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ABSTRACT: A hyperheuristic optimization technique to reduce
computational times for the design of pipeline networks is presented.
The proposed strategy is an A-team approach comprising the guided
execution of three metaheuristics: a genetic algorithm, simulated
annealing, and an ant colony optimization. Besides, a specialized
learning mechanism for information exchange was defined in order to
speed up the search process. Moreover, the algorithm was
implemented in parallel so as to allow several metaheuristics to run
simultaneously, thus achieving a significant reduction of time
overhead. In the algorithmic design, realistic scenarios were
employed so as to appraise the impact of each agent on optimization
efficiency. The cases correspond to real-world offshore infrastructures to be located in the Argentinian marine platform. They
were also analyzed to illustrate the validity and suitability of the proposed approach. This optimization technique proved to be
competitive since it is able to explore a wide search space fast, yielding satisfactory solutions.

1. INTRODUCTION

The optimization of submarine pipeline networks has proven
to be effective to improve operation and gains. Therefore,
attention should be devoted to the improvement of computa-
tional tools for optimal design of these routes.
Real-world optimization is complex by nature. Several model

optimization techniques have been employed to solve
problems related to the transport of hydrocarbons from
offshore deposits. Van den Heever et al.1 presented a
multiperiod mixed-integer nonlinear programming (MINLP)
model, aiming at a long-term design that included economical
objectives in detail. To accomplish their goals, they resorted to
a specialized heuristic algorithm that determines an offshore
hydrocarbon field infrastructure with a production platform,
well platforms, and connecting pipelines. Although model
complexity caused computational overhead, they reported that
larger problems could be solved in a few hours with their
proposed method. Moreover, industrial practice was contem-
plated in their analysis, including considerations about the
effect of gas price uncertainty on the solution. In turn, Tarhan
et al.2 presented a MINLP multistage stochastic programming
model for the design and planning of infrastructural offshore
oil fields under uncertainties. It was pointed out that model
size increased exponentially with the number of scenarios and
time periods, making their nonconvex MINLP model
extremely difficult to solve in full space for real-size problems

by means of commercial solvers. Their model yielded good
results but exhibited rather long execution times.
In fact, large models for network design problems frequently

come up in industrial practice. Ulstein et al.3 addressed tactical
planning, which involved the regulation of production levels of
wells, the division of production of oil and gas derivatives, and
gas processing and transportation in a network of underwater
pipes. In particular, the model was applied to petroleum
production in Norway since it was built in collaboration with
Statoil, which was an oil company that owned shares in
Norwegian petroleum fields. Different cases were analyzed with
variations in demand, quality limitations, and system failures.
Borraz-Sanchez4 also addressed examples about pipeline
networks connecting wells on the Norwegian continental
shelf with the European continent, including the mathematical
formulations and difficulties of the corresponding optimization
problems. From an operations research perspective, the most
important and promising research areas in this field and some
real-life applications are reported in Rios-Mercado and Borraz.5

The introduction of a nature-inspired approach to these
studies has proven to increase profits and efficiency. For
example, Baioco et al.6 described the development of a
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computational tool for the synthesis and optimization of
subsea pipeline routes using evolutionary algorithms. Besides,
de Lucena et al.7 applied genetic algorithms (GA) to improve
their analysis for offshore scenarios. In turn, Rocha et al.8

reported how the optimization of a submarine pipeline route
had been enhanced by means of a GA. Later, Baioco et al.9

successfully focused on multiobjective optimization of subsea
pipeline routes in shallow waters.
Recently, in the field of operations research, promising

advances were made in the theory and application of
metaheuristics aiming at the detection of approximate
solutions for optimization problems. In particular, carefully
designed hyperheuristics may provide decision-making man-
agers with robust tools to help them in the achievement of
economic advantages. Rooted in the area of artificial
intelligence, a hyperheuristic10 is a multilevel search technique
that involves a set of solvers (low-level heuristics) and defines
priorities in order to select the most useful method at decision
points during the process. In general, the choice is a
performance evaluation that depends on the search space
under exploration.
New hyperheuristic frameworks have been proposed to solve

