
CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Simple Energy Aware Scheduler: An Empirical
Evaluation

Alexander Perez Campos
Facultad de Ciencias Exactas

UNICEN
Tandil, Buenos Aires

Argentina
alexperezcampos@gmail.com

and

Juan Manuel Rodriguez
ISISTAN Research Institute

UNICEN-CONICET
Tandil, Buenos Aires

Argentina
juanmanuel.rodriguez@isistan.unicen.edu.ar

and

Alejandro Zunino
ISISTAN Research Institute

UNICEN-CONICET
Tandil, Buenos Aires

Argentina
alejandro.zunino@isistan.unicen.edu.ar

Abstract

Mobile devices have evolved from single purpose devices, such as mobile phones, into
general purpose multi-core computers with considerable unused capabilities. Therefore,
several researchers have considered harnessing the power of these battery-powered de-
vices for distributed computing. Despite their ever-growing capabilities, using battery
as power source for mobile devices represents a major challenge for applying traditional
distributed computing techniques. Particularly, researchers aimed at using mobile de-
vices as resources for executing computationally intensive tasks. Different job scheduling
algorithms were proposed with this aim, but many of them require information that is
unavailable or difficult to obtain in real-life environments, such as how much energy would
require a job to be finished. In this context, Simple Energy Aware Scheduler (SEAS) is
a scheduling technique for computational intensive Mobile Grids that only require easily
accessible information. It was proposed in 2010 and it has been the base for a range
of research work. Despite being described as easily implementable in real-life scenarios,
SEAS and other SEAS-improvements works have always been evaluated using simula-
tions. In this work, we present a distributed computing platform for mobile devices that
support SEAS and empirical evaluation of the SEAS scheduler. This evaluation followed
the methodology of the original SEAS evaluation, in which Random and Round Robin
schedulers were used as baselines. Although the original evaluation was performed by
simulation using notebooks profile instead of smartphones and tablets, results confirms
that SEAS outperforms the baseline schedulers.

Keywords: Mobile Grid, Energy Aware Scheduler, Job Scheduling, Mobile Device.

1

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

1 Introduction

Using mobile devices as resource for distributed computing is a direct result of the mobile devices ever-
increasing capabilities [1]. Nowadays, mobile devices are multi-core computers with several Gigabytes of
RAM and storage. These characteristics give mobile devices the capability of executing different complex
tasks, such as image processing, gaming, video streaming, and scientific computing. However, mobile devices
are frequently underused, so researchers are attempting to take advantage of mobile devices for increasing
the computational resources in different distributed computing environments, such as Grids or Clouds. A
clear example of this is the port of the well-known BOINC platform for Android1.

Although distributed computing is a well-established area, and there are many effective tools and tech-
niques for performing distributed computing, integrating mobile devices poses new challenges that need to be
addressed [1]. Mobility, on one hand, increases the probability of disconnection because mobile devices can
move out of the wireless network area. Furthermore, wireless networks are slower and often more expensive
than wired networks, such is the case of 3G/4G networks. On the other hand, mobile devices are battery
dependent. Hence, overusing mobile devices can lead to battery depletion, which in turn results in reducing
the available computational resources. Different works [2, 3, 4, 5, 6, 7] have aimed at providing resource
scheduling schemes that take into account the energy consumption issue. Most of these works have been
evaluated only through simulation.

Another issue of several of the proposed schedulers [8, 3, 6] for mobile Grids is that they require to know
information that is not easy to collect or estimate in real-life scenarios, such as how much energy requires
a work to be executed in a particular node, or how long it would take to execute that job in a given node.
Although this information can be assumed in a simulation, these schedulers are difficult to implement for
a real-life general-case scenario. Additionally, effectively simulating battery behavior is complex because
there are different physical phenomena to emulate. Ideally, a battery contains a certain amount of power
and the device can use all the battery capacity before going off-line. However, the device might not be able
to consume all the available energy. If the device consumes energy too fast, an imbalance in the battery
reduces the amount of energy that the device can access, but if the device reduces its rate of consumption,
the battery has an opportunity to rebalance its state and offer more energy. As a result, it seems as if the
battery recharges itself in what is known as the recovery effect [9]. To our knowledge, there is no simulation
for mobile Grids that considers such effect.

This work presents a distributed computing platform for mobile devices that supports Simple Energy
Aware Scheduler (SEAS) [2]. SEAS is a computational-intensive job scheduler for mobile Grid that has been
used as baseline for evaluating third-party scheduling approach [3], called Mobile device services composition
algorithm. Despite its simplicity, SEAS performs competitively when compared against the later and other
schedulers, such as [10, 11]. In addition, SEAS is the base of several more complex scheduling techniques [12,
6, 7]. The main goals of this work are showing the feasibility of using SEAS in a platform. Therefore,
empirically validating SEAS, which has only been evaluated through simulation in previous works [2, 12, 6, 7],
which partially validate these algorithms. Although simulation is a widely accepted practice in distributed
systems, it is known that sometimes simulation might not result in accurate results for several reasons,
such as incomplete models or badly parameterized ones [13]. In addition to limitations in battery models,
in [12], the authors explicitly acknowledged that a limitation of SEAS with Job-Stealing evaluation is that
network energy consumption is not taken into account. Although the later phenomenon is added in the
model presented in [6], simulation might not effectively consider all the possible situations. Hence, one key
contribution of this work is empirically validating the SEAS approach. Besides, the other key contribution
is showing that SEAS can be integrated in a platform for real-life environments.

This work is based on previous attempts to harness mobile device for distributed computing, such as [14,
15, 16] or BOINC for Android. Although these works are platforms for performing distributed computing
using mobile devices, they are not aimed at using energy aware schedulers. Moreover, BOINC for Android
and [16] only use mobile devices while they are charging. As a result, reducing energy consumption is not as
important as when computing on battery, which is the scenario discussed in [2]. As a result, the presented
platform allowsharnessing mobile devices in a manner that differs significantly from previous works.

The rest of the paper is organized as follows. Section 2 outlines previous work in mobile distributed
computing, focusing on computational-intensive resource allocation when mobile devices are used as com-
putational resources. Section 3 presents the SEAS approach and its integration into a platform that uses
Android devices as mobile computing platform. Then, Section 4 assesses the effectiveness of SEAS when
compared to traditional distributed job schedulers that are also supported by the presented platform. Finally,
Section 5 concludes the paper, highlights obtained results and describes future research lines.

1BOINC Android: https://play.google.com/store/apps/details?id=edu.berkeley.boinc

2

https://play.google.com/store/apps/details?id=edu.berkeley.boinc

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

GRID

Battery-aware

Local Scheduler

Mobile Virtual Resource (MVR)

Mobile devices

wireless

link

Pr xy

MVR

wireless

link

 Pr y

Other resources

....

