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Natural killer (NK) cells play a pivotal role during immunity against viruses and circum-
stantial evidence also indicates that they can protect the host against developing 
tumors. Peripheral blood NK cells comprise CD56brightCD16lo/− cells that constitutively 
express CD25 (IL-2Rα) and CD56dimCD16hi cells that express CD25 upon activation. 
Using NK cells from two patients, one with a primary immunodeficiency characterized by 
a homozygous mutation in CD25 (born in year 2007 and studied since she was 3 years 
old) and one with a homozygous mutation in STAT5b (born in year 1992 and studied since 
she was 10 years old), we observed that the absence of IL-2 signaling through CD25 
promotes the accumulation of CD56brightCD16high NK  cells, and that CD56brightCD16lo, 
CD56brightCD16high, and CD56dimCD16high NK cells of this patient exhibited higher content 
of perforin and granzyme B, and proliferation capacity, compared to healthy donors. Also, 
CD56bright and CD56dim NK cells of this patient exhibited a reduced IFN-γ production in 
response to cytokine stimulation and increased degranulation against K562 cells. Also, the 
CD25-deficient patient presented a lower frequency of terminally differentiated NK cells 
in the CD56dimCD16hi NK subpopulation compared to the HD (assessed by CD57 and 
CD94 expression). Remarkably, CD56dimCD16high NK cells from both patients exhibited 
notoriously higher expression of CD62L compared to HD, suggesting that in the absence 
of IL-2 signaling through CD25 and STAT5b, NK cells fail to properly downregulate 
CD62L during their transition from CD56brightCD16lo/− to CD56dimCD16hi cells. Thus, 
we provide the first demonstration about the in vivo requirement of the integrity of the  
IL-2/CD25/STAT5b axis for proper human NK cell maturation.
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inTrODUcTiOn

Natural killer (NK) cells are essential players in immunity against viral infections (1–3). In addition, 
a prospective cohort study demonstrated that high cytotoxic activity of NK cells is associated with 
a decreased risk of cancer (4). They also display a high degree of diversity that determines their 
tissue tropism and responses to external insults (5, 6). Two major populations of NK cells can be 
detected in peripheral blood, based on the expression of CD56 and CD16 (FcRγIIIa): about a 90% 
are CD56dimCD16hi, while the rest exhibit a CD56brightCD16lo/− phenotype. CD56brightCD16lo/− cells 
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are mostly cytokine producing-cells (in particular, IFN-γ), while 
CD56dimCD16hi cells are mainly cytotoxic due to their high con-
tent of perforin and granzymes, but also produce cytokines (6, 7). 
CD56brightCD16lo/− cells appear to be precursors of CD56dimCD16hi 
NK  cells (8–10). A phenotypic CD56brightCD16hi intermediate 
stage in the progression of CD56bright to CD56dim NK  cells that 
displays cytotoxic activity (ADCC and direct cytotoxicity) has 
been identified in peripheral blood of healthy donors (HDs) and 
patients after hematopoietic stem cell transplantation (HSCT) 
(9–13). Moreover, CD56brightCD16lo/− (abundant in lymph nodes) 
can differentiate into CD56dimCD16hi-like cells (abundant in 
efferent lymphatics) in the presence of IL-2 and autologous 
T cells, suggesting that these subpopulations are developmentally 
connected (10, 12, 13). However, the physiological stimuli that 
promote such differentiation remain undefined. Also, NK  cells 
can be divided into developmental stages based on the expression 
of CD27 and CD11b (14–18).

CD56brightCD16lo/− NK  cells constitutively express the high 
affinity IL-2 receptor (IL-2R), a trimeric receptor composed of  
CD25 (α chain), CD122 (β chain), and CD132 (common γ 
chain) (10, 19–21), while CD56dimCD16hi NK cells constitutively 
express the low affinity IL-2R, a dimeric receptor composed of 
CD122 and CD132 (21). CD25 is also induced in CD56dim cells 
upon activation by cytokines, making them more responsive to 
IL-2 (22, 23). In turn, IL-2 signals through activation of Jak1/
Jak3 kinases that activate STAT5a/STAT5b-dependent signaling 
pathways (24). However, IL-2 can also promote some effects in a 
STAT5b-independent manner through the activation of STAT1α 
and STAT3 in primary T cells (25, 26). Moreover, STAT5a and 
STAT5b mediate partially overlapping functions but also different 
functions in human T cells (27). Remarkably, the role of IL-2 in 
human NK cell maturation remains unknown, mostly due to the 
lack of suitable genetic deficient individuals that may shed light 
on this issue.

