
Advances in Engineering Software 56 (2013) 38–50
Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
An ACO-inspired algorithm for minimizing weighted flowtime
in cloud-based parameter sweep experiments

Cristian Mateos a,b,⇑, Elina Pacini c, Carlos García Garino c

a ISISTAN Research Institute, UNICEN University, Campus Universitario, Tandil B7001BBO, Buenos Aires, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
c ITIC, UNCuyo University, Mendoza, Argentina

a r t i c l e i n f o
Article history:
Received 15 April 2012
Received in revised form 6 September 2012
Accepted 12 November 2012
Available online 17 December 2012

Keywords:
Parameter sweep experiments
Cloud Computing
Job scheduling
Swarm Intelligence
Ant Colony Optimization
Weighted flowtime
0965-9978/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.advengsoft.2012.11.011

⇑ Corresponding author at: ISISTAN Research In
Campus Universitario, Tandil B7001BBO, Buenos Aire
4439682x35; fax: +54 (249) 4439681.

E-mail addresses: cmateos@conicet.gov.ar (C. Mat
(E. Pacini), cgarcia@itu.uncu.edu.ar (C.G. Garino).
a b s t r a c t

Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running
the same program code against different input data. This usually results in many jobs with high compu-
tational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill
these demands. However, job scheduling is challenging as it is an NP-complete problem. Recently, Cloud
schedulers based on bio-inspired techniques – which work well in approximating problems with little
input information – have been proposed. Unfortunately, existing proposals ignore job priorities, which
is a very important aspect in PSEs since it allows accelerating PSE results processing and visualization
in scientific Clouds. We present a new Cloud scheduler based on Ant Colony Optimization, the most
popular bio-inspired technique, which also exploits well-known notions from operating systems theory.
Simulated experiments performed with real PSE job data and other Cloud scheduling policies indicate
that our proposal allows for a more agile job handling while reducing PSE completion time.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Parameter Sweep Experiments (PSEs) is a very popular way of
conducting simulation-based experiments, used by scientists and
engineers, through which the same application code is run several
times with different input parameters resulting in different output
data [48]. Running PSEs involves managing many independent jobs
[40], since the experiments are executed under multiple initial
configurations (input parameter values) many times, to locate a
particular point in the parameter space that satisfies certain user
criteria. In addition, different PSEs have different number of
parameters, because they model different scientific or engineering
problems. Currently, PSEs find their application in diverse scientific
areas such as Bioinformatics [42], Earth Sciences [16], High-Energy
Physics [3] and Molecular Science [46].

A concrete example of a PSE is the one presented by Careglio
et al. [7], which consists in analyzing the influence of size and type
of geometric imperfections in the response of a simple tensile test
on steel bars subject to large deformations. To conduct the study,
the authors numerically simulate the test by varying some
parameters of interest, namely using different sizes and types of
ll rights reserved.

stitute, UNICEN University,
s, Argentina. Tel.: +54 (249)

eos), epacini@itu.uncu.edu.ar
geometric imperfections. By varying these parameters, several
study cases were obtained, which was necessary to analyze and
run on different machines in parallel.

Users relying on PSEs need a computing environment that
delivers large amounts of computational power over a long period
of time. Such an environment is called High-Throughput Comput-
ing (HTC) environment. In HTC, jobs are dispatched to run indepen-
dently on multiple machines at the same time. A distributed
paradigm that is growing is Cloud Computing [5], which offers
the means for building the next generation parallel computing
infrastructures along with easy of use. Although the use of Clouds
finds its roots in IT environments, the idea is gradually entering sci-
entific and academic ones [32].

Executing PSEs on Cloud Computing environments (or Clouds
for short) is not free from the well-known scheduling problem,
i.e., it is necessary to develop efficient scheduling strategies to
appropriately allocate the workload and reduce the associated
computation times. Scheduling refers to the way jobs are assigned
to run on the available CPUs of a distributed environment, since
there are typically many more jobs running than available CPUs.
However, scheduling is an NP-hard problem and therefore it is
not trivial from an algorithmic complexity standpoint.

In the last ten years or so, Swarm Intelligence (SI) has received
increasing attention in the research community. SI refers to the
collective behavior that emerges from social insects swarms [4].
Social insect swarms solve complex problems collectively through

http://dx.doi.org/10.1016/j.advengsoft.2012.11.011
mailto:cmateos@conicet.gov.ar
mailto:epacini@itu.uncu.edu.ar
mailto:cgarcia@itu.uncu.edu.ar
http://dx.doi.org/10.1016/j.advengsoft.2012.11.011
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50 39
intelligent methods. These problems are beyond the capabilities of
each individual insect, and the cooperation among them is largely
self-organized without any central supervision. After studying so-
cial insect swarms behaviors such as ant colonies, researchers have
proposed some algorithms or theories for solving combinatorial
optimization problems. Moreover, job scheduling in Clouds is also
a combinatorial optimization problem, and several schedulers in
this line exploiting SI have been proposed.

As discussed in [31,30], existing SI schedulers completely ignore
job priorities. Particularly, for running PSEs, this is a very important
aspect. When designing a PSE as a set of N jobs, where every job in
the set is associated a particular value for the ith model variable
being varied and studied by the PSE. In this case job running times
between jobs can be very different. This is due to the fact that run-
ning the same code or solver (i.e., job) against many input values
usually yields very dissimilar execution times as well. This situa-
tion is very undesirable since, unless the scheduler knows some
job information, the user cannot process/visualize the outputs of
the whole PSE until all jobs have finished. Thus, in principle, giving
higher (or lower) priority to jobs that are supposed to take longer
to finish may help in improving output processing.

In this paper, we propose a new scheduler that is based on Ant
Colony Optimization (ACO), the most popular SI technique, for exe-
cuting PSEs in Clouds by taking into account job priorities. Specif-
ically, we formulate our problem as minimizing the weighted
flowtime of a set of jobs, i.e., the weighted sum of job finish times
minus job start times, while also minimizing makespan, i.e., the to-
tal execution time of all jobs. Our scheduler essentially includes a
Cloud-wide VM (Virtual Machine) allocation policy based on ACO
to map VMs to physical hosts, plus a VM-level policy for taking into
account individual job priorities that bases on the inverse of the
well-known ‘‘convoy effect’’ from operating systems theory. Exper-
iments performed using the CloudSim simulation toolkit [6], to-
gether with job data extracted from real-world PSEs and
alternative scheduling policies for Clouds show that our scheduler
effectively reduces weighted flowtime and achieves better make-
span levels than other existing methods.

The rest of the paper is structured follows. Section 2 gives some
background necessary to understand the concepts of the approach
presented in this paper. Then, Section 3 surveys relevant related
works. Section 4 presents our proposal. Section 5 presents detailed
experiments that show the viability of the approach. Finally,
Section 6 concludes the paper and delineates future research
opportunities.
2. Background

Certainly, Cloud Computing [5,44] is the current emerging trend
in delivering IT services. By means of virtualization technologies,
Cloud Computing offers to end-users a variety of services covering
the entire computing stack, from the hardware to the application
level. This makes the spectrum of configuration options available
to scientists, and particularly PSEs users, wide enough to cover
any specific need from their research. Another important feature,
from which scientists can benefit, is the ability to scale up and
down the computing infrastructure according to PSE resource
requirements. By using Clouds scientists can have easy access to
large distributed infrastructures and are allowed to completely
customize their execution environment, thus deploying the most
appropriate setup for their experiments.
2.1. Cloud Computing basics

The concept of virtualization is central to Cloud Computing, i.e.,
the capability of a software system of emulating various operating
systems. By means of this support, users exploit Clouds by request-
ing from them machine images, or virtual machines that emulate
any operating system on top of several physical machines, which
in turn run a host operating system. Usually, Clouds are established
using the machines of a datacenter for executing user applications
while they are idle. In other words, a scientific user application can
co-allocate machine images, upload input data, execute, and down-
load output (result) data for further analysis. Finally, to offer on de-
mand, shared access to their underlying physical machines, Clouds
have the ability to dynamically allocate and deallocate machines
images. Besides, Clouds can co-allocate N machines images on M
physical machines, with N P M, thus concurrent user-wide
resource sharing is ensured. These relationships are depicted in
Fig. 1.