Figure 1: Mobile Grid architecture overview

2 Related work

Currently, there are many approaches for integrating mobile devices into distributed computing environ-
ments. Mobile devices can take advantage of distributed computing to offload their computations and
reducing battery consumption [17, 18]. This approach aims at using computational power provided by
Cloud computing. Within this approach, there are different manners of offloading computations. Some
approaches [19] aim at offloading only the parts of the computation into the Cloud, being such parts usually
CPU intensive. For instance, in a photo gallery application, the Cloud could be used for applying filters or
effects to the pictures. On the other end, researchers [18] have proposed offloading whole applications and
using mobile devices only as a remote front-end. In both cases, it is expected not only to reduce energy
consumption, but also to improve application speed as Cloud servers’ computational speed is usually higher
than mobile device computational speed. Furthermore, Cloud computing can handle computational tasks
that cannot be handled by a single mobile device.

In the literature, there are many works [2, 8, 1, 12, 20, 3, 4, 5, 6, 7] addressing the issue of integrating
mobile devices, as truly mobile battery-powered devices, into distributed environments as resource providers.
These proposals are built over two types of network topology. The first topology is a network of self-organizing
mobile devices that do not rely on a preexisting infrastructure, called Mobile Ad-hoc Networks (MANETs).
In MANETs, mobile devices act as both hosts and routers [21]. Secondly, mobile devices can be connected to
a network infrastructure by access-points. In this case, researchers have proposed two mobile Grid structures.
The first is based on P2P technologies meaning that mobile devices in the Grid are self-organized in a network
overlay. The second organization uses a central server to coordinate mobile devices connected to the mobile
Grid [1]. In the latter, these servers might work as proxies between the Grid and the mobile devices, so that
preexisting middlewares do not require being aware of mobile devices characteristics.

Figure 1 outlines the proxy-based mobile Grid architecture. In this architecture, the Grid sees a set of
mobile devices as a unique resource through the proxy. The proxy receives requests from the Grid and uses
connected mobile devices for processing the request. In this scenario, the proxy has the responsibility of
scheduling resources to execute the requests, which are called jobs. One of the main issues is defining a
scheduling technique that takes into account mobile device characteristics. Several schedulers [1] have been
proposed for maximizing the amount of job done with an energy budget.

Since MANETs only depend on the mobile devices connected wirelessly among them, MANETs are
ideal for scenarios where infrastructure based networks are unreliable or not available [22]. Examples are
military or emergency scenarios. However, in most scenarios, infrastructure based networks can be assumed.
Furthermore, wireless network technologies, such as Mobile IP, 4G, and IEEE 802.11, take into account mobile
device mobility. Additionally, they are constantly evolving and incrementing their speed and reliability [23,
24]. Hence, most of the works in mobile Grid [1] use infrastructure based networks and are proxy-based
Grids.

In Section 2.1 several mobile Grid schedulers are discussed, presenting a general view of the state-of-the-
art. Section 2.2 describes SEAS that is the main focus of this work and other SEAS-based schedulers. Finally,
Section 2.3 outlines a real-live implementation of computing distributed systems using mobile devices.

2.1 Mobile Grid schedulers

In [8], the authors propose schedulers for utility maximization in mobile Grids subject to energy constrains.
Both works assume that jobs have a utility value. Hence, the main goal is not finishing the most jobs, but
finishing the jobs that maximize the utility. Therefore, these scheduling techniques use Lagrange multipliers
for maximizing the utility function given energy constrains. The main difference between these works is
how the schedulers model the utility functions and energy constrain functions. Despite these differences,

3

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

both works require knowing how much energy would require completing each job for each possible node in
advance. This might be possible for very specific types of jobs and particular given devices, by profiling the
jobs in the devices, but it is not possible for the general case. There are many reasons that makes impossible
to know energy consumption for an arbitrary job.

The authors of [20] propose a scheduler for wireless Grids that uses a non-cooperative game for assigning
jobs to the mobile devices. As the schedulers mentioned above, the goal of this scheduler is to maximize
the utility, but in this case each node competes for maximizing its gain. This negotiation is performed by
different agents, namely the Matchmaker agent who matches jobs and potential executors (mobile devices),
Negotiation agent who represents job executors, i.e., mobile devices, and Job allocation agent who mediates
between Negotiation agents and the Matchmaker agent. Such agents run on nodes called resource brokers
that can be seen as proxies. In this approach, jobs do not have an assigned utility, but a reserve price that
is the maximum the user considers acceptable to pay for executing the job. Using this information, other
information about the job, such as required power, memory and bandwidth, respectively, for job execution,
and information about the mobile device, such as availability of battery power, memory and bandwidth,
the Matchmaker agent selects who can perform each job. After that, the Job allocation agent initiates a
negotiation between the different Negotiation agents representing suitable resources. Each Negotiation agent
have no information about other Negotiation agents, but knows job information. Hence, each Negotiation
agent can estimate the cost and benefit for executing a new job, but competes against other Negotiation
agents offers. As a result of the negotiation each Negotiation agent attempts to maximize its gain, while the
whole system aims at minimizing the global price for executing a set of jobs.

In [4], the authors propose a scheduler whose main goal is to reduce energy consumption and job failure
due to mobility. The authors assume that when a mobile device moves it might become unavailable because
of a lack of coverage or that the amount of energy required for transmitting information, e.g., job input-
s/outputs, might vary. The latter is due to signal strength variation [25]. In order to predict mobile device
locations, this work uses a Markov chain in which each mobile device is responsible for keeping historical
information about its location. Using this information, it is possible to schedule jobs to mobile devices
reducing the possibility of job failure and minimizing the energy consumption expected value. Authors also
state that a job migration strategy is needed in case that mobile devices do not behave as expected. Such
migration strategy is planned as a future work.

In [26] the authors analyze a wide range of scheduling algorithms for mobile Clouds based on a MANET
architecture. In this Cloud, mobile devices act as both job executors and submitters. The evaluated strategies
are extensions of traditional online (Minimum Execution Time and Minimum Completion Time) and batch
(MinMin, MaxMin and Sufferage) scheduling heuristics. The main issues addressed by these scheduling
strategies are related with communication concerns because the mobile Cloud is organized in an ad-hoc
manner and this makes connections and routes to nodes very unreliable. To do so, the authors propose to
take into account communication times and number of hops between nodes as part of the job execution time.
Finally, this work outlines a novel heuristic, called MinHop, that only considers communication time when
offloading tasks. As a result, the authors conclude that heuristics considering not only communication time
and hops are more effective.

The Hybrid Ant Colony algorithm based Application Scheduling [27] is an Ant-Colony-based scheduler
algorithm for applications in a local mobile Cloud. This work aims at maximizing the profit while running
applications in a resource constrained environment. The profit for executing a given applications is known.
Additionally, applications are not atomic and partially executing the application results in a partial profit,
which is directly proportional to the percentage of completion. In addition, this approach needs to know
how many resources are needed for executing an application in a particular device. This is a drawback of
the algorithm as, in the general case, it is not possible to know how many resources it would take to execute
an application in a given node. Finally, this approach has only been evaluated through simulation.

