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Abstract

When checking students’ source codes, teachers tend to overlook some errors. This

work introduces Soploon, a tool that automatically detects novice programmer errors.

By using this tool, teachers can reduce the number of overlooked errors. Thus,

students receive a more complete and exhaustive feedback about their errors and

misconceptions.
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1 | INTRODUCTION

It is well known that teaching Object Oriented Program-
ming (OOP) is a challenging task [32]. In fact, some authors
consider the task of teaching programming abilities more
difficult than the task of teaching physics, calculus, or
chemistry [16]. The process of learning programming
usually presents a wide range of difficulties to students and
novice programmers [30], who have to understand not only
program control structures, such as loops or if-then-else
statements, but also complex concepts, such as backtracking
and recursion. Moreover, Object Oriented Programming
adds extra complexity to students, by introducing concepts
such as classes, objects, inheritance and polymorphism,
among others [5,25].

Teaching programming with activities that only involve
reading or listening is not an effective way to teach students
how to program correctly. This kind of activities does not
stimulate higher-order thinking, since students remain as
passive recipients of information. Therefore, teaching OOP
by the exclusive use of traditional reading lessons may hinder
the learning process of students [2]. In OOP, students not only
have to understand programming concepts, but also have to

learn how apply them in an effective way [8,26,32]. In this
sense, students need to practice and do programming
exercises to learn how to program correctly [8,32]. Using
and doing activities, like programming, have a significant
positive impact on learning and stimulate high-order
thinking [3]. In fact, a survey involving six universities [15]
revealed that both, teachers and students, consider learning
programming by doing more effective than by reading or
listening.

Consequently, during programming courses, students
usually must complete programming tasks and a coursework.
By doing programming exercises, students can apply the
concepts that they learned in the course. Additionally, since
students tend to overestimate their understanding [15],
assessing coursework allows teachers to detect students’
misconceptions that would be impossible to detect in lecture
sessions. Identifying and addressing students’ misconcep-
tions is crucial to effective teaching [22,28]. In this way,
teachers can reinforce in future lessons those programming
concepts that the students failed to understand. The main
disadvantage of the coursework method is that teachers
individually have to assess each of the students’ source code.
If students are learning programming control structures,
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assessing coursework can be semi-automated by running
students’ code through a set of test cases. However, if students
are learning the object-oriented programming paradigm, test
cases are useless: a student program can give the expected
outputs for every test case, but still may have several object-
oriented programming errors. In this case, teachers have to
manually check and assess students’ source codes.

Manually assessing student's source codes is a time
consuming task. When assessing a student’ source code,
teachers have to check both the whole design of the program
and each individual line of code wrote by the student.
Assessing only one source code may be a simple task for an
experienced programming teacher, but when a teacher has to
asses dozens of works, it may become a tedious and stressful
task. At this point, teachers may start to not paying the enough
attention and overlook some student errors. For example,
declaring a public field is a serious mistake in object-oriented
programming, but it can easily be overlooked since it is just
one line of code among several classes and hundreds of lines
of code.

An incomplete feedback of the students’ source codes
may hinder the students learning process. If the teacher does
not detect and address the student's misconceptions on time,
the student will learn wrong concepts taking them as correct.
When an student learns a new concept, he/she builds a mental
model to give meaning to that concept [6]. In this sense, if the
student builds a wrong mental model about OOP concepts, it
will be necessary to rebuild that model with the correct
concepts. The main problem is that rebuilding mental models
(unlearn and relearn) is not an easy task for human beings [1].
In fact, previous experiments revealed that most students are
reluctant to dismiss their wrong mental models [10]. To avoid
this problem, it is crucial to identify and address the students’
misconceptions before students build wrong mental models.
For the reasons described above, every time the teacher assess
a student's source code (either of the coursework or a
programming task), the assessment must be exhaustive and
the feedback given to students must be as complete and
detailed as possible.

