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Abstract. We show that in many parametrized families of self-similar measures,
their projections, and their convolutions, the set of parameters for which the mea-
sure fails to be absolutely continuous is very small - of co-dimension at least one in
parameter space. This complements an active line of research concerning similar
questions for dimension. Moreover, we establish some regularity of the density
outside this small exceptional set, which applies in particular to Bernoulli con-
volutions; along the way, we prove some new results about the dimensions of
self-similar measures and the absolute continuity of the convolution of two mea-
sures. As a concrete application, we obtain a very strong version of Marstrand’s
projection theorem for planar self-similar sets.

1. Introduction and main results

1.1. Introduction. One of the most natural questions one can ask about a measure
on Euclidean space is: is it absolutely continuous with respect to Lebesgue mea-
sure? If the answer is affirmative, one would like to gain some information about
its density. Basic as it is, the question of absolute continuity is very hard to answer
for measures of dynamical or arithmetic origin whose construction involves com-
plicated overlaps. One of the most fascinating examples is the family of Bernoulli
convolutions νλ, defined as the distribution of the random sum ˘λn, where the signs
are chosen independently with equal probabilities. For λ P p0, 1{2q it is well-known
and easy to see that νλ is singular, as it is supported on a Cantor set of Hausdorff
dimension less than 1. For λ P p1{2, 1q, Erdős [3] already in 1939 exhibited a count-
able set P (the reciprocals of Pisot numbers in p1, 2q) such that νλ is singular for
λ P P . Up to today it is not known if these are the only parameters for which νλ
fails to be absolutely continuous. Solomyak [26] showed that the exceptional set is
small: for Lebesgue almost all λ P p1{2, 1q, the measure νλ is absolutely continuous
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with an L2 density. Very recently, Shmerkin [25] showed that indeed νλ is absolutely
continuous for all λ outside of an exceptional set of Hausdorff dimension zero (no
new information about densities was obtained).

The goal of this article is to show that the method of [25], with suitable ex-
tensions and modifications, can be adapted to show that, for a number of natural
parametrized families of measures on the real line, the set of “exceptional” param-
eters for which the measure is singular is very small. By “very small”, we mean a
bound on the Hausdorff dimension which is smaller by at least 1 than the dimension
of the parameter space. Some of the families to which our results apply include:

(1) Fairly general parametrized families of homogeneous self-similar measures
on the line (which include Bernoulli convolutions as a special case).

(2) Projections of homogeneous self-similar measures on the plane (possibly con-
taining a scaled irrational rotation).

(3) Convolutions of scaled homogeneous self-similar measures on the line (the
parameter comes in the scaling).

These results have immediate applications to the Lebesgue measure of self-similar
sets, their projections and arithmetic sums. Moreover, we are able to get some infor-
mation about the densities - this is new even in the case of Bernoulli convolutions.
Along the way, we establish a new criterion for the absolute continuity of the convo-
lution of two measures, and prove a partial continuity result for the Lq dimensions
of some self-similar measures. These results may be of independent interest.

In a forthcoming article, we obtain analogous results for families of parametrized
families in the plane, including complex Bernoulli convolutions (see [27] and refer-
ences therein), and fat Sierpiński carpets.

Before stating our results more precisely, we review some definitions and set up
some notation. In this article, all measures are understood to be Borel probability
measures on some Euclidean space Rd; the space of all of them is denoted by Pd.
The (lower) Hausdorff dimension of a measure µ P Pd is

dimH µ “ inftdimHA : µpAq ą 0u,

where dimHA is the Hausdorff dimension of the set A. It is then clear that if
dimH µ ă d, then µ is necessarily singular. When studying parametrized families
tµuuuPU it may happen that dimH µu ă d for obvious reasons for all or part of the
parameter space. Although at present this is a vague concept, we refer to this part
of the parameter space as the sub-critical regime, and we are not interested in it
as the measures are then automatically singular. Therefore all of our results will
contain an assumption that will ensure that we are in the super-critical regime, in
which there is at least a chance of obtaining absolute continuity.

Our parametrized families will consist of self-similar measures, or measures con-
structed from self-similar measures through the geometric operations of projection
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and convolution. As corollaries, we will obtain also results for self-similar sets and
their projections and arithmetic sums. Hence, we review their definition and some
of their properties, and set up notation along the way.

