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Existing evidence suggests that interval timing, processing of

temporal information in the hundredth of milliseconds-to-

minutes range, recruits broad brain regions such as cortico-

striatal circuits via dopaminergic–glutamatergic pathways. In

this review, we summarize recent findings on the

neurobiological basis of interval timing with a special focus on

dopaminergic modulations of temporal information. Two

properties of interval timing — accuracy and precision — are

used to examine recent results from manipulations of

dopaminergic signaling and the resulting distortions in

temporal processing.
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Dopamine and the clock pattern of interval
timing
Dopamine (DA) is one of the major neurotransmitters in

the mammalian brain with its projections originating from

the midbrain to multiple forebrain regions. Due to these

broad neuromodulations, DA plays critical roles in many

cognitive functions. Interval timing, one important such

cognitive function, relies on cooperation of multiple

forebrain regions that most of them are targets of the

DA projections. Thus, DA can certainly modulate inter-

val timing, but the underlying sophisticated mechanisms

need to be elucidated. The first comprehensive review of

interval timing and how DA modulates it was reviewed in

[1], in which the term ‘clock pattern’ was coined. The

clock pattern is a phenomenon induced by pharmacolog-

ical distortion of time that manifests in three stages. In the

first stage, an acute administration of dopaminergic drugs,

either an agonist (AGO) or antagonist (ANT) into a group
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sign

j.cobeha.2016.02.013

www.sciencedirect.com 
of well-trained animals distorts the animal’s timing per-

formance by shifting their timing function 10–20% left-

ward by AGO or rightward by ANT from the baseline

(pre-drug) condition. Hence, the accuracy of interval

timing is affected by acute injection of dopaminergic

drugs (see Box 1 and Figure 1). In the second stage, if

the injection continues in daily session as a chronic

regimen, this DA drug-induced shift gradually diminishes

such that the timing function returns to that of baseline

condition. At that point, if the drug injection discon-

tinues, then the third stage emerges — a ‘rebound’ effect

is seen when the timing function, originally showing a

shift of 10–20% in one direction, will now be showing the

same magnitude of shift, but in the opposite direction.

This clock pattern effect can be induced by drugs target-

ing primarily on the DA systems, not on acetylcholine and

serotonin [2]. Since that seminal review, many attempts

have been made to investigate the neural correlates of DA

modulation on the clock pattern of interval timing. In this

article, we will review recent progress on how manipulat-

ing the DA signaling can affect the clock pattern of

interval timing. Besides manipulation, the concentration

of brain DA also naturally fluctuates in conjunction with

circadian rhythms. How this circadian modulation of DA

affects interval timing will also be reviewed.

Current models of interval timing that involve
dopamine signaling
To explain the clock pattern of interval timing, an infor-

mation-processing model was proposed that involves a

clock stage, a memory stage and a decision-making stage

(for a recent review, see [3]). Among them, the clock stage

is composed of a pacemaker, a gate switch and an accu-

mulator. According to this model, DA primarily partici-

pates in the clock stage. An increase of DA signaling (by

AGO) accelerates the accumulation of pacemaker pulses

in a given amount of time. DA ANT triggers the opposite

effect. This explains the first stage of the clock pattern,

that is, the acute drug effect on interval timing. As the

drug effect diminishes during the second stage of the

clock pattern, the animals re-adjust their timing based on

the new readout from the clock stage such that their new

timing performance gradually returns to normal baseline

condition under the influence of the drug. When the drug

injection discontinues, the ‘out-dated’ clock readout

forces the animal’s timing performance shifted to the

opposite direction until it re-adjusts again to normal

baseline under drug-free condition. The neural substrates

underlying the above three stages of the clock pattern can

be inferred by studying the DA targeted regions. Several
aling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/
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Timing accuracy and precision. (a) peak-interval (PI) procedure. (b)

Examples of responses rates averaged across trials in a temporal

duration reproduction procedure, such as the PI procedure. In test

trials, the level responses distribute normally around the criterion time

with a width that is proportional to the criterion time. The red function

is an example of a precisely wrong function and the blue function is a

lousily accurate function. The black dotted function is an example of

poor precision preventing the identification of accuracy.

Box 1 Accuracy and precision of interval timing.