Human inborn genetic primary immunodeficiencies (PID) 
that affect the generation, homeostasis, and/or function of 
NK cells constitute straightforward models to understand human 
NK cell immunobiology (1, 28). Among over 300 known genetic 
deficiencies, nearly 50 impact on NK cells (29–34). Human CD25 
deficiency, caused by mutation in the IL2RA gene, is a combined 
immunodeficiency characterized by invasive viral and bacterial 
sinopulmonary infections, lymphoproliferation, and severe 
multi-organ autoimmune disorders (35). Only four CD25 defi-
cient patients have been reported, and very little is known about 
the consequences of CD25 deficiency on the NK cell compart-
ment (30, 36–38). Moreover, STAT5b deficiency also is a rare PID 
with only 10 cases described, some of which are associated with 
high susceptibility to varicella and herpes virus infections (39).

Considering that these deficiencies may affect NK  cells and 
determine the clinical picture of the patients, we performed a 
characterization of NK cells in one patient with a homozygous 
CD25 deficiency and in one patient with a homozygous STAT5b 
deficiency, both of which have been previously described by our 
group (38, 40, 41). We unraveled a critical role of the IL-2/CD25/
STAT5b axis in NK cell maturation and partially explain the clini-
cal symptoms of the patients, re-emphasizing the critical role of 
NK cells in immunity.

MaTerials anD MeThODs

samples
Two patients were included in this study. Patient 1, born in year 
2007 and studied since she was 3 years old, carries a homozygous 
missense mutation that introduces an amino acid substitution 
in position 41 of the extracellular domain of CD25 (Y41S) that 
abrogates its expression without affecting expression of CD122 
and CD132. This patient presented severe atopic dermatitis, 
chronic diarrhea, and several respiratory infections, associated 
with chronic and severe inflammatory lung disease (follicular 
bronchiolitis with lymphocyte hyperplasia), eczema, and infec-
tions (in particular, a severe varicella) (38). Patient 2, born in year 
1992 and studied since she was 10 years old, carries a homozygous 
missense mutation that introduces an amino acid substitution 
(F646S) in the βD′ strand of the SH2 domain of STAT5b. This 
patient presented upper and lower respiratory tract recurrent 
infections, severe cutaneous eczema, episodic infections in the  
first years of life, autoimmune thyroiditis, and pronounced 
growth failure (41). Whole blood from the patients and from 
HDs was collected with EDTA or heparin. Blood collection was 
performed when the patients were clinically stable (with no 
signs of infections or other major health conditions directly 
perceptible by the physician). In some cases, peripheral blood 
mononuclear cells (PBMCs) were isolated by Histopaque® 
1077 (Sigma) centrifugation and cultured in RPMI 1640 
(Sigma) supplemented with 10% inactivated fetal bovine 
serum (Invitrogen), glutamine, gentamicin, and penicillin.  
Samples from age-matched HD attending the Immunology Unit 
from the “Ricardo Gutierrez” Children’s Hospital (Buenos Aires, 
Argentina) were also used. Studies have been approved by the 
institutional review committee and informed and written consent 
of the parents of the participating subjects were obtained.

antibodies and reagents
The following monoclonal antibodies (mAb) against human mole-
cules were used: PE-anti-NKp46 (9E2); PE-anti-NKG2D (1D11), 
PerCP/Cy5.5-anti-CD16 (3G8), FITC-anti-CCR7 (G043H7), 
Alexa488-anti-perforin (δG9), PE-anti-Granzyme B (GB11), 
PE-anti-IFN-γ (4S.B3), FITC-anti-T-bet (4B10), PE-anti-CD11b 
(ICRF44), and PE-Cy7-anti-CD3 (UCHT-1), FITC-anti-CD27 
(M-T271), PE-Cy7-anti-CD94 (DX22) and PE-anti-IL-18Rα 
(H44) from Biolegend; PE-anti-CD25 (2A3), PE-anti-CD62L 
(SK11), PE-Cy5 anti-CD107a (H4A3), FITC-anti-CD57 (NK-1), 
APC-anti-IL-12Rβ1 (2.4E6), PE-anti-12Rβ2 (2B6/12beta2) and 
PE-Cy5 mouse IgG1κ (MOPC-21, isotype-matched control mAb; 
IC) from BD; APC-anti-CD56 (N901) from Beckman Coulter; 
and PE-anti-IL-18Rβ (132029) from R&D Systems. Human rIL-
12 (PeproTech), rIL-15 (PeproTech), rIL-18 (MBL), and rIL-2 
(Proleukin®, Prometheus) were also used.

