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A Fuzzy Programming Approach for the Multi-

objective Patient Appointment Scheduling Problem 

under Uncertainty in a Large Hospital 

Abstract  

Inspired by a real case of a large regional hospital in Argentina, this research presents an integer 

linear programming (ILP) model for the patient appointment scheduling problem. The 

mathematical formulation allows to plan the admission of patients belonging to a waiting list 

according to a week-hospital modality where all the prescribed clinical procedures to a patient 

have to be performed during a short hospitalization time no longer than one week. For modeling 

purposes, each day of the planning horizon is divided in two blocks which, in turn, are 

discretized into a number of time slots where the different clinical services are carried out. Key 

features of the model include limited clinical services availability in each time slot and a reduced 

number of beds and armchairs for hospitalization of patients. The two main goals pursued in the 

scheduling problem are to provide early patients’ admissions, especially for those with high 

clinical priority (i.e., minimize the admission dates), and reducing the hospital stay per patient 

(i.e., minimize the length of stay). Since there exists a significant uncertainty in the available 

amount of clinical services in each time slot, a fuzzy programming approach was adopted to 

solve the resulting multi-objective problem. According to the obtained results, such an approach 
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conciliates in a natural way decision maker expectations and constraint fuzziness conducting to 

balanced schedules.   

Keywords: Appointment Scheduling; Week Hospital; ILP Model; Fuzzy Programming 

 

1. Introduction 

 

Current health care paradigm is increasingly focused on patients and aimed at reducing their 

waiting times as much as possible. Therefore, hospitals and clinics have evolved from an 

attention scheme based on the order of arrival to a more planned approach based on appointment 

scheduling. By using appointment scheduling, a convenient balance between demand and 

capacity can be achieved, as well as an improved patient satisfaction and an efficient use of the 

available resources.  

In the last decades, the appointment scheduling problem has been intensively addressed by the 

industrial engineering research community using different approaches, such as design of 

scheduling rules, use of discrete event simulation, application of queuing theory, and 

development of mathematical programs  The interested reader is invited to consult the excellent 

reviews of (Cayirli & Veral, 2003) and (Gupta & Denton, 2008) where several methodologies 

and practical issues associated with appointment scheduling systems are given. 

A challenging feature related to the patient appointment scheduling problem is that each health 

care institution around the world (hospitals, health centers, specialized clinics, laboratories, etc.) 

has unique characteristics regarding aims, management modality (private/ public/ mixed), people 

idiosyncrasies (patients and medical staff), performance targets, etc., making practically 
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impossible to design a unique approach of universal validity. For this reason, most studies are 

based on specific systems. For instance, the chemotherapy scheduling problem in outpatient 

clinics was addressed by (Condotta & Shakhlevich, 2014) via multilevel template, while 

(Anderson, Zheng, Yoon, & Khasawneh, 2015) have been focused on the analysis of the 

overlapping appointments, aimed at minimizing patient waiting time and doctor idle time in an 

outpatient clinic. (Bhattacharjee & Ray, 2016) modelled the patient flows using discrete-event 

simulation under several sequencing and appointment rules at the Magnetic Resonance Imaging 

(MRI) section of the Radiology department of a hospital in India. (Baril et al., 2014) also 

employed appointment scheduling rules for improving the outpatient orthopaedic clinic 

performance. (Peng, Qu, & Shi, 2014) developed a mathematical programing model and a 

solution method based on both discrete-event simulation and genetic algorithm in order to find 

the heuristic scheduling template for open access clinic that admits walk-in patients. (Conforti, 

Guerriero, Guido, Cerinic, & Conforti, 2011) proposed an integer linear programming 

formulation for the optimal management of week hospital patients. The posed decision-making 

model was evaluated using real data from the Rheumatology division of a University Hospital. 

(Oddoye, Jones, Tamiz, & Schmidt, 2009) studied the performance of medical assessment units 

of a general hospital in the UK via simulation and goal programming. They have been focused 

on identifying the impact of reducing the number of available doctors, nurses, and beds on the 

length of stay of each patient, queue lengths, and waiting times. In (Zhou, Li, Guo, & Lin, 2017) 

the booking problem for computed tomography scans in a large hospital in China is modeled as a 

finite horizon Markov decision process. Finally, there is also a huge body of literature devoted to 

the operating room planning and scheduling problem ((Cardoen, Demeulemeester, & Beliën, 

2010), (Wang, Guo, Bakker, & Tsui, 2018)), which might be considered as a particular case of 
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the patient appointment problem. It should be emphasized that the previous review is by no 

means exhaustive, but simply an overview of approaches and applications on the appointment 

scheduling problem. 

From an operating point of view, a complicating issue of the appointment scheduling problem 

is the existence of a significant level of uncertainty in the various elements of the process 

(appointment cancelations, patient arrival times, patient no-shows, etc.). Although uncertainty is 

recognized as a major issue, it is very difficult to deal with. The discrete simulation approach 

(Bhattacharjee & Ray, 2016) is possibly the best way to expose its influence on the patient flow 

while the rolling horizon framework is the most practical approach to implement the schedules in 

practice (Addis, Carello, Grosso, & Tànfani, 2016). 

However, according to our knowledge, the medical appointment scheduling problem has not 

been simultaneously addressed from a multi-objective perspective under parametric uncertainty 

in the open literature. This work investigates such an approach considering two typical patient-

focused objective functions and the inherent fuzziness in certain parameters. Additionally, 

several features of a realistic week-hospital department are also considered. 