Recall that an iterated function system (IFS) I is a finite collection tf1, . . . , fmu
of strictly contractive maps on some Euclidean space Rd. In this article, the maps fi
will always be similarities and this will be assumed from now on. The IFS is termed
homogeneous if the linear parts of the maps fi are all equal. It is well-known that
there exists a unique nonempty compact set A “ ApIq Ă Rd, the attractor or
invariant set for I, such that A “

Ťm
i“1 fipAq. The set A is then a self-similar

set. We say that the open set condition holds for I if there is a nonempty open set
O such that the sets fipOq are pairwise disjoint and contained in O, and that the
strong separation condition holds if the sets fipAq are pairwise disjoint; the latter
condition is stronger.

We denote the open simplex in Rm by Pm, i.e. Pm “ tpp1, . . . , pmq : pi ą
0,

řm
i“1 pi “ 1u. We think of elements of the simplex as probability vectors. Given

an IFS pf1, . . . , fmq and a vector p P Pm, there is a unique measure µ P Pd such that

µ “
m
ÿ

i“1

pi fiµ,

where we use the notation fµ to denote the push-forward measure fµpAq “ µpf´1Aq.
In this article we consider mostly homogeneous iterated function systems on Rd

of the form

I “ IT,a “ tTx` a1, . . . , Tx` amu,

where T P Sd, the family of invertible contractive similarities on Rd, and a “
pa1, . . . , amq P Rmd is a tuple of translation vectors. We identify S1 with p´1, 0q Y
p0, 1q, and S2 with tz P C : 0 ă |z| ă 1u. The invariant set for IT,a will be denoted
by ApT, aq, and the invariant measure for IT,a with weights p P Pm by µpT, a, pq.

Given a homogeneous IFS I “ pTx`aiqmi“1, its similarity dimension is spT,mq “
logm{ logp1{rq, where r P p0, 1q is the contraction ratio of T . Note that spT,mq
is independent of a. If a weight p is also given, then the similarity dimension is
spT,m, pq “ hppq{ logp1{rq, where hppq “ ´

řm
i“1 pi log pi is the entropy of p. It

is well known that 0 ď hppq ď m with hppq “ m if and only if p “ p 1
m
, . . . , 1

m
q.

Therefore, spT,mq “ suppPPm
spT,m, pq and the supremum is attained exactly when

p “ p 1
m
, . . . , 1

m
q.

The following result is well known, see e.g. [2, Corollary 5.2.3 and Theorem 5.2.5]
for a proof.

Proposition 1.1. (i) For any T P Sd, a P Rmd and p P Pm, we have the inequali-
ties dimHpApT, aqq ď spT,mq and dimHpµpT, a, pqq ď spT,m, pq.
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(ii) If the open set condition holds, then there are equalities dimHpApT, aqq “
spT,mq and dimHpµpT, a, pqq “ spT,m, pq.

1.2. Parametrized families of self-similar measures. Our first result concerns
real-analytic parametrized families of self-similar measures on the real line. See
Section 2.4 below for the definition of the coding map.

Theorem A. Let tpλu, auquuPU be a real-analytic map R` Ą U Ñ S1ˆRm such that
the following non-degeneracy condition holds: for any distinct infinite sequences
i, j P t1, . . . ,muN, there is a parameter u such that Πupiq ‰ Πupjq, where Πu is the
projection map for the IFS pλux` au,iqiPrms.

Then there exists a set E Ă U of Hausdorff dimension at most ` ´ 1, such that
for any u P UzE and any p P Pm such that spλu,m, pq ą 1, the measure µpλu, au, pq
is absolutely continuous with respect to Lebesgue measure on the line, and has a
density in Lq for some q “ qpu, pq ą 1.

In particular, Apλu, auq Ă R has positive Lebesgue measure for all u P UzE such
that λum ą 1.

Remarks 1.2. (1) Hochman [11] proved a similar result, with “µpλu, au, pq has
full dimension” in place of “µpλu, au, pq is absolutely continuous”, but valid
for arbitrary self-similar measures (not necessarily homogeneous). Our proof
of Theorem A relies heavily on his result.