In this work, we address this problem by introducing
Soploon, an assistant that helps teachers in the students’ codes
assessment task. This assistant automatically detects object-
oriented errors in the students’ codes and notifies teachers
about them. Moreover, the assistant is customizable, so the
teacher can specify the particular errors that his/her students
are used to making in order to detect them. After detecting an
error, the assistant is capable of locating and highlighting the
code fragment containing the error. Thus, the teacher can
easily find the students’ errors to give each student a complete
and appropriate feedback about his/her source code. In order
to provide its functionality, Soploon uses declarative meta-
programming (DMP). DMP consists in the use of a
declarative programming language at a meta-level to reason

about and manipulate programs built in some underlying base
language [4]. In particular, the assistant uses this technique to
reason about students’ source codes and detect the errors
defined by the teacher.

The rest of the article is organized as follows. Section 2
describes the related works. Section 3 introduces how
Soploon can assist teachers in the task of detecting errors
in students’ source codes. Section 4 presents an overview of
the main design components of Soploon. Section 5 discusses
some experiences and experiments carried out to test the
assistant with teachers. Finally, section 6 outlines the
conclusions of the article as well as some lines about future
work.

2 | RELATED WORK

The automatic detection of errors in a program source code
has been previously addressed by several approaches. Some
of these approaches calculate software metrics looking for
atypical values that indicate the presence of a bad smell. For
example, ref. [29] proposed the use of a distance metric based
on the cohesion between artifacts in order to detect and
refactor three bad smells: feature envy, low cohesion and lazy
class. In a similar way, [24] calculates the degree of coupling
between the artifacts of the project to detect two bad smells:
shotgun surgery and divergent change. Other
works [13,14,21] have used source code metrics (such as
the number of methods per class and the number of lines of
code per method, among others) in order to detect different
bad smells. In ref. [17], authors presented iPlasma, a tool that
materializes the use of source codemetrics for the detection of
bad smells. However, detecting bad smells by using software
metrics is subject to interpretation and it is usually
imprecise [20,31]. Moreover, metrics-based tools are not
able to detect some errors that depend on the program
structure or semantic (such as a public field that is breaking
the object encapsulation) [12,20].

Other approaches address the detection of bad smells by
using regular expressions or heuristics. In ref. [11] authors
presented Expresso, a pre-compiler tool that tokenizes the
source code and looks for novice errors that prevents the code
for compiling. However, this tool focuses on enriching the
error messages generated by the compiler, and not on
detecting object oriented errors. Jsmell [27] is a tool for
detecting bad smells in Java code. JSmell is able to detect
seven different bad smells using a specific heuristic for each
one. In a similar way, there are more tools (such as
Jdeodorant1 and PMD2) that use heuristics for detecting
different bad smells. However, these tools may provide
different results when they analyze the same system, usually
because they have different interpretations for a same bad
smell [9]. Moreover, these tools do not allow to modify the
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interpretation of a specific bad smell or to add new errors to be
detected. To the best of our knowledge, only PMD allows
adding new errors to be detected, but it is a tedious task
intended for engineers familiar with Java or XPath, which
limits its use to a wider audience [19].

Finally, some approaches proposed the use of declarative
meta-programming (DMP) to detect bad smells and design
flaws. These approaches translate the source code to be
analyzed into a representation in a meta-level language, and
then reason about this representation to detect bad smells. In
ref. [23] authors used DMP to detect refactoring opportunities
for four bad smells. However, during the creation of the
representation in the meta-level language, this work only
considers high level aspects (such as classes, fields, etc.) and
omits most low level statements (such as loops and if
conditions, assignments, method variables, etc.). Therefore,
this approach cannot detect some errors, such as the use of
instanceOf in an if-statement. Other works refs. [18,31] have
proposed the creation of a more detailed meta-level represen-
tation. Nevertheless, these works focus on the detection of a
small set of bad smells that negatively affect the maintainabil-
ity of commercial software, such as obsolete parameters and
inappropriate interfaces [31], message chains, inappropriate
intimacy, and middleman [18]. These errors do not include
common errors that novice programmers and students are used
to making. For example, using super to access a field already
inherited from the parent class is an error that does not
significantly affect software maintainability, but it reflects that
the student did not understand the concept of inheritance. In
ref. [12], the authors suggested that the use of DMP to detect
bad smells would be useful in software development training.