In interval timing, accuracy refers to the degree of a match between

objective (physical) and subjective (perceived) durations, whereas

precision is related to the variance of perceived durations across

repeated trials [64]. For example, in the peak-interval (PI) procedure,

subjects receive 50% fixed-interval (FI) trials randomly intermixed

with 50% non-reinforced probe trials in which the to-be-timed signal

remains active two or three times longer than the FI time (Figure 1a).

Under probe trials, the time at which the maximal response occurs,

that is, the peak time, is taken as an estimate of the accuracy of

timing. The maximal response rate is defined as peak rate that

reflects the motivation level of the subjects at the criterion time, and

the width (or peak spread) of the response function (Figure 1b, black

function) is taken as an estimate of the precision of timing. Peak

spread is usually taken from the difference of start time (Figure 1b,

red dot) and stop time (Figure 1b, blue dot). The ratio between peak

spread and peak time, the coefficient of variation, CV, is shown to be

constant (i.e., the scalar property) in a large range of durations in

several species [4]. In timing tasks, it is possible for subjects to

perform in a way that is highly precise but with bad accuracy — a

precisely wrong performance (Figure 1b, red function). The clock

effect by acute injection of dopaminergic drugs [1–4] is a typical

example of good precision but bad accuracy because the peak time

is shifted horizontally. Interestingly, mild stress induced by mild

electrical shock can also affect the accuracy of timing, probably

through modulation of the dopaminergic system in brain structures

related to both temporal and emotional processes [65,66]. In

contrast, it is also possible to have a bad precision but with good

accuracy — a lousily correct performance (Figure 1b, blue function).

In the extreme case, a totally imprecise function (Figure 1b, dotted

black function) is possible and in such condition, the accuracy (i.e.,

the peak time) cannot be properly determined. Thus, in order to

study the accuracy of interval timing, it is necessary to make sure

that the precision of the timing performance is maintained at a proper

level. Inherently, both timing accuracy and precision appear to be

modulated by the circadian system in mice [45].

C

nes of evidence suggest that striatal medium spiny

eurons (MSNs) are crucial to duration discrimination

 the seconds-to-minutes range through their participa-

on in large-scale oscillatory networks involving func-

onal links among mesolimbic, nigrostriatal, and

esocortical dopaminergic systems [4,5]. According to

e striatal beat-frequency (SBF) model, the proposed

eural mechanism of interval timing is based on the

oincidental activation of striatal MSNs by cortical neural

scillators [6]. Furthermore, it was recently implemented

 modification to this model (SBF–ML) by using biophy-

cally realistic and noisy Morris–Lecar neurons [7].

ccording to this model’s simulation, dopaminergic mod-

lation of the firing frequency of cortical oscillators results

 immediate change in timing (first stage of the clock

attern) and gradual recalibration under chronic drug

jection (second stage), rebound to the opposite direc-

on and gradual recalibration upon discontinuing the

rug (third stage), as well as scalar (proportional) effects.

ogether, these biologically plausible models can be used

 account for DA signaling in temporal processing thus

ggesting that manipulation of DA signaling, both pre-

naptically and post-synaptically, should modulate the

ming performance.
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sig
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Interval timing in animal models with up-
regulation and down-regulation in DA
signaling
Approach by regulating receptor expression levels

Striatal MSNs are commonly classified according to their

expression of two major classes of DA receptors: the D1-

like receptors (DRD1 and DRD5) and the D2-like recep-

tors (DRD2, DRD3, and DRD4), together constituting

the direct and indirect pathway in the basal ganglia.

D2 overexpression in the striatum

DRD2-expressing MSNs, which form the ‘indirect’ stria-

topallidal pathway, lead to inhibition on adenylyl cyclase

pathway. These receptors have been shown to be critical

for interval timing in both humans [8] and animals [9,10].