(2) This result generalizes [25, Theorem 1.2], which is the special case in which
` “ 1, the parameter is the contraction ratio λ and the translations are fixed.
One novelty is the fact that the translations are now allowed to depend on
the parameter as well. Indeed, the situation in which the contraction λ is
fixed and the translations vary arises naturally when studying projections of
self-similar measures on R2; this will be exploited later.

(3) The second novelty, even for the family of Bernoulli convolutions, is that
we are able to prove that, outside of a zero-dimensional set of exceptions,
the densities are in some Lq space with q ą 1. The value of q depends on
the parameter and is not explicit, but nevertheless it is some quantitative
information about the density.

(4) By applying Theorem A to the identity map of U “ p0, 1qˆRm, we obtain in
particular that there exists a set E Ă U of Hausdorff dimension ď m, such
that if pλ, aq P UzE and p P Pm is such that hppq ą | log λ|, then µpλ, a, pq is
absolutely continuous.

(5) In general, the bound `´ 1 on the dimension of the exceptional set is sharp;
in short, this is because “exact overlaps” are often a co-dimension 1 set in
parameter space, and they may lead to the similarity dimension dropping
below 1.
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1.3. Orthogonal projections of self-similar measures. We now deal with the
orthogonal projections of a fixed self-similar measure (or set) in R2. Let Pβ : R2 Ñ

R2 be the orthogonal projection onto a line making an angle β with the x-axis. We
may then enquire about the absolute continuity of Pβµ as β varies. If dimH µ ă 1,
then also dimHpPβµq ď dimH µ ă 1, and therefore Pβµ is singular for all β: this
is the subcritical regime. The supercritical regime corresponds to dimH µ ą 1 (the
critical case dimH µ “ 1 is of different nature and will not be considered here). In
this case, we have the following classical general result:

Proposition 1.3. (i) Let A Ă R be a Borel set. If dimHA ď 1, then dimH PβA “
dimHA for almost all β, while if dimHA ą 1, then PβA has positive Lebesgue
measure for Lebesgue almost all β P r0, πq.

(ii) Let µ P P2. If dimH µ ď 1, then dimH Pβµ “ dimH µ for almost all β, while
if dimH µ ą 1, then Pβµ is absolutely continuous for Lebesgue almost all β P
r0, πq.

The first part is Marstrand’s classical theorem on projections, and the second
part is a standard variant; see Hu and Taylor [14, Theorem 6.1] for the proof.
In general, the exceptional set can be large from the point of view of dimension
(full Hausdorff dimension) and topology (dense Gδ). Nevertheless, recently there
has been much interest in improving general projection results for specific classes
of sets and measures; in particular, for self-similar sets and measures: see e.g.
[22, 18, 13, 11, 5, 7]. However, all of these papers deal with the dimension part,
and the techniques fall short of directly giving any results on absolute continuity
(or positive Lebesgue measure in the case of sets). We have the following result for
projections of homogeneous self-similar measures:

Theorem B. Fix λ “ r expp2πiαq P S2, a P R2m such that the planar IFS pλx `
aiq

m
i“1 satisfies the strong separation condition. There exists a set E Ă r0, πq of zero

Hausdorff dimension such that the following holds.

(i) The measure Pβµpλ, a, pq is absolutely continuous for any p P Pm such that
rhppq ą 1 and any β P r0, πqzE. Moreover, the density is in some Lq space
with q “ qpβ, pq ą 1.

(ii) If the rotational part of λ generates a dense subgroup of rotations (i.e. α{π R
Q) and

rq´1
ą

m
ÿ

i“1

pqi , (1.1)

for some q P p1, 2s, then for all β P r0, πqzE the measure Pβµpλ, a, pq has a
density in Lq.
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Remark 1.4. The assumption (1.1) is sharp up to the endpoint. Indeed, it is well
known that (under the open set condition) the Lq dimension of µpλ, a, pq is given

Dqpµλ,a,pq “
log

řm
i“1 p

q
i

pq ´ 1q log r
. (1.2)

(See Section 4 for the definition of the Lq dimension. See e.g. [24, Theorem 16]
for the proof of (1.2). We will actually only use this formula under the strong
separation condition.) Since Lq dimension does not increase under projections, and
a measure on the line of Lq dimension ă 1 cannot have an Lq density, it follows that
a necessary condition for Pβµpλ, a, pq to have an Lq density is that rq´1 ě

řm
i“1 p

q
i .