With everything mentioned so far, there is a great consensus on
the fact that from the perspective of domain scientists the com-
plexity of traditional distributed and parallel computing environ-
ments such as clusters and particularly Grids should be hidden,
so that domain scientists can focus on their main concern, which
is performing their experiments [45,27,26]. The value of Cloud
Computing as a tool to execute complex scientific applications in
general [45,44] and parametric studies in particular [25] has been
already recognized within the scientific community.

While Cloud Computing helps scientific users to run complex
applications, job management and particularly scheduling is a
key concern that must be addressed. Broadly, job scheduling is a
mechanism that maps jobs to appropriate executing machines,
and the delivered efficiency directly affects the performance of
the whole distributed environment. Particularly, distributed
scheduling algorithms have the goal of processing a single applica-
tion that is composed of several jobs by submitting these latter to
many machines, while maximizing resource utilization and mini-
mizing the total execution time (i.e., makespan) of the jobs.

2.2. Job and Cloud scheduling basics

According to the well-known taxonomy of scheduling in dis-
tributed computing systems by Casavant and Kuhl [8], from the
point of view of the quality of the solutions a scheduler is able to
build, any scheduling algorithm can be classified into optimal or
sub-optimal. The former characterizes scheduling algorithms that,
based on complete information regarding the state of the distrib-
uted environment (e.g., hardware capabilities and load) as well
as resource needs (e.g., time required by each job on each comput-
ing resource), carry out optimal job-resource mappings. When this
information is not available, or the time to compute a solution is
unfeasible, sub-optimal algorithms are used instead.

Sub-optimal algorithms are further classified into heuristic or
approximate. First, heuristic algorithms are those that make as
few assumptions as possible (or even no assumptions) about re-
source load or job duration prior to perform scheduling. Approxi-
mate schedulers, on the other hand, are based on the same input
information and formal computational model as optimal schedul-
ers but they try to reduce the solution space so as to cope with
the NP-completeness of optimal scheduling algorithms. However,
having this information again presents problems in practice. Most
of the time, for example, it is difficult to estimate job duration
accurately since the runtime behavior of a job is unpredictable
beforehand because of conditional code constructs or network
congestion.

In this sense, Clouds, as any other distributed computing envi-
ronment, is not free from the problem of accurately estimate as-
pects such as job duration. Another aspect that makes this
problem more difficult is multi-tenancy, a distinguishing feature
of Clouds by which several users and hence their (potentially het-
erogeneous) jobs are served at the same time via the illusion of

Fig. 1. Cloud Computing: High-level view.

40 C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50
several logic infrastructures that run on the same physical hard-
ware. This also poses challenges when estimating resource load.
Indeed, optimal and sub-optimal-approximate algorithms such as
those based on graph or queue theory need accurate information
beforehand to perform correctly, and therefore in general heuristic
algorithms are preferred. In the context of our work, we are dealing
with highly multi-tenant Clouds where jobs come from different
Cloud users (people performing multi-domain PSE experiments)
and their duration cannot be predicted.

It is true that, however, several heuristic techniques for distrib-
uted scheduling have been developed [18]. One of the aspects that
particularly makes SI techniques interesting for distributed sched-
uling is that they perform well in approximating optimization
problems without requiring too much information on the problem
beforehand. From the scheduling perspective, SI-based job sched-
ulers can be conceptually viewed as hybrid scheduling algorithms,
i.e., heuristic schedulers that partially behave as approximate ones.
Precisely, this characteristic has raised a lot of interest in the scien-
tific community, particularly for ACO [11].

2.3. Bio-inspired techniques for Cloud scheduling

Broadly, bio-inspired techniques have shown to be useful in
optimization problems. The advantage of these techniques derives
from their ability to explore solutions in large search spaces in a
very efficient way along with little initial information. Therefore,
the use of this kind of heuristics is an interesting approach to cope
in practice with the NP-completeness of job scheduling, and han-
dling application scenarios in which for example job execution
time cannot be accurately predicted. Particularly, existing litera-
ture show that they are good candidates to optimize job execution
time and load balancing in both Grids and Clouds [31,30]. In partic-
ular, the great performance of ant algorithms for scheduling prob-
lems was first shown in [29]. Interestingly, several authors
[22,28,36,12,17,20,39,23,41] have complementary shown in their
experimental results that by using ACO-based techniques jobs
can be allocated more efficiently and more effectively than using
other traditional heuristic scheduling algorithms such as GA
(Genetic Algorithms) [36], Min-Min [20,36] and FCFS [22].
One of the most popular and versatile bio-inspired technique is
Ant Colony Optimization (ACO), which was introduced by Marco
Dorigo in his doctoral thesis [10]. ACO was inspired by the obser-
vation of real ant colonies. An interesting behavior is how ants
can find the shortest paths between food sources and their nest.

Real ants initially wander randomly, and upon finding food they
return to their colony while laying down pheromone trails. If other
ants find the same ‘‘lucky’’ path, they are likely not to keep travel-
ing at random, but to instead follow the trail, returning and rein-
forcing it if they eventually find more food. When one ant finds a
good (i.e., short) path from the colony to a food source, other ants
are more likely to follow that path, and positive feedback eventu-
ally leaves all the ants following a single path. Conceptually, ACO
then mimics this behavior with simulated ants walking around
the graph representing the problem to solve.

Over time, however, pheromone trails start to evaporate, thus
reducing their attractive strength. The more the time it takes for
an ant to travel down the path and back again, the less the fre-
quency with which pheromone trails are reinforced. A short path,
by comparison, gets marched over faster, and thus the pheromone
density remains high as it is laid on the path as fast as it can evap-
orate. From an algorithmic standpoint, the pheromone evaporation
process has also the advantage of avoiding the convergence to a lo-
cally good solution. If there were no evaporation at all, the paths
chosen by the first ants would tend to be excessively attractive
to the following ones. In that case, the exploration of the solution
space would be constrained.

Fig. 2 shows two possible paths from the nest to the food
source, but one of them is longer than the other. Ants will start
moving randomly to explore the ground and choose one of the
two ways as can be seen in (a). The ants taking the shorter path
will reach the food source before the others and leave behind them
a trail of pheromones. After reaching the food, the ants will turn
back and try to find the nest. The ants that go and return faster will
strengthen the pheromone amount in the shorter path more
quickly, as shown in (b). The ants that took the long way will have
more probability to come back using the shortest way, and after
some time, they will converge toward using it. Consequently, the
ants will find the shortest path by themselves, without having a

Fig. 2. Adaptive behavior of ants.

C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50 41
global view of the ground. In time, most ants will choose the left
path as shown in (c).

When applied to optimization problems, ACO uses a colony of
artificial ants that behave as cooperative agents in a solution space
were they are allowed to search and reinforce paths (solutions) in
order to find the feasible ones. A solution that satisfies the problem
constraint is feasible. After initialization of pheromone trails, ants
construct incomplete feasible solutions, starting from random
nodes, and then pheromone trails are updated. A node is an
abstraction for the location of an ant, i.e., a nest or a food source.
At each execution step, ants compute a set of possible moves and
select the best one (according to some probabilistic rules) to carry
out the rest of the tour. The transition probability is based on the
heuristic information and pheromone trail level of the move. The
higher the value of the pheromone and the heuristic information,
the more profitable it is to select this move and resume the search.
In the beginning, the initial pheromone level is set to a small posi-
tive constant value s0 and then ants update this value after com-
pleting the construction stage. All ACO algorithms adapt the
specific algorithm scheme shown in Algorithm 1.

Algorithm 1. Pseudo-code of the canonical ACO algorithm
Procedure ACO

Begin

Initialize the pheromone

While (stopping criterion not satisfied) do
Position each ant in a starting node

Repeat

For each ant do

Chose next node by applying the state

transition rate

End for

Until every ant has built a solution

Update the pheromone

End while

End
After initializing the pheromone trails and control parameters, a
main loop is repeated until the stopping criterion is met. The stop-
ping criterion can be for example a certain number of iterations or
a given time limit without improving the result. In the main loop,
ants construct feasible solutions and update the associated phero-
mone trails. More precisely, partial problem solutions are seen as
nodes: each ant starts from a random node and moves from a node
i to another node j of the partial solution. At each step, the ant k
computes a set of feasible solutions to its current node and moves
to one of these expansions, according to a probability distribution.
For an ant k the probability pk

ij to move from a node i to a node j
depends on the combination of two values:
pk
ij ¼

sij �gijP
q2allowedksiqgiq

if j 2 allowedk

pk
ij ¼ 0 otherwise

8<
:

where:

� gij is the attractiveness of the move and is computed by some
heuristic information indicating a prior desirability of that
move.
� sij is the pheromone trail level of the move, indicating how prof-

itable it has been in the past to make that particular move. The
variable represents therefore a posterior indication of the desir-
ability of that move.
� allowedk is the set of remaining feasible nodes.