Flow cytometry
Immunostaining was performed using whole blood or PBMC. 
For whole blood, 100  µl of blood collected with EDTA were 
stained during 15  min at room temperature with the mAb. 
Thereafter, red blood cells were lysed using FACSLysing solution 
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(BD) for 7  min, washed with PBS, and acquired. For PBMC, 
5 × 105 cells were stained with the mAb for 15 min, washed with 
PBS, and acquired. Expression of IFN-γ and T-bet was analyzed 
by intracellular flow cytometry (FC) using Cytofix/Cytoperm 
(BD) following manufacturer’s protocol. For IFN-γ, cells were 
cultured in the presence of Golgi-Stop® during the last 4 h. For 
perforin and Granzyme B expression, Dako Intrastain kit was 
used. Cells were acquired in a FACSCanto II flow cytometer (BD) 
and analyzed using FlowJo (Treestar, Inc.). Negative populations 
were established with the “fluorescence minus one” tube (FMO). 
Results were expressed as MFI. Prism 5.0 (GraphPad Software) 
was used to plot the results.

nK cell Proliferation
Peripheral blood mononuclear cells were stained with 
Carboxyfluorescein succinimidyl ester (CFSE, CellTrace™ CFSE 
Proliferation Kit- Invitrogen, Molecular Probes®) and cultured 
in the absence or in the presence of rIL-15 (2 ng/ml) and rIL-2 
(30 U) during 5 days at 37°C with 5% of CO2. Proliferation was 
assessed as the frequency of dividing cells (% of CFSElow).

iFn-γ Production
Peripheral blood mononuclear cells were cultured overnight in the 
absence or in the presence of rIL-12 (10 ng/ml), rIL-18 (10 ng/ml),  
and rIL-15 (2 ng/ml). During the last 4 h, Golgi-Stop® (BD) was 
added to the cultures and IFN-γ production was assessed by FC as 
described (23). NK cells were gated as CD3−CD56+ cells.

nK cell Degranulation assay
Peripheral blood mononuclear cells were cultured for 3 h without 
or with K562 target cells (effector:target ratio: 1:3) at 37°C with 
5% of CO2 in the presence of the anti-human CD107a mAb or 
an IC mAb. Thereafter, NK cell degranulation was analyzed by 
FC. NK cells were gated as CD3−CD56+ cells, and degranulation 
was expressed as percentage of CD107a+ NK cells. Background 
degranulation of unstimulated cells (without target cells) was 
always below 5%.

resUlTs

cD25 Deficiency Promotes the 
accumulation of Dysfunctional nK  
cells That contain an increased 
Frequency of cD56brightcD16hi cells
The CD25-deficient systematically exhibited NK cell counts within 
the range of the healthy population (221  ±  41 NK  cells/mm3)  
since she was 3 years old (when she began to be studied in 
year 2010), while the STAT5b-deficient patient exhibited low 
NK cell counts sporadically (average: 111 ±  87 NK cells/mm3) 
since she was 10  years old (when she began to be studied in 
year 2002) (Figure  1A). In terms of frequencies, these values 
were 4.8 ± 2.3% of NK cells in the CD25-deficient patient and 
13.4 ± 7.5% in the STAT5b-deficient patient (representative zebra 
plots of CD3−CD56+ cells are shown in Figure 1B). Moreover, 
the CD25-deficient patient, but not the STAT5b-deficient patient, 
exhibited a large increased frequency of CD3−CD56brightCD16hi 

NK  cells and an accompanying decrease in the frequency of 
CD3−CD56dimCD16hi NK  cells (Figure  1C). For the CD25-
deficient patient (who never exhibited NK cell numbers below the 
reference values), these frequencies were relatively stable along 
time (Figure  1D). Also, only CD3−CD56brightCD16lo/− NK  cells 
from the HD and from the STAT5b-deficient patient but not 
from the CD25-deficient patient, expressed CD25 (Figure 1E). 
Therefore, the absence of CD25 (but not the absence of STAT5b) 
promotes the accumulation of less mature NK  cells with a 
CD56brightCD16hi phenotype.

Next, we analyzed the expression of some molecules criti-
cally involved in NK  cell effector functions. Although we did 
not observe differences NKp46 and NKG2D expression in the 
CD56brightCD16lo/−, CD56brightCD16hi, and CD56dimCD16hi sub-
populations of NK  cells between HD and the CD25-deficient 
patient (not shown), the three NK cell subpopulations from the 
CD25-deficient patient contained higher amounts of perforin 
(Figure 2A) and granzyme B (Figure 2B) compared to HD. These 
results suggest that the IL-2/CD25 signaling is dispensable for 
the normal synthesis and expression of these major lytic media-
tors and that this signaling pathway might function as negative 
regulator of their expression.

Additionally, we assessed the functional response of NK cells 
from the CD25-deficient patient (Figure  3). CD56bright and 
CD56dim NK  cells from the CD25-deficient patient produced 
less IFN-γ than CD56bright and CD56dim NK  cells from the HD 
(Figure  3A). However, CD56bright and CD56dim NK  cells from 
the CD25-deficient patient expressed slightly higher amounts 
of T-bet than CD56bright and CD56dim NK  cells from the HD 
(Figure  3B). Moreover, CD56bright and CD56dim NK  cells from 
the CD25-deficient patient displayed an increased degranulation 
when compared to the HD (Figure 3C). Of note, the impaired 
IFN-γ production of CD56bright and CD56dim NK cells from the 
CD25-deficient patient was not due to an inability to sense the 
cytokines used for the stimulation as we did not observe differ-
ences in the expression of IL-12Rβ1 and IL-12β2 between HD 
and the CD25-deficient patient in each of the three NK cell sub-
populations (not shown), the expression of CD122 and CD132 is 
not affected in the patient (38), and we detected a slightly higher 
expression of IL-18Rα and IL-18Rβ in each of the three NK cell 
subpopulations from the CD25-deficient patient compared to the 
three NK cell subpopulations from HD (not shown).