The Adaptive Probabilistic Scheduler [28] is a decentralized two-phase scheduler for Mobile Cloud Com-
puting. The phases are the resource discovery phase and the adaptive probabilistic scheduling phase. In
the discovery phase participant nodes periodically exchange information of their computing capacity, power
and queue length. In the scheduling phase, a source node assigns tasks to nearby collaborators. When a
task is summited, the submitter also must provide the required amount of computation, size of data to be
transferred, and time constraints. Moreover, time of computation and communication on every potential
processing node is known and used to generate a set of candidate nodes that best meet task time constraints.
Each node of such set is assigned with a probability based on the relative energy consumption of tasks.

Mobile device services composition algorithm [3] is another scheduler that considers mobile Grid schedul-
ing as a market problem. Similarly to [8], the authors present the scheduling problem as a maximization
problem subject to restrictions that can be solve through Lagrange multipliers techniques. However, this
approach relies on negotiation to solve the optimization problem. The main issue of this approach is that

4

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Table 1: SEAS required information

Notation Meaning Derived
pbc Previous battery charge No
pct Previous battery event time No
bc Current battery charge No
ct Current time No

benchmarki Device i speed No

number jobsi
Amount of jobs assigned to

device i
No

dr Discharge rate Yes

rt
Remaining up-time at current

dr
Yes

estimatedUpTimei Device i estimated up-time Yes

the required information is difficult to obtain in the general case. This work also provides evidence that
the SEAS [2], which is the base for this work, achieves competitive results even when compared with more
complex techniques that have access to more complete information. For instance, the execution success ratio
of the algorithm is 91%, while the execution success ratio of SEAS is 90% according to their simulations [3].

2.2 SEAS-based Schedulers

SEAS was introduced in [2]. It is a scheduling algorithm designed to only require easily obtainable informa-
tion because either it is provided by most mobile operating systems APIs or it can be calculated from the
mobile device state. In particular, SEAS requires the following information from the mobile devices:

• approximated processing speed, which can be estimated using benchmarks.

• current battery level, which can be accessed using standard APIs in all mobile device platforms.

• workload, which is the number of unfinished assigned jobs.

Since battery charge is informed in a discrete manner, battery charge changes arrive as discrete events.
This behavior can be observed in different mobile OS. For instance, in Android, battery charge is informed
through Android intents2. Such intents are generated by the system, and the developers must register their
listeners, called BroadcastReceiver, into the system.

Table 1 outlines SEAS required information for scheduling each job. For performing job scheduling,
SEAS needs to estimate the expected up-time for each mobile device. In order to perform such estimation,
SEAS uses the last two battery events of a mobile device to calculate the discharge rate.When there are no
two events available SEAS assumes an initial discharge rate. Expected up-time is re-estimated every time
that a new battery event arrives. The first step is to estimate the discharge rate, as follows:

dr =
pbc − bc
ct − pct

By assuming that discharge rate is constant, the remaining time (rt) can be calculated as:

rt =
bc
dr

However, the discharge rate changes over the time [29], especially due to executing computations on the
mobile devices [30]. In the original SEAS paper [2], it is stated that rt has a high variance, which might
affect negatively the scheduling performance. To reduce such variation, the original SEAS uses the average
of previous remaining time corrected to current time. Algorithm 1 depicts how the corrected remaining time
is calculated. Line 10 of Algorithm 1 is where the historical remaining time is corrected to account the pass
of time since it was originally calculated.

2Android Monitoring Battery: https://developer.android.com/training/monitoring-device-state/
battery-monitoring.html

5

https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Algorithm 1 Battery time estimation
1: procedure UpdateStimatedUptime(bc, ct, pbc, pct, historicrt, historicct)
2: dr ← (pbc − bc)/(ct − pct)
3: rt ← bc/dr
4: add(rt, historicrt) . Saves current rt into historic information
5: add(ct, historicct) . Saves current ct into historic information
6: estimatedUpTime← 0
7: for i ← 0 to len(historicrt) do
8: art ←get(historicrt, i)
9: act ←get(historicct, i)

10: estimatedUpTime← estimatedUpTime + art − (ct − act) . art was estimated for act, it should be
corrected

11: end for
12: estimatedUpTime← estimatedUpTime/len(historicrt) . Averaging estimations
13: return estimatedUpTime
14: end procedure

Each time a new job arrives to the proxy, SEAS goal is to balance the amount or resources assigned for
the job. To do so, SEAS estimates the amount of computational power that each mobile device can deliver,
which is calculated multiplying the device speed. This, in turn, is obtained executing a benchmark in the
mobile device, multiplied by its estimated up time. This represents the computational resources available in
the mobile device. Then, these resources are divided by the number of jobs assigned to those mobile devices,
as follows:

resources per jobi =
estimatedUpTimei × benchmarki

number jobsi + 1

SEAS selects the mobile device that has more resources per job, as a result the load in the Grid is
distributed evenly considering not only the computational power, but the estimated up-time. Since this
estimated up-time depends on the discharge rate and the current battery capacity, energy is considered.
Moreover, SEAS indirectly considers CPU efficiency, as more efficient CPUs would deliver more up-time
resulting in more computational capabilities.

The original SEAS [2] was evaluated using energy profiles obtained from a wide range of notebooks and
netbooks. For such simulated evaluation, authors defined eight different simulations. Simulation scenarios
were specified using a wide range of topologies, ranging from Grids of only 4 devices up to 400 devices.
Furthermore, two kinds of jobs were considered during the evaluation, namely short jobs with high standard
deviation in the execution times (8 minutes ±50%) and long jobs with low standard deviation in the execution
time (24 minutes ±24%). SEAS was compared with a Round Robin scheduler and a Random scheduler. In
the former comparison, SEAS finished from 1% up to 8.55% more jobs than the Round Robin scheduler,
while outperformed the Random scheduler by finishing from 6% up to 11% more jobs.

The first SEAS extension was presented in [12]. In this extension job stealing was added for increasing
node balance. Job stealing means that when a node finishes all its assigned jobs, it will attempt to off-load
other nodes by executing their jobs. This work uses SEAS original strategy for scheduling jobs when they
first arrive to the Grid. However, when a node finishes all its jobs, instead of remaining idle waiting for new
jobs, it tries to steal jobs from other nodes. For selecting the node from whom to steal jobs, three strategies
were evaluated. Two of them were based on SEAS ranking, namely Best Ranking Aware Stealing (BRAS)
and Worst Ranking Aware Stealing (WRAS). BRAS selects the node whose resource per job is higher. The
main goal is to increase the number of free nodes, which results in a high number of free nodes that can
stealOn the other hand, WRAS aims at decreasing the work load of nodes that have on average fewer
resources per job. The third strategy is Random Stealing (RS), i.e., selecting a random node that has
jobs. RS is a well-known strategy in job scheduling [31, 32]. These strategies can be combined with two
policies to determine the number of jobs to steal. Firstly, Fixed Number is a strategy that always steals
the same number of jobs. Secondly, Exponential strategy duplicates the number of jobs that a node steals
each time the node performs a steal. This means that the first time a node steals jobs, it steals 20 jobs,
the second time 21, the third time 22 jobs, and so on. According to the simulations, WRAS with Fixed
Number outperformed other combinations in most of the experimental scenarios, BRAS with Fixes Number
was a closed second, and WRAS with Exponential was a closed third. The other combinations and SEAS
alone were drastically outperformed. Unlike the original SEAS study [2], smartphones and tablets profiles
were used for the simulations in this study. Although job stealing adds energy consumption steaming from