Therefore, the aim of this work is to develop and evaluate a scheduling approach to manage 

appointments in a week-hospital division in a fuzzy environment. The problem is motivated by a 

consulting work for an internal division of typical large regional hospital in Argentina. This 

division deals with the appointment scheduling problem where all the clinical tests prescribed to 

an admitted patient have to be performed in no more than a week. Moreover, limited clinical 

services availability and a reduced number of beds and armchairs for hospitalization of patients 

are accounted for. The proposed approach is based on a mathematical programming model to 

support “week hospital” type decision making. The analysis is focused on the tradeoffs between 
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two relevant objectives regarding patient satisfaction (i.e., early admission vs. minimum length 

of stay) under uncertainty in the clinical service availability. 

The rest of the article is structured as follows. In section 2, the relevant features of the system 

under study are described. The problem statement and the corresponding mathematical model are 

presented in Section 3. A patient waiting list scenario is analyzed in Section 4. In section 5, the 

adopted fuzzy programming approach to deal with the uncertain sources is described and 

illustrated with results related to the previous case study. Finally, conclusions and future work 

directions are drawn in Section 6. 

 

2. Problem background  

 

In the last years, hospital managers have been making efforts to reduce the inpatient length of 

stay as a way of improving patient satisfaction as well as minimizing patient exposure to 

nosocomial infections, and increasing the efficiency of the available resources for health care 

delivery. This managerial improvement can be achieved because there exists not only the 

technological possibility of completing complex medical procedures in short times (in less than 

one day), but also decision support systems that facilitate the planning and monitoring of large 

patient flows within the institutions. 

The concepts of day hospital and week hospital refer to organizational models for the patient 

clinical management where all the prescribed diagnostic and/or therapeutic procedures are 

scheduled within a hospitalization time no longer than a determined period (one day and one 

week, respectively). 
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In Argentina, most medical institutions are adopting some variation of day/week-hospital 

organization. In particular, this type of management modality is considered to be especially 

beneficial for the many large regional hospitals existing in the country. These are public 

hospitals funded by the state that provide health care to a large proportion of the population with 

no medical insurance in every clinical specialty, including even organ transplant surgery. These 

institutions are located in medium/large cities and also receive patients from other small cities 

and towns. Since several patients might spend more than one day in the institution the 

management modality is in fact closer to the week-hospital organizational model but it still has 

day-hospital features.  

Thus, the week hospital is therefore a management modality within a hospital aimed at 

organizing admissions of patients with a prescribed number of clinical services (such as MRI 

scan, endoscopy, mammography, X-ray, etc.) to be carried out for diagnostic purposes. The goal 

of this organization is to ensure an as short as possible permanence of the patient in the hospital, 

with a maximum stay of one week. It works as a department/division within the institution that 

operates with an amount of assigned resources (e.g., beds, armchairs, nursing and medical staff) 

and shares others with other divisions of the hospital (e.g., X-ray service). The accommodation 

of the patients depends on the number of available beds and chairs: beds allow overnight stays 

while armchairs are used for those patients that only remain few hours into this hospital division.   

It should be mentioned that while the week-hospital division constitutes a large part of the 

hospital itself, it has a limited amount of assigned resources, since there also exist other 

departments/divisions/wards within the institution. For example, on a daily basis the hospital 

receives a significant amount of external consultations which also require clinical services. 
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Moreover, there is a large number of inpatients in the hospital under treatment or in recovery. 

Finally, the institution has also to deal with emergencies. 

At these hospitals, the typical phases in order to admit a patient to the week-hospital division 

are the following: 

i. Patient assessment: A physician performs the clinical assessment of the patient and 

prescribes a list of diagnostic tests and other procedures to be performed. He also 

assigns a clinical priority to the patient based on his/her general condition and, if 

appropriate, he could indicate a minimum length of stay. The patient can be assessed by 

a doctor of the regional hospital if he/she resides in the city where the hospital is 

located. If the patient lives in other city or town, he/she is checked-up by a local 

clinician and referred to the regional hospital. In this case, the medical professional 

telephonically contacts the week-hospital manager to notify the appointment 

requirement. The patient is then inserted into a waiting list.  

ii. Appointment assignment: Based on the availability of armchairs and beds as well as 

clinical services assigned to the week-hospital department in the near future, the 

manager assigns, on a daily basis, an appointment for each patient of the waiting list. 

Such appointment usually lays within the next 30 days. The proximity of the 

appointment is based on the patient’s clinical priority category, but also considering 

that it is desirable that each patient spends the least possible time in the hospital. 

Currently, the appointment assignment phase is performed manually by an experienced 

professional (doctor or nurse) of the week-hospital staff. This manager receives on a weekly 

basis the capacity, in each time slot, of the different clinical services (i.e., the maximum number 

of patients that can carry out each clinical service per time slot) for the following month. 
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Moreover, each day, waiting lists of about 10 to 20 patients are generated. Thus, producing sharp 

schedules is indeed a challenging task due to, at least, the following reasons: 

 There is a large number of patients, each one with different prescribed clinical tests to 

be scheduled within the time horizon. 

 Two different objective functions have to be balanced: (i) waiting time for patient 

admission (especially for those patients with a high clinical priority) and (ii) length of 

stay per patient, both to be minimized. 

 Several sources of uncertainty can produce disruptive events, making rescheduling 

necessary or convenient (changes in the availability of clinical services due to 

equipment out of service, shortages in supplies and in health personnel, cancellations, 

patient no-shows, etc.). 