cD56brightcD16hi nK cells accumulated in 
cD25- or sTaT5b-Deficient Patients 
Display a not Fully Mature cD62lhi 
Phenotype
The increased frequency of CD56brightCD16hi NK cells observed 
in the patient with CD25 deficiency suggests an arrest in 
NK  cell maturation. As maturation is usually associated with 
a decreased proliferative capacity, we assessed proliferation of 
CD16lo/− (less mature) and CD16hi (more mature) NK  cells in 
response to IL-2 and IL-15, as it is difficult to assess proliferation 
in CD56brightCD16lo/−, CD56brightCD16hi, and CD56dimCD16hi 
NK  cell subsets because CD56 is upregulated during NK  cell 
activation and CD56dim cells become CD56hi cells during the 
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FigUre 1 | CD25 deficiency leads to an increased frequency of CD56brightCD16hi natural killer (NK) cells and a concomitant decreased frequency of CD56dimCD16hi 
NK cells in peripheral blood. (a) Absolute NK cell numbers in blood from the CD25-deficient patient (left graph) and the STAT5b-deficient patient (right graph) along 
time (indicated as month/year). Horizontal dotted lines delineate a gray zone that corresponds to the reference values for age-matched healthy donors (HDs).  
(B) Percentage of NK cells (CD3−CD56+ cells) in peripheral blood from one HD, the CD25-deficient patient (Pt1), and the STAT5b-deficient patient (Pt2).  
(c) Percentage of NK cell subpopulations according to the expression of CD56 and CD16, in peripheral blood from one HD, the CD25-deficient patient (Pt1)  
and the STAT5b-deficient patient (Pt2). (D) Percentage of CD56brightCD16lo/−, CD56brightCD16hi, and CD56dimCD16hi cells in blood from different HD, and in different 
blood samples from the CD25-deficient patient collected along three years (2015, 2016, and 2017). (e) Analysis of the expression of CD25 in CD56brightCD16lo/−, 
CD56brightCD16hi, and CD56dimCD16hi cells from one HD (dashed histograms), in the CD25-deficient patient (continuous black histograms) and in the STAT5b-
deficient patient (dotted histograms). Gray histograms: FMO. Numbers in the zebra plots from (B,c) correspond to the percentages of each gated cell population; 
numbers in the histograms from (e) correspond to MFI. Results shown in (B,c,e) representative of three independent blood samples collected over the years. Pt1 
began to be studied when she was 3 years old (year 2010). Pt2 began to be studied when she was 10 years old (year 2010). Data shown in (B,c,e) correspond to 
blood samples obtained in year 2017 (when Pt1 was 10 years old and Pt2 was 25 years old).
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stimulation period. We observed that CD16lo/− NK  cells from 
HD exhibited an intense proliferation (44% of CFSElow cells) but 
CD16lo/− NK cells from the CD25-deficient patient exhibited an 
even higher proliferation (67% of CFSElow cells for the patient; 
Figure  4A, left graph). Moreover, CD16hi NK  cells from HD 
exhibited very low proliferation (7% of CFSElow cells), while 
CD16hi NK cells from the CD25-deficient patient exhibited an 
intense proliferation (57% of CFSElow cells; Figure  4A, right 
graph). Therefore, both CD16lo/− (less mature) and CD16hi 
(more mature) NK  cells cell from the CD25-deficient patient 
maintain a high proliferative response. Moreover, as the higher 
proliferation detected in the CD16hi population can be due to the 
increased frequency of CD56brightCD16hi NK cells present in 
the CD25 deficient patient, we re-analyzed the proliferation data 
and gated the cells based on CD56 and CD16 expression (besides 

the limitation mentioned above regarding the upregulation of 
CD56 that occurs during NK cell activation). We observed that 
CD56brightCD16lo NK cells from the patient proliferated similarly 
as CD56brightCD16lo NK cells from the HD (Figure 4B, left graph). 
However, both, CD56brightCD16hi and CD56dimCD16hi NK  cells 
from the patient exhibited a markedly increased proliferation 
compared to the equivalent NK  cell subpopulations from the 
HD (Figure 4B, middle and right graph). These results indicate 
that these more mature NK  cells from the CD25-deficient 
patient do not loose proliferative capacity when they differentiate 
into more mature CD56brightCD16hi and CD56dimCD16hi NK cells, 
which confirms the occurrence of a maturation defect in the 
NK cell compartment of the CD25-deficient patient.