combinatorial optimization problems. For instance, Sabar et
al.11 introduced a gene-expression programming configuration
at a higher level. Marshall et al.12 developed a hyperheuristic
approach using grammatical evolution in order to generate
heuristics for vehicle routing problems. A complementary
review of hyperheuristics can be found in Chen et al.13 Branke
et al.14 also described some variants to design hyperheuristics,
and they remarked that hyperheuristics tend to demand high
computing times.
Parallel computing constitutes an effective approach to

overcome time delays. Writing and running a parallel program
basically depends on the fundamental concept of partitioning
the work among the cores. In parallel computing, there are two
approaches: either multiple tasks in the program are
distributed among the cores or several instances are evaluated
simultaneously. Since parallelism has lately become central to
the efficient use of resources, exploiting the presence of
multiple cores becomes a promising issue in many research
fields that will benefit from ever-increasing performance.15 In
particular, Gupta and Grossman16 have addressed the planning
of an offshore oil and gas field infrastructure by applying both
approaches. They implemented a parallel decomposition
algorithm by using convenient “matrix-partitioning”; they
also solved various planning scenarios among the cores.
Thanks to this strategy, they achieved satisfactory efficiency
values with a time reduction of more than an order of
magnitude.
“Matrix-partitioning” is a domain-decomposition method

that has frequently been employed to deal with parallel
algorithms for systems of equations. The focus of our proposal
does not lie on this approach because we do not attempt to
solve systems of equations. Instead of working with a
descriptive model, our representation of the network topology
is based on a graph whose nodes correspond to wells and arcs
denote connecting pipes. In contrast, our approach was
inspired by Talukdar et al.17 The organizational framework is
an A-team, where the agents run asynchronously and cooperate
by reporting their candidate solutions. An agent’s task is to
perform its own individual search. Each agent is autonomous
and completely self-contained, and it was implemented so that
it runs sequentially. In other words, the implementation was

designed as a multialgorithm problem (MAP), assuming that
there is no completely satisfactory algorithm, but several
algorithms with an acceptable performance can easily be
developed.18 The multiple-task implementation takes advant-
age of the best features of three recognized metaheuristics
(simulated annealing, genetic algorithm, and ant colony
optimization) to guide the search toward a satisfactory
solution.
In particular, the design of the connecting pipelines for an

offshore oil field was adopted as the main test problem for this
paper since the corresponding optimization tasks are time-
consuming and particularly difficult to solve.19 Section 2
describes the real-world problem under study. Next, section 3
outlines the hyperheuristic approach for the optimization of
pipeline networks. Section 4 summarizes the test cases, and
section 5 contains a brief description of the methodology
employed to carry out computational experiments. The
algorithmic performance and results are analyzed in section
6. Finally, some conclusions are presented in section 7.

2. PROBLEM STATEMENT
These days computer-aided pipelining is a widespread activity.
Network design typically aims at transporting feedstock easily
and cheaply so that they can be refined elsewhere into other
fuels. An issue of designer’s concern is how to locate pipeline
networks optimally in short computing times. The hyper-
heuristic algorithm presented in this paper may constitute a
solution to this problem.
In particular, the development planning of an offshore oil

and gas field infrastructure is addressed. A typical infrastructure
(Figure 1) involves a multiwell site W = {Wi, i = 1, ..., z}, of z

wells with predefined locations and a set of well platforms WP
= {WPk, k = 1, ..., q}, whose quantity q and location should be
determined. The integer q is an input parameter to specify the
upper limit on the number of open platforms.
The solution strategy to address this problem consists in

formulating it as a multiobjective optimization problem
(MOOP).
max F(x) = F ( f1 (x, ..., f M(x))
Subjected to

Figure 1. Simplified scheme of the transport network.
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with x ∈ . The MOOP can be generalized in the form of eq
1, where is the decision space, x is a real N-vector whose
elements are the N decision variables, F(x) is the real-valued
multiobjective optimization function, and f1 (x), ..., f M(x) are
the M associated objective functions.
In particular, the objective function (eq 2) was formulated

by adopting a conventional weighed aggregation approach.20

F(x) is the weighed sum of the objective functions, where the
weight wi for the objective function f i can be established.