In contrast to previous works that only detect a small set of
bad smells that negatively affect the maintainability, our
approach currently detects an initial set of 47 frequent errors
that novice programmers and students generally make.
Moreover, most commercial tools for detecting bad smells
only detects a fixed number of bad smells whereas our

approach is customizable: the teacher can easily specify new
errors to be detected, and he/she also can modify or delete any
of the 47 errors already specified in the tool. Thus, the teacher
is able to personalize the tool's interpretation about what is an
error and what is not. Finally, the tool can highlight the code
fragments containing each detected error, this is a useful
feature for teachers that some other tools lack [9].

3 | SOPLOON

Soploon is intended for assisting teachers in assessing the
student's source codes in order to provide a more exhaustive
feedback about the students misconception regarding object
oriented programming. The assistant uses Prolog as a meta-
level language to analyze the Java source codes. When the
assistant detects an error, it notifies the teacher and highlights
the code fragment that contains the error. In this way, the
teacher can easily find errors in the student's source code and
give a more complete feedback to the student. Moreover, it is
possible for the teacher to specify new errors to be detected by
the assistant. In this way, the teacher can customize the
assistant to detect the particular errors that his/her students are
used to making.

Figure 1 shows an overview of the assistant's workflow.
On the one hand, the assistant translates the student's source
code into a representation in Prolog (a). During this process,
each syntactic construct of the Java source code is represented
as a Prolog fact. Once the Prolog facts are generated, the
assistant detects errors in the student's source code by logic
inference (b). To do this, the assistant executes queries over
the Prolog facts generated during step (a). For each query, the
assistant tries to find a set of Prolog facts that satisfies the
conditions declared by a Prolog rule that specifies the
preconditions for a particular error. The tool has an initial set
of 47 common OOP error specified as Prolog Rules.
Additionally, the teacher can specify new OOP errors to be

FIGURE 1 Conceptual model of Soploon
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detected as Prolog Rules (c), enabling the teacher to add
domain rules for a particular problem besides OOP general
errors. For example, the teacher can add a rule stating that
having a variable with the name “type” is considered an error.
If a set of Prolog facts satisfies the conditions of a Prolog rule,
then those Prolog facts contains the error described by that
rule. When an error is detected, the assistant notifies the
teacher and highlights the corresponding Java code fragment
containing the error.

Soploon was materialized as an Eclipse3 plugin. In this
way, the teacher can open the student's source code as an
Eclipse project, and ask the assistant to detect errors in it. It is
important to note that there were no particular reasons for
selecting Eclipse as IDE, Prolog as meta-level language, or
Java as base language, more than our familiarity with these
technologies and their popularity. However, the assistant
could be developed to workwith any other languages and over
any other IDE (even as a standalone assistant).

The next sub-sections detail how the assistant carries out
the three steps described in Figure 1. In order to clearly
explain these steps, Figure 2 introduces a Java source code
with a common error for novice students. The code declares a
class named “MyClass” with a public field named “my_-
field.” Declaring public fields breaks encapsulation, which is
considered to be a serious error in object-oriented program-
ming. The following sub-sections use this simple Java code to
exemplify each step of the assistant's workflow.

3.1 | Translate to Prolog (step A)

In this step, the assistant translates the student's source code to
Prolog facts. The first part of this step consists in generating
the abstract syntax tree (AST) of the student's code. AnAST is
a tree representation of the syntactic structure of a source
code. Each node of this tree represents a syntactic construct of
the source code. Analyzing the student's source code by
walking its AST is simpler than analyzing the plain source
code itself. For this reason, when the teacher asks for
detecting errors on a student source code, the assistant first
creates the abstract syntax tree for that code.