Furthermore, we performed an analysis of the expression of 
CD27 and CD11b on CD56brightCD16lo/−, CD56brightCD16hi, and 
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FigUre 3 | CD25 deficiency leads to impaired IFN-γ production but does 
not negatively affect degranulation by CD56bright and CD56dim natural killer 
(NK) cells. (a) Percentage of IFN-γ-producing CD56bright (left histograms) and 
CD56dim NK cells (right histograms) from one HD (dashed histograms) and 
from the CD25-deficient patient (continuous black histograms) in response to 
stimulation with IL-12, IL-15, and IL-18. (B) Percentage of T-bet-expressing 
CD56bright (left histograms) and CD56dim NK cells (right histograms) from one 
HD (dashed histograms) and from the CD25-deficient patient (continuous 
black histograms). (c) Degranulation of CD56bright (left histograms) and 
CD56dim NK cells (right histograms) from one HD (dashed histograms) and 
from the CD25-deficient patient (continuous black histograms) in response to 
stimulation with K562 cells. In all panels, gray histograms correspond to 
unstimulated cells. Numbers in the histograms from (a,c) correspond to the 
percentage of positive cells; numbers in the histograms from (B) correspond 
to MFI. Results are representative of three independent blood samples 
collected over the years.

FigUre 2 | CD25 deficiency leads to higher amounts of perforin and 
granzyme B expression in natural killer cell subpopulations. Analysis  
of the expression of perforin (pfp), (a) and granzyme B (GzmB) (B), in 
CD56brightCD16lo/−, CD56brightCD16hi, and CD56dimCD16hi cells from one HD 
(dashed histograms) and in the CD25-deficient patient (continuous black 
histograms). Gray histograms: FMO. Numbers in the histograms correspond 
to MFI. Results are representative of three independent blood samples 
collected over the years.
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CD56dimCD16hi cells (Figure 5A). NK cells from the CD25-deficient 
and from the STAT5b-deficient patients contained an increased 
frequency of CD27+CD11b+ cells with a concomitant decreased 
frequency of more differentiated CD27−CD11b+ NK cells, both 
in the CD56brightCD16lo/− and in the CD56brightCD16hi NK  cell 
subsets. Conversely, the distribution of CD27+CD11b+ and 
CD27−CD11b+ NK cells within the more mature CD56dimCD16hi 
cells were similar in the deficient patients compared to the HD. 
Nonetheless, these distributions of cells based on the expression 
of CD27 and CD11b is in the context of different absolute NK cell 
numbers (228 NK cells/mm3 for the CD25-deficient patient and 
45 NK cells/mm3 for the STAT5b-deficient patient), suggesting 
that both mutations lead to a different abnormal maturation 
program in NK cells.

Moreover, we detected a lower frequency of CD57+ cells 
(cells with features of terminally differentiated NK cells) in the 
CD56dimCD16hi NK cells in the CD25-deficient patient compared 
to the HD, and an increased frequency of CD57+ cells in the 
STAT5b-deficient patient (Figure  5B). Moreover, the CD25-
deficient patient displayed higher expression of CD94 in each 
NK  cell subpopulation, compared to HD (Figure  5C). These 
results confirm the occurrence of a defective maturation in the 
absence of proper IL-2 signaling through its high affinity receptor.

As the transition of CD56bright to CD56dim cells is associated 
with the downregulation of CCR7 and CD62L, and a loss of 
lymph node homing potential, we explored their expression 
in the NK  cell subpopulations from HD and the two immu-
nodeficient patients (Figure  6). We observed a slightly lower 
expression of CCR7 (in terms of frequency of positive cells and 
MFI) in CD56brightCD16lo/− cells from the CD25-deficient and 

the STAT5b-deficient patients compared to the HD (Figure 6A 
and inserted table), suggesting a partial requirement of the IL-2/
CD25/STAT5b axis for the expression of CCR7 on this NK cell 
subset. No major differences in the expression of CCR7 were 
observed in CD56brightCD16hi and CD56dimCD16hi cells between 
HD and the patients. Conversely, CD56brightCD16lo/− cells from 
the CD25-deficient patient expressed much higher amounts 
of CD62L compared to HD or the STAT5b-deficient patient 
(Figure 6B and inserted table). Moreover, while NK cells from the 
HD progressively downregulated CD62L along maturation stages 
(from CD56brightCD16lo/− to CD56brightCD16hi to CD56dimCD16hi 
cells), such downregulation was not observed in NK cells from 
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FigUre 5 | CD25 and STAT5b deficiencies leads to accumulation of 
CD27+CD11b+ natural killer (NK) cells with different consequences on the 
frequency of CD57+CD56dimCD16hi NK cells. (a) Analysis of maturation 
stages according to the expression of CD27 and CD11b in CD56brightCD16lo/−, 
CD56brightCD16hi, and CD56dimCD16hi NK cells from peripheral blood from one 
healthy donor (HD), the CD25-deficient patient (Pt1), and the STAT5b-
deficient patient (Pt2). (B) Analysis of the expression of CD57 in 
CD56dimCD16hi NK cells from peripheral blood from one HD, the CD25-
deficient patient (Pt1) and the STAT5b-deficient patient (Pt2). Numbers  
in the zebra plots correspond to the percentages of each cell population.  
(c) Analysis of the expression of CD94 in CD56brightCD16lo, CD56brightCD16hi, 
and CD56dimCD16hi NK cells from peripheral blood from one HD (dashed 
histograms) and the CD25-deficient patient (continuous black histograms). 
Gray histograms: FMO. Numbers in the histograms correspond to MFI.