6

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
o

ta
l
e

s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 S

e
c
o

n
d

s
)

Uptime (in Seconds)

E-SEAS estimation method
SEAS estimation method

(a) Notebook Intel Core 2 Duo. 4 Gb RAM DDR2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5000 10000 15000 20000 25000 30000

T
o

ta
l
e

s
ti
m

a
te

d
 u

p
ti
m

e
 (

in
 S

e
c
o

n
d

s
)

Uptime (in Seconds)

E-SEAS estimation method
SEAS estimation method

(b) Table Acer A100

Figure 2: Batteries Estimation Comparison

network transference, this factor was not simulated in [12].
To reduce the impact of network transference, new raking strategies for job scheduling where proposed

in [6]. In particular, this work outlines three new ranking strategies are proposed, namely Enhanced SEAS (E-
SEAS), Job Energy Aware Criterion (JEC), and the Future Work Aware Criterion (FWC).

E-SEAS is similar to SEAS, but uses the current battery level instead of the estimated up-time. SEAS
strategy for estimating the remaining uptime was appropriated for notebooks and netbooks, but we found
that smartphones and tablets have a more stable battery consumption rate when we profiled them. This
can be observed in Figure 2 that depicts SEAS and E-SEAS battery estimation for both a notebook and a
tables. Figure 2a presents the battery estimation for one of the notebooks used for the original SEAS study,
while Figure 2b outlines the prediction for an Acer A100 that was used for this study.

JEC uses a per-calculated factor that is obtained by dividing the maximum battery level (usually 100)
by the number of benchmarks that can be executed on a full-charge. This factor relates battery level with
available computational resources. The main drawback of this approach is that for each new device, this
factor should be calculated, and it does not consider battery worn out.

Finally, FWC uses job execution history to estimate job length in that device, the main problem of this
approach is cold-start. Results shown that E-SEAS and JEC perform as well as SEAS with job stealing
in most of the scenarios. Finally, job stealing was also applied to these techniques in [7]. This works add
network energy consumption to the simulation. Such source of energy consumption was not considered in
previous SEAS based works [2, 12, 6].

Although SEAS was designed aiming at been simple to implement, SEAS and all its extensions have
been evaluated using simulation. This is a standard practice in the area as some of other approaches,
such as [8, 20], would be difficult to be implemented in real life scenarios because the required information
might be unavailable. Another issue which encourages simulation is that some approaches require too much
historic information and benchmarking, such as location history [4] or JEC estimation [6]. This has resulted
in that few works, such as [14, 16], are actually evaluated through real-life implementation, while the vast
majority [2, 8, 12, 20, 4, 6, 7] are validated via simulation. Despite being a common practice, simulation does
not replace real-life experiments as models might be incomplete or parameters could be wrongly set [13].
Hence, it cannot be said that SEAS has been completely validated.

2.3 Mobile distributed computing platforms

DroidCluster [14] is a prototype for building clusters with Android mobile devices. This work proposes to
build a local cluster integrated by Android mobile devices connected through a single WiFi access point.
Authors argue that adding more access point would result in an unacceptable latency, while theoretically
a single access point can handle up to 1042 mobile devices. The communication protocol for the proposed
cluster is MPI, which allows to easily porting existing cluster applications. The main goal of this study was
to evaluate how well a mobile device cluster capability scales when mobile devices are added. The empirical
evaluation used the MPI version of the Linpack benchmark to measure the cluster megaflops. According to
the results, the cluster scaled reasonably well with up to 6 nodes despite WiFi drawback. In particular, the
6-node cluster achieved a 75% of the performance predicted by an ideal, but unrealistic (according to the
authors), linear scaling. Authors conclude that they expect to see mobile device based distributed computing
environments because mobile devices might provide a better “computation per watt” ratio than stationary

7

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

computers.
In [15], the authors discuss another MPI-based cluster environment integrated by Android mobile de-

vices. Unlike DroidCluster, the focus is to use checkpointing techniques for handling mobile device mobility,
and unexpected connection/disconnection. Although Android applications can be written in Java, authors
implemented the application also in Android native C to ensure CPU native performance. Regarding check-
point/restart, authors opted for Distributed MultiThreaded CheckPointing3 that is a well-known open-source
non-intrusive checkpointing technology [33]. Authors evaluate not only the speedup of adding up to 4 nodes,
but also checkpointing overhead. According to their results, the checkpointing impact is different for differ-
ent applications. In some applications, checkpointing has no perceivable overhead (less than 1%), while for
others the overhead is up to 500% of the time required for running the application without checkpointing.
Authors further study the impact of checkpointing and inter-process communication in [34]. This new study
also provided evidence that relocating processes according to their affinity can be used to reduce runtime
by up to 11%. This is because when two processes that need to communicate between them run within
the same node they can use UNIX domain sockets for the communication, which is lightweight compared to
TPC/IP.

Recently, Computing While Charging (CWC) was presented in [16]. The authors have profiled fifteen
users showing that most of the time mobile devices are charged overnight leaving them available during large
periods of times. According to this work, using mobile devices over traditional PCs for processing reduces
energy consumption. In particular, a comparison between processing power and energy consumption of Intel
Core 2 Duo and five smartphones shows that an enterprise with 100 employees can save up to U$S 300 in
USA only by moving its computations to employees’ mobile devices. This work also addresses the issue of
sending code for execute new kinds of tasks or updating existing task code definition in runtime. Otherwise,
the application should be updated each time a new type of job is added. This is impractical because the
size of the application increases as new job types are added, and there is no control of when a mobile device
owner would update the installed application.

Mobile devices have also been considered as computational resources for distributed computing in real-
life scenarios. One example of this is the BOINC port to Android4. The existence of such application is
strong evidence that mobile devices can offer enough computational capabilities to be seriously considered
as valuable resources for scientific computation. Despite taking advantage of Android mobile devices, this
version of BOINC only uses such mobile devices when they are plugged to AC and running on WiFi. This
makes BOINC and CWC similar in the vision of how to exploit mobile device capabilities. Since this version
of BOINC considers mobile devices working in similar condition to fixed devices (PC or Servers), it does not
cope with the issues resulting from mobile devices mobility and their limited energy supply.

Briefly, there are many scheduling algorithms for mobile distributed computing that consider energy.
However, they are not implemented in real-life scenarios. On the other hand, real-life implementations of
mobile Grids or clusters disregards energy consumption. DroidCluster [14] is an example because it is focused
on analyzing mobile devices capabilities, while CWC [16] and BOINC only use mobile devices when they are
charging. Therefore, the main contribution of this work is to propose and to assess a distributed computing
platform for mobile devices that supports SEAS in a real setting.