As a consequence of Theorem B, we obtain an analogous result valid for all self-
similar sets on R2.

Theorem C. Let A Ă R2 be any self-similar set. Then

dimHpβ P r0, πq : dimH PβA ă dimHAqq “ 0 if dimHA ď 1,

dimHpβ P r0, πq : L1pPβAq “ 0q “ 0 if dimHA ą 1.

This should be compared with Marstrand’s Theorem (Proposition 1.3): in the
special case of self-similar sets, the exceptional set is not only of Lebesgue measure
zero, but in fact of zero Hausdorff dimension. The part of the statement concerning
the case dimHA ď 1 was essentially already known, our contribution is the positive
measure part.

1.4. Convolutions of self-similar measures. Recall that the convolution of the
measures µ, ν P Pd is the push down of µ ˆ ν under the map Spx, yq “ x ` y. The
dimensions of convolutions of self-similar measures were investigated in [18, 13] and,
indirectly as a consequence of more general results, in [11]. Since these results serve
both as motivation and as key tools in our investigations, we recall some of them.
Let Tupxq “ ux be the map that scales a number by u.

Theorem 1.5 ([13, 11]). For i “ 1, 2, let λi P p0, 1q, ai P Rmi , pi P Pmi
,mi ě 2,

and suppose the strong separation condition is satisfied for pλx ` aijq
mi
j“1. Write

µi “ µpλi, ai, piq for simplicity.

(i) If log λ2{ log λ1 R Q, then

dimHpµ1 ˚ Tuµ2q “ minpdimH µ1 ` dimH µ2, 1q, (1.3)

for all u P Rzt0u.
(ii) In general, without any algebraic assumptions, (1.3) holds for all u outside of

a set of dimension zero which is independent of p1, p2.
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In fact, the first part holds for more general, not necessarily homogeneous self-
similar measures. In the homogeneous case, the analogous result for correlation
rather than Hausdorff dimension was established in [18] (under the irrationality
assumption in the first part); this will be discussed in more detail in Section 6.3.
These results again suggest the question of whether, in the super-critical regime
(sum of the dimensions ą 1), one can go beyond full dimension and establish ab-
solute continuity of the convolution. One cannot hope to get no exceptions when
log λ2{ log λ1 is irrational, since in [18, Theorem 4.1] it was shown that

µp1{3, p0, 1q, p1
2
, 1

2
qq ˚ Tuµp1{4, p0, 1q, p

1
2
, 1

2
qq

is singular for a dense Gδ set of parameters u. On the other hand, in [25, Theorem
1.3], it was proved that there exists a zero-dimensional set E Ă p0, 1{2q such that
for λ P p0, 1{2qzE and all λ1 such that λ1{λ R Q, the measure

µpλ, p0, 1q, p1
2
, 1

2
qq ˚ Tuµpλ

1, p0, 1q, p1
2
, 1

2
qq

is absolutely continuous (even with an L2 density) for all u P Rzt0u. The following
result in some sense interpolates between these two.

Theorem D. For i “ 1, 2, let λi P p´1, 0q Y p0, 1q, ai P Rmi ,mi ě 2, and assume
that

logm1

| log λ1|
`

logm2

| log λ2|
ą 1. (1.4)

Suppose also that the pλix`aijq
mi
j“1, i “ 1, 2, satisfy the strong separation condition.

(i) There exists a set E Ă R of Hausdorff dimension zero such that

µpλ1, a1, p1q ˚ Tuµpλ2, a2, p2q ! L1,

and has a density in Lq for some q “ qpλi, ai, piq ą 1, for all u P RzE and any
pi P Pmi

such that

dimH µpλ1, a1, p1q ` dimH µpλ2, a2, p2q ą 1. (1.5)

(ii) If, additionally, log |λ2|{ log |λ1| is irrational, then

µpλ1, a1, p1q ˚ Tuµpλ2, a2, p2q P L
q
pRq

for all u P RzE whenever q P p1, 2s, and

log
řm1

j“1 p
q
1j

pq ´ 1q| log λ1|
`

log
řm2

j“1 p
q
2j

pq ´ 1q| log λ2|
ą 1. (1.6)