FigUre 4 | CD25 deficiency leads to increased proliferative response of 
natural killer (NK) cells. (a) Percentage of CFSElow NK cells from one HD 
(dashed histograms) and in the CD25-deficient patient (continuous black 
histograms) in response to stimulation with IL-2 plus IL-15 in CD16lo/− 
NK cells (left histograms) and in CD16hi NK cells (right histograms).  
(B) Percentage of CFSElow NK cells from one HD (dashed histograms) and  
in the CD25-deficient patient (continuous black histograms) in response to 
stimulation with IL-2 plus IL-15 in CD56brightCD16lo/− NK cells (left histograms), 
in CD56brightCD16hi NK cells (middle histograms) and in CD56dimCD16hi 
NK cells (right histograms). Numbers in the histograms correspond to the 
percentage of CFSElow NK cells. Gray histograms: CFSE-labeled NK cells 
cultured in the absence of IL-2 and IL-15. Results are representative of three 
independent blood samples collected over the years.
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the CD25-deficient and from the STAT5b-deficient patient, as 
even CD56dimCD16hi NK cells from both displayed high amounts 
of CD62L. These results suggest that the absence of adequate IL-2 
signaling impedes the downregulation of CD62L that is usually 
a feature observed during the transition of CD56brightCD16lo/− to 
CD56dimCD16hi NK cells.

DiscUssiOn

Natural killer cells develop from a bone marrow common lym-
phoid progenitor and complete their differentiation in different 
niches including lymph nodes and peripheral blood, where they 
acquire functional competence to respond to pathogens and tumor 
cells (5). Human NK cell maturation differs in many aspects from 
mouse NK cell maturation, and several aspects of human NK cell 
development remain ill-defined. Among them, we can mention 
the role of the expression of the high affinity IL-2 receptor on 
CD56brightCD16lo/− cell immunobiology. Taking advantage of the 
fact that human patients with PID constitute “natural models” 
of genetic deficiencies that provide an outstanding opportunity 
to elucidate still unknown features of the immune system (1, 28, 
33, 34), here, we described the phenotypic and functional char-
acteristics of the NK cells of a patient with a homozygous CD25 
deficiency and compared them with NK cells from a patient with 
a STAT5b homozygous deficiency and HDs. CD25 deficiency did 
not affect NK cell frequency and absolute numbers but lead to an 
accumulation of CD56brightCD16hi NK cells, with a concomitant 
decreased frequency of CD56dimCD16hi NK  cells in peripheral 
blood. These phenotypic alterations were not observed in the 
STAT5b-deficient patient, indicating that STAT5b signaling is 
dispensable but IL-2/CD25 signaling is necessary for the genera-
tion of fully mature CD56dimCD16hi NK cells.

In addition, NK cells from the CD25-deficient patient displayed 
higher expression of perforin and granzyme B, suggesting that 
the IL-2/CD25 signaling pathway constitutes a negative regulator 
of the expression of these lytic mediators. Also, NK  cells from 
the CD25-deficient patient displayed increased degranulation. 

Therefore, tonic signaling of IL-2 may fine-tune the content of 
perforin and granzyme B, and the degranulation capacity of 
NK cells. Conversely, NK cells from the CD25-deficient patient 
exhibited an impaired IFN-γ production with no alterations in 
the expression of T-bet, a critical transcription factor necessary 
for its production (42). However, the CD25-deficient and the 
STAT5b-deficient patients did not exhibit increased susceptibility 
of infection with mycobacteria (43). Therefore, our results unravel 
an important role of the IL-2/CD25 axis in the calibration of the 
effector function capacity of NK cells.

Natural killer cell deficiencies are associated with severe viral 
infections, caused predominantly by members of the Herpesviridae 
and Papillomaviridae families, but there is also evidence that they 
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FigUre 6 | CD25 and STAT5b deficiencies do not affect CCR7 expression, 
but negatively affect downregulation of CD62L on CD56brightCD16hi and 
CD56dimCD16hi natural killer cell subpopulations. Analysis of the expression  
of CCR7 (a) and CD62L (B) on CD56brightCD16lo/− cells (gray histograms), 
CD56brightCD16hi cells (continuous thick line), and CD56dimCD16hi cells 
(continuous thin lines) from one HD, in the CD25-deficient patient (Pt1)  
and in the STAT5b-deficient patient (Pt2). The appended table summarizes 
the percentage and MFI for CCR7 and CD62L on each cell population from 
each sample.