Figure 3 shows the AST generated from the Java code
presented in Figure 2. On the left is the student source code
and its structure. On the right is the AST generated for that
code. The root of the AST is node “a,” which represents the
compilation unit (i.e., the Java file). This node has node “b” as
its only child, representing the class declaration of “My-
Class.” Its child named node “d” represents the field
declaration statement within “MyClass.” A single field

FIGURE 2 Screenshot of the source code example in Eclipse

FIGURE 3 Abstract syntax tree for the sample code
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declaration statement can define multiple fields. In this
particular case, it defines only one field: “my_field.” This
field is represented by node “h.” The remaining nodes “c,”
“e,” “f,” “g,” and “i” represent simple data (such as names and
modifiers) and they have no children nodes.

Once the AST is created, the second part of the translating
step consists in walking down the tree visiting each node and
generating the corresponding Prolog facts. From each node
the assistant extracts the kind of syntactic construct that the
node represents and its property values. The information
extracted from a single node or from a set of nodes is used to
create prolog facts corresponding to a meta-level representa-
tion of the student's source code.

Figure 4 shows the Prolog facts generated from AST
presented in Figure 3. On the left is the AST of the student's
source code. On the right is the set of Prolog facts generated
from the AST. The border line and the fill color of each AST
node indicates which Prolog fact contains the information of
that node. For example, the fact #0 contains the information
extracted from the node “a.” We can observe that some facts
contain information from multiple related nodes. For
example, fact #1 contains information extracted from nodes
“b,” “c,” and “e.” In this way, the final number of facts is
reduced, improving the performance during the error
detection step.

Each Prolog fact is composed of three parts: a predicate
name, an identifier, and a set of arguments. The predicate
name indicates the kind of structure that the fact represents.
For example, fact #1 represents a class declaration. The first
argument of the fact corresponds to the identifier. It allows
creating references between different facts in order to respect
the hierarchical structure of the AST. Continuing with the
example, fact #1 has id “#1”, and its parent is fact #0 (i.e., the
compilation unit). Finally, the rest of the arguments contain
the information extracted from the AST nodes. The number of

arguments depends on the kind of structure represented by the
fact.

At the end of this step, the assistant has a Prolog
representation of the original source code. Although the
presented example is very simple, it shows the translation
process from Java to Prolog. The reason for using a simple
example is that as the source code grows, the AST becomes
more complex and the final number of Prolog facts increases.
Actually, it was necessary to define 74 different predicate
names4 to represent each possible Java syntactic construct as a
Prolog fact. The assistant translates to Prolog not only the
high level aspects of the source code, such as type
declarations, but also low level statements, such as method
invocations, loops, logic conditions, and arithmetic oper-
ations, among others. In this way, the assistant can accuratly
represent the whole structure and semantic of the original Java
source.

3.2 | Infer errors (step B)

In this step, the assistant detects object oriented errors in the
student's source code. To do this, the assistant has a
predefined set of Prolog rules. Each rule defines the needed
conditions for a specific object-oriented error to occur.
Continuing with the public field example, Figure 5 shows the
Prolog rule for the detection of the “public field” error. In the

FIGURE 4 Prolog representation of the sample code

FIGURE 5 Prolog rule for detecting a public field
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rule, X is a variable that represents the identifier of a Prolog
fact to be evaluated (such as #1, #2, etc.). The rule defines four
conditions to detect the public field error in the evaluated
Prolog fact: (1) it must represent a field declaration; (2) it
must have the “public” modifier; (3) it must have not the
‘final’modifier; and (4) it must not have the “static”modifier.
If a Prolog fact meets with these four conditions, then it
contains the “public field” error.