Transgenic mice that selectively and transiently over-

express DRD2 in the striatum show impairments in both

interval timing and motivation to work for food rewards

[9]. Whereas the motivational deficits can be rescued by

shutting off DRD2 overexpression in the adult with

doxycycline, the timing deficits are not fully rescued,
naling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/

www.sciencedirect.com

http://dx.doi.org/10.1016/j.cobeha.2016.02.013
http://dx.doi.org/10.1016/j.cobeha.2016.02.013


Timing and dopamine systems Agostino and Cheng 3

COBEHA 195 X–X

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170
171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190
191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
218

219

220

221

222

223

224

225

226

227

228

229

230
231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253
254
indicating that once DRD2 are transiently overexpressed,

its effect on timing is not reversible (or re-adjustable),

which is in a stark contrast with the drug-induced clock

pattern mentioned before. In later reports, it was shown

that the deficits in timing precision appear to be mediated

by impairments in motivation and working memory or

sustained attention [10]. These studies on mouse DRD2

overexpression may explain some of the symptoms char-

acteristic in patients with schizophrenia, including defi-

cits in attention, working memory, and timing. Thus,

altering the expression levels of DRD2 uniformly in

the striatum does not just affect interval timing, but other

functions as well. For example, a recent monkey positron

emission tomography (PET) study suggests that eyeblink

rate may be used as a biomarker for DRD2 receptor

density, which by itself also correlates with reversal

learning and sensitivity to positive feedback [11�]. An-

other example is that chronic injection of quinpirole, a

DRD2 agonist induced obsessive-compulsive disorder

(OCD-like) behavior in rats as if the reinforcement con-

tingency was sensitized in the temporal domain, which

could not be observed in control rats under drug-free

condition [12].

D1 signaling in the medial prefrontal cortex

Recently, there were studies reporting that D1 signaling

in the medial prefrontal cortex (mPFC) is required for

normal temporal control of behavior [13,14]. The earlier

study showed that focal infusion of muscimol, a GABA

agonist inducing inhibition in the mPFC flattened the

20-sec timing function, a signature of poor temporal

precision. In the same study, infusion of SCH23390, a

DRD1 ANT, but not sulpiride, a DRD2 ANT, replicated

the effect of muscimol. Similarly, photoinhibition of

mPFC D1-expressing neurons by optogenetics also rep-

licated the flattening effect [13]. In the later study,

ramping activity was seen in the mPFC single units

and coincided with an increase of 4 Hz neural oscillations

near the target duration (12-sec). In addition, both mPFC

ramping activity and 4 Hz oscillations were shown to be

sensitive to local DRD1 blockade, further suggesting the

importance of mPFC D1 signaling for temporal control

(or precision) of behavior maintained under the fixed-

interval (FI) procedure [14].

D3 expression in the ventral striatum

Dopamine D3 receptors (DRD3) are highly expressed in

the ventral striatum and it has been postulated to mediate

emotional behavior in mice. In addition, DRD3 have a

significant role in the treatment of many neurologic

disorders, like depression, schizophrenia, and Parkinson’s

disease. Moreover, DRD3 are involved in mediating the

effects of DA AGOs on operant behavior in rats [15]. In

circadian timing, which mediates regulation of several

physiological, metabolic and behavioral functions with

periods close to 24 hours, DRD3 expression presents

daily oscillations in the mouse ventral striatum [16�].
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sign
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In fact, molecular components of the circadian clock

act as regulators that control the 24-hour variation in

the expression of DRD3, suggesting a molecular link

between the circadian clock and the function of

DRD3. This rhythmicity accounts for pharmacological

actions of DRD3 AGOs/ANTs, such as the time-depen-

dent change in the efficacy of the DRD3 agonist 7-OH-

DPAT. Whether DRD3 in the ventral striatum or the

ventral striatum itself modulates any aspect of interval

timing remains to be explored, but a recent study has

shown that protein synthesis in the ventral striatum is

important for acquiring the stop time (see Box 1) in the

peak-interval procedure, which is more related to the

precision, but not accuracy of timing [17].

Approach by pharmacological treatments that are non-

specific to any DA receptors

Another approach to adjust brain DA signaling is to inject

indirect dopaminergic drugs, right before testing the

animals in interval timing tasks. In fact, this is what

the clock pattern was originally based on [1,7,18]. Al-

though this approach has yielded a vast amount of data

regarding the relationship of DA and timing, it is not

without exceptions that in the literature, some reports are

not consistent (e.g., DA AGO producing no effects or

opposite to the clock speed effect [19]). Here, we

compare results from both sides and try to highlight

the potential differences between the positive and

negative results.

