of the hippocampal cor-
ticosterone receptors, the neuroendocrinology of stress has witnessed a
number of interesting twists. Thus, there are actually two receptor
systems, MR and GR, for glucocorticoids, which comprise not only the
classical nuclear receptors but also membrane-associated variants that
mediate rapid non-genomic actions. MR- and GR occur in genetic var-
iants which associate with physiological and behavioural traits.
Epigenetic processes induced by chronic and/or acute (early) life
stressors can result in enduring changes in expression of MR and GR
with consequences for the stress response. During a stressful experience,
brain circuits are primed for storage of memory traces, which can be
retrieved again via MR for coping with a challenge. Evidence is ob-
tained that a similar principle of storage and retrieval may apply to the
inflammasome in brain. Rapid progress was made with the identifica-
tion of coregulators and transcription factors, notably the NeuroD and
NF1 family, to assign context-dependent specificity to glucocorticoid
action.

Of great help to accommodate the new knowledge of MR and GR is
the concept of allostasis, which is defined as the process to re-establish
homeostasis, i.e. by acquiring stability through physiological and be-
havioural change (Sterling and Eyer, 1988; Karatsoreos and McEwen,
2011; McEwen and Gianaros, 2011). Allostasis relies on metastability
describing “the capacity of the brain to switch or to even lock into
several available patterns which can be either adaptive or maladaptive”
(Sousa, 2016; Kelso, 2012). Energy expenditure to maintain such a la-
bile equilibrium is calibrated with the metric of allostatic load
(McEwen, 2003; Juster et al., 2010; McEwen and Wingfield, 2010). The
brain corticosteroid receptors are important mediators of allostasis, not
only because of their specific effects on synaptic plasticity, but also
because of their ability to supply through mitochondrial mechanisms
the energy resources on demand to cells and circuits activated in a
time-, receptor- and circuit-dependent manner (Picard et al., 2014;
Hollis et al., 2015), (see Section 3.3 and Figs. 2–4).

The coming decades much more knowledge will be gained about the
signaling mechanism underlying coping, resilience and adaptation to
stress. A major task will be to translate these molecular details to cell
function and particularly to behavior. The unraveling of molecular
signaling pathways will learn how an environmental experience can
shape brain and behavior. This knowledge is fundamental for under-
standing the actions of glucocorticoids in stress-related mood- and an-
xiety disorders. These findings no doubt will be helpful to alleviate and
perhaps even prevent stress-related brain disorders. One can envision a
world where individuals may be able to predict their resilience ability
using a combination of neuropsychology with polygenic and other
biomarkers of neuro-endocrine, cognitive and emotional aspects of
stress reactivity. Once a certain tipping point has passed, prevention
probably is no option anymore and treatment is needed. The above-
mentioned bio-psychology defined in conceptual endophenotypes can
then be helpful to predict the outcome of therapy (Hellhammer et al.,
2018).

Current pharmacotherapy with glucocorticoids is still symptomatic
and there are adverse side effects. Initial success is booked with bal-
ancing MR- and GR-mediated effects in this respect: i.e. to provide
cortisol to refill the depleted brain MR during dexamethasone (Meijer
and de Kloet, 2017). The advent of selective glucocorticoid receptor
modifiers (SGRM) presents another very interesting option: new med-
icines are being designed that target coregulators with the goal to
modulate -in a cell-, tissue or context-dependent manner- receptor
function (Zalachoras et al., 2013; Van Den Heuvel et al., 2016; Kroon
et al., 2018). Alternatively, replacement therapy of the adrenally-

E.R. de Kloet et al. Frontiers in Neuroendocrinology 49 (2018) 124–145

137



deficient individuals is still far from optimal. Although such patients are
in a stable medical condition, quality of life (QoL) is diminished by e.g.
cognitive deficits and fatigue (Tiemensma et al., 2016). This important
medical need likely will be met by mimicking the ultradian cortisol
cycle (Spiga et al., 2015). In future, one can envision biosensors mon-
itoring the need for cortisol during stress and exercise that are com-
bined with a bio-device releasing the hormone on demand with the goal
to improve Qol.

But even in the short-term, our current insight may help clinical
practice. Rather than hoping that a hypothesis-free research endeavor
will bring the magic bullet which can boost resilience and will deliver
successful treatment of stress-related psychopathology, one target may
be staring us already right in the face: cortisol. This endproduct of the
endocrine stress system drives two complementary receptor systems
-MR and GR- which coordinate and integrate the enormous diversity in
cell and tissue responses to stress over time. What began with hippo-
campal corticosterone receptors half a century ago has grown today
into a dual MR:GR signaling system overarching rapid non-genomic and
delayed genomic actions, serving cognitive functions that promote
coping, adaptation, memory and resilience in a changing world.
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