3 SEAS platform for distributed computing

This section presents a platform for distributed computing that uses SEAS as its jobs scheduler. This
platform was implemented for Android mobile devices because Android is not only an open source mobile
device operating system, but also one of most popular operating systems in the world. There are more
than 1 billion active Android users in the Play Store5 according to Google reports. Furthermore, Android
provides access to all the information required by SEAS. The platform was designed following SEAS original
architecture that identifies two main roles, namely the proxy, and the nodes. The proxy receives the jobs
to execute, and assigns them to a node, i.e., a mobile device. The node is responsible of executing the jobs
and returning their results to the proxy. Each node executes an Android application which is the only part
of the platform that actually runs on the mobile devices. This application is responsible of executing the
assigned jobs and sending the results to the proxy.

Figure 3 outlines the deployment of the proposed distributed system. The proxy implementation is di-
vided into two components: a Web Server that acts as the communication interface between the mobile
devices and the proxy logic, and an HTML5 application that allows users to submit applications and imple-
ments the scheduling logic. The Web server is implemented using Java Servlets and supports communication

3DMTCP: http://dmtcp.sourceforge.net/index.html
4BOINC Android FAQ: http://boinc.berkeley.edu/wiki/Android_FAQ
5Google Play Developer console: https://developer.android.com/distribute/console/index.html

8

http://dmtcp.sourceforge.net/index.html
http://boinc.berkeley.edu/wiki/Android_FAQ
https://developer.android.com/distribute/console/index.html

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Figure 3: SEAS Implementation deployment

through WebSockets6. There are two main reasons for using WebSockets as communication protocol. Firstly,
WebSocket technology is based on traditional Web technology, and by using standard ports and protocols
it is less likely that network providers filter such communication. For instance, it supports HTTP proxy
tunneling, and HTTP proxy technology is common place in enterprises. Furthermore, WebSockets support
SSL using HTTPS, i.e., it can be secured easily in typical scenarios. The Web Server has two main responsi-
bilities. First, it allows the Mobile Grid user to access the HTML5 application for managing the deployment.
Second, it relays communication between the nodes and the HTML5 application.

As previously stated, the proxy logic is currently implemented through an HMTL5 application. This
implementation allows to easily controlling the Grid using a standard Web browser. Since the logic is
implemented through HTML5, schedulers, including SEAS, are implemented in Javascript. This allows
developers to add new schedulers without the need of recompiling the proxy or redeploying it. However,
the logic can be easily implemented using other technology, for instance moving the HTML5 application to
a REST service front-end, because there is a decoupling between the proxy logic and the communication
module. Currently, the implementation supports only one HTML5 application running for each Web Server,
but it is possible to extend the current architecture to support several HTML5 applications per server. This
would mean that several proxies might run using a single access point.

The Android application has a UI that allows mobile device owners connecting/disconnecting from the
Grid proxy and knowing which job are currently in the mobile device queue. Figure 4 depicts the Android
application UI. In order to inform CPU speed, the application uses BogoMIPS as reported by the Linux kernel
in "/proc/cpuinfo". BogoMIPS stands for bogus MIPS and Linux calculates them at boot time to calibrate
some timing loops. Although BogoMIPS might be an unreliable benchmark, it is inexpensive because Linux
calculates it anyway. Furthermore, this benchmark has been used in other distributed systems for load
balancing when heterogeneous resources are present [35]. Moreover, other benchmarks, such as Linpack or
SciMark 2, can be used because benchmark can be run once and the value store for future reference. Notice
that a mobile device performance is unlikely to change because hardware cannot be updated; only software
updates might modify the device performance. Hence, benchmark results should seldom be updated, so they
can be stored and access in future executions.

To sense and report battery information, the application registers a BroadcastReceiver, which is an
Android class intended to process Intents, to listen for battery intents (Intent.ACTION_BATTERY_CHANGED).
In addition to work as events, Android Intents also might convey information. The expected information in
an Intent depends on the type of the Intent. In the case of battery related Intents, the expected information
includes battery level, its health status, the battery scale (maximum possible battery level, which usually
is 100), whether the mobile device is charging, among other information. In this case, the application it is
only interested in the battery level and the scale. Each time a new battery Intent is received, the information
is sent to the proxy, so it can update the mobile device status.

Finally, regarding jobs, the current implementation only supports executing two jobs that are already
preloaded in the application because the current version of the platform does not implement a remote class
loader, so adding new jobs requires recompiling, repackaging, and reinstalling the whole mobile application.
For evaluation purposes we have defined only two kinds of jobs. The first kind of job is calculating the

6RFC 6455 - The WebSocket Protocol: https://tools.ietf.org/html/rfc6455

9

https://tools.ietf.org/html/rfc6455

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Proxy address

Job Executing

Job Queue

Connection status

Figure 4: Android Application UI

Fibonacci value for a number and the other is calculating its factorial. The code to calculate the Fibonacci
value is CPU and memory intensive because it calculates recursively the values, but puts them into a cache
to avoid recalculation. As a result, several objects are stored in memory, which in turn result in garbage
collection. Notice that this cache is not shared among tasks, so garbage is generated each time the task is
executed. As a result, a fair amount of CPU and memory load is generated each time a Fibonacci job is
executed, which is desirable for testing purposes. The implementation used makes factorial a CPU intensive
task because it calculates the result recursively without using a caching result strategy.

Listing 1: Fibonacci implementation
public class Fibonacc i {

HashMap<Integer , Long> cache ;
public Fibonacc i () {

cache = new HashMap<>();
cache . put (0 , 0 l) ;
cache . put (1 , 1 l) ;

}
public Long c a l c u l a t e (In t eg e r n) {

Long cachedResult = cache . get (n) ;
i f (cachedResult != null)

return cachedResult ;
else {

Long r e s u l t = c a l c u l a t e (n − 1) +
c a l c u l a t e (n − 2) ;

cache . put (n , r e s u l t) ;
return r e s u l t ;

}
}

}

10

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Table 2: Mobile devices

Device Processor Memory BogoMips Battery
Samsung I5500 Single Core 600 MHz. 256 Mb. 599.65 1200 mAh
Samsung I9300 Quad-core 1.4 GHz Cortex-A9 1 Gb. 2786.91 2100 mAh

Acer A100 Dual-core 1.0 GHz Cortex-A9 1 Gb. 1987.37 1530 mAh
LG Optimus L9 Dual-core 1.0 GHz Cortex-A9 1 Gb. 1592.38 2150 mAh

Listing 2: Factorial implementation
public class Fac t o r i a l {

public Long c a l c u l a t e (long number) {
i f (number <= 1)

return 1L ;
else

return number ∗
c a l c u l a t e (number − 1) ;

}
}

Listing 1 depicts the Fibonacci implementation. Notice that upon creation, the Fibonacci class creates an
associative cache and puts results for f ib(0) and f ib(1). Although it is not explicit, this requires using Integer
and Long objects because HashMap require objects instead of primitive types.