Positive findings

Most positive findings from animal studies were reported

by using discrete-trials of, either the peak-interval pro-

cedure (see Box 1) or the duration bisection procedure in

rodents. The commonly used AGO drugs were psychos-

timulants, or indirect DA AGO, such as cocaine or meth-

amphetamine [18,20–23] while fewer studies were

performed using d-amphetamine [24–26�], or estradiol

that increases striatal DA release [27]. For ANT drugs,

haloperidol, a non-selective, but nevertheless primarily

targeting at DRD2 was commonly used [18,26�,28]. In

terms of the underlying mechanism, recent work proposes

that the effect of DA AGO/ANT may result from

reduced/increased putamen-originating beta (15–30 Hz)

oscillatory band that by itself can trace phasic or tonic

changes of DA in cortico-striatal circuits. It was shown

that measuring beta power at the beginning of the timed

behavior can predict the subsequent produced interval

duration [29��,30]. In this regard, DA AGO would result

in reduced beta-band synchronization, while DA ANT

would do otherwise, and thus triggering shorter or longer

time estimates accordingly. A direct drug test of this

proposal will be much needed.

Inconsistent findings

Instead of finding a change of the clock speed (i.e.,

accuracy), most of the negative drug studies reported a
aling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/
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isruption of timing performance (i.e., poor precision in

1]) or only a change of the start time but not the stop

me or vice versa [32,33]. As mentioned in Box 1,

ccuracy requires a certain level of precision. When the

recision is poor, it is hard to gauge what the drugs really

id to the accuracy of timing. When the above inconsis-

nt results are reported, it is necessary to be carefully

xamining the procedural difference in the studies.

here are many sources that could contribute to poor

mporal precision that results in bad temporal accuracy.

ne potential source, just to name a few, is the use of

latively short ITIs in studies that report negative

sults. Using shorter ITIs that are equal or shorter than

e to-be-timed duration brings in factors, such as moti-

ation or impulsive responding [34] that are interfering

ith timing itself that we want to study. An extreme case

f using no ITI (i.e., non-discrete trials) can be seen in

3], in which the response was quite high even at

e beginning of the FI trials. When the ITI is too short,

e animals may still be in the process of consuming the

wards (e.g., food or sucrose solution), thus it is hard to

fer when the animals start timing from the beginning of

 trial. That is, if the start time varies from trial to trial, it is

ard to determine the overall accuracy of timing because

e timing function will appear flat (i.e., bad precision).

sing discrete-trials with long and random ITIs (at least

nger the criterion time) helps the animals to have a clear

arting time point in the trial. This will contribute to

etter precision of timing by reducing premature

sponses. In addition to short ITIs, overtraining (e.g.,

xtensive use of the same research subjects) may con-

ibute to habit formation, which is a functional charac-

ristics of the striatum that may ‘blunt’ the effects of DA

rugs on timing precision [35,36]. Brain damage may also

lock the observation of the clock speed effect by DA

rugs, either by acute brain lesion [37] or chronic drug

eatment at toxic dose [38]. Sex difference in timing

recision and accuracy also needs to be considered when

omparing studies across labs [27,39]. It is a trend and a

ew requirement in the biomedical research to consider

otential sex differences in preclinical behavioral studies.

n the drug itself, it is also possible that the drug has lost

s potency over time because the storage condition for

e drug bottles may not be the same across labs (e.g., was

 capped tightly and kept in a dry safe?) and no drug can

aintain its potency forever. If no drug effect is obtained

 the timing task, it becomes necessary for the experi-

enter to test the same drug in a second non-timing task

 verify whether the drug is still potent on any behavior

 general. Finally, it should not be overlooked that there

re potential non-specific effects of using indirect DA

GOs in behavioral studies because there are many types

f indirect DA AGOs, each of which may exert slightly

ifferent pharmacological effects in the brain. Once the

A levels are universally increased in the brain, the

bsequent activation of different DA receptors subtypes
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sig
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may vary across different brain regions by different indi-

rect DA AGOs. Together, these may contribute to DA

drug effects that are not restricted to timing accuracy per

se (e.g., for a recent discussion on how DA modulation of

motivation can be intertwined with timing, please see

[40]). To disentangle the two (timing and motivation), a

finer-grain approach needs to be developed.