With this set of Prolog rules, the assistant detects errors in the
students’ source code by executing logic queries over the Prolog
facts generated in theprevious step (Subchapter 3.1). Eachquery
looks for a Prolog fact that meets the conditions declared by
some Prolog rule of the predefined set. When a fact meets with
the conditions of a rule, then that fact contains the error specified
by that rule. Figure 6 shows how the assistant detects the error on
the Prolog facts from Figure 4 by considering the Prolog rule

defined in Figure 5. The assistant executes the query
“public_field(X)” trying to find a Prolog fact that meets the
rule conditions. Figure 6 details the execution trace for that
query. As the Figure shows, the query evaluates the predicate
“public_field” for the four Prolog facts #0, #1, #2, and #3. The
facts #0, #1, and #3 do not meet the condition (1) since they do
not represent a field declaration.However, fact #2meets the four
conditions: (1) it represents a field declaration; (2) it has the
“public”modifier; (3) it has not the “final”modifier; and finally,
(4) it has not the “static”modifier. Then, the assistant detects the
“public_field” error on Prolog fact #2.

Once the assistant detects errors in the Prolog facts, the
second part of this step consists in identifying the code
fragment that contains those errors. Continuing with the
example, Figure 7 shows a screenshot of the assistant
highlighting the public field error in the Java source code from

FIGURE 6 Execution trace of the Prolog rule for detecting a public field in the automatic generated prolog facts

FIGURE 7 Screenshot of Soploon highlighting an error in the source code
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Figure 2. After inferring errors, the assistant lists them in the
“Corrections” tab. By double-clicking one of these errors, the
assistant traces the selected error from the Prolog facts on
which it was detected (Prolog fact #2 in the example) to the
respective AST nodes. Then, it highlights the code fragment
corresponding to those AST nodes (the field declaration in the
example). Thus, the assistant helps the teacher to easily find
errors in the student's source code.

3.3 | Specify new errors (step C)

In this step, the teacher can specify new object-oriented errors
in addition to those already predefined in the assistant.
Although, the assistant already has a set of 47 predefined
errors, it is possible for the teacher to specify new errors or to
modify the existing ones. In this way, he/she can customize
the assistant to detect some particular errors that his/her
students are used to making. To do this, the teacher has to
define a Prolog rule with the conditions for the error to occur.
Due to the great expressive power of Prolog, the teacher can
specify any kind of programming error: from design errors
(such as lazy classes or sister classes with duplicated code), to
one-statement errors (such as public field declarations).
Moreover, the teacher can specify not only object-oriented
errors, but also program structures potentially related to
student's misconceptions about object-oriented concepts.

As an example, Figure 8 shows a screenshot of Soploon's
customization window where the teacher specifies a new rule

to detect classes containing numbers in their names. This is
not necessarily an error, but it is usually related to student's
difficulties to distinguish the concept of class from the
concept of instance. For example, a student can define the
classes “DiscountOf10” and “DiscountOf20,” instead of
defining just the class “Discount” with a field to indicate the
percentage of discount. The screenshot in Figure 8 shows on
the left all the rules already defined (A) and gives the
possibility to specify new rules (B). When specifying a new
rule, the teacher has to define an identifying name (C), an
optional brief description (D), a main predicate (this is, the
name of the predicate to be used to infer errors), and the
Prolog code needed for that rule (F). By defining the rule
shown in Figure 8, the assistant will notify the teacher every
time a class name contains numbers. Note that the Prolog rule
presented in Figure 8 uses an auxiliary predicate named
contains_numer. This predicate is part of a predefined set of
generic auxiliary predicates5 included in Soploon to facilitate
the teacher's work when specifying new rules. This set of
predicates can be also customized to fit the teacher's needs.

4 | DESIGN OVERVIEW

Figure 9 shows an overview of the main components of
Soploon and how they are connected to each other. There are
two main packages: the user interface and the model. The first
package groups the components related to user-interaction.

FIGURE 8 Screenshot of Soploon's customization window
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The second package groups themain components related to the
code analysis. When the assistant is executed, the CodePro-
vider component is responsible for obtaining the source code to
be analyzed. The CodeParser component parses the source
code and generates the AST by using the ASTGenerator
component. The PrologConverter component walks down the
generated tree and creates the Prolog representation of the
student's source code. Finally, the PrologAnalyzer component
takes the Prolog representation and infers the errors specified
by the teacher. The detected errors are shown to the user by the
ErrorVisualizer component.