Remarks 1.6. (1) The main class of examples to keep in mind, which motivated
the theorem, are central Cantor sets and Hausdorff measures on them. Recall
that the central Cantor set Cλ is constructed by starting with the interval
r0, 1s, replacing it by the union r0, λs Y r1 ´ λ, 1s, and continuing induc-
tively with the same pattern. These sets are self-similar, and the self-similar
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measure νλ with weights p1{2, 1{2q coincides with Hausdorff measure of the
appropriate dimension on Cλ. Hence, in particular, the theorem says that
when dimHCλ1`dimHCλ2 ą 1, the convolution νλ1 ˚Tuνλ2 is absolutely con-
tinuous (and hence also L1pCλ1 ` uCλ2q ą 0) outside of a zero-dimensional
set of possible exceptions, with an L2 density when λ1 and λ2 are rationally
independent.

(2) Similarly to (1.1) in Theorem B, assumption (1.6) simply says that the
Lq dimension of the product measure µpλ1, a1, p1q ˆ µpλ2, a2, p2q is strictly
larger than 1 which, up to“strictly”, is also a necessary condition for the
convolutions to have an Lq density. Notice also that this condition always
holds for q “ 2 if pi are close enough to the uniform weights in Pmi

, provided
(1.4) holds.

(3) Recall that in [18, Theorem 4.1] it is shown that ν1{3 ˚ Tuν1{4 is singular
for a dense, Gδ set of parameters u. This shows that Theorem D is sharp
in the sense that the exceptional set may be uncountable and generic from
the topological point of view. To the best of our knowledge, this is the
first natural instance (as opposed to an ad-hoc example) in which the set of
exceptions to a projection theorem is shown to be uncountable yet of zero
Hausdorff dimension. Since dense Gδ sets have full packing dimension, it
also shows that our results are intrinsically about Hausdorff dimension and
cannot, in general, be extended to packing dimension (this is in contrast to
the dimension results in [11], where the exceptional set is shown to be of
zero packing as well as Hausdorff dimension, and perhaps suggests that the
super-critical case is intrinsically harder, at least in some cases).

Similar to Theorem C, as a corollary we obtain a result on sums of arbitrary self
similar sets on the line (with no assumptions on homogeneity or separation).

Theorem E. If A1, A2 are self-similar sets on R such that dimHA1`dimHA2 ą 1,
then

dimHtu : L1pA1 ` uA2q “ 0u “ 0.

The above can also be seen in the light of Marstrand’s projection Theorem (Propo-
sition 1.3), since up to a smooth reparametrization and an affine change of coordi-
nates, pA1 ` uA2quPRzt0u are the orthogonal projections of the product set A1 ˆ A2

in non-principal directions.

1.5. Strategy of proofs. The general strategy of the proofs follows the scheme
of [25], although there are some new ingredients as well. All of the measures we
consider can be expressed as an infinite convolution of atomic measures (this is the
reason why we need to assume the iterated function systems are homogeneous).
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This allows us to decompose our measure of interest µu, u P U , as a convolution
νu ˚ ηu, in such a way that:

(1) For u outside of a “small” exceptional set E 1, the measure νu has full dimen-
sion for an appropriate notion of dimension (Hausdorff or Lq dimension for
a suitable value of q). For this we apply, depending on the context, any of a
number of recent results on the dimension of measures of dynamical origin
[18, 13, 11].

(2) In the case where the previous step applies to Hausdorff dimension, we em-
ploy a result on the continuity of the dimension of a self-similar measure
(which is developed in Section 5 and may be of independent interest), to
show that off the same exceptional set E 1, the measure νu has almost full
Lq-dimension for some q ą 1. This step is a new ingredient, and is what
ultimately allows us to gain some information about the densities.

(3) For u outside of another zero-dimensional set E2, the measure ηu has power
Fourier decay: |ηupξq| ď C |ξ|´σ, for some C, σ ą 0 which may depend on u.
This is achieved via a number of modifications of what has become known
as the “Erdős-Kahane argument”, which deals with the special case in which
ηu is the family of Bernoulli convolutions. The realization that the Erdős-
Kahane technique is very flexible and can be adapted to such a wide array
of situations is perhaps one of the main innovations of this paper.