∑=
=
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i

M

i i
1 (2)

Finally, c1(x), ..., cC(x) ≤ 0 and d1(x), ..., dD(x) = 0 express the
inequality and equality constraints, respectively, all of them
imposed on the values of x.
In this network problem, the profit of a network

configuration was calculated by its net present value (NPV),
the total cost being equal to the revenue minus the expenses
(eq 3). For all the metaheuristics, the fitness function F(x) was
formulated by aiming at an NPV maximization to ensure the
highest return on the investments over the planning horizon t.
The weighed sum of the objective functions (eq 2) was built
by including the economic terms in the fitness of individuals as
linear aggregated functions.
In eq 3, the expenses of a given configuration are related to

the construction and operating costs for each well platform.
For the kth platform, its installation cost δk ≥ 0 is given as its
opening cost. The construction costs from the ith well to the
jth platform include both pipeline construction CCij,t and the
installation of the corresponding well platform δk. The values
in CCij,t are estimated from data about the pipe diameter, flow
rate, and the covered distance.21 The operating costs comprise
maintenance MCij,t and labor LCt. The transport tariff Pt is
included to determine whether the project is economically
viable.
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The optimization variables are represented as binary numbers
to indicate the traversed paths and the installed platforms. In
the algorithm, the well platforms are regarded as concentrating
nodes, which are located by the optimizer. Then, WPk = 1 if
the platform is active; otherwise, WPk = 0. Besides, the integer
FPij = 1 indicates that the path running from the ith well to the
jth platform is being considered in the itinerary for the
configuration; otherwise, FPij = 0.
A network configuration is represented by an occurrence

matrix (see an example given in Figure 2), where the last
column corresponds to the processing plant (PP).

3. HYPERHEURISTIC APPROACH
A hyperheuristic is a kind of heuristic that searches a space of
low-level heuristics, whereas metaheuristics typically look
directly for solutions.22 The hyperheuristic employs perform-
ance information on each low-level heuristic, such as CPU time
and solution quality metrics, to choose which one to apply at
each stage.
The hyperheuristic algorithm for the design of pipeline

networks presented in this work is called a parallel optimizer
with hyperheuristics (POWH). It is organized as an A-team,17

whose agents are autonomous and cooperate by sharing
solutions. POWH is based on the master−slave paradigm
(Figure 3). The high-level procedure (master) comprises the
agent selector and the acceptance criterion. In turn, the low-
level strategy is composed of a set of metaheuristics (slaves)
that work as optimizing agents. The team comprises the
following optimizers: GA (genetic algorithm), SA (simulated
annealing), and ACO (ant colony optimization). In GA, the
initial population is selected at random, while the best solution
designated by the master is always incorporated as an elite
solution.
A parallel strategy based on threads was adopted to reduce

computational times. In this implementation, several search
threads proceed simultaneously, each of them executing a low-
level strategy. The queues are managed by means of an index
for the optimal assignment of the next task.
As to the allocation of metaheuristics, it is based on their

previous behavior. For this purpose, an auxiliary memory is
kept with registers of the last executions. Whenever a processor
becomes idle, an agent should start working. According to the
agent selector, the agent with the highest rank is allocated for
the next execution. The choice of agents is controlled by a
ranking index (INDk) whose role is to assess the historic
performance of the kth agent. The performance evaluation
(INDk) is defined by eq 4, where eqs 5−8 are the
corresponding choice functions. In this strategy, the solution
quality (Fek), the time consumption (Tek), the best solution
(Oek) that could ever be found by the kth agent, and the
amount of times (Rek) the kth procedure has already been
applied are considered.

= + + +IND Fe Te Oe Rek k k k k (4)

= −Fe 1
Bf
Sfk

k

k

i
k
jjjjj

y
{
zzzzz (5)

Figure 2. Example of network representation.
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4. TEST CASES

The selected cases for algorithmic testing belong to the
Argentinian marine platform. There is a multi-phase flow in the
connecting pipelines. It is expected that the facilities and piping
connections in the offshore infrastructure will be in operation
over t = 30 years.
For the testing procedure, different sizes were considered.

Case I (Figure 4) comprised 10 offshore wells and 5 well
platforms. For case II (Figure 5), f = 33 dispersed fields were
contemplated in the Argentinean sea and the treatment plant
was located on the coast of the province of Tierra del Fuego
(Argentina).23 Besides, a grid with q = 18 potential well
platforms was considered.