Thus, the higher the pheromone value and the heuristic infor-
mation, the more profitable it is to include state j in the partial
solution. The initial pheromone level is a positive integer s0. In nat-
ure, there is not any pheromone on the ground at the beginning
(i.e., s0 = 0). However, the ACO algorithm requires s0 > 0, otherwise
the probability to chose the next state would be pk

ij ¼ 0 and the
search process would stop from the beginning. Furthermore, the
pheromone level of the solution elements is changed by applying
an update rule sij q�sij + Dsij, where 0 < q < 1 models pheromone
evaporation and Dsij represents additional added pheromone. Usu-
ally, the quantity of the added pheromone depends on the desired
quality for the solution.

In practice, to solve distributed job scheduling problems, the
ACO algorithm assigns jobs to each available physical machine.
Here, each job can be carried out by an ant. Ants then cooperatively
search for example the less loaded machines with sufficient avail-
able computing power and transfer the jobs to these machines.
3. Related work

Indeed, the last decade has witnessed an astonishingly amount
of research in improving bio-inspired techniques, specially ACO
[34]. As shown in recent surveys [47,24], the enhanced techniques
have been increasingly applied to solve the problem of distributed
job scheduling. However, with regard to job scheduling in Cloud
environments, very few works can be found to date [31].

Concretely, the works in [2,49] propose ACO-based Cloud
schedulers for minimizing makespan and maximizing load
balancing, respectively. An interesting aspect of [2] is that it was

42 C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50
evaluated in a real Cloud using the Google App Engine [9] and
Microsoft Live Mesh,1 whereas the other effort [49] was evaluated
through simulations. However, during the experiments, [2] used
only 25 jobs and a Cloud comprising 5 machines. Moreover, as our
proposal, these two efforts support true dynamic resource allocation,
i.e., the scheduler does not need to initially know the running time of
the jobs to allocate or the details of the available resources. On the
downside, the works ignore flowtime, rendering difficult their appli-
cability to execute PSEs in semi-interactive scientific Cloud
environments.

Another relevant approach based on Particle Swarm Optimiza-
tion (PSO) is proposed in [33]. PSO is a bio-inspired technique that
mimics the behavior of bird flocks, bee swarms and fish schools.
Contrary to [2,49], the approach is based on static resource alloca-
tion, which forces users to feed the scheduler with the estimated
running times of jobs on the set of Cloud resources to be used.
As we will show in Section 4, even when some user-supplied infor-
mation is required by our algorithm, it only needs as input a qual-
itative indication of which jobs may take longer than others when
run in any physical machine. Besides, [33] is targeted at paid
Clouds, i.e., those that bill users for CPU, storage and network
usage. As a consequence, the work only minimizes monetary cost,
and does not consider either makespan or flowtime minimization.

Finally, the work in [19] address the problem of job scheduling
in Clouds by employing PSO, while reducing energy consumption.
Indeed, energy consumption has become a crucial problem [21], on
one hand because it has started to limit further performance
growth due to expensive electricity bills, and on the other hand,
by the environmental impact in terms of carbon dioxide (CO2)
emissions caused by high energy consumption. This problem has
in fact gave birth to a new field called Green Computing [21]. As
such, [19] does not paid attention to flowtime either but interest-
ingly it also achieves competitive makespan as evidenced by
experiments performed via CloudSim [6], which is also used in this
paper.

The next Section focuses on explaining our approach to bio-in-
spired Cloud scheduling in detail.
4. Approach overview

The goal of our scheduler is to minimize the weighted flowtime
of a set of PSE jobs, while also minimizing makespan when using a
Cloud. One novelty of the proposed scheduler is the association of a
qualitativepriority represented as an integer value for each one of
the jobs of a PSE. Priorities are assigned in terms of the relative
estimated execution time required by each PSE job. Moreover, pri-
orities are provided by the user, who because of his experience, has
arguably extensive knowledge about the problem to be solved
from a modeling perspective, and therefore can estimate the indi-
vidual time requirements of each job with respect to the rest of the
jobs of his/her PSE. In other words, the user can identify which are
the individual experiments within a PSE requiring more time to ob-
tain a solution.

The estimated execution times of each experiment depends on
the particular problem at hand and chosen PSE variable values.
Once the user has identified the experiments that may require
more time to be executed, a simple tagging strategy is applied to
assign a ‘‘category’’ (number) to each job. These categories repre-
sent the priority degree that will have a job with respect to the oth-
ers in the same PSE, e.g., high priority, medium priority or low
priority, but other categories could be defined. Despite jobs can de-
mand different times to execute and the user can identify those
1 http://explore.live.com/windows-live-mesh-devices-sync-upgrade-ui/.
that take longer, the number of categories should be limited for
usability reasons.

Conceptually, the scheduling problem to tackle down can be
formulated as follows. A PSE is formally defined as a set of
N = 1,2, . . . ,n independent jobs, where each job corresponds to a
particular value for a variable of the model being studied by
the PSE. The jobs are executed on m Cloud machines. Each job j
has an associated priority value, i.e., a degree of importance,
which is represented by a weight wj to each job. This priority va-
lue is taken into account by the scheduler to determine the order
in which jobs will be executed at the VM level. The scheduler
processes the jobs with higher priority (or heavier) first and then
the remaining jobs. The larger the estimated size of a job in terms
of execution time, the higher priority weight the user should
associate to the job. This is the opposite criterion to the well-
known Shortest Job First (SFJ) scheduler from operating systems,
whose performance is ideal. SFJ deals with the ‘‘convoy effect’’
precisely by prioritizing shorter jobs over heavier ones. Finally,
in our scheduler, jobs having similar estimated execution times
should be assigned the same priority.

Our scheduler is designed to deliver the shortest total weighted
flowtime (i.e., the sum of the weighted completion time of all jobs)
along with minimum makespan (i.e., the completion time of the
last job finished). The flowtime of a job – also known as the
response time – is the total time that a job spends in the system,
thus it is the sum of times the job is waiting in queues plus its
effective processing time. When jobs have different degrees of
importance, indicated by the weight of the job, the total weighted
flowtime is one of the simplest and natural metrics that measures
the throughput offered by a schedule S and is calculated asPn

j ðCjðSÞ � AjðSÞÞ �wj, where Cj is the completion time of job j, Aj

is the arrival time of job j and wj is the weight associated to job
j. Furthermore, the completion time of job j in schedule S can be
denoted by Cj(S) and hence the makespan is Cmax(S) = maxjCj(S).

Fig. 3 conceptually illustrates the sequence of actions from the
time of creating VMs for executing a PSE within a Cloud until the
jobs are processed and executed. The User entity represents both
the creator of a virtual Cloud (i.e., VMs on top of physical hosts)
and the disciplinary user that submit their experiments for execu-
tion. The Datacenter entity manages a number of Hosts entities, i.e.,
a number of physical resources. The VMs are allocated to hosts
through an AllocationPolicy, which implements the SI-based part
of the scheduler proposed in this paper. Finally, after setting up
the virtual infrastructure, the user can send his/her experiments
to be executed. The jobs will be handled through a JobPriorityPolicy
that will take into account the priorities of jobs at the moment they
are sent to an available VM already issued by the user and allo-
cated to a host. As such, our scheduler operates at two levels:
Cloud-wide or Datacenter level, where SI techniques (currently
ACO) are used to allocate user VMs to resources, and VM-level,
where the jobs assigned to a VM are handled according to their
priority.

4.1. Algorithm implementation

To implement the Cloud-level logic of the scheduler, AntZ, the
algorithm proposed in [23] to solve the problem of load balancing
in Grid environments has been adapted to be employed in Clouds
(see Algorithm 2). AntZ combines the idea of how ants cluster ob-
jects with their ability to leave pheromone trails on their paths so
that it can be a guide for other ants passing their way.