Due to the above reasons, the produced schedules tend to be conservative (later admissions in 

the scheduling horizon) to better deal with the uncertainty and ensure short stays. Thus, the 

development of a decision support system aimed at automating the generation of appointment 

schedules is identified as a desirable tool for the week-hospital management. On one hand, even 

small improvements in the use of available resources should increase the number of patients 

treated over a certain time period. On the other hand, the possibility of quickly generating 

schedules and re-schedules should alleviate a time-consuming activity of the division staff. 

Furthermore, an objective assessment of the overall performance of the week hospital division 

could be conducted. 

As previously mentioned, the planned appointment modality in large regional hospitals in 

Argentina resembles that of a week-hospital organizational model. To the best of our knowledge, 

only (Conforti et al., 2011) have specifically addressed this problem from a mathematical 
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programming approach, although, of course, it shares many common features with other 

variations of the outpatient appointment scheduling problem.  

In the next section, the proposed model for the appointment scheduling problem in a week-

hospital division is presented. This model is inspired from the one earlier introduced by (Conforti 

et al., 2011). It is an extended and adapted version accounting for specific features such as 

simultaneous day and week-hospital management modalities, different available resources, a 

longer planning horizon, and problem multi-criteria, to better represent the system under study. 

For instance, regarding the planning horizon in (Conforti et al., 2011) one week is considered 

and therefore, the waiting lists are weekly updated. At the beginning of the week, the system 

decides which patients of the waiting list are to be hospitalized that week in order to maximize 

the number of admitted patients, each one weighted by a score based on clinical priority and 

elapsed waiting time. No admitted patients are kept in the waiting list for future assignment in 

subsequent weeks. In the regional hospitals under analysis, on the other hand, an appointment 

has to be (almost) immediately assigned. Hence, in order to be able to accommodate the patient 

somewhere in the near future, a larger planning horizon is considered. In particular, a 4-week 

planning horizon was adopted in this work with a daily update of waiting lists and scheduling 

frequency. 

 

3. Problem description and model formulation  

 

The problem addressed in this article deals with the patient admission and scheduling into a 

week-hospital division belonging to a large regional hospital. The problem is formulated as an 
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integer linear programming (ILP) model and the basic decisions are related to when and for how 

long every waiting patient is hospitalized.  

Each weekday of the 4-week planning horizon is split into two blocks: morning and afternoon. 

Also, each block is divided into nine half hour slots during which the different clinical services 

can be delivered. In this way, the planning horizon is organized in a flexible manner closely 

resembling current practice. It should be mentioned that the week-hospital division works from 

Monday morning to Saturday midday which makes an 11-block week. 

The basic data for this problem are a waiting list of patients to be scheduled, the number of 

available beds and armchairs at the week-hospital division, and a prediction of the capacities of 

each clinical service (expressed as number of patients) in each time slot of every block of the 

planning horizon. In addition, for each patient on the waiting list, the set of prescribed clinical 

services, the assigned clinical priority, and the minimum length of stay (if required by the 

physician) are known. It is worth observing that, in this work, the waiting list is assumed as a 

dynamic one, meaning that it is daily updated.  

Each patient on the waiting list is admitted only in one day of the planning horizon and, if this 

happens, all the prescribed clinical tests are carried out during the week of the admission date. 

Since the services end on Saturday midday, the patient has to be discharged before this time. As 

mentioned earlier, armchairs can only be assigned to a patient if all required procedures are 

performed in one day. Beds are assigned if overnight stays are required and also for a one day 

stay. It should be noted that the list of patients is updated in a daily basis, thus the schedule is 

continuously revised. 
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For the case under study, since all patients on the waiting list have to be scheduled in the near 

future, two conflicting objectives arise: (i) provide an as soon as possible admission date for each 

patient, and (ii) minimize the length of stay of each patient.  

 

3.1 Model formulation  

3.1.1 Constraints 

Since the patients can be admitted to the week-hospital division at any block, a binary variable 

admpb is used. Each patient p can only be admitted in one block b of the planning horizon: 

 





Bb

pb Ppadm 1         (1) 

 

A patient can occupy either a bed or an armchair in the week-hospital division.  

 

BbPpzy pbpb  ,1        (2) 

 

Constraints (3) and (4) represent the upper bound for beds and armchairs, respectively. In other 

words, the number of patients that can be simultaneously hospitalized in each block b is upper 

bounded by the number of beds (AB) and armchairs available (AC) in the week-hospital division. 

 

BbABy
Pp

pb 


        (3) 

BbACz
Pp

pb 


        (4) 

 

Furthermore, a bed or an armchair can be occupied only after the patient’s admission block:  
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Each patient p should undergo every prescribed clinical service i during some time slot k of 

his/her hospitalization: 

 

PpIisx
Bb Kk

ippikb 
 

,        (7) 

 

Furthermore, each patient p can undergo at most only one clinical service i during time slot k 

of block b if either a bed or an armchair is assigned. 

 

BbKkPpzyx pbpb
Ii

pikb 


,,      (8) 

 

The number of patients undergoing a specific procedure i during slot k of block b is upper 

bounded by the clinical service capacity in that time slot, ikb, namely the number of studies 

(patients) that can be performed by the specific service during that time slot. 

 





Pp

ikbpikb BbKkIix ,,       (9) 

 

Moreover, if the patient p was not admitted yet, he/she cannot undergo any clinical service:  
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A patient p is admitted only if it is possible to deliver all the procedures prescribed by the 

physician, nsp, in less than one week of the planning horizon.  

 

Ppnsx
Ii Kk

p
Bb

pikb 
  

       (11) 

 

In order to ensure that each scheduled patient p occupies the assigned bed or armchair every 

block he/she is hospitalized, constraints (12) to (16) are included. Note that subscript f and j are 

also used to represent elements in the set of blocks. 