5. METHODOLOGY
For real-life approaches, there are plenty of NP-hard
optimization problems that would benefit from quick solutions
that may be achieved with the help of parallel programming.
To enlarge the scope of the proposed hyperheuristic method,
the generalization of the methodology was studied by
addressing another challenging problem: a location routing
problem (LRP).24 This computational tool was applied to bus
scheduling for the design of Bahiá Blanca city with a future
perspective of efficient organization.25

In view of the promising algorithmic performance, a realistic
industrial problem of the optimal design of subsea pipeline
networks was chosen to carry out detailed tests. The

computational experiments for the design of an adequate A-
team consisted in performing the following practical steps:

1. to test SA performance for both cases and to find its best
parameters

2. to assess the effectivity of the SA−GA cooperation for
case II, while tuning GA parameters conveniently

3. to test the hyperheuristics that combine SA, GA, and
ACO for case II, while confirming ACO parameters

4. to incorporate parallel programming to the SA−GA−
ACO team and to test its performance for case II by
comparing parallel with sequential executions

The algorithms were implemented in Java. The executions
were always performed on an AMD 8120 eight-core processor
with 3.10 GHz and 8 GB of RAM. Thirty executions were
adopted for each complete optimization since it is important to

Figure 3. Hyperheuristic design.

Figure 4. Case I: small instance. Potential locations for subsea
pipeline design.
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average the final results over multiple runs because the inner
procedures have many random components.
The average fitness values reported in Tables 1−3 were

calculated with Internet-released cost data26,27 for offshore

pipeline construction costs in the Argentinean Sea. The
construction costs CCijt are based on both the pipe diameter
and the covered distance. For pipelines of o.d. 6−26 in.,

material costs were calculated with the classic method of cost
variation as a function of size.26 The installation cost of a well
platform was regarded as U.S. $80 000 000.27 Its maintenance
cost (MCkt) was estimated by considering the entire structural
value. The operating labor cost was calculated from market
conditions, contract structure, and schedule goals based on
time and day rate assumptions on work tasks.

6. RESULTS
First, SA’s performance was assessed (Table 1) by executing 30
independent runs. For case I, the average fitness coincided with
the best fitness because the best solution could always be
found. In contrast, for case II, the average fitness was much
lower than the best one because many unfeasible solutions
were found. Only 43% of the independent runs were
successful, yielding the best solution satisfactorily.
For case II, Figure 6 shows SA’s behavior during 20

iterations in a single execution. The horizontal line shows the
best fitness (US$ 9.444 × 109). This maximum was only
reached in iteration 16. It can be observed that SA allowed
several times to choose a solution whose fitness value is worse
than the current solution. Therefore, the SA algorithm
converged relatively slowly toward the final solution.
Next, this drawback was overcome by implementing a

cooperation strategy with the help of other metaheuristics.
Table 2 shows the improvement of the average fitness when

running SA and GA cooperatively. GA contributed to diversify
the search by enlarging the search space. Although the
exploration was more efficient since 93% of the independent
runs could reach the best solution, there was an unfavorable
increment in the required time (from 3 279 to 19 345 ms). In
order to improve computational times, ACO was finally
incorporated into the team because of the remarkable ability of
artificial ants to construct solutions guided by the pheromone
trails. In this way, a convenient time reduction was achieved
thanks to ACO’s improved local search procedure. The
sequential algorithm with SA, GA, and ACO working in
cooperation behaved satisfactorily. In comparison with SA
when working alone, SA−GA−ACO’s average fitness increased
in 106 US$ when the elapsed time almost tripled.

Figure 5. Case II: large instance. Proposed location map for subsea
pipeline design.

Table 1. SA Performance Assessment

SA

case
successful hits

(%)
average fitness

(US$)
best fitness
(US$)

time
(ms)

I (small) 100 9.689 × 107 9.689 × 107 527
II (large) 43 9.441 × 109 9.444 × 109 3279

Figure 6. Fitness evolution as the iteration number increases for the standard SA procedure.