As we already mentioned, Soploon was materialized in
Java as an Eclipse plugin. Using popular technologies
facilitated the implementation of Soploon due to the existence
of a large number of libraries and frameworks. The
CodeProvider and ErrorVisualizer components were devel-
oped by using the Eclipse Java development tools6 (JDT).
JDT provides the needed functionalities for extending Eclipse
IDE such as adding components to the Eclipse user interface.7

The CodeParser and the ASTGenerator components were
implemented by using the components provided by Eclipse
framework.8 Finally, the PrologEngine component was
materialized using tuProlog [7], which is a light-weight
Prolog engine developed in Java.

5 | EXPERIMENT

An experiment was carried out to assess the behavior of
Soploon in a real environment. The experiment consisted in
using the assistant to check students’ coursework that had
been previously checked by teachers. The main objective of
this experiment was to compare the corrections made by

experienced teachers with the corrections made by the
assistant in order to response the following research
questions: Can the assistant detect errors overlooked by
the teachers? Can the assistant help to reduce teachers’
workload? Can the assistant replace the teacher in the
corrections of the works?

The experiment took place in an object-oriented
programming course at UNICEN University (Argentina).
In this course, teachers introduce object-oriented program-
ming to students who already know basic programimg
structures (such as loops and if-statements). To promote the
course, the students need to approve a coursework besides the
classical exam. This coursework consists in a work statement
that students have to solve by applying the object-oriented
programming concepts that they have learned during the
course. Before the exam, teachers check each student's work
and provide feedback. This feedback is useful for students
because it allows them to correct conceptual errors (i.e., the
code compiles but it contains OOP misconceptions) before
the exam. For this reason, the feedback should be as complete
and exhaustive as possible.

The experiment consisted in two parts. First a set of 15
student's works were corrected by human teachers. To avoid
bias in the evaluation we used the corrections made by two
teachers that did not participated in the development of the
teacher assistant. Thus, the way in that the assistant detects
errors in this experiment (i.e., the initial set of rules) is not
influenced by the knowledge of the teachers participating in
the experiment. In average, each work consisted of 16 classes
and 520 lines of code. Although the projects were small, they
involved checking at 7800 lines for a single teacher. The
workload was divided between the two teachers: the first

FIGURE 9 Design overview of Soploon
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teacher checked 8 works (about 4160 lines of code) and the
second teacher checked the remaining 7 works (about 3640
lines of code).

The teachers made a total number of 88 corrections for the
whole set of 15 courseworks. Those corrections were
manually classified into three categories:

1. The “algorithm error” category: errors that arose when the
program gives an unexpected output due to a programming
bug.

2. The “work statement” category: Involve errors due to a
misinterpretation of the work statement.

3. The “object-oriented” category: represents errors due to
OOP misconceptions.

Figure 10 shows the distribution of the corrections made
by teachers, according to the classification presented. There
were just three algorithm errors (3%), which is expected since
students already know basic programming structures. In
addition, there were 14 work statement errors (16%), most of
them related to the lack of functionality requested in the
statement. Finally, there were 71 object-oriented errors
(81%). Figure 11 shows the distribution of the teacher's
corrections among the 15 student's works. This figure shows
that all but one work presented some object-oriented error

(only the work #14 did not present this kind of error in the
teacher's corrections).

With respect to the object-oriented errors (which are the
focus of this work), Figure 12 shows the distribution of the 71
errors according to teachers’ corrections. Each category
corresponds to a specific type of object oriented error that is
related to a student misconception.