 

BbKkPpxo
Ii

pikbpb  


,,       (12) 

0|,  
 

p
Kk Ii

pikbpb nbBbPpxko      (13) 

NBjbBbPpadmozy

bf
Bf

pfpjpbpb 















 




,,1    (14) 

BbPpoy

bj
Bj

pjpb 



,        (15) 
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,        (16) 

 

Constraints (17) and (18) guarantee that if a bed is assigned to patient p, he/she remains in bed 

during all the length of his/her stay. In other words, when a bed is assigned to a patient, he/she 

cannot change to an armchair during his/her stay. 

 

BbPpadmzNBy pbpb

bj
Bj

pj 



,)2(      (17) 
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BbPpadmyNBz pbpb

bj
Bj

pj 



,)2(      (18) 

 

As already mentioned, an armchair is assigned to a patient if he/she undergoes all the clinical 

services in less than one day. If an armchair is assigned, Eq. (19) allows a length of stay of one 

day, i.e., the patient can stay during the morning and the afternoon of a day if he/she was 

admitted to the division in the morning. On the other hand, if a patient is admitted in the 

afternoon, Eq. (20) avoids he/she stays more than one block.  

 

12,1,11   bbbPpadmzz pbpbpb      (19) 

bbPpzz pbpb 211   ,        (20) 

 

Since a minimum length of stay (i.e., nbp>0) could be required by the physician for some 

patients, constraints (21) to (23) are included in the model to force that those patients remain 

hospitalized during at least nbp blocks.  

 

0|1,1,  pbppbp nbPpadmnbrb       (21) 

0|2,
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ppbp

nbb

bj
Bj

pj nbnbNBbPpadmnby    (23) 

 

No patient shall be admitted on Saturday afternoons and Sundays. This is posed in Eqs. (24) 

and (25). The parameter SA  B represents those blocks corresponding to Saturday afternoon in 

the adopted time horizon. 
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2)1(,0  SAbnbSAPpadm ppb      (24) 

2,0  SAbSAPpzy pbpb       (25) 

 

It is worth observing that some patient may have some preferences or constraints about the 

time he/she could start the hospitalization to carry out the prescribed procedures and tests. The 

parameter pbp refers to the date (block) from which the patient p can be scheduled into the week 

division. Eq. (26) imposes the no admission of patient p for the previous blocks to pbp:  

 

ppb pbbPpadm  1,0        (26) 

 

3.1.2 Objective Functions 

As mentioned before, there are two relevant and conflicting objective functions in the week-

hospital appointment scheduling problem under study:  

(i) provide an as early as possible admission date for each patient (EA),  

(ii) minimize the length of stay of each patient (LS).  

The first objective function aims to maximize the admission of patients by considering the 

priority levels and the time of admission. It is formulated mathematically as follows: 

 


 











Pp Bb

pbp

b

admpr
EA         (27) 

 

where prp is an integer value related to the patient’s clinical priority (high, medium, low) 

assigned by the physician based on the assessment of the person in the first consultation, and b is 

the number of the admission block. Thus, the patients with the highest priority values are prone 
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to be admitted first. The factor (1/b) has been introduced in Eq. (27) in order to favor early 

admission. In this way, the waiting time for patient admission is minimized. This performance 

index explicitly accounts for hospitalization date. 

The second objective function consists in minimizing the stay into the week-hospital division 

of the patients belonging the waiting list.  

 

 
 


Pp Bb

pbpb zyLS         (28) 

 

The model was implemented in the GAMS modeling platform (Brooke, Kendrick, Meeraus, & 

Raman, 2015) and all instances were solved with the CPLEX 12.5.1 solver (CPLEX 12, The 

solver manuals) using an optimality gap of 0% on an AMD A6-3620 APU CPU with 2.20 GHz 

and 8 GB of RAM. The GAMS program was interfaced with Microsoft Excel to facilitate data 

input and visualization of results. In the next section, a case study is developed in order to 

illustrate the use of the proposed model and evaluate the tradeoff between both conflicting 

objectives. 

 

4. Model results 

 

A case study inspired by a large regional hospital in Argentina is presented to assess the 

features of the posed week-hospital model. The week-division can perform a total of twenty-four 

diagnostic tests. A typical list of these clinical services is reported in Table 1.  

As mentioned before, a planning horizon of four weeks (i.e., 28 days) is considered. It is 

assumed that each day is divided into two blocks (i.e., morning and afternoon).  In this case, the 
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morning block starts at 8:00 a.m. and ends at 12:30 p.m. and the afternoon block starts at 1:30 

p.m. and ends at 18:00 p.m. In addition, every block is partitioned into nine 30 min slots (NK = 

9) that correspond to time intervals where a given number of diagnostic tests can be carried out. 

It is also assumed that, for the sake of simplicity, the duration of each slot is the same in all the 

blocks.  

Five armchairs (AC = 5) and four beds (AB = 4) are available in the hospital division. 