Table 2. Effects of Agent Cooperation in Solving Case II

agents SA SA−GA SA−GA−ACO
average fitness (US$) 9.441 × 109 9.444 × 109 9.442 × 109

time (ms) 3279 19345 9322
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Moreover, a parallel algorithm was also implemented so as
to make the optimization software even more competitive. For
case II, Table 3 shows the influence of parallel programming

on the efficiency and accuracy of the enhanced cooperative
model. The speedup measure28 shows that for up to eight
processors, parallel programming makes it possible to discover
solutions of approximately equivalent quality outperforming
the sequential counterpart.
Table 4 shows the adopted settings for the parameters of the

metaheuristics whose results are reported in Tables 1−3. As to
GA, the mutation rate was chosen by testing its effect on the
population. Mutations should be introduced carefully because
they change the individuals, perhaps ruining the population.
Table 5 shows that the increase in the mutation rate decreases
the number of successful hits, thus augmenting the computa-
tional time required to find the best solution.
On completing their task, the optimizers returned the 30

best solutions found and the corresponding best routes, which
are depicted in Figures 7 and 8. For a small-size problem
(Figure 7), SA yielded the best solution with satisfactory
computational times (527 ms). In contrast, Figure 8 shows the
best solution for a large-size problem that was efficiently found
in 2432 ms by POWH.

7. CONCLUSIONS
The rigorous design of pipeline networks is a timely topic, and
its strong requirements of computational time have undoubt-
edly been detected. Therefore, it is challenging to devise novel
algorithms that speed up calculations. Agile implementations
with the help of modern technologies, like parallel processing,
may help to develop production ideas and take them into
definite shape for the industry.
In view of this issue, a parallel hyperheuristic algorithm for

the design of pipeline networks is proposed in this work. This
optimization method allows the designers not only to speed up
the computations but also to improve the quality of the
provided solutions. The search was diversified by enlarging the
search space by means of GA and ACO, the latter being an

efficient explorer. In this parallel cooperative A-team model,
different metaheuristics exchange information related to the
search with the purpose of computing better solutions.
In this paper, a realistic industrial problem of the optimal

design of subsea pipeline networks was selected to carry out
detailed computational experiments. The incorporation of
metaheuristics into the cooperative team was analyzed step by
step. During the tests, the proposed hyperheuristics exhibited
outstanding performance because sharing good solutions made
the search process faster.
The three metaheuristics selected as agents in this work have

different complementary characteristics as regards their
efficiency and robustness. Testing showed that the A-team is
a proper way of organizing the algorithms to obtain solutions
that could not be found by any algorithm working alone. For
example, SA could find suboptimal solutions for a large
instance. If a different combination had been chosen at that
stage, like cooling more gradually, the solution would have
been improved very slowly. In short, the main disadvantage of

Table 3. Analyzing the Effectiveness of Parallel
Programming

SA−GA−ACO
(seq )

SA−GA−ACO
(POWH)

SA−GA−ACO
(POWH)

no. of
processors

1 4 8

average fitness 9.442 × 109 9.442 × 109 9.442 × 109

average time
(ms)

9322 4848 3404

speed up 1.92 2.74
efficiency 48.07 34.23

Table 4. Parameter Settings and Termination Criteria (TC)

metaheuristics

SA GA ACO

evaluations (TC) 1000 generations (TC) 250 ants 250
Markov-chain length 10 individuals 50 iterations 25
temperature decay 0.99 crossover rate 0.7 colonies (TC) 150

mutation rate 0.1 pheromone evaporation 0.8
pheromone exponent 2
heuristic exponent 1

Table 5. Effect of Mutation Rates on GA’s Performance

GA

mutation rate fitness (US$) time (ms) successful hits (%)

0.1 9.444 × 109 19345 93
0.5 9.443 × 109 18368 87
0.99 9.443 × 109 20623 83

Figure 7. Case I: small instance. The best solution yielded by SA.
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this policy is that it may lead to prohibitive time delays. In
contrast, GA helped effectively in the exploration, contributing
to diversify the search. In this way, better solutions could be
found more quickly.
As part of our future work, it would be interesting to

implement a complementary parallel search for the settings of
each individual metaheuristic in order to make the parameter
choice automatic. In this way, the optimizer might be
generalized straightaway for broader fields of application.
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