Currently, the job model is inflexible for a real-life Grid. However, this can be easily solved by harnessing
the power of DexClassLoader for dynamically loading new jobs. The potential of this approach has not only
been discussed, but also implemented in CWC [16]. Furthermore, this work also provides a code-snippet
showing how to implement such class loading mechanism. Android DexClassLoader is available in Android
API from level 3, which means that all modern Android devices have this capability. Furthermore, Android
has added support for loading classes directly from memory since API level 26, which means that this is
only available in the newest versions of Android. Such support allows developers to load code without the
necessity of storing it into the file system.

4 Empirical Evaluation

The goal of the empirical evaluation is to confirm the results presented in the original SEAS study [2]. In such
study, SEAS was compared against traditional schedulers for distributed execution of atomic jobs, namely
Round Robin and Random Scheduler, with regard to the amount of finished jobs given an energy budget.
The original evaluation was performed using simulation and notebooks profiles, and SEAS outperformed both
schedulers in some scenarios executing up to 20% more jobs. In this work, evaluation has been performed
using smartphones and tablets instead of notebooks. Hence, results are not expected to be equals to the
ones obtained in [2], but they are expected to confirm that SEAS outperforms Round Robin and Random
schedulers. Unlike the original SEAS study where evaluation was performed only by simulation, experiments
reported in this work have been run in a real environment.

As previously stated, we carried the empirical evaluation using Android devices. In particular, we per-
formed the experiments using 3 smartphones and a tablet connected to a WiFi network. The proxy was
also connected to the same WiFi network, i.e., all the communication was performed over a Local Area
Network reducing issues such as latency, but the proposed implementation could also work over a more
complex network topology, such as the Internet. Table 2 summarizes the specification of the devices used in
the experiments. Such table contains CPU specification, RAM, BogoMips as reported in /proc/cpuinfo,
and battery capacity. Notice that the reported BogoMips correspond to a single core because the current
implementation does not run jobs in parallel. Furthermore, in some cases cores are not symmetrical, so only
the largest reported BogoMips is used because jobs are CPU intensive. For evaluating each scheduler, all the
devices were fully charged, then connected to the mobile Grid, and the job submission process was started.
The experiment finished when all mobile devices were disconnected from the Grid. The jobs were generated
using the following logic:

1. Wait a random interval between 1 second and 5 seconds.

2. If no mobile device is connected, finish the experiment.

3. Decide randomly how many jobs to create between 1 and 10.

11

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

Random RR SEAS

C
o

m
p

le
te

d
 j
o

b
s
 (

%
)

(m
o

re
 i
s
 b

e
tt

e
r)

Figure 5: Finished jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

R
andom

R
R

S
E
A
S

J
o

b
s
 e

x
e

c
u

te
d

 p
e

r
d

e
v
ic

e

i5500 G9 I9300 A100

Figure 6: Relative executed jobs per device

4. For each job:

(a) Select randomly the type (Fibonacci or factorial).

(b) Select the input, a random number between 1 and 60.

(c) Add it to a queue.

5. Send the jobs.

Notice that all random generations followed a uniform distribution, so no value was preferred over the others.
Figure 5 presents the results obtained after executing the experiments. As expected, SEAS outperformed

Round Robin and Random scheduler. In particular, the mobile Grid executed 26% more jobs using SEAS
when compared with Random scheduling, and 31% when compared with Round Robin. This results were
higher than the ones originally reported in [2]. However, there are several differences in this experiment that
might account for these discrepancies. Firstly, in this work, smartphones and tablets were used instead of
notebooks and netbooks. Secondly, the original SEAS simulator did not take into account energy consump-
tion due to executing a task. As the mobile device operating system can dynamically scale CPU frequency
according to the workload, mobile devices consume much energy when they are executing CPU intensive
tasks. This was introduced in the simulation presented in [12], in which the simulator uses several profiles
to estimate energy consumption. In that work, four different profiles were used for modeling each mobile
device, each profile represented a CPU load, namely 0%, 30%, 75%, and 100% CPU usage. Thirdly, battery
recovery effect has not been considered in the simulation. This effect is observed when available energy is
less than the difference between battery charge and battery consumed. When a battery discharges rapidly,
an internal imbalance makes some energy unavailable; it might become available if the energy requirements
to the battery decreases, giving time to rebalance its internal charge [9]. As a result, the battery level might
increase. Since SEAS considers battery level, it might reduce the load on heavily used nodes given the
battery time to experience this recovery effect.

12

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

Figure 6 depicts how the different schedulers distribute the jobs between different nodes. As expected,
Round Robin and Random scheduler uniformly distributed the jobs, while SEAS has a clear preference for
some device over others. As a result, SEAS improves energy efficiency with regard to finished jobs.

5 Conclusion and Future Works

The platform empirical evaluation presented in this work confirms that SEAS outperformed Random and
Round Robin. Such results were expected as the original SEAS study [2] reported similar results through
simulation. The main conclusion of this work is that, although simulation might not be 100% accurate,
its results are reliable enough for drawing general conclusions about mobile Grid schedulers performance.
Additionally, this work evidences that implementing an energy aware scheduler for mobile Grids is feasible.

This work also brings new research topics for future works. Firstly, future studies should focus on
evaluating the proposed approach using other scenarios, such as distributed environments comprising more
mobile devices and different types of jobs. In particular, more time-consuming jobs should be considered
to make the experiments more comparable to experiments presented in other works [2, 12, 6]. Other future
studied should aim at assessing simulation accuracy by testing the same scenarios through simulation and
using SEAS implementation. Such evaluation will not only provide further evidence about the validity of
simulation as experimental methodology for distributed environments that integrates mobile devices, but
also shed light on which aspect of the simulation model must be enhanced to obtain more accurate results.
Despite a SEAS implementation is available, simulation is a great tool for experiment because it does not
require having hundreds of devices for experimenting and gives the means for performing more repeatable
experiments [36].

Finally, we will further refine the implementation to make it usable in different scenarios. Firstly, the
current application communication protocol is insecure, so support for a more robust and secure communica-
tion method must be designed and implemented. Currently, the application does not support disconnections,
which are common in mobile devices. Hence, we are currently implementing a mechanism for supporting
mobile devices connected to poor quality networks. This will allow to evaluate the platform in real-life
scenarios using mobile devices belonging to volunteers and not just dedicated devices. This is a key future
work as the evaluation presented in this work was only performed using a reduced number of mobile de-
vices. In future versions, the mobile application will report more information, such as wireless network signal
strength, location, and current device usage to allow better predictions of mobile device availability, using
techniques based on machine learning [37]. Lastly, the mobile application requires the ability of loading jobs
dynamically to be usable in real-life scenarios.

ACKNOWLEDGMENT

We also acknowledge the financial support provided by ANPCyT through PICT-2013-0464, and CONICET
through PIP 11220120100185CO.

References

[1] J. M. Rodriguez, A. Zunino, and M. Campo, “Introducing mobile devices into grid systems: a survey,”
International Journal of Web and Grid Services, vol. 7, no. 1, pp. 1–40, 2011. [Online]. Available:
https://www.doi.org/10.1504/IJWGS.2011.038386

[2] ——, “Mobile grid seas: Simple energy-aware scheduler,” in 3rd High-Performance Computing Sympo-
sium. 39th JAIIO, 2010.