Approach by altering DAT

Once DA is released in the synapse, its reuptake is mainly

in charge by dopamine transporter (DAT) from the pre-

synaptic side. Mice with DAT gene deletion were shown

unable to develop temporal control of behavior, that is, a

flattened response function [41], another case of poor

precision. Instead of knocking out the DAT gene, knock-

ing it down in adult mice, thus reducing DAT expressions

has been shown to alter timing functions, but mainly in

the start time (see Box 1) of the function [42]. The same

group later tested human subjects to examine DAT gene

polymorphism and found no change of timing perfor-

mance, possibly due to procedural differences between

animal and human research in this set of studies [43�].
Overall, with a global change of DAT expression before

training the animals, the resulting effect does not resem-

ble the clock speed effect induced by acute DA drug

injections right before testing the animals when they are

trained under drug-free conditions. Although most indi-

rect DA AGOs (e.g., cocaine and methamphetamine)

target at DAT, the time point when the DAT manipula-

tion takes place seems to be critical. In this regard, an

inducible and reversible technique [e.g., in Ref. 9] will be

more desirable in future studies on manipulating DAT

expression levels on timing.

Interval timing and daily rhythms of dopamine levels in

the dorsal striatum

It has been reported that DA levels in mice present 24-hour

rhythms in the dorsal striatum, with lower levels during the

day and a peak during the night [44�]. Moreover, higher

dorsal striatal DA levels during the night coincide with

better performance on interval timing (i.e., peak location

closer to the target time, higher peak amplitude and re-

duced peak width) in the nocturnal phase of the light/dark

cycle in mice [45]. Both interval timing and DA oscilla-

tion — as well as DA synthesis and turnover — in the

dorsal striatum are affected by inducing circadian disrup-

tion under constant light conditions. In addition, circadian

regulatory elements have been found in the promoter

region of components involved in DA metabolism, like

DAT, D1A receptor (DRD1A), tyrosine hydroxylase (TH)

and monoamine oxidase (MAO), demonstrating that the

expression of these components is under circadian regula-

tion [46,47]. It was recently reported that melatonin-de-

pleted rats by pinealectomy (i.e., removal of the pineal

gland, a brain structure that releases the circadian hormone

melatonin) showed impaired learning in the peak-interval

timing task. Furthermore, lack of melatonin increased
naling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/

www.sciencedirect.com
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striatal DA availability — which was reversed by external

melatonin administration — indicating that this hormone

may modulate interval timing on a circadian base [48].

DA signaling has been linked to circadian clock compo-

nents such as Per2. In this regard, mouse PER2 is in-

volved in the circadian regulation of DA metabolism and

mood-related behaviors [44�,46]. Both mouse per2 (mper2)

mRNA and mPER2 protein oscillate in the dorsal stria-

tum and substantia nigra pars compacta (SNpc). There-

fore, PER2 may regulate striatal DA rhythmicity by

acting as a transcription factor through E-box sequences

in key dopaminergic enzymes such as TH and MAO. In

fact, in humans Per2 has a role in regulating striatal DRD2

availability and its vulnerability for cocaine addiction
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sign
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[49]. Thus, the data suggest a circadian regulation of

dopaminergic transmission in striatal circuits that can

be seen at both sides of the synapse, such as TH (for

synthesis), DAT (for reuptake), MAO (for break down) as

well as DRD2 (for postsynaptic signaling). This could be

in part responsible for the interaction between the circa-

dian system, which is 24 hours, and the interval timing,

which is at a ‘shorter’ time scales. Figure 2 summarizes

the main dopaminergic signaling pathways in MSNs in

the dorsal striatum.