 

Table 1. Clinical services of the week-hospital division (NI = 24) 

1. Laboratory tests 

2. X-rays 

3. Magnetic resonance imaging 

4. Biopsy 

5. Ultrasound  

6. Echo doppler  

7. Computed tomography scan 

8. Pap test 

9. Pulmonary function testing 

10. Scintigraphy  

11. Echocardiogram  

12. Holter monitor 

13. Otorhinolaryngology  

14. Endoscopy 

15. Ophthalmology  

16. Mammography  

17. Angiography  

18. Colonoscopy 

19. Electroencephalogram 

20. Cystoscopy 

21. Hysterosalpingogram 

22. Dentistry 

23. Lumbar Puncture  

24. Thoracentesis  

 

The clinical priority assigned to each waiting patient is reflected in Eq. (27) by considering the 

following three priority levels: High priority prp = 100, Medium priority prp = 10, and Low 

priority prp = 1.  
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Table 2 shows a possible waiting list of unscheduled patients, reporting the corresponding 

prescribed clinical tests, their priority values, the minimum length of stay, and preference 

admission dates.  
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Table 2. Waiting list (NP = 22) 

Patient, 
p 

Priority, 
prp 

Minimum 
stay, nbp 

Patient’s 
preferences, pbp  

Prescribed services, 
sip 

1 100 2 0 1, 2, 9, 11 

2 10 0 4 1, 5, 11, 14 

3 10 2 2 1, 5, 8, 11, 16, 21 

4 1 0 16 1, 13, 15, 22 

5 100 0 0 1, 3, 10, 18 

6 10 0 0 1, 2, 3, 5, 6, 7, 10 

7 100 2 0 1, 2, 3, 7, 10 

8 1 0 14 1, 5, 6, 8, 16, 20 

9 10 3 0 11, 12 

10 10 0 6 1, 19 

11 100 0 0 1, 6, 11 

12 10 0 20 5, 24 

13 10 0 0 1, 19 

14 1 0 30 2, 11 

15 10 0 28 1, 23 

16 1 2 18 1, 5, 8, 16, 21 

17 1 0 44 22 

18 100 2 0 1, 4, 5 

19 10 0 0 1, 3, 6, 9, 17 

20 100 3 0 1, 5, 11, 12 

21 100 0 0 1, 2, 3, 7 

22 1 0 32 1, 2, 7, 10 
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Table 3 presents the number of clinical services available per time slot in every week of the 

scheduling horizon. It is important to point out that Table 3 considers a 14-block week (i.e., 

seven days) but only in the first 11 blocks there are clinical services available, since the week-

hospital division works from Monday morning to Saturday midday. Although the week has only 

11 active blocks, the 14 blocks were maintained in the formulation because, though unlikely, 

additional time slots might theoretically be enabled on Saturday afternoons and Sundays. From a 

modelling point of view, the resulting variables and equations of these three inactive additional 

blocks can be straightforwardly programmed and solved within the adopted modelling platform 

with almost no computational expense.  

Furthermore, the maximum capacity ikb is arbitrarily set at 2 in those time slots where the 

clinical service is available. This might be considered a reasonable value for tests/procedures 

with current clinical technology. Of course, this number depends on staff and equipment 

available to perform the procedure in each case, making this approach customizable.  
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Table 3. Capacity of the clinical service in each time slot (Parameter ibk)  

 

k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9

i 1 2 2 2 2 2 2 2 2 2 2 2 2

i 2 2 2

i 3 2 2

i 4 2 2 2 2

i 5 2 2 2 2

i 6 2 2 2 2 2

i 7 2 2 2

i 8 2 2 2 2

i 9 2 2

i 10 2

i 11 2 2 2 2 2 2

i 12 2 2 2 2

i 13 2 2 2

i 14 2 2 2

i 15 2 2

i 16 2 2 2

i 17 2 2

i 18 2 2

i 19 2 2

i 20 2 2

i 21 2 2

i 22 2 2

i 23 2

i 24 2 2

 ikb
b6 b7b 1 b2 b3 b4 b5



 22 

This 7-day (14 blocks) timetable is repeated for each of the 4 weeks. Blocks b12, b13 and b14 stand for Saturday afternoon, Sunday morning, and Sunday afternoon, respectively. 
Each number indicates the maximum number of patients that can undergo service i, in block b, in slot k. 

k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9

i 1 2 2 2 2

i 2 2 2 2

i 3 2 2 2

i 4 2 2

i 5 2 2 2

i 6 2 2

i 7 2 2 2

i 8 2 2

i 9 2 2 2

i 10 2 2

i 11 2

i 12 2 2 2 2

i 13 2 2

i 14 2

i 15 2

i 16 2 2

i 17 2 2

i 18 2 2 2

i 19

i 20 2 2

i 21 2

i 22 2 2 2

i 23 2

i 24 2

b12 b13 b14 ikb
b 8 b9 b10 b11
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In order to evaluate the behavior of the proposed model, two computational experiments have 

been carried out by considering, independently, each one of the above-mentioned objective 

functions. These models involve 83,882 constraints and 271,433 variables, 269,808 of which are 

binary variables.  

In the first instance, the admission of patients, EA, is maximized in Eq. (27) with the aim of 

hospitalizing the patients as soon as possible prioritizing their clinical state. In the optimal 

solution, variable EA takes value 724.27 in a CPU time of 43.18 s. The corresponding 

appointment schedule is shown in Fig. 1. In this figure, the use of a bed is highlighted with gray 

color while the use of an armchair is indicated with borders.  

As it can be observed from Fig. 1, the whole group of patients with high priority (prp = 100) is 

admitted at the beginning of the planning horizon, that is, in the first block. A bed is assigned to 

patients p1, p7, p18 and p20 whereas an armchair is allocated to patients p5, p11 and p21. Also, note 

in Table 2 that none of these patients have an admission preference (pbp=0) so, they can be 

admitted with no constraints. In addition, patients with lower priority values are admitted later in 

the scheduling horizon with the exception of patient 6 (prp = 10) that was also admitted in the 

first block. It should be pointed out that many patients have appointment-booking preferences 

(pbp ≠ 0), therefore they are not admitted before that dates.  