In our adapted algorithm, each ant works independently and
represents a VM ‘‘looking’’ for the best host to which it can be allo-
cated. The main procedure performed by an ant is shown in Algo-
rithm 2. When a VM is created, an ant is initialized and starts to
work. A master table containing information on the load of each

http://explore.live.com/windows-live-mesh-devices-sync-upgrade-ui/

User Datacenter Host VM AllocationPolicy Job JobPriorityPolicy

vmList=createVMs()

allocate(vmList,hostList)

while [!vmList.isEmpty()] allocateVMToHost(vm,host)

jobList=createJobs()

scheduleJobToVM(job)

submitJobsToVMsByPriority(jobList)

executeJob(job)

Fig. 3. Sequence diagram of scheduling actions within a Private Cloud.

C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50 43
host is initialized (initializeLoadTable ()). Subsequently, if
an ant associated to the VM that is executing the algorithm already
exists, the ant is obtained from a pool of ants through getAntPool

(vm) method. If the VM does not exist in the ant pool, then a new
ant is created. To do this, first a list of all suitable hosts in which
can be allocated the VM is obtained. A host is suitable if it has an
amount of processing power, memory and bandwidth greater than
or equal to that of required by the wandering VM.

Then, the working ant with the associated VM is added to the
ant pool (antPool.add(vm,ant)) and the ACO-specific logic
starts to operate (see Algorithm 3). In each iteration of the subal-
gorithm, the ant collects the load information of the host that is
visiting – through the getHostLoadInformation () operation
– and adds this information to its private load history. The ant
then updates a load information table of visited hosts (local-

LoadTable.update ()), which is maintained in each host. This
table contains information of the own load of an ant, as well as
load information of other hosts, which were added to the table
when other ants visited the host. Here, load refers to the total
CPU utilization within a host.

When an ant moves from one host to another has two choices.
One choice is to move to a random host using a constant probabil-
ity or mutation rate. The other choice is to use the load table infor-
mation of the current host (chooseNextStep ()). The mutation
rate decreases with a decay ratefactor as time passes, thus, the
ant will be more dependent on load information than to random
choice. This process is repeated until the finishing criterion is
met. The completion criterion is equal to a predefined number of
steps (maxSteps). Finally, the ant delivers its VM to the current host
and finishes its task. When the ant has not completed its work, i.e.,
the ant cannot allocate its associated VM to a host, then Algorithm
2 is repeated with the same ant until the ant finally achieves the
‘‘finished’’ state. Prior to repetition, an exponential back-off strat-
egy to wait for a while is performed.

Every time an ant visits a host, it updates the host load informa-
tion table with the information of other hosts, but at the same time
the ant collects the information already provided by the table of
that host, if any. The load information table acts as a pheromone
trail that an ant leaves while it is moving, in order to guide other
ants to choose better paths rather than wandering randomly in
the Cloud. Entries of each local table are the hosts that ants have
visited on their way to deliver their VMs together with their load
information.
Algorithm 2. ACO-based allocation algorithm for individual VMs

Procedure ACOallocationPolicy (vm,hostList)

Begin

initializeLoadTable ()

ant = getAntPool (vm)

if (ant==null) then
suitableHosts = getSuitableHostsForVm

(hostList,vm)

ant = new Ant (vm,suitableHosts)

antPool.add (vm,ant)

end if

repeat

ant.AntAlgorithm ()

until ant.isFinish ()

allocatedHost = hostList.get(ant.getHost ())

allocatedHost.allocateVM (ant.getVM ())

End
Algorithm 3. ACO-specific logic

Procedure AntAlgorithm ()
Begin

step = 1

initialize ()

While (step < maxSteps) do
currentLoad = getHostLoadInformation ()

AntHistory.add (currentLoad)

localLoadTable.update ()

if (random () < mutationRate) then
nextHost = randomlyChooseNextStep ()

else

nextHost = chooseNextStep ()

end if

mutationRate = mutationRate-decayRate

step = step + 1

moveTo (nextHost)

end while

deliverVMtoHost ()

End

44 C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50
Algorithm 4. ACO-specific logic: The ChooseNextStep procedure
Procedure ChooseNextStep ()

Begin

bestHost = currentHost

bestLoad = currentLoad

for each entry in hostList

if (entry.load < bestLoad) then
bestHost = entry.host

else if (entry.load = bestLoad) then
if (random.next < probability) then
bestHost = entry.host

end if

end if

end for

End

When an ant reads the information in the load table in each
host and chooses a direction via Algorithm 4, the ant chooses the
lightest loaded host in the table, i.e., each entry of the load infor-
mation table is evaluated and compared with the current load of
the visited host. If the load of the visited host is smaller than any
other host provided in the load information table, the ant chooses
the host with the smallest load, and in case of a tie the ant chooses
one with an equal probability.

To calculate the load, the original AntZ algorithm receives the
number of jobs that are executing in the resource in which the load
is being calculated. In the proposed algorithm, the load is calcu-
lated on each host taking into account the CPU utilization made
by all the VMs that are executing on each host. This metric is useful
for an ant to choose the least loaded host to allocate its VM.

Once the VMs have been created and allocated in physical re-
sources, the scheduler proceeds to assign the jobs to user VMs.
To do this, a strategy where the jobs with higher priority value
are assigned first to the VMs is used (see Algorithm 5). This repre-
sents the second scheduling level of the scheduler proposed as a
whole.

Algorithm 5. The SubmitJobsToVMsByPriority procedure

Procedure SubmitJobsToVMsByPriority (jobList)

Begin

vmIndex = 0

while (jobList.size () > 0)
job = jobList.getJobByPriority ()

vm = getVMsList (vmIndex)

vm.scheduleJobToVM (job)

vmIndex = Mod(vmIndex + 1,getVMsList ().size

())
jobList.remove (job)

end while

End

To carry out the assignment of jobs to VMs, this subalgorithm
uses two lists, one containing the jobs that have been sent by the
user, and the other list contains all user VMs that are already allo-
cated to a physical resource and hence are ready to execute jobs.
The procedure starts iterating the list of all jobs – jobsList –
and then, through getJobByPriority () method retrieves jobs
according to their priority value, this means, jobs with the highest
priority first, then jobs with medium priority value, and finally jobs
with low priority. Each time a job is obtained from the jobList it
is submitted to be executed in a VM by a round robin method. The
VM where the job is executed is obtained through the method
getVmsList (vmIndex). Internally, the algorithm maintains a
queue for each VM that contains a list of jobs that have been as-
signed to be executed. The procedure is repeated until all jobs have
been submitted for execution, i.e., when the jobList is empty.
5. Evaluation

In order to assess the effectiveness of our proposal for executing
PSEs on Clouds, we have processed a real case study for solving a
very well-known benchmark problem proposed in the literature,
see [1] for instance. Broadly, the experimental methodology in-
volved two steps. First, we executed the problem in a single ma-
chine by varying an individual problem parameter by using a
finite element software, which allowed us to gather real job data,
i.e., processing times and input/output file data sizes (see Sec-
tion 5.1). By means of the generated job data, we instantiated the
CloudSim simulation toolkit, which is explained in Section 5.2.
Lastly, the obtained results regarding the performance of our pro-
posal compared with some Cloud scheduling alternatives are re-
ported in Section 5.3.

5.1. Real job data gathering

The problem explained in [1] involves studying a plane strain
plate with a central circular hole. The dimensions of the plate were
18 � 10 m, with R = 5 m. On the other hand, material constants
considered were E = 2.1 � 105 MPa, m = 0.3, ry = 240 MPa and
H = 0. A linear Perzyna viscoplastic model with m = 1 and n =1
was considered. Unlike previous studies of our own [7], in which
a geometry parameter – particularly imperfection – was chosen
to generate the PSE jobs, in this case a material parameter was se-
lected as the variation parameter. Then, 25 different viscosity val-
ues for the g parameter were considered, namely 1 � 104, 2 � 104,
3 � 104, 4 � 104, 5 � 104, 7 � 104, 1 � 105, 2 � 105, 3 � 105,
4 � 105, 5 � 105, 7 � 105, 1 � 106, 2 � 106, 3 � 106, 4 � 106,
5 � 106, 7 � 106, 1 � 107, 2 � 107, 3 � 107, 4 � 107, 5 � 107,
7 � 107 and 1 � 108 MPa. Useful and introductory details on visco-
plastic theory and numerical implementation can be found in
[35,14].

The two different finite element meshes displayed in Fig. 4 were
tested. In both cases, Q1/P0 elements were chosen. Imposed dis-
placements (at y = 18 m) were applied until a final displacement
of 2000 mm was reached in 400 equal time steps of 0.05 mm each.
It is worth noting that d = 1 has been set for all the time steps.