Temporal processing in humans with dopaminergic

deficits

Interval timing is altered in several disorders associated

with pathological dopaminergic function, including
aling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/
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the dorsal striatum. The effects of DA in MSNs are mediated by G-

 through Golf, increases cytosolic cAMP levels leading to the

as DARPP-32. DRD2 activation leads to inhibition of AC through Gai

forms, generating DAG and PKC activation as well as IP3 release and

thways leads to changes in behavior such as learning, reward and

ts related to dopaminergic neurotransmission. Some examples involve

2 autoreceptors — or rhythmic degradation mediated by MAO.

eptor; COMT, catechol-o-methyl transferase; CRE, cyclic-AMP-

acylglycerol; DARPP-32, cAMP-regulated phosphoprotein of 32 kDa;

AT, dopamine transporter; DDC, DOPA decarboxylase; DOPAC, 3,4-

osphate; M1R, muscarinic acetylcholine receptor 1; M2R, muscarinic

glutamate receptor; NMDAR, NMDA receptor; PKA, protein kinase A;

 indicates circadian oscillation.
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hizophrenia, Parkinson’s disease (PD), Huntington’s

isease (HD), attention-deficit hyperactivity disorder

DHD), and Multiple System Atrophy (MSA)

0–56]. For example, PD patients exhibit important

eficits in accuracy and precision on temporal reproduc-

on tasks, which are attenuated by levodopa administra-

on [51]. Interestingly, PD patients show a ‘migration

ffect’ when they are trained and tested OFF medication

ith multiple target durations across the session. This

ffect results in overestimation of the shortest durations

nd underestimation of the longest ones, and it has been

lated to a DA-dependent dysfunction of retrieving

mporal memories [51–53]. This effect, which is equiv-

lent to the Vierordt’s Law, was not reproduced in

ealthy volunteers with reduced DA levels resulting

om acute phenylalanine/tyrosine depletion (APTD)

7], indicating that the underlying intrinsic pathology

f PD contributes to the migration effect. PD patients

lso display greater deficits in timing tasks that are

ependent on controlled attention, such as cross-modal

uditory/visual tasks [58]. In addition to the above men-

oned disorders, several dopamine-related gene poly-

orphisms–such as DRD2/ANKK1-Taq1a, COMT

al158Met and DAT 30 VNTR–have been associated

 timing functioning [43�,59,60], see Table 1.

ecent human pharmacological studies corroborate the

ffect of indirect DA AGOs on producing proportional

ftward shifts of the timing functions while DA ANTs

roducing proportional rightward shifts, both are a shift in

ccuracy of timing. For example, ketamine, which

creases prefrontal DA levels, impairs accuracy on a

erceptual timing task [61]. Moreover, indirect DA
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sig
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Table 1

Interval timing in animal models and human polymorphisms with ch

Genotype Physiological and

behavioral alterations

Animal models

DAT�/� mice

DAT+/� mice

Knockdown DAT mice

Hyperactivity and learning

impairment; insensitive to

psychostimulants.

Insensitive to psychostimulants.

Hyperactivity; impaired response

habituation in novel environments.

Com

altere

Alter

on c

Lowe

respo

DRD2 transgenic mice Deficits in tasks that require working

memory and behavioral flexibility,

and in motivation for food reward.

Impa

prec

DRD1 optogene-tics

inhibition

Alterations in psychostimulant-

mediated behavior.

Impa

interv

DRD2/ANKK1-Taq1a Deficits in reversal learning and

attention.

Incre

seco

Humans

COMT Val158Met Disruptions in working memory and

frontal executive tasks.

Incre

supr

DAT 30 VNTR Several neuropsychiatric conditions

due to decreased DAT expression

Norm

BDNF Val66Met Impaired episodic memory. Also

associated to eating disorders.

Norm

urrent Opinion in Behavioral Sciences 2016, 8:x–x 
ANT manipulation (acute phenylalanine/tyrosine deple-

tion, which causes reduced striatal DA release) decreases

correct response in a temporal discrimination task

(shorter, longer or the same) in human volunteers [62].

Indeed, these temporal distortions are correlated with

drug-induced euphoria, which has important implications

for the study of temporal processing and drug addiction

[26�]. These results point to the clinical relevance of

research on temporal processing and the U-shaped func-

tions relating levels of dopamine to the control of clock

speed, memory, and emotion [63].