7

Caldirola et al. IL-2 and NK Cell Maturation

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1429

play an important role in immunity against a broader spectrum of 
viruses (1). In this study, we analyzed NK cells from a previously 
described CD25-deficient patient that carries a homozygous mis-
sense mutation in the IL-2RA gene that abrogates the expression 
of CD25 (38). This patient presented severe atopic dermatitis, 
chronic diarrhea, and several respiratory infections that began at 
6 months of age that required frequent hospitalization. She also 
developed severe varicella infection that was treated with acyclovir. 
After being discharged, she developed alopecia, continued with 
bronchospasms, several lower and upper respiratory infections 
and exacerbations of her dermatitis. She also developed torpid 
pneumonia needing permanent oxygen therapy at the age of 4.  
A lung biopsy revealed that she suffered follicular bronchiolitis 
with lymphocyte hyperplasia. She was treated with corticoster-
oids, antibiotic prophylaxis, rapamycin, and intravenous gam-
maglobulin, and her condition improved, making oxygen therapy 

no longer necessary. Currently, she remains clinically stable and 
continues to receive this combined treatment waiting for bone 
marrow transplantation. In line with the viral infections suffered, 
we also observed abnormalities in her NK cells. The functional 
abnormalities of NK cells from this patient (compromised IFN-γ 
production without impaired degranulation and content of lytic 
mediators) could be partially responsible for her clinical picture, 
in particular, the varicella infection that she suffered. In addi-
tion, we also used NK cells from another previously described 
patient that carries a homozygous missense mutation in STAT5b 
(41). This patient presented several episodes of infection (otitis 
media, cellulitis, and pneumonia) during her first 3 months of life, 
developed severe generalized seborrheic dermatitis and autoim-
mune thyroiditis when she was 1 year old, psoriasis and alopecia 
at the age of 4, severe varicella with cutaneous infection caused by 
Streptococcus pyogenes, and celiac disease when she was 20 years 
old. Currently, she has persistent secondary psoriasis dermatitis 
and hypothyroidism, but no signs or symptoms of lung disease, 
and remains free of treatment (besides the hormone replacement 
treatment that she receives for her autoimmune thyroiditis; she 
never received prophylactic gammaglobulin treatement). In this 
patient, we also observed abnormalities in her NK cells.

The CD25-deficient patient, but not the STAT5b-deficient patient, 
exhibited an increased frequency of an infrequent CD56brightCD16hi 
NK cell subset in peripheral blood. Such cells have been detected 
in efferent lymphatics and can be generated upon stimulation of 
CD56brightCD16lo/− NK cells with IL-2 and autologous T cells (10, 
12, 13). Therefore, the presence of these NK  cells in peripheral 
blood of the CD25-deficient patient strongly point to the IL-2/
CD25 pathway as a major physiological pathway that determines 
the transition from CD56brightCD16lo/− to CD56dimCD16hi NK cells. 
Moreover, CD16lo/− and CD16hi NK cells from the CD25-deficient 
patient exhibited an increased proliferation, which is a characteris-
tic of less mature NK cells (13). In the case of the CD16lo NK cells, 
we can speculate that this higher proliferative capacity might be 
the consequence of the deficient signaling of IL-2 during NK cell 
maturation. It is possible that when IL-2 signals through its high 
affinity receptor, NK cells become fine-tuned to optimally express 
molecules such as perforin, granzyme B, T-bet, and acquire an 
adequate maturation program. Moreover, although the higher pro-
liferation of CD16hi NK cells from the CD25-deficient patient could 
be the consequence of the increased frequency of CD56brightCD16hi 
NK  cells present in that population, both CD56brightCD16hi and 
CD56dimCD16hi NK cells from the CD25-deficient patient exhib-
ited a markedly increased proliferation. These results indicate 
that these NK cells from the CD25-deficient patient do not loose 
proliferative capacity when they differentiate into more mature 
CD56brightCD16hi and CD56dimCD16hi NK  cells, which probably 
underlies a defective maturation. Moreover, we also detected a 
lower frequency of CD57+ cells in CD56dimCD16hi NK cells and a 
defective downregulation of CD94 in the different NK cell matura-
tion stages in the CD25-deficient patient [cells with features of 
terminally differentiated NK  cells (44–47)], further supporting 
the notion that CD25-deficiency leads to a defective maturation of 
NK cells in periphery.