It is worth observing that patient 6, who has 7 prescriptions, is hospitalized for only one block 

(b1), since all the required clinical tests were available during that period. This situation is highly 

desirable. On the other hand, patient 7 has to stay 11 blocks (6 days!) to complete his/her 5 

prescriptions, which is clearly unsatisfactory. This situation reflects the conflicting nature 

between early hospitalizations and short length stays. For this solution, the minimum stay LS 

(Eq. 28) has a value of 86 blocks. 
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Then, the model was solved aiming at minimizing the length of stay, LS, in Eq. (28). The 

optimal schedule, shown in Fig. 2, involves an objective value of 32 blocks, which corresponds 

to an improvement of 63% respect to the previous one (i.e., 86 blocks). This result is achieved 

after a CPU time of 19.98 s. This improvement arises at the expense of a significant deterioration 

in the value of EA of about 69% (224.87 compared with 724.27). This situation is mostly 

explained by late admissions of patients with high and medium level priorities, in particular 

patients 1, 11, 20, 21, 6, 13, and 15. It can also be observed that the schedule of Fig. 2 expands 

over the whole available horizon, from block 1 to block 53, while in the previous case all 

patients were hospitalized within the first 46 blocks. 

Considering the results presented above, there is a clear need to deal with the multi-objective 

nature of the problem in order to achieve a balance between early admissions and short 

hospitalizations. 
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Patient Priority b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b30 b31 b32 b33 b34 b35 b36 b37 b38 b39 b43 b44 b45 b46 b47 b48 b49 b50 b51 b52 b53

p1 100 1 1 1 1 1                                        

p2 10     1 1 1 1 1 1 1                                  

p3 10   1 1 1                                        

p4 1              1 1 1 1 1 1                          

p5 100 1                                            

p6 10 1                                            

p7 100 1 1 1 1 1 1 1 1 1 1 1                                  

p8 1            1 1 1 1 1 1 1 1 1 1                        

p9 10      1 1 1 1 1 1                                  

p10 10       1                                      

p11 100 1 1                                           

p12 10                  1 1                          

p13 10   1                                          

p14 1                         1 1 1                  

p15 10                       1 1                     

p16 1                1 1 1 1 1 1                        

p17 1                                    1 1        

p18 100 1 1                                           

p19 10       1 1 1                                    

p20 100 1 1 1 1                                         

p21 100 1                                            
p22 1                           1 1 1 1 1 1 1            

Block

 
Fig. 1. Optimal schedule of patients by maximizing EA 

Patient Priority b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b30 b31 b32 b33 b34 b35 b36 b37 b38 b39 b43 b44 b45 b46 b47 b48 b49 b50 b51 b52 b53

p1 100                                           1 1

p2 10            1                                 

p3 10            1 1                                

p4 1                                            1

p5 100            1                                 

p6 10                                  1           

p7 100 1 1                                           

p8 1                                           1 1

p9 10   1 1 1                                        

p10 10       1                                      

p11 100                       1                      

p12 10                                 1            

p13 10                                        1     

p14 1                                            1

p15 10                                          1   

p16 1                                     1 1       

p17 1                                            1

p18 100 1 1                                           

p19 10                                          1   

p20 100                                       1 1 1    

p21 100                       1                      
p22 1                                  1           

Block

 
Fig. 2. Optimal schedule of patients by minimizing LS  
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5. Fuzzy programming approach for multi-objective optimization under uncertainty  

 

As was shown in the previous section, the patient appointment scheduling problem addressed 

in this article is a bi-objective problem from a patient-focused perspective. Uncertainty is also 

present in several elements of the problem at hand. In particular, there exists a considerable 

uncertainty in the availability of clinical services in every slot. Although an estimation of these 

parameters is provided by the hospital manager for the near future, some of them can be 

cancelled because of equipment out of service, supply and/or staff shortages, among other 

reasons. In this work, this forecast parameter is assumed to be imprecise (i.e., fuzzy).  

In practice, when an appointment cancellation occurs, a rescheduling has to be done to reassign 

appointments with the minimum possible disturbance of the original schedule. Moreover, the 

decision maker in the week-hospital division wants to improve the situation presented in 

previous section by reaching his aspiration levels (preferences) for each goal.   

Multi-criterion optimization under uncertainty has received considerable attention during the 

last decades since practically every decision-making problem in the real word is multi-objective 

and uncertain in nature. Among the different approaches dealing with uncertainty, the fuzzy 

mathematical programming provides a practical methodology to address this type of problems. 

One of the main advantages of the fuzzy approach over stochastic programming is that the 

uncertain parameters do not have to follow any statistical distribution and that the size of the 

deterministic formulation equivalent to the uncertain model does not blow up with the number of 

parameters. 

In 1970, (Bellman & Zadeh, 1970) distinguished between random and fuzzy uncertainty. They 

defined randomness as a type of uncertainty concerning membership or non-membership of an 
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object in a set and fuzziness as a type of imprecision associated with fuzzy sets, i.e., it refers to 

classes of objects that admit grades of membership intermediate between full-membership and 

non-membership. Furthermore, a decision in a fuzzy environment is described by these authors 

as the confluence of goals and constraints, which, applied to linear programming, can be viewed 

as the intersection of the fuzzy sets describing the constraints and the objective functions.  