Conclusions and future directions
Although we are still far away from a complete understand-

ing of exactly how DA affects the activity of cortico-striatal

circuits and how this drug-induced neural activity change

modifies timing behavior, there are a few tentative con-

clusions that can be drawn: (i) Dopaminergic pharmaco-

logical modulation affects mainly the clock speed of

interval timing, although the experimenter should careful-

ly rule out the motivation effect on timing or at least take

that account into consideration; (ii) The clock speed effect

may be due to DA modulation of the firing frequency of

cortical oscillators that project to MSNs in the dorsal

striatum. (iii) Cortico-striatal DRD1 or DRD2 alteration

impacts on interval timing, although there are some incon-

sistent results partly due to poor precision preventing a

direct observation of temporal accuracy. Studying both

systematically will be imperative in the future. (iv) DA

metabolism in the dorsal striatum is subjected to circadian

control, explaining in part the day/night differences ob-

served in timing behavior. (v) Interval timing is profoundly

affected in human pathologies with DA dysfunction, and
naling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/

anges in dopamine levels.

Interval

timing

Dopamine

levels

plete loss of temporal control;

d sensitivity to drugs [41].

ed sensitivity to drugs; effects

lock speed [41].

r threshold for initiating

nding in the timing task [42].

Increased extracellular DA levels.

Increased extracellular DA levels.

Increased extracellular DA levels.

irment in timing accuracy and

ision [9].

Reduced dopamine-induced

adenylate cyclase activity in the

striatum.

ired performance in the fixed-

al timing task [13].

Reduced VTA dopaminergic

transmission.

ased timing variability for sub-

nd time durations [59].

Decreased DRD2 density in the

striatum by 30–40%.

ased timing variability for

a-second time durations [59].

Decreased dopamine availability in

prefrontal cortex.

al [43�]. Increased DA levels.

al [59]. Increased DRD2/3 availability and

lower DA tone in the ventral striatum.
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dopaminergic treatment may ameliorate this affection.

Further research in this subject will have a deep impact

in our understanding of timing and time perception from

behavioral, physiological and clinical perspectives.
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. Balci F, Wiener M, Cavdaroğlu B, Branch Coslett H: Epistasis
effects of dopamine genes on interval timing and reward
magnitude in humans. Neuropsychologia 2013, 51:293-308.

rovides evidence which associates two human dopamine-related gene
olymorphisms — DRD2/ANKK1-Taq1a, affecting DRD2 expression in
e striatum and COMT Val158Met, affecting breakdown of DA in the
refrontal cortex — to interval timing and reward magnitude modulation
f decision thresholds.

. Bussi IL, Levı́n G, Golombek DA, Agostino PV: Involvement of
dopamine signaling in the circadian modulation of interval
timing. Eur J Neurosci 2014, 40:2299-2310.

eveals daily variations in dopamine metabolism in the mouse striatum,
hich are affected by inducing circadian disruption under constant light
nditions. Proposes the idea that circadian and interval timing share some
mmon processes, interacting at the level of the dopaminergic system.

. Agostino PV, do Nascimento M, Bussi IL, Eguı́a MC,
Golombek DA: Circadian modulation of interval timing in mice.
Brain Res 2011, 1370:154-163.

. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-
Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH,
Albrecht U: Regulation of monoamine oxidase A by circadian-
clock components implies clock influence on mood. Curr Biol
2008, 18:678-683.

. Agostino PV, Golombek DA, Meck WH: Unwinding the molecular
basis of interval and circadian timing. Front Integr Neurosci
2011, 5:64.
Please cite this article in press as: Agostino PV, Cheng R-K: Contributions of dopaminergic sig

j.cobeha.2016.02.013

urrent Opinion in Behavioral Sciences 2016, 8:x–x 
48. Bussi IL, Levin G, Golombek DA, Agostino PV: Melatonin
modulates interval timing in rats: effect of pinealectomy. Int J
Comp Psychol 2015, 28.

49. Shumay E, Fowler JS, Wang GJ, Logan J, Alia-Klein N, Goldstein RZ,
Maloney T, Wong C, Volkow ND: Repeat variation in the human
PER2 gene as a new genetic marker associated with cocaine
addiction and brain dopamine D2 receptor availability. Transl
Psychiatry 2012, 2:e86 http://dx.doi.org/10.1038/tp.2012.11.

50. Allman MJ, Meck WH: Pathophysiological distortions in time
perception and timed performance. Brain 2012, 135:656-677.

51. Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B,
Gibbon J: Coupled temporal memories in Parkinson’s
disease: a dopamine-related dysfunction. J Cogn Neurosci
1998, 10:316-331.

52. Jones CRG, Jahanshahi M: Contributions of the basal ganglia to
temporal processing: evidence from Parkinson’s disease.
Timing Time Percept 2014, 2 87-27.

53. Gu B-M, Jurkowski AJ, Lake JI, Malapani C, Meck WH: Bayesian
models of interval timing and distortions in temporal memory
as a function of Parkinson’s disease and dopamine-related
error processing. In Time Distortions in Mind: Temporal
Processing in Clinical Populations. Edited by Vatakis A, Allman MJ.
Brill Academic Publishers; 2015:284-329.

54. Beste C, Saft C, Andrich J, Müller T, Gold R, Falkenstein M: Time
processing in Huntington’s disease: a group-control study.
PLoS One 2007, 2:e1263.
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56. Högl B, Agostino PV, Peralta MC, Gershanik O, Golombek DA:
Alterations in time estimation in multiple system atrophy. Basal
Ganglia 2014, 4:95-99.

57. Coull JT, Hwang HJ, Letton M, Dagher A: Dopaminergic
modulation of motor timing in healthy volunteers differs as a
function of baseline DA precursor availability. Timing Time
Percept 2013, 1:77-98.

58. Harrington DL, Castillo GN, Reed JD, Song DD, Litvan I, Lee RR:
Dissociation of neural mechanisms for intersensory timing
deficits in Parkinson’s disease. Timing Time Percept 2014,
2:145-168.

59. Wiener M, Lohoff FW, Coslett HB: Double dissociation of
dopamine genes and timing in humans. J Cogn Neurosci 2011,
23:2811-2821.

60. Wiener M, Lee YS, Lohoff FW, Coslett HB: Individual differences
in the morphometry and activation of time perception
networks are influenced by dopamine genotype. NeuroImage
2014, 89:10-22.

61. Coull JT, Morgan H, Cambridge VC, Moore JW, Giorlando F,
Adapa R, Corlett PR, Fletcher PC: Ketamine perturbs perception
of the flow of time in healthy volunteers. Psychopharmacology
(Berl) 2011, 218:543-556.

62. Coull JT, Hwang HJ, Leyton M, Dagher A: Dopamine precursor
depletion impairs timing in healthy volunteers by attenuating
activity in putamen and supplementary motor area. J Neurosci
2012, 32:16704-16715.

63. Cheng RK, Tipples J, Narayanan NS, Meck WH: Clock speed Qas a
window into dopaminergic control of emotion and time
perception. Timing Time Percept 2016. in press.

64. Sohn H, Lee SH: Dichotomy in perceptual learning of interval
timing: calibration of mean accuracy and precision differ in
specificity and time course. J Neurophysiol 2013, 109:344-362.

65. Meck WH: Selective adjustment of the speed of internal clock
and memory processes. J Exp Psychol Anim Behav Process
1983, 9:171-201.

66. Fayolle S, Gil S, Droit-Volet S: Fear and time Fear speeds up the
internal clock. Behav Processes 2015, 120:135-140.
naling to timing accuracy and precision, Curr Opin Behav Sci (2016), http://dx.doi.org/10.1016/

www.sciencedirect.com

http://dx.doi.org/10.1038/tp.2012.11
http://dx.doi.org/10.1016/j.cobeha.2016.02.013
http://dx.doi.org/10.1016/j.cobeha.2016.02.013

	Contributions of dopaminergic signaling to timing accuracy and precision
	Dopamine and the clock pattern of interval timing
	Current models of interval timing that involve dopamine signaling
	Interval timing in animal models with up-regulation and down-regulation in DA signaling
	Approach by regulating receptor expression levels
	D2 overexpression in the striatum
	D1 signaling in the medial prefrontal cortex
	D3 expression in the ventral striatum
	Approach by pharmacological treatments that are non-specific to any DA receptors
	Positive findings
	Inconsistent findings

	Approach by altering DAT
	Interval timing and daily rhythms of dopamine levels in the dorsal striatum
	Temporal processing in humans with dopaminergic deficits

	Conclusions and future directions
	Conflict of interest
	References and recommended reading