[3] L. Chunlin and L. Layuan, “Exploiting composition of mobile devices for maximizing user qos under
energy constraints in mobile grid,” Information Sciences, vol. 279, pp. 654 – 670, 2014. [Online].
Available: https://www.doi.org/10.1016/j.ins.2014.04.018

[4] S. C. Shah, “Energy efficient and robust allocation of interdependent tasks on mobile ad hoc
computational Grid,” Concurrency and Computation: Practice and Experience, vol. 27, no. 5, pp.
1226–1254, 2015, cPE-13-0007.R2. [Online]. Available: https://www.doi.org/10.1002/cpe.3297

[5] S. W. Loke, K. Napier, A. Alali, N. Fernando, and W. Rahayu, “Mobile computations with surrounding
devices: Proximity sensing and multilayered work stealing,” ACM Trans. Embed. Comput. Syst.,
vol. 14, no. 2, pp. 22:1–22:25, Feb. 2015. [Online]. Available: https://www.doi.org/10.1145/2656214

13

https://www.doi.org/10.1504/IJWGS.2011.038386
https://www.doi.org/10.1016/j.ins.2014.04.018
https://www.doi.org/10.1002/cpe.3297
https://www.doi.org/10.1145/2656214

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

[6] M. Hirsch, J. M. Rodriguez, A. Zunino, and C. Mateos, “Battery-aware centralized schedulers for
cpu-bound jobs in mobile grids,” Pervasive and Mobile Computing, vol. 29, pp. 73 – 94, 2016. [Online].
Available: https://www.doi.org/10.1016/j.pmcj.2015.08.003

[7] M. Hirsch, J. M. Rodriguez, C. Mateos, and A. Zunino, “A two-phase energy-aware scheduling
approach for CPU-intensive jobs in mobile Grids,” Journal of Grid Computing, vol. 15, no. 1, pp.
55–80, 2017. [Online]. Available: https://www.doi.org/10.1007/s10723-016-9387-6

[8] C. Li and L. Li, “Tradeoffs between energy consumption and qos in mobile grid,” The Journal
of Supercomputing, vol. 55, pp. 367–399, 2011. [Online]. Available: https://www.doi.org/10.1007/
s11227-009-0330-5

[9] C. K. Chau, F. Qin, S. Sayed, M. H. Wahab, and Y. Yang, “Harnessing battery recovery
effect in wireless sensor networks: Experiments and analysis,” IEEE Journal on Selected
Areas in Communications, vol. 28, no. 7, pp. 1222–1232, September 2010. [Online]. Available:
https://www.doi.org/10.1109/JSAC.2010.100926

[10] P. Ghosh, N. Roy, and S. K. Das, “Mobility-aware efficient job scheduling in mobile grids,” in Seventh
IEEE International Symposium on Cluster Computing and the Grid (CCGrid ’07), May 2007, pp.
701–706. [Online]. Available: https://www.doi.org/10.1109/CCGRID.2007.73

[11] S. S. Vaithiya and S. M. Saira Bhanu, Mobility and Battery Power Prediction Based Job Scheduling
in Mobile Grid Environment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 312–322.
[Online]. Available: https://doi.org/10.1007/978-3-642-24037-9_31

[12] J. Rodriguez, C. Mateos, and A. Zunino, “Energy-efficient job stealing for cpu-intensive processing
in mobile devices,” Computing, vol. 96, no. 2, pp. 87–117, 2 2014. [Online]. Available:
https://www.doi.org/10.1007/s00607-012-0245-5

[13] P. Velho, L. M. Schnorr, H. Casanova, and A. Legrand, “On the validity of flow-level tcp network
models for grid and cloud simulations,” ACM Trans. Model. Comput. Simul., vol. 23, no. 4, pp.
23:1–23:26, Dec. 2013. [Online]. Available: https://www.doi.org/10.1145/2517448

[14] F. Büsching, S. Schildt, and L. Wolf, “Droidcluster: Towards smartphone cluster computing –
the streets are paved with potential computer clusters,” in 2012 32nd International Conference
on Distributed Computing Systems Workshops, June 2012, pp. 114–117. [Online]. Available:
https://www.doi.org/10.1109/ICDCSW.2012.59

[15] Y. Sawada, Y. Arai, K. Ootsu, T. Yokota, and T. Ohkawa, “An android cluster system capable of
dynamic node reconfiguration,” in 2015 Seventh International Conference on Ubiquitous and Future
Networks, July 2015, pp. 689–694. [Online]. Available: https://www.doi.org/10.1109/ICUFN.2015.
7182632

[16] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan, and S. V. Krishnamurthy,
“Cwc: A distributed computing infrastructure using smartphones,” IEEE Transactions on
Mobile Computing, vol. 14, no. 8, pp. 1587–1600, Aug 2015. [Online]. Available: https:
//www.doi.org/10.1109/TMC.2014.2362753

[17] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 84 – 106, 2013, including Special section:
AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures. [Online].
Available: https://www.doi.org/10.1016/j.future.2012.05.023

[18] X. Sun and N. Ansari, “Green cloudlet network: A distributed green mobile cloud network,”
IEEE Network, vol. 31, no. 1, pp. 64–70, January 2017. [Online]. Available: https:
//www.doi.org/10.1109/MNET.2017.1500293NM

[19] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading from mobile devices into
the cloud,” in 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with
Applications, July 2012, pp. 784–791. [Online]. Available: https://www.doi.org/10.1109/ISPA.2012.115

[20] M. N. Birje, S. S. Manvi, and S. K. Das, “Reliable resources brokering scheme in wireless Grids based
on non-cooperative bargaining game,” Journal of Network and Computer Applications, vol. 39, pp. 266
– 279, 2014. [Online]. Available: https://www.doi.org/10.1016/j.jnca.2013.07.007

14

https://www.doi.org/10.1016/j.pmcj.2015.08.003
https://www.doi.org/10.1007/s10723-016-9387-6
https://www.doi.org/10.1007/s11227-009-0330-5
https://www.doi.org/10.1007/s11227-009-0330-5
https://www.doi.org/10.1109/JSAC.2010.100926
https://www.doi.org/10.1109/CCGRID.2007.73
https://doi.org/10.1007/978-3-642-24037-9_31
https://www.doi.org/10.1007/s00607-012-0245-5
https://www.doi.org/10.1145/2517448
https://www.doi.org/10.1109/ICDCSW.2012.59
https://www.doi.org/10.1109/ICUFN.2015.7182632
https://www.doi.org/10.1109/ICUFN.2015.7182632
https://www.doi.org/10.1109/TMC.2014.2362753
https://www.doi.org/10.1109/TMC.2014.2362753
https://www.doi.org/10.1016/j.future.2012.05.023
https://www.doi.org/10.1109/MNET.2017.1500293NM
https://www.doi.org/10.1109/MNET.2017.1500293NM
https://www.doi.org/10.1109/ISPA.2012.115
https://www.doi.org/10.1016/j.jnca.2013.07.007