Later on, using the above concept, (Zimmermann, 1978) demonstrated that linear multi-

objective problems with fuzzy goals and/or fuzzy constraints can be transformed into a crisp 

linear programming formulation called mix-max approach. Since then, several formulations have 

used this approach in different decision-making applications. For example, (Kumar, Vrat, & 

Shankar, 2004) and (Kumar, Vrat, & Shnakar, 2006) have applied this method to the capacitated 

vendor selection problem, a relevant application in industrial engineering and management 

science. Also, it has been applied to process planning and supply chain planning in (Liu & 

Sahinidis, 1997) and (Mitra, Gudi, Patwardhan, & Sardar, 2009), respectively. The reader is 

referred to (Zimmermann, 2010) for a comprehensive review about fuzzy set theory and its 

mathematical framework.   

In what follows, a brief overview of the fuzzy programming method is given in a separate 

subsection. After that, the basic multi-objective patient appointment scheduling problem is 

extended using the fuzzy set theory. 

 

5.1. Fuzzy linear programming 

The conventional multi-objective linear program (LP) can be expressed as: 
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In formulation (29), x is a n-dimensional vector, cT
jx represents each objective function j, A is 

the mn matrix of coefficients of inequality constraints, and b the right-hand side vector of 

constants. The corresponding fuzzified form of the above model is: 
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where symbol ~  indicates the fuzzified form of  and represents the linguistic term 

“essentially smaller than or equal to”. The parameter Zj
0 represents the aspiration level for the 

value of each objective j that the decision maker wants to achieve.  

In this study, linear membership functions are assumed for all fuzzy sets involved in the 

problem. They are defined for the fuzzy goals, µZ, and the fuzzy constraints, µG, as follows: 

 

1    if Zj(x) < Zj
min 

Zj(x) = [Zj
max– Zj(x)]/[Zj

max – Zj
min] if Zj

min ≤ Zj(x)≤ Zj
max    jJ  (31) 

  0    if Zj(x) > Zj
max 

 

1    if gq (x) < bq 

Gq (x) = 1 – [gq (x) – bq]/dq  if bg ≤ gq (x) ≤ bq + dq    qQ (32) 

  0    if gq (x) > bq + dq  
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In (31) Zj
max and Zj

min are the maximum and minimum values of each individual objective 

function, respectively. They are evaluated by solving independently the problem in (33) for each 

goal j.  
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In (32) and (33), gq (x) represents the fuzzy constraint and dq are the admissible violations for 

the fuzzy constraints. In (33), D is the matrix of coefficients of the deterministic constraints. 

The fuzzy set “decision” (solution) of model (30), represented by a membership function of the 

solution set, is given by the intersection of all the fuzzy sets describing the goals and constraints, 

µS(x) = min{µz(x), G(x)}(Bellman & Zadeh, 1970). The optimal solution is the one that has the 

maximal grade of membership to the fuzzy decision set, in other words, it is defined as a 

maximizing decision. Thus, by introducing an auxiliary variable, the equivalent crisp 

formulation (Kumar et al., 2006) to the fuzzy optimization problem (30) is: 
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where  represents the degree of membership to be maximized. 
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5.2. Application of the fuzzy approach to the patient appointment scheduling problem 

 

As mentioned above, the source of fuzziness of the appointment scheduling model is present in 

Eq. (9), which establishes the upper bound for the available capacity of clinical services in each 

time slot (i.e., ikb). From Table 3, it can be seen that the nominal value was arbitrarily set at 2 in 

those cases where the service is available. Due to previously mentioned reasons, some of these 

capacities might be reduced. In order to illustrate the approach, it was considered that the 

available capacity could be reduced by one (dq = -1) in all cases. Therefore, the corresponding 

constraint takes the following form in formulation (34): 

 

  0,,11  


ikb
Pp

ikbpikb BbKkIix      (35) 

 

In order to complete the data, the bounds on each objective function were calculated by solving 

problem (33) for each individual objective. The corresponding results are presented in Table 4. 

 

Table 4. Bounds for objective functions 

Objective function Zj
min Zj

max 

Early admission (EA) 15.98 646.74

Length of stay (LS) 32 183 

 

Then, the formulation (34) is solved in order to obtain the solution with the highest degree of 

membership . This model comprises 83,883 equations and 271,433 variables, and the solution 

was found in a CPU time of 1937.16 s. The optimal schedule, which corresponds to  = 0.96, is 
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shown in Fig. 3. The first goal has a value of EA = 621.74, while the minimum length of stay 

(the minimum number of blocks to accommodate all patients), corresponds to LS = 38 blocks. In 

Table 5 the results of the three experiments are summarized for comparison purposes. 

 

Table 5. Results summary 

Objective function Problem Early 
admission 

Length 
of stay 

 CPU time 
(s) 

Early admission (EA) (1)-(26), (27) 724.27 86 - 43.18 

Length of stay (LS) (1)-(26), (28) 224.87 32 - 19.98 

 (34) 621.74 38 0.96 1937.16 

 

As it can be observed, the solution of the crisp formulation in Eq. (34) represents indeed a 

tradeoff between the two conflicting objective functions analyzed in Section 4. This result is 

evident from the values of the objective functions. For instance, the minimum number of blocks 

required to accommodate the whole waiting list shows a higher value than the one corresponding 

to the balanced schedule (38 vs. 32).  