After establishing the problem parameters, we employed a sin-
gle real machine to run the parameter sweep experiment by vary-
ing the viscosity parameter g as indicated above and measuring the
execution time for the 25 different experiments, which resulted in
25 input files with different input configurations and 25 output
files for either meshes. The tests were solved using the SOGDE fi-
nite element solver software [13]. Furthermore, the characteristics
of the real machine on which the executions were carried out are
shown in Table 1. The machine model was AMD Athlon (tm) 64
X2 Dual Core Processor 3600+, equipped with the Linux operating
system (specifically the Ubuntu 11.04 distribution) running the
generic kernel version 2.6.38–8. It is worth noting that only one
core was used during the experiments since individual jobs did
not exploit multicore capabilities.

The information regarding machine processing power was ob-
tained from the native benchmarking support of Linux and as such
is expressed in bogoMIPS [43]. BogoMIPS (from bogus and MIPS) is
a metric that indicates how fast a machine processor runs. Since
the real tests were performed on a machine running the Linux
operating system, we have considered to use the bogoMIPS

(a) 288 elements (b) 1,152 elements

Fig. 4. Considered input data meshes.

Table 1
Machine used to execute the real PSE: Characteristics.

Feature Value

CPU power 4008.64 bogoMIPS
Number of CPUs 2
RAM memory 2 GBytes
Storage size 400 GBytes
Bandwidth 100 Mbps

C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50 45
measure which is as we mentioned the one used by this operating
system to approximate CPU power.

Then, the simulations were carried out by taking into account
the bogoMIPS metric for measuring simulated jobs CPU instruc-
tions. Once the execution times were obtained from the real ma-
chine, we approximated for each experiment the number of
executed instructions by the following formula:
NIj ¼ bogomipsCPU � Tj
where,

� NIj is the number of million instructions to be executed by, or
associated to, a job j.
� bogomipsCPU is the processing power of the CPU of our real

machine measured in bogoMIPS.
� Tj is the time that took to run the job j on the real machine.

Next is an example of how to calculate the number of instruc-
tions of a job corresponding to the mesh of 1152 elements that
took 117 s to be executed. The machine where the experiment
was executed had a processing power of 4008.64 bogoMIPS. Then,
the approximated number of instructions for the job was 469,011
MI (Million Instructions). Details about all jobs execution times
and lengths can be seen in Table 2.
5.2. CloudSim instantiation

First, the CloudSim simulator [6] was configured with a data-
center composed of a single machine – or ‘‘host’’ in CloudSim ter-
minology – with the same characteristics as the real machine
where the experiments were performed. The characteristics of
the configured host are shown in Table 3 (left). Here, processing
power is expressed in MIPS (Million Instructions Per Second),
RAM memory and Storage capacity are in MBytes, bandwidth is ex-
pressed in Mbps, and finally, PEs is the number of processing ele-
ments (cores) of the host. Each PE has the same processing power.

Once configured, we checked that the execution times obtained
by the simulation coincided or were close to real times for each
independent job performed on the real machine. The results were
successful in the sense that one experiment (i.e., a variation in the
value of g) took 117 s to be solved in the real machine, while in the
simulated machine the elapsed time was 117.02 s. Once the execu-
tion times have been validated for a single machine on CloudSim, a
new simulation scenario was set. This new scenario consisted of a
datacenter with 10 hosts, where each host has the same hardware
capabilities as the real single machine, and 40 VMs, each with the
characteristics specified in Table 3 (right). This is a moderately-
sized, homogeneous datacenter that can be found in many real
scenarios.

For each mesh, we evaluated the performance of their associ-
ated jobs in the simulated Cloud as we increased the number of
jobs to be performed, i.e., 25⁄i jobs with i = 10, 20, . . . , 100. This
is, the base job set comprising 25 jobs obtained by varying the va-
lue of g was cloned to obtain more sets.

Each job, called cloudlet by CloudSim, had the characteristics
shown in Table 4 (left), where Length parameter is the number

Table 2
Real jobs execution times and lengths: Meshes of 288 and 1152 elements.

Parameter g Mesh of 288 elements Mesh of 1152 elements

Execution time (s-min) Length (MIPS) Execution time (s-min) Length (MIPS)

1 � 104 24-0.40 96,207 90-1.50 360,778
2 � 104 25-0.41 100,216 88-1.47 352,760
3 � 104 24-0.40 96,207 87-1.45 348,752
4 � 104 24-0.40 96,207 87-1.45 348,752
5 � 104 25-0.41 100,216 89-1.48 356,769
7 � 104 25-0.41 100,216 88-1.47 352,760
1 � 105 25-0.41 100,216 88-1.47 352,760
2 � 105 25-0.41 100,216 85-1.42 340,734
3 � 105 26-0.43 104,225 102-1.70 408,881
4 � 105 22-0.36 88,190 117-1.95 469,011
5 � 105 20-0.33 80,173 70-1.17 280,605
7 � 105 20-0.33 80,173 73-1.22 292,631
1 � 106 20-0.33 80,173 74-1.23 296,639
2 � 106 20-0.33 80,173 73-1.22 292,631
3 � 106 20-0.33 80,173 72-1.20 288,622
4 � 106 20-0.33 80,173 70-1.17 280,605
5 � 106 20-0.33 80,173 62-1.03 248,536
7 � 106 20-0.33 80,173 61-1.02 244,527
1 � 107 20-0.33 80,173 62-1.03 248,536
2 � 107 17-0.28 68,147 65-1.08 260,562
3 � 107 13-0.21 52,112 65-1.08 260,562
4 � 107 13-0.21 52,112 68-1.13 272,588
5 � 107 13-0.21 52,112 68-1.13 272,588
7 � 107 13-0.21 52,112 70-1.17 280,605
1 � 108 13-0.21 52,112 71-1.18 280,613

Table 3
Simulated Cloud machines characteristics. Host parameters (left) and VM parameters
(right).

Value

Host parameters
Processing power 4008 bogoMIPS
RAM 4 Gbytes
Storage 409,600
Bandwidth 100 Mbps
PEs 2

VM parameters
MIPS 4008 bogoMIPS
RAM 1 Gbyte
Machine image size 102,400
Bandwidth 25 Mbps
PEs 1
VMM (Virtual Machine Monitor) Xen

46 C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50
of instructions to be executed by a cloudlet, which varied between
52,112 and 104,225 MIPS for the mesh of 288 elements and
between 244,527 and 469,011 for the mesh of 1152 elements
(see Table 2). Moreover, PEs is the number of processing elements
(cores) required to perform each individual job. Input size and
Table 4
Cloudlet configuration used in the experiments. CloudSim built-in parameters (left)
and job priorities (right).

Value

Mesh of 288 elements Mesh of 1152 elements

Cloudlet parameters
Length (MIPS) 52,112–104,225 244,527–469,011
PEs 1 1
Input size (bytes) 40,038 93,082
Output size (bytes) 722,432 2,202,010

Cloudlet priority
Low (wj = 1) 52,112–68,147 244,527–272,588
Medium (wj = 2) 80,173–96,207 280,605–348,752
High (wj = 3) 100,216–104,225 352,760–469,011
Output size are the input file size and output file size in bytes,
respectively. As shown in Table 4 (left) the experiments corre-
sponding to the mesh of 288 elements had input files of 40,038 by-
tes, and the experiments corresponding to the mesh of 1152
elements had input files of 93,082 bytes. A similar distinction ap-
plies to the output file sizes. Finally, Table 4 (right) shows the pri-
orities assigned to Cloudlets. For the sake of realism, the base job
set comprised 7, 11 and 7 job with low, medium and high priority,
respectively. This is, usually most PSE jobs take similar execution
times, except for less cases, where smaller and higher execution
times are registered.

In CloudSim, the amount of available hardware resources to
each VM is constrained by the total processing power and available
system bandwidth within the associated host. Thus, scheduling
policies must be applied in order to appropriately assign Cloudlets
(and hence VMs) to hosts and achieve efficient use of resources. On
the other hand, Cloudlets can be configured to be scheduled
according to some scheduling policy that can both determine
how to indirectly assign them to hosts and in which order to pro-
cess the list of Cloudlets within a host. This allow us to experiment
with custom Cloud schedulers such as the one proposed in this pa-
per, which was in fact compared against CloudSim built-in sched-
ulers. The next section explains the associated obtained results in
detail.
5.3. Experiments

In this subsection we report on the obtained results when exe-
cuting the PSE in the simulated Cloud by using our two-level
scheduler and two classical Cloud scheduling policies for assigning
VMs to hosts and handling jobs. Due to their high CPU require-
ments, and the fact that each VM requires only one PSE, we as-
sumed a 1–1 job-VM execution model, i.e., although each VM can
have in its waiting queue many jobs, they are executed one at a
time. Concretely, apart from our proposal, we employed a random
policy, and a ‘‘best effort’’ (CloudSim built-in) policy, which upon
executing a job assigns the corresponding VMs to the Cloud ma-
chine which has the highest number of free PEs. In our scheduler,

Table 5
Using the VM-level priority policy: Effects on flowtime and makespan.