(4) To conclude the proofs, we set E “ E 1YE2 and use the following result valid
for arbitrary Borel measures: if η has power Fourier decay with exponent
σ, and the Lq dimension of ν is sufficiently close to 1 (in terms of σ), then
ν ˚ η is absolutely continuous with an Lq density. This is a sharpening of
[25, Lemma 2.1], and is stated more precisely in Section 4.

2. Notation and preliminaries

2.1. Notation. We use Landau’s O notation: Y “ OpXq means Y ď CX for some
constant C ą 0. By Y “ ΩpXq we mean X “ OpY q and we write Y “ ΘpXq to
denote that both Y “ OpXq and X “ OpY q hold. When the implicit constant C
depends on some other parameters, this will be denoted by a subscript in the O
notation, for example Y “ OkpXq means that Y ă CX for a constant C that is
allowed to depend on k.

The integer interval t1, 2, . . . , bu is denoted by rbs.
For simplicity of notation, logarithms are always to base 2.

2.2. Fourier transforms of self-similar measures. The Fourier transform of
µ P Pd is

pµpξq “

ż

eiπxx,ξydµpxq,
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where x¨, ¨y is the standard inner product on Rd. (We choose this slightly unusual
normalization for technical reasons, which will become apparent in the next section.)
Denote

Dd “
 

µ P Pd : |pµpξq| “ Oµp|ξ|
´σ
q for some σ ą 0

(

.

Let µ “ µpT, a, pq be a self-similar measure for a homogeneous IFS on Rd. Then
µ can be realized as the distribution of a random sum:

µ „
8
ÿ

n“1

T n´1An, (2.1)

where the An are i.i.d. Bernoulli random variables with P pAn “ ajq “ pj. This
shows that µ is an infinite convolution of Bernoulli random variables, and we obtain
the following infinite product formula for its Fourier transform (which can also be
deduced by inductively applying the definition of self-similarity):

pµpξq “
8
ź

n“0

Φnpξq, (2.2)

where

Φnpξq “
ÿ

jPrms

pj exppiπxT naj, ξyq.

2.3. Self-similar measures as convolutions. Let µ “ µpT, a, pq. Since, by (2.1),
µ is the distribution of an absolutely convergent random sum, we can “split and
rearrange” the series to express µ as a suitable convolution of two measures. For
us, the relevant decomposition is to “skip every k-th term” and “keep every k-th
term”, for a sufficiently large integer k. More precisely, using the notation of (2.1),
we define

νk „
ÿ

k-n

T n´1An,

ηk „
ÿ

k|n

T n´1An.

Both νk and ηk are still self-similar measures. Indeed, ηk “ µpT k, a, pq. The explicit
expression for νk is more cumbersome to write down, but note that νk „

ř8

`“0 T
k`B`,

where B` “
řk´1
j“1 T

j´1Aj`k`. As the B` are i.i.d. Bernoulli random variables, it is
now clear that νk is indeed self-similar, and one can easily read off the translations
and probabilities. In particular, we have

Lemma 2.1. Let µ, νk be as above, and write s, sk for their respective similarity
dimensions. Then sk “ p1´ 1{kqs.
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Proof. Let µ “ µpT, a, pq, and note that νk “ µpT k, apkq, ppkqq, where ppkq P Pmk´1

and

ppkq “ ppi1 ¨ ¨ ¨ pik´1
qpi1...ik´1qPrmsk´1 .

Hence hpppkqq “ pk ´ 1qhppq, and, writing r for the contraction ratio of T ,

sk “
pk ´ 1qhppq

k logp1{rq
“

ˆ

1´
1

k

˙

s.

�

2.4. Projection maps. Self-similar measures can also be seen as projections of
Bernoulli measures on code spaces. More precisely, if a P Rmd, then the self-similar
measure µpT, a, pq is the push-down of the Bernoulli measure pN on rmsN, via the
map

Πpiq “ ΠT,apiq “

8
ÿ

n“1

T n´1ain .

The map Π is known as the projection or coding map for the IFS. Indeed, this is
just another way of expressing (2.1). Projection maps will be repeatedly used in
the sequel without further reference.