Of note, as STAT5b is also a critical mediator of IL-15 signal-
ing as it constitutes a downstream mediator of CD122 (26), the 
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markedly increased frequency of CD57+CD56dimCD16hi NK cells 
detected in the STAT5b-deficient patient may be the consequence 
of an abnormal signaling by IL-15 during NK cell maturation in 
the bone marrow, which would affect the generation of NK cells 
in peripheral blood (the STAT5b-deficient patient sporadically 
displayed reduced numbers of NK  cells in blood, as mentioned 
earlier). Therefore, the few NK cells that this patient can produce 

display features of terminally differentiated cells. However, it is  
possible that they actually might be senescent NK cells as CD57  
has been described as a marker of senescent T cells (48). Accord ingly, 
both patients exhibited an increased frequency of CD27+CD11b+ 
NK cells with a concomitant decreased frequency of CD27−CD11b+ 
cells within the CD56brightCD16lo/− and the CD56brightCD16hi NK cell 
subsets, despite differences in the absolute NK  cell numbers in 

FigUre 7 | Schematic representation of the role of IL-2 during human natural killer (NK) cell maturation. (a) In healthy individuals, IL-2 promotes the maturation of 
CD56brightCD16lo NK cells into CD56brightCD16hi NK cells and then, into CD56dimCD16hi NK cells. The first process occurs probably in the paracortical areas of the 
lymph nodes while the second process occurs once CD56brightCD16hi NK cells left the lymph nodes and circulate in periphery, thanks to the imprint provided by IL-2. 
The transition from CD56brightCD16lo NK cells into CD56brightCD16hi NK cells and then, into CD56dimCD16hi NK cells is accompanied by the downregulation of CCR7 
and CD62L, the calibration of the normal content of pfp and granzyme B, and the acquisition of optimal effector functions (IFN-γ production and cytotoxic 
response). (B) In the absence of IL-2 signaling through the high affinity receptor, the transition from CD56brightCD16lo NK cells into CD56brightCD16hi NK cells and then, 
into CD56dimCD16hi NK cells cannot occur normally and, consequently, NK cells cannot normally progress from CD56brightCD16hi NK cells to CD56dimCD16hi NK cells, 
resulting in the accumulation of CD56brightCD16hi NK cells in peripheral blood. Moreover, in the absence of adequate IL-2 signaling, NK cells display increased 
content of pfp and granzyme B, proliferation, and expression of CD62L, and impaired IFN-γ production, suggesting that they achieve an incomplete maturation 
program.
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both patients. Altogether, these results confirm the occurrence of 
a maturation defect in the absence of proper IL-2/CD25/STAT5b 
signaling, although mutations in CD25 or in STAT5b affect the 
maturation program of NK cells in a different manner.

Downregulation of CCR7 and CD62L is part of the normal 
NK cell transition from CD56brightCD16lo/− to CD56dimCD16hi cells 
(49–51). We observed that the IL-2/CD25/STAT5b is dis pensable 
for the downregulation of CCR7 during the maturation of  
CD56brightCD16lo/− to CD56dimCD16hi cells. Moreover, this signal-
ing route seems to act as negative regulator that controls the 
basal expression of CD62L in CD56brightCD16lo/− cells as deficient 
NK cells subsets expressed higher amounts of CD62L than NK cells 
from HDs. Therefore, tonic signaling of IL-2 seems to be necessary 
to fine-tune the expression of CD62L on NK cells. Also, the IL-2/
CD25/STAT5b axis appears to be critical for the downregulation 
of CD62L during the transition from CD56brightCD16lo/− cells to 
CD56brightCD16hi cells and, later, to fully mature CD56dimCD16hi 
cells. Thus, the IL-2/CD25/STAT5b pathway indirectly regulates 
the adhesion potential of CD56brightCD16lo/− NK  cells to the  
CD62L ligands expressed on HEV, and the subsequent homing into  
lymph nodes.

Physiologically, the IL-2 that would regulate the transition of 
CD56brightCD16lo/− to CD56dimCD16hi cells is derived from acti-
vated T cells and dendritic cells in the paracortical areas of the 
lymph nodes (where CD56brightCD16lo/− are located). Therefore, 
although IL-2 has been shown to promote the differentiation of 
CD56brightCD16lo/− NK  cells into CD56dimCD16hi NK  cells (10) 
in vitro, our studies with CD25-deficient and STAT5b-deficient 
NK cells provide the first formal proof of the involvement of IL-2 
in NK  cell maturation in physiological conditions. Our results 
also indicate that upregulation of the CD16 molecule does not 
require this IL-2/CD25/STAT5b signaling, as increased frequen-
cies of CD16hi NK cells were detected in the CD25-deficient and 
in the STAT5b-deficient patients. Recently, expression of human 
CD16 has been associated with epigenetic regulatory mechanisms 
negatively controlled miR-218 in NK cells (52).

In summary, taking advantage of two PID, we provide com-
pelling evidence about the physiological role of the IL-2/CD25/
STAT5b axis in human NK cell maturation from CD56brightCD16lo/− 
to CD56dimCD16hi NK cells. The lessons learned from the analysis 
of NK  cells from these patients are summarized in Figure  7. 
Accordingly, IL-2-producing cells of the adaptive immune 
response constitute a differentiation checkpoint for NK cells.
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