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

[21] K. Chen, H. Shen, and H. Zhang, “Leveraging social networks for p2p content-based file sharing in
disconnected manets,” IEEE Transactions on Mobile Computing, vol. 13, no. 2, pp. 235–249, Feb 2014.
[Online]. Available: https://www.doi.org/10.1109/TMC.2012.239

[22] R. Magán-Carrión, J. Camacho, P. García-Teodoro, E. F. Flushing, and G. A. D. Caro, “A dynamical
relay node placement solution for manets,” Computer Communications, vol. 114, no. Supplement C,
pp. 36 – 50, 2017. [Online]. Available: https://www.doi.org/10.1016/j.comcom.2017.10.012

[23] L. Eastwood, S. Migaldi, Q. Xie, and V. Gupta, “Mobility using ieee 802.21 in a heterogeneous ieee
802.16/802.11-based, imt-advanced (4g) network,” IEEE Wireless Communications, vol. 15, no. 2, pp.
26–34, April 2008. [Online]. Available: https://www.doi.org/10.1109/MWC.2008.4492975

[24] R. Ratasuk, A. Prasad, Z. Li, A. Ghosh, and M. A. Uusitalo, “Recent advancements in
m2m communications in 4g networks and evolution towards 5g,” in 2015 18th International
Conference on Intelligence in Next Generation Networks, Feb 2015, pp. 52–57. [Online]. Available:
https://www.doi.org/10.1109/ICIN.2015.7073806

[25] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to estimate app energy
consumption,” in Proceedings of the 18th Annual International Conference on Mobile Computing and
Networking, ser. Mobicom ’12. New York, NY, USA: ACM, 2012, pp. 317–328. [Online]. Available:
https://www.doi.org/10.1145/2348543.2348583

[26] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-performance cloudlets for computation
offloading in mobile ad hoc clouds,” The Journal of Supercomputing, pp. 1–28, 2015. [Online]. Available:
https://www.doi.org/10.1007/s11227-015-1425-9

[27] X. Wei, J. Fan, Z. Lu, and K. Ding, “Application scheduling in mobile cloud computing
with load balancing,” Journal of Applied Mathematics, vol. 2013, 2013. [Online]. Available:
https://www.doi.org/10.1155/2013/409539

[28] T. Shi, M. Yang, Y. Jiang, X. Li, and Q. Lei, “An adaptive probabilistic scheduler for
offloading time-constrained tasks in local mobile clouds,” in Ubiquitous and Future Networks
(ICUFN), 2014 Sixth International Conf on. IEEE, 2014, pp. 243–248. [Online]. Available:
https://www.doi.org/10.1109/ICUFN.2014.6876790

[29] W. X. Shen, C. C. Chan, E. W. C. Lo, and K. T. Chau, “Estimation of battery available capacity
under variable discharge currents,” Journal of Power Sources, vol. 103, no. 2, pp. 180 – 187, 2002.
[Online]. Available: https://www.doi.org/10.1016/S0378-7753(01)00840-0

[30] A. Rodriguez, C. Mateos, and A. Zunino, “Improving scientific application execution on android
mobile devices via code refactorings,” Software: Practice and Experience, pp. n/a–n/a, 2016, spe.2419.
[Online]. Available: http://dx.doi.org/10.1002/spe.2419

[31] R. V. Van Nieuwpoort, G. Wrzesiñska, C. J. H. Jacobs, and H. E. Bal, “Satin: A high-level and
efficient grid programming model,” ACM Trans. Program. Lang. Syst., vol. 32, no. 3, pp. 9:1–9:39,
Mar. 2010. [Online]. Available: https://www.doi.org/10.1145/1709093.1709096

[32] R. B. Rosinha, C. F. R. Geyer, and P. K. Vargas, “Wspe: a peer-to-peer grid programming
environment,” Concurrency and Computation: Practice and Experience, vol. 21, no. 13, pp. 1709–1724,
2009. [Online]. Available: https://www.doi.org/10.1002/cpe.1392

[33] J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni, J. Vienne, and
G. Cooperman, “System-level scalable checkpoint-restart for petascale computing,” in 22nd
IEEE Int. Conf. on Parallel and Distributed Systems (ICPADS’16). IEEE Press, 2016, pp.
932–941, also, technical report available as: arXiv preprint arXiv:1607.07995. [Online]. Available:
https://www.doi.org/10.1109/ICPADS.2016.0125

[34] Y. Sawada, Y. Arai, K. Ootsu, T. Yokota, and T. Ohkawa, “Performance of android cluster system
allowing dynamic node reconfiguration,” Wireless Personal Communications, vol. 93, no. 4, pp.
1067–1087, Apr 2017. [Online]. Available: https://doi.org/10.1007/s11277-017-3978-9

[35] C. A. Bohn and G. B. Lamont, “Load balancing for heterogeneous clusters of PCs,” Future Generation
Computer Systems, vol. 18, no. 3, pp. 389 – 400, 2002, cluster Computing. [Online]. Available:
https://www.doi.org/10.1016/S0167-739X(01)00058-9

15

https://www.doi.org/10.1109/TMC.2012.239
https://www.doi.org/10.1016/j.comcom.2017.10.012
https://www.doi.org/10.1109/MWC.2008.4492975
https://www.doi.org/10.1109/ICIN.2015.7073806
https://www.doi.org/10.1145/2348543.2348583
https://www.doi.org/10.1007/s11227-015-1425-9
https://www.doi.org/10.1155/2013/409539
https://www.doi.org/10.1109/ICUFN.2014.6876790
https://www.doi.org/10.1016/S0378-7753(01)00840-0
http://dx.doi.org/10.1002/spe.2419
https://www.doi.org/10.1145/1709093.1709096
https://www.doi.org/10.1002/cpe.1392
https://www.doi.org/10.1109/ICPADS.2016.0125
https://doi.org/10.1007/s11277-017-3978-9
https://www.doi.org/10.1016/S0167-739X(01)00058-9

CLEI ELECTRONIC JOURNAL, VOLUME 21, NUMBER 2, PAPER 8, August 2018

[36] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011. [Online]. Available:
https://www.doi.org/10.1002/spe.995

[37] J. M. Rodriguez, A. Zunino, A. Tommasel, and C. Mateos, Encyclopedia of Information Science and
Technology, Fourth Edition. IGI Global, 2018, ch. Recurrent Neural Networks for Predicting Mobile
Device State, pp. 6658–6670. [Online]. Available: https://www.doi.org/10.4018/978-1-5225-2255-3.
ch577

16

https://www.doi.org/10.1002/spe.995
https://www.doi.org/10.4018/978-1-5225-2255-3.ch577
https://www.doi.org/10.4018/978-1-5225-2255-3.ch577

	Introduction
	Related work
	Mobile Grid schedulers
	SEAS-based Schedulers
	Mobile distributed computing platforms

	SEAS platform for distributed computing
	Empirical Evaluation
	Conclusion and Future Works