3. Variants of the Erdős-Kahane argument

3.1. Introduction. Recall that Erdős [3] proved that Bernoulli convolutions are in
D1 outside of a zero-measure set of exceptions, and Kahane [16] pointed out that
the argument in fact shows that the exceptional set has zero Hausdorff dimension.
In this section we prove a number of variants of this, suited to our main results.
In each case, the aim is to show that, in a given parametrized family of measures
tµuuuPU on the real line, the set of parameters u such that µu has no power Fourier
decay (µu R D1q has zero Hausdorff dimension. The arguments have many points
in common with the original proof of Erdős-Kahane as presented in [21], but each
of them has its own peculiarities.

3.2. Families of self-similar measures with varying translations. The next
result is a key step in the proof of Theorem A; here the parameter comes in the
translations, rather than the contraction ratio. A special case of this was obtained
in [1, Theorem 1.4]; although the proof is very similar, we provide full details for
completeness, and because it provides a blueprint for the slightly more involved
variants that we will encounter later.
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Proposition 3.1. Suppose m ě 3. There exists a set E Ă p0, 1q ˆ R of zero
Hausdorff dimension such that µpλ, a, pq P D1 whenever

ˆ

λ,
ak ´ ai
aj ´ ai

˙

R E for some ai ă aj ă ak.

The proof of the theorem depends on a combinatorial lemma, which we state and
prove first. Here and below, }t} denotes the distance from a real number t to the
nearest integer.

Lemma 3.2. Fix a compact set H “ rλ0, λ1s ˆ rU0, U1s Ă p0, 1q ˆ p0,8q. There
exists a constant cH ą 0 such that, for any N P N and δ P p0, 1{2q, the set
"

pλ, uq P H : max
tPr1,λ´1s

1

N

ˇ

ˇ

 

n P rN s : maxp}tλ´n}, }tuλ´n}q ď cH
(ˇ

ˇ ą 1´ δ

*

(3.1)

can be covered by exppOHpδ logp1{δqNqq balls of radius λN1 .

The lemma says that the set of parameters pλ, uq such that, for some t P r1, λ´1s,
both numbers tλ´n and tuλ´n are very close to an integer for “almost all” values
of n P rN s, is very small. It will turn out that the “bad” set for the purposes
of Proposition 3.1 can be controlled by sets of the kind appearing in the lemma.
Roughly speaking, each time one of tλ´n or tuλ´n is far from an integer, the Fourier
transform in question at the frequency ξ “ tλ´N will drop by a constant factor.

Proof of Lemma 3.2. We follow the scheme of [21, Proposition 6.1], with suitable
variants. All the constants implicit in the Op¨q notation are allowed to depend on
H. During the proof it is always understood that pλ, uq P H and t P r1, λ´1s.

Set θ “ λ´1. For n P rN s, write

tθn “ Kn ` εn,

tuθn “ Ln ` δn,

where Kn, Ln are integers and εn, δn are in r´1{2, 1{2q. All these numbers depend
on t, u and θ. Note that

u P BpLN{KN , Op1{KNqq Ă BpLN{KN , Opλ
N
1 qq,

θ P BpLN{LN´1, Op1{LNqq Ă BpLN{LN´1, Opλ
N
1 qq.

Hence we need to estimate the number of possible sequences pKi, LiqiPrNs. A calcu-
lation, for which the reader is referred to [21, Lemma 6.3], shows that

|Kn`2 ´K
2
n`1{Kn| “ Opmaxp|εn|, |εn`1|, |εn`2|qq,

|Ln`2 ´ L
2
n`1{Ln| “ Opmaxp|δn|, |δn`1|, |δn`2|qq.

This shows that:
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(i) Given pKn, Lnq, pKn`1, Ln`1q, there are at most Op1q possible values for
pKn`2, Ln`2q, uniformly in t, u, θ. There are also Op1q possible values for
pK1, L1q, pK2, L2q.

(ii) There is a constant cH ą 0, such that if maxp|εi|, |δi|q ă cH for i “ n, n `
1, n ` 2, then pKn, Lnq, pKn`1, Ln`1q uniquely determine pKn`2, Ln`2q, again
independently of t, u, θ.

We claim that, for each fixed set A Ă rN s with |A| ě p1´ δqN , the set
 

pKn, LnqnPrNs : maxp}tθn}, }tuθn}q ď cH for some λ, u, t and all n P A
(

has cardinality exppOpδNqq. Indeed, fix such an A and let rA “ ti P r3, N s :

i