From Fig. 3 it can be inferred that the achieved balance is mostly explained by the fact that 

most patients with the highest priority value (prp =100) are admitted in the first block and the 

lengths of their stay in the hospital division are very short. Note that the longest hospitalization 

time corresponds to 5 blocks (i.e., two and a half days) for patients p1 and p20. Patients with value 

of priority 2 are scheduled next. Finally, most patients with low priority value are scheduled later 

in the planning horizon but with relative short hospitalization periods. Recall that patients’ 

preferences related to admission dates have also been taken into account in the problem. 
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Patient Priority b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b15 b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b30 b31 b32 b33 b34 b35 b36 b37 b38 b39 b43 b44 b45 b46 b47 b48 b49 b50 b51 b52 b53

p1 100 1 1 1 1 1                                        

p2 10            1                                 

p3 10            1 1                                

p4 1                      1                       

p5 100 1                                            

p6 10                       1                      

p7 100          1 1                                  

p8 1                    1 1                        

p9 10   1 1 1                                        

p10 10       1                                      

p11 100 1                                            

p12 10                      1                       

p13 10   1                                          

p14 1                                 1            

p15 10                               1              

p16 1                       1 1                     

p17 1                                            1

p18 100 1 1 1                                          

p19 10         1                                    

p20 100 1 1 1 1 1                                        

p21 100 1                                            

p22 1                                  1           

Block

 

Fig. 3. Optimal schedule of patients by maximizing the degree of membership, λ. 
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6. Conclusions and future work 

 

In this work, the patient appointment scheduling problem in a week-hospital division 

belonging to a large regional hospital is addressed by formulating an integer linear programming 

model. This hospital department combines both the day- and week-hospital organizational 

models for the clinical management of patients. It operates with a limited capacity of clinical 

services as well as a reduced number of beds and armchairs. A relevant operational feature of 

this division is the requirement to assign an appointment (almost) as soon as requested, with the 

aim of balancing two conflicting objectives, namely early admissions and short hospitalizations.  

Since the process is subject to significant uncertainty in the available capacity of clinical 

services in each time slot, a multi-objective fuzzy programming approach was applied, whose 

solution provides a convenient trade-off between the relevant performance criteria.  

The major contribution of this study is the simultaneous consideration of multiple objective 

functions, parameter uncertainty, and distinctive features of the division operations in the 

hospital such as bed and armchairs availability and mandatory admission of every patient in the 

waiting list. According to our knowledge, no studies addressing these issues have been presented 

so far in the open literature. 

The numerical results suggest that the proposed model is a promising approach to help in the 

organization of such departments within the hospitals.  

The managers of these services face a challenging decision-making process aimed at providing 

good quality schedules while minimizing cancellations. It is considered that these models, 

complemented with appropriate user interfaces, are a valuable tool to replace current time-
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consuming hand-made scheduling activity which typically produces suboptimal appointment 

plans. 

Although the proposed models are complex in terms of number of variables and constraints 

since they represent the system operations in a realistic manner, their solutions are obtained in 

acceptable CPU times compatible with those required by a daily based decision-making process. 

Future research will focus on the rescheduling approach once disruptive episodes occur. The 

basic objective is to repair the existing appointment schedule with the minimum possible 

disturbance. This activity is facilitated by the fact that the system naturally operates in a rolling 

horizon fashion (daily scheduling of waiting lists) making the introduction of changes 

operationally simple. However, since there exist different types of disruptions, there are also 

many repairing options. For example, if the disruption has to do with the cancellation of a 

specific clinical service in a single slot, probably only one patient had to be reassigned. On the 

other hand, if a clinical service is cancelled along several slots due to, for example, equipment 

out of service during several days, probably the new assignment of all the patients (i.e., current 

waiting list plus patients already scheduled) might be beneficial in order to obtain a more 

efficient use of the available resources. Additionally, appointment cancellations or patient no-

shows might also occur. In these cases, the simplest solution is to reset the parameter ikb to 

make the time slots available for the accommodation of patients. 
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NOTATION 

Sets 

B  Blocks:  B = { b, j, f = 1, 2, …, NB }  

I  Clinical services: I = { i = 1, 2, …, NI }  

J  Objective functions:  J = { i = 1, 2, …, NJ } 

K  Time slots:  K = { k =1, 2, …, NK }  

P  Patients:  P = { p =1, 2, …, NP }  

Q Constraints  Q = { q =1, 2, …, NQ } 

 

Parameters 

A  mn matrix of coefficients of inequality constraints  

AB  number of available beds at the hospital division 

AC  number of available armchairs at the hospital division 

b  right-hand side vector of inequality constraints 

c  vector of coefficients  

D  matrix of coefficients of the deterministic constraints 

NB  maximum number of blocks 

NI number of clinical services 

NJ  number of problem objective functions 

NK number of slots in each block 

NP  number of patients on the waiting list  

NQ  number of problem constraints 

nbp  minimum length of stay expressed in number of blocks 
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sip 1 if the clinical service i is prescribed to patient p, 0 otherwise 

nsp  number of services prescribed to patient p 









i
ipp sns  

prp  priority value for patient p assigned by the physician according to his/her health condition  

ikb  capacity of the clinical service i in time slot k of the block b 

dq  admissible violations for the fuzzy constraints q  

x  vector of n decision variables 

Zj
min minimum value of objective function j 

Zj
max maximum value of objective function j 

Zj
0 decision maker’s aspiration level for objective function j  

µS(x)   membership function of the solution set 

µz(x)  membership function of the goals 

G(x)  membership function of the constraints 

 

Decision variables 

admpb 1 if patient p is admitted during block b, 0 otherwise 

opb  1 if patient p undergoes some clinical service in block b, 0 otherwise 

xpikb  1 if patient p undergoes clinical service i during slot k of block b, 0 otherwise 

ypb 1 if patient p occupies a bed during block b, 0 otherwise 

zpb  1 if patient p occupies an armchair during block b, 0 otherwise 

rbpb  number of remaining blocks with respect to the minimum length of stay  

EA  early admission 

LS  length of stay 

  degree of membership 
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