The second part of the experiment consisted in checking
the 15 students’ works with Soploon. The experiment was
carried out using the default set of 47 types of errors
predefined in the assistant. These errors were previously
defined based on other teachers’ previous experience in the
correction of exams and they include object-oriented errors
commonly committed by novice programmers and program
structures that usually reflect student misconceptions. During
the experiment, the assistant detected 176 errors from only 21
different types of errors. Figure 13 details the number of
errors detected by type of error. Notice that Figure 13 only
shows the 21 types of errors detected by the assistant during
the experiment (omitting the remaining 26 types of errors). A
complete description of all the types of error that the assistant
is capable of detecting (without the need of customization) is
available in the Soploon website.9

Figure 13 sums up the errors detected by the tool
highlighting how many times each type of error was detected.
The light gray bar indicates the number of times an error was
correctly detected. For example, the error of not abstracting a
field was detected 43 times. Instead, the white bar indicates the
number of times an error was incorrectly detected (i.e. the
assistant detected an error, but it was not really an error). This
may occur when the rule does not define specifically an object-
oriented error, but it specifies a program structure that usually
reflects student misconceptions. For example, during the
experiment, this happenedmostlywith thedetectionof constants
in code, since a constant in code not always means an error.

FIGURE 10 Teachers’ corrections per category

FIGURE 11 Teachers’ corrections per student work
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The errors detected by the assistant were compared with
the teachers’ corrections (Figure 14). The bi-color bars
represent errors detected by the teacher but not detected by the
assistant (note that there were no rules defined for detecting
those errors). The dark gray bars indicate the number of errors
detected by both the teachers and the assistant. The light gray
bars represent the errors detected only by the assistant. The
white bars represent the number of errors incorrectly detected
by the tool. We can observe that by using the assistant, the
teacher would have detected 196 object-oriented errors
instead of 71 (i.e., 125 extra errors). With respect to the
errors incorrectly detected by the tool, a teacher would

quickly discarded them after a simple manual check by taking
advantage of the assistant's ability to locate and highlight any
detected error in the source code.

After comparing the assistant corrections with respect to
the teachers’ corrections, we observed three types of object-
oriented errors that the assistant was not able to detect (the
three first errors of the plot in Figure 14). Those errors are: A
non-static method that do not use any field or method of the
object (it only uses parameters to compute something not
related to the object itself); a non-abstracted field in sister
classes (with the same type but different names); and using
Java Collections methods (such as contains or remove)

FIGURE 12 Object oriented errors detected by teachers

FIGURE 13 Object oriented errors detected by Soploon
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without implementing the method equals in the objects stored
in the collection; Those errors were added to the set of rules in
order to customize the tool and check its capacity to detect
new errors.

Once the three new rules were added, the second part of
the experiment was repeated: the assistant checked the 15
student's works with the new extended set of Prolog rules.
Figure 15 shows the results for the three new types of errors.
After adding the three rules, the assistant was able to detect 29
errors overlooked by the teacher. Thus, the teacher does not
need to exhaustively analyze each line of code, since Soploon
can notify him/her when something may be wrong. The
teacher just has to customize Soploon by adding new rules as
he/she considers necessary.

To sum up our experiment, Figure 16 shows how the
detection of errors for each student's work was improved by
using the assistant. This Figure details the errors found by the
teachers (the three initial series), and the errors detected by
Soploon (the fourth serie). In this case, all the work's

corrections were improved, and even 22 object-oriented
errors were detected in the work #14 (which initially has only
one error, a work assignment misinterpretation). This shows
the relevance of Soploon during the assessment task in order
to give a more complete feedback to students.

6 | CONCLUSION AND FUTURE
WORKS

In this work, we presented Soploon, an approach to detect
object-oriented errors in Java source codes to help teachers in
the task of assessing students’ courseworks. Soploon is easily
customizable to include new rules for detecting new errors or
to modify the existing ones. We performed an experiment
with real students to assess the efficiency of Soploon to detect
errors, compared to real teachers.