Scheduler Mesh of 288 elements Mesh of 1152 elements

Flowtime (min) Makespan (min) Flowtime (min) Makespan (min)

Random 153707.56 366.20 569335.78 1373.44
Random (priority) 130539.85 361.33 482562.31 1373.19
Gain (0–100%) 15.07 1.32 15.24 0.02
Best effort 137378.79 283.89 513783.00 1084.60
Best effort (priority) 118646.36 283.20 435985.39 1086.24
Gain (0–100%) 13.63 0.24 15.14 �0.15
ACO 127270.74 233.50 476230.77 894.69
ACO (priority) 109477.35 234.13 401806.35 896.54
Gain (0–100%) 13.98 �0.27 15.62 �0.20

C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50 47
we set the ACO-specific parameters – i.e., mutation rate, decay rate
and maximum steps – as suggested in [23]. For simplicity, from
now on, we will refer to the term ‘‘weighted flowtime’’ as ‘‘flow-
time’’. In addition, although our scheduler is independent from
the SI technique exploited at the Cloud-level, it will be referred
to as ‘‘ACO’’.

In all cases, the competing policies were also complemented
with the VM-level policy for handling jobs within VMs, or the
 0

 5000

 10000

 15000

 20000

 25000

 30000

250 500 750 1000 1250 1500 1750 2000 2250 2500

Fl
ow

tim
e

(m
in

ut
es

)
(L

es
s

is
 b

et
te

r)

Number of jobs

Random
Best effort

ACO

(a) Flowtime

Fig. 5. Results as the number of jobs

Fl
ow

tim
e

(m
in

ut
es

)
(L

es
s

is
 b

et
te

r)

250 500 750 1000 1250 1500 1750 2000 2250 2500
Number of jobs

Random
Best effort

ACO

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

(a) Flowtime

Fig. 6. Results as the number of jobs i
VMs allocated to a single host. As shown in Table 5, regardless
the VM allocation policy used or the experiment size (i.e., mesh),
considering job priority information yielded as a result important
gains with respect to accumulated flowtime, i.e., the weighted
flowtime resulted from simulating the execution of 25⁄i jobs with
i = 10, 20, . . . , 100 of various priorities. For example, for the mesh
of 288 elements, gains in the range of 13.63–15.07% compared to
not considering priorities were obtained, whereas for the mesh of
M
ak

es
pa

n
(m

in
ut

es
)

(L
es

s
is

 b
et

te
r)

250 500 750 1000 1250 1500 1750 2000 2250 2500
Number of jobs

Random
Best effort

ACO

 0

 10

 20

 30

 40

 50

 60

 70

(b) Makespan

increases: Mesh of 288 elements.

M
ak

es
pa

n
(m

in
ut

es
)

(L
es

s
is

 b
et

te
r)

250 500 750 1000 1250 1500 1750 2000 2250 2500
Number of jobs

Random
Best effort

ACO

 0

 50

 100

 150

 200

 250

(b) Makespan

ncreases: Mesh of 1152 elements.

Table 6
Results as the number of jobs increases: Percentage gains of ACO with respect to ‘‘best
effort’’.

#Jobs Mesh of 288 elements Mesh of 1152 elements

Flowtime Makespan Flowtime Makespan

250 16.43 22.45 17.00 19.87
500 12.03 20.55 11.94 20.76
750 9.98 16.92 9.96 18.15

1000 8.37 16.60 8.45 16.64
1250 8.42 17.76 8.63 17.33
1500 8.11 17.81 8.19 18.06
1750 7.84 16.63 7.86 17.28
2000 7.26 16.48 7.37 16.65
2250 7.41 17.17 7.58 17.03
2500 7.30 17.27 7.42 17.50

48 C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50
1152, the gains were in the range of 15.14–15.62%. Interestingly,
except for few cases were some overhead was obtained (the cells
with negative percentage values), the accumulated makespan
was not significantly affected. This means that taking into account
job priority information at the VM level for scheduling jobs im-
proves weighted flowtime without compromising makespan.
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

50 250 450 650 850 1050
Number of hosts

(a) Flowtime

Fl
ow

tim
e

(m
in

ut
es

)
(L

es
s

is
 b

et
te

r)

Random
Best effort

ACO

Fig. 7. Results as the number of hosts

50 250 450 650 850 1050
Number of hosts

(a) Flowtime

 0

 5000

 10000

 15000

 20000

 25000

 30000

Fl
ow

tim
e

(m
in

ut
es

)
(L

es
s

is
 b

et
te

r)

Random
Best effort

ACO

Fig. 8. Results as the number of hosts
Therefore, the rest of the experiments were performed by using
the variants exploiting job priority information.

Furthermore, Figs. 5 and 6 illustrate the obtained flowtime and
makespan by the three schedulers using the VM-level priority pol-
icy for both meshes. Graphically, it can be seen that, irrespective of
the mesh, flowtime and makespan presented exponential and lin-
ear tendencies, respectively. All in all, our algorithm performed
rather well compared to its competitors regarding the two perfor-
mance metrics taken. Table 6 shows the reductions or gains ob-
tained by ACO with respect to ‘‘best effort’’. An observation is
that, for the mesh of 288 elements, the highest gains in terms of
flowtime of ACO compared to the ‘‘best effort’’ policy were
achieved for 250–750 jobs, with gains of up to 16%. For 1000 jobs
and beyond, the flowtime gains converged around 7–8%. This is
sound since adding more jobs to the environment under test ends
up saturating its execution capacity, and thus scheduling decisions
have less impact on the outcome. For the mesh of 1152 elements,
on the other hand, a similar behavior was observed when execut-
ing 1000 or more jobs. For 750 or less jobs, flowtime gains were
10–17%. Despite having heavier jobs (from a computational stand-
point) makes computations to stay longer within the Cloud and
may impact on flowtime, ACO maintained the gain levels.
50 250 450 650 850 1050
Number of hosts

 0

 2

 4

 6

 8

 10

 12

 14

(b) Makespan

M
ak

es
pa

n
(m

in
ut

es
)

(L
es

s
is

 b
et

te
r)

Random
Best effort

ACO

increases: Mesh of 288 elements.

50 250 450 650 850 1050
Number of hosts

(b) Makespan

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

M
ak

es
pa

n
(m

in
ut

es
)

(L
es

s
is

 b
et

te
r)

Random
Best effort

ACO

increases: Mesh of 1152 elements.

C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50 49
Although our aim is to reduce flowtime while being competitive
in terms of makespan, from Table 6 it can be seen that important
makespan gains were obtained as well. However, compared to
flowtime, gains were more uniform. Concretely, for the mesh of
288 elements, ACO outperformed ‘‘best effort’’ by 22.45% and
20.55% when executing 250 and 500 jobs, respectively. When run-
ning more jobs, the gains were in the range of 16–17%. For the
mesh of 1152, the gains were approximately in the range of 17–
19% irrespective of the number of jobs used.

In a second round of experiments, we measured the effects of
varying the number of hosts while keeping the number of jobs to
execute fixed. The aim of this experiment is to assess the effects
of increasing hosts, which is commonly known as horizontal scala-
bility or scaling out, in the performance of the algorithms. Particu-
larly, we evaluated the three policy-aware scheduling alternatives
by using 50⁄i hosts with i = 1, 5, 9, 13, 17, 21. These values were
chosen to be consistent with the ones employed in the horizontal
scalability analysis performed on the original AntZ algorithm
[23]. The hosts and VMs characteristics were again the ones shown
in Table
3. Besides, the number of VMs in each case increased
accordingly. On the other hand, the number of jobs were set at the
maximum used in the previous experiment (2500), which means
100 PSEs of 25 jobs each. Again, within each PSE, there were 7,
11 and 7 jobs tagged with low, medium and high priority.

Fig. 7 shows the obtained results for the mesh of 288 elements.
As illustrated, ACO performed very well. In terms of flowtime, it
can be seen that ‘‘best effort’’ (gray bar) could not exploit resources
for 650 hosts onwards, as the delivered flowtime is around the
same value. Moreover, a similar situation occurs with makespan.
As one might expect, arbitrarily growing the size of the used Cloud
benefited the random policy, which obtained gains in terms of the
tested performance metrics up to 850 hosts. However, the best
curves were obtained with ACO, which although marginal, also ob-
tained performance gains when using 1050 hosts. It is worth not-
ing that the goal of this experiment is not to study the number
of hosts to which the flowtime and makespan curves converge,
which is in fact not useful as it would depend on the parameters
established for the jobs and the simulated hardware used. In con-
trast, the experiment shows that ACO cleanly supports scaling out
compared to the analyzed alternatives.

Complementary, Fig. 8 shows the resulting flowtimes and
makespan for the mesh of 1152 elements. Although the curves
are very similar to the case of the mesh of 288 elements, some dif-
ferences in the average makespan were obtained. Concretely, the
average gain of ACO with respect to ‘‘best effort’’, taken as
P

j¼50;250;450;650;850;1050
ðmakespanjðbestEffortÞ�makespanjðACOÞ

ðmakespanjðbestEffortÞÞ

h i
=6, yielded as a

Result 30.43% and 26.79% for the mesh of 1152 and 288 elements,
respectively. The same applies to ACO versus Random (41.33% and
37.90%). This is since our support considers host CPU utilization
and not just hardware capabilities to make scheduling decisions,
it is able to better exploit computational power or Cloud PEs. It is
worth noting that CPU utilization is different from regular CPU load
[27]. Within a single host, the former metric provides trend infor-
mation of CPU usage, but not just the length of the queue main-
taining the jobs (or VMs) waiting for taking possession of the PEs
as the latter metric does. For larger jobs, more extensive use of re-
sources is done, and thus CPU utilization in resources is close to
100% most of the time. Then, ACO is able to quickly schedule
VMs to hosts whose CPU utilization is below these levels, thus
increasing efficiency.
6. Conclusions

Parameter Sweep Experiments (PSE) is a type of numerical sim-
ulation that involves running a large number of independent jobs
and typically requires a lot of computing power. These jobs must
be efficiently processed in the different computing resources of a
distributed environment such as the ones provided by Cloud. Con-
sequently, job scheduling in this context indeed plays a fundamen-
tal role.

In the last ten years or so, bio-inspired computing has been re-
ceived increasing attention in the research community. Bio-in-
spired computing (also known as Swarm Intelligence) refers to
the collective behavior that emerges from a swarm of social in-
sects. Social insect colonies solve complex problems collectively
by intelligent methods. These problems are beyond the capabilities
of each individual insect, and the cooperation among them is lar-
gely self-organized without any supervision. Through studying so-
cial insect colonies behaviors such as ant colonies, researchers have
proposed some algorithms or theories for combinatorial optimiza-
tion problems. Moreover, job scheduling in Clouds is also a combi-
natorial optimization problem, and some bio-inspired schedulers
have been proposed. Basically, researchers have introduced
changes to the traditional bio-inspired techniques to achieve
different Cloud scheduling goals, i.e., minimize makespan, maxi-
mize load balancing, minimize monetary cost or minimize energy
consumption.

However, existing efforts fail at effectively handling PSEs in sci-
entific Cloud environments since, to the best of our knowledge, no
effort aimed at minimizing flowtime exists. Achieving low flow-
time is important since it means a more agile human processing
of PSE job results. Therefore, we have presented a new Cloud
scheduler based on SI and particularly Ant Colony Optimization
that pays special attention to this aspect. Simulated experiments
performed with the help of the well-established CloudSim toolkit
and real PSE job data show that our scheduler can handle a large
number of jobs effectively, achieving interesting gains in terms of
flowtime and makespan compared to classical Cloud scheduling
policies.

We are extending this work in several directions. We will ex-
plore the ideas exposed in this paper in the context of other bio-in-
spired techniques, particularly Particle Swarm Optimization, which
is also extensively used to solve combinatorial optimization prob-
lems. As a starting point, we will implement the first scheduling le-
vel based on an adaptation of the ParticleZ [23] Grid scheduling
algorithm so as to target Clouds. Eventually, we will materialize
the resulting job schedulers on top of a real (but not simulated)
Cloud platform, such as Emotive Cloud [15], which is designed
for extensibility.

Another issue concerns energy consumption. Clearly, simpler
scheduling policies (e.g., random or ‘‘best effort’’) require fairly less
CPU usage, memory accesses and network transfers compared to
more complex policies such as our algorithm. For example, we
need to maintain local and remote host load information for ants,
which requires those resources. Therefore, when running many
jobs, the accumulated resource usage overhead may be arguably
significant, resulting in higher demands for energy. Then, we will
study the flowtime/makespan vs energy consumption tradeoff in
order to consider this problem.

Finally, there is an outstanding and increasing number of avail-
able mobile devices such as smartphones. Nowadays, mobile de-
vices have a remarkable amount of computational resources that
allows them to execute complex applications, such as 3D games,
and to store large amounts of data. Recent work has experimen-
tally shown the feasibility of using smartphones for running
CPU-bound scientific codes [37]. Due to these advances, emergent
research lines have aimed at integrating smartphones and other
kind of mobile devices into traditional distributed computational
environments, like clusters and Grids [38], to play the role of job
executing ‘‘machines’’. It is not surprising that this research could
also span scientific Clouds as well. However, intuitively, job

50 C. Mateos et al. / Advances in Engineering Software 56 (2013) 38–50
scheduling in these highly heterogeneous environments will be
more challenging since mobile devices rely on unreliable wireless
connections and batteries, which is necessary to consider at the
scheduling level. This will open the door to excellent research
opportunities for new schedulers based both on traditional tech-
niques and particularly SI-based algorithms.

Acknowledgments

We thank the anonymous referees for their helpful comments
to improve the theoretical background and quality of this paper.
We also acknowledge the financial support provided by ANPCyT
through Grants PAE-PICT 2007-02311 and PAE-PICT 2007-02312.
The second author acknowledges her Ph.D. fellowship Granted by
the PRH-UNCuyo Project.

References

[1] Alfano G, Angelis FD, Rosati L. General solution procedures in elasto-
viscoplasticity. Comput Methods Appl Mech Eng 2001;190(39):5123–47.

[2] Banerjee S, Mukherjee I, Mahanti P. Cloud Computing initiative using modified
ant colony framework. World Acad Sci Eng Technol 2009:221–4.

[3] Basney J, Livny M, Mazzanti P. Harnessing the capacity of computational Grids
for high energy physics. In: International conference on computing in high
energy and nuclear physics (CHEP 2000); 2000.

[4] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to
artificial systems. Oxford University Press; 1999.

[5] Buyya R, Yeo C, Venugopal S, Broberg J, Brandic I, computing Cloud, et al. and
reality for delivering computing as the 5th utility. Future Generation Comput
Syst 2009;25(6):599–616.

[6] Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit
for modeling and simulation of Cloud Computing environments and evaluation
of resource provisioning algorithms. Software: Pract Exp 2011;41(1):23–50.

[7] Careglio C, Monge D, Pacini E, Mateos C, Mirasso A, García Garino C.
Sensibilidad de resultados del ensayo de tracción simple frente a diferentes
tamaños y tipos de imperfecciones. Mec Comput XXIX 2010(41):4181–97.

[8] Casavant TL, Kuhl JG. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans Software Eng 1988;14(2):141–54.

[9] de Jonge A. Essential app engine: building high-performance java apps with
google app engine. Addison-Wesley Professional; 2011.

[10] Dorigo M. Optimization, learning and natural algorithms. Ph.D. thesis.
Politecnico di Milano, Italy; 1992.

[11] Dorigo M, Stützle T. The ant colony optimization metaheuristic: algorithms,
applications, and advances. In: Glover F, Kochenberger G, editors. Handbook of
metaheuristics. International series in operations research & management
science, vol. 57. New York: Springer; 2003. p. 250–85.

[12] Fidanova S, Durchova M. Ant algorithm for Grid scheduling problem. In: 5th
International conference on large-scale scientific computing. Springer; 2005.
p. 405–12.

[13] García Garino C, Gabaldón F, Goicolea JM. Finite element simulation of the
simple tension test in metals. Finite Elem Anal Des 2006;42(13):1187–97.

[14] García Garino C, Ribero Vairo M, Andía Fagés S, Mirasso A, Ponthot JP.
Numerical simulation of finite strain viscoplastic problems. In: Hogge M, et al.
editor. Fifth international conference on advanced computational methods in
engineering (ACOMEN 2011). University of Liege; 2011. p. 1–10.

[15] Goiri I, Guitart J, Torres J. Elastic management of tasks in virtualized
environments. In: XX Jornadas de Paralelismo (JP 2009); 2009. p. 671–6.

[16] Gulamali M, Mcgough A, Newhouse S, Darlington J. Using ICENI to run
parameter sweep applications across multiple Grid resources. In: Global Grid
forum 10, case studies on Grid applications workshop, GGF10; 2004.

[17] Hui Y, Xue-Qin S, Xing L, Ming-Hui W. An improved ant algorithm for job
scheduling in Grid computing. International conference on machine learning
and cybernetics, vol. 5. IEEE Computer Society; 2005. p. 2957–61.

[18] Izakian H, Abraham A, Snasel V. Comparison of heuristics for scheduling
independent tasks on heterogeneous distributed environments. 2009
International joint conference on computational sciences and optimization
(CSO ’09), vol. 1. Washington, DC, USA: IEEE Computer Society; 2009. p. 8–12.

[19] Jeyarani R, Nagaveni N, Vasanth Ram R. Design and implementation of
adaptive power-aware virtual machine provisioner (APA-VMP) using swarm
intelligence. Future Generation Comput Syst 2012;28(5):811–21.

[20] Kousalya K, Balasubramanie P. To improve ant algorithm’s Grid scheduling
using local search. Int J Intell Inform Technol Appl 2009;2(2):71–9.

[21] Liu Y, Zhu H. A survey of the research on power management techniques for
high-performance systems. Software: Pract Exp 2010;40(11):943–64.

[22] Lorpunmanee S, Sap M, Abdullah A, Chompooinwai C. An ant colony
optimization for dynamic job scheduling in Grid environment. In: World
academy of science, engineering & technology; 2007. p. 314–21.
[23] Ludwig S, Moallem A. Swarm intelligence approaches for Grid load balancing. J
Grid Comput 2011;9(3):279–301.

[24] Ma T, Qiaoqiao Yan WL, Guan D, Lee S. Grid task scheduling: algorithm review.
IETE Tech Rev 2011;28(2):158–67.

[25] Malawski M, Kuzniar M, Wojcik P, Bubak M. How to use google app engine for
free computing. IEEE Int Comput; in press.

[26] Mateos C, Zunino A, Hirsch M, Fernández M. Enhancing the BYG gridification
tool with state-of-the-art Grid scheduling mechanisms and explicit tuning
support. Adv Eng Software 2012;43(1):27–43.

[27] Mateos C, Zunino A, Hirsch M, Fernández M, Campo M. A software tool for
semi-automatic gridification of resource-intensive java bytecodes and its
application to ray tracing and sequence alignment. Adv Eng Software
2011;42(4):172–86.

[28] Mathiyalagan P, Suriya S, Sivan S. Modified ant colony algorithm for Grid
scheduling. Int J Comput Sci Eng 2010;2:132–9.

[29] Merkle D, Middendorf M, Schmeck H. Ant colony optimization for resource-
constrained project scheduling. Evol Comput 2002;6(4):333–46.

[30] Pacini E, Mateos C, García Garino C. Planificadores basados en inteligencia
colectiva para experimentos de simulación numérica en entornos distribuidos.
In: Sexta Edición del Encuentro de Investigadores y Docentes de Ingeniería;
2011.

[31] Pacini E, Mateos C, García Garino C. Schedulers based on ant colony
optimization for parameter sweep experiments in distributed environments.
Handbook of Research on Computational Intelligence for Engineering, Science,
and Business. IGI Global 2012:410–48.

[32] Pacini E, Ribero M, Mateos C, Mirasso A, García Garino C. Simulation on Cloud
Computing infrastructures of parametric studies of nonlinear solids problems.
In: Cipolla-Ficarra FV, editor. Advances in new technologies, interactive
interfaces and communicability (ADNTIIC 2011), Lecture notes in computer
science. Springer; in press. p. 56–68.

[33] Pandey S, Wu L, Guru S, Buyya R. A particle swarm optimization-based
heuristic for scheduling workflow applications in Cloud Computing
environments. In: International conference on advanced information
networking and applications (AINA 2010). IEEE Computer Society; 2010. p.
400–7.

[34] Pedemonte M, Nesmachnow S, Cancela H. A survey on parallel ant colony
optimization. Appl Soft Comput 2011;11(8):5181–97.

[35] Ponthot J-P, García Garino C, Mirasso A. Large strain viscoplastic constitutive
model. Theory and numerical scheme. Mec Comput XXIV 2005:441–54.

[36] Ritchie G, Levine J. A hybrid ant algorithm for scheduling independent jobs in
heterogeneous computing environments. In: Proceedings of the 23rd
workshop of the UK planning and scheduling special interest group; 2004.

[37] Rodriguez JM, Mateos C, Zunino A. Are smartphones really useful for scientific
computing? In: Cipolla-Ficarra FV et al., editors. Advances in new technologies,
interactive interfaces and communicability (ADNTIIC 2011). Lecture notes in
computer science. Huerta Grande, Córdoba, Argentina: Springer; 2011. p.
35–44.

[38] Rodriguez JM, Zunino A, Campo M. Introducing mobile devices into Grid
systems: a survey. Int J Web Grid Serv 2011;7(1):1–40.

[39] Ruay-Shiung C, Jih-Sheng C, Po-Sheng L. An ant algorithm for balanced job
scheduling in Grids. Future Generation Comput Syst 2009;25:20–7.

[40] Samples M, Daida J, Byom M, Pizzimenti M. Parameter sweeps for exploring GP
parameters. In: Conference on genetic and evolutionary computation (GECCO
’05). New York, NY, USA: ACM Press; 2005. p. 212–9.

[41] Sathish K, Reddy ARM. Enhanced ant algorithm based load balanced task
scheduling in Grid computing. IJCSNS Int J Comput Sci Network Security 2008;
8(10):219–23.

[42] Sun C, Kim B, Yi G, Park H. A model of problem solving environment for
integrated bioinformatics solution on Grid by using Condor. In: Grid and
cooperative computing – GCC 2004. Lecture notes in computer
science. Springer; 2004. p. 935–8.

[43] Van Dorst W. Bogomips mini-howto; 2006. <http://www.clifton.nl/
bogomips.html>.

[44] Wang L, Kunze M, Tao J, von Laszewski G. Towards building a Cloud for
scientific applications. Adv Eng Software 2011;42(9):714–22.

[45] Wang L, Tao J, Kunze M, Castellanos AC, Kramer D, Karl W. Scientific cloud
computing: early definition and experience. In: 10th IEEE international
conference on high performance computing and communications (HPCC
2008). Washington, DC, USA: IEEE Computer Society; 2008. p. 825–30.

[46] Wozniak J, Striegel A, Salyers D, Izaguirre J. GIPSE: streamlining the
management of simulation on the Grid. In: 38th Annual simulation
symposium (ANSS ’05). IEEE Computer Society; 2005. p. 130–7.

[47] Xhafa F, Abraham A. Computational models and heuristic methods for
Grid scheduling problems. Future Generation Comput Syst 2010;26(4):
608–21.

[48] Youn C, Kaiser T. Management of a parameter sweep for scientific applications
on cluster environments. Concurr Comput: Pract Exp 2010;22(18):
2381–400.

[49] Zehua Z, Xuejie Z. A load balancing mechanism based on ant colony and
complex network theory in open Cloud Computing federation. In: 2nd
International conference on industrial mechatronics and automation (ICIMA
2010). IEEE Computer Society; 2010. p. 240–3.

http://www.clifton.nl/bogomips.html
http://www.clifton.nl/bogomips.html

	An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments
	1 Introduction
	2 Background
	2.1 Cloud Computing basics
	2.2 Job and Cloud scheduling basics
	2.3 Bio-inspired techniques for Cloud scheduling

	3 Related work
	4 Approach overview
	4.1 Algorithm implementation

	5 Evaluation
	5.1 Real job data gathering
	5.2 CloudSim instantiation
	5.3 Experiments

	6 Conclusions
	Acknowledgments
	References