Teachers can use Soploon during the assessment of
students’ source codes in order to make a more exhaustive

FIGURE 14 Object oriented errors detected by teachers and Soploon

FIGURE 15 Object oriented errors detected by Soploon with the new rules

VALLEJOS ET AL. | 1289



assessment and to avoid overlooking OOP errors or
misconceptions. In this way, they can give a more complete
and detailed feedback to students, and address students’
misconceptions before they build wrong mental models about
OOP. As an additional benefit we can mention that since by
using Soploon, teachers workload is reduced, they can ask
students to submit programming exercises more frequently.
Consequently, teachers will be able to detect students’
misconceptions earlier.

The first conclusion is that the assistant can help teachers
to avoid overlooking major object-oriented errors. This is
concluded from comparing teachers’ corrections with respect
to Soploon corrections. In these works, the assistant detected
125 object-oriented errors overlooked by the teachers as
shown in Figure 14. However, it is important to note that the
assistant may detect an error that does not actually exist. This
may occur when a rule does not define an object-oriented
error, but it specifies a program structure that usually reflects
student misconceptions. In these cases, the teacher must
manually check whether the program structure really
represents an error or not. However, with the help of Soploon
ability to locate and to highlight the detected errors in the
source code, this is a simply task for a teacher.

The second conclusion is that teachers are able to detect
errors that are impossible to be detected by the assistant. In the
experiment, the teachers made several corrections related to
object-oriented errors that were not included in the initial set
of rules of the assistant. Obviously, these errors could not be
detected by the assistant in a first instance. Then, after
customizing the assistant and adding those errors to the data
set of rules, the assistant was able to detect them. Moreover,
other teachers’ corrections were related to program bugs or to
students’ misinterpretation about the work statement. For
example: the absence of required functionality, or an
unexpected output for a given test case. The assistant cannot
detect these errors since they are out of its scope.

To sum up, the experiment allows responding the initial
questions:

� Can the assistant detect errors overlooked by the teachers?
During the experiment, the assistant detected many errors
overlooked by the teacher. This is helpful for giving a more
complete and exhaustive feedback to students.

� Can the assistant help to reduce teachers’ workload? By
using the assistant, teachers can focus on analyzing the
program design and the main classes, without the need of
exhaustively analyzing each line of code. In this sense, the
assistant reduces teachers’ workload.

� Can the assistant replace the teachers in the corrections of
the works? However, the assistant is not able to detect
every kind of error. For example, the assistant is not able to
detect errors that were not included in the set of rules of the
assistant, program bugs, or errors originated by student's
misinterpretations of the work statement.

As future work, we intend to customize the tool to assist
students instead of teachers. As mentioned before, students
prefer to learn by working and programming alone. However,
during this process, there is no teacher to check students’
programs and to detect students’ misconceptions. In this
context, Soploon could work as a virtual teacher to which the
student can ask to check his/her source code. However, it is
needed to be careful with the false positives of the assistant,
since the student may not be able to realize that the assistant is
detecting an error where there is none. This problem can be
addressed by making the rules more strict (to reduce the
number of false positives) and with a complementary
explanation of each type of error. In this way, when an error
is detected, the assistant can give the student an explanation
about the error in order to help him/her to distinguish whether
it is actually an error or not. Another option is to use the
concept of warning instead of the concept of error. In this

FIGURE 16 Corrections per student work
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sense, Soploon canwarn students about something potentially
wrong, and encourage them to ask their teachers about the
problem. The objective of this future study is to evaluate if
Soploon is able to reduce the students' steep learning curve by
helping them to detect and fix their own misconceptions.

ENDNOTES

1 https://github.com/tsantalis/JDeodorant
2 https://pmd.github.io/
3 https://www.eclipse.org/
4 http://si.isistan.unicen.edu.ar/soploon/#/info/predicates
5 http://si.isistan.unicen.edu.ar/soploon/#/info/auxiliary_predicates
6 https://www.eclipse.org/jdt/
7 https://www.eclipse.org/jdt/ui/
8 http://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation_AS/index.html

9 http://si.isistan.unicen.edu.ar/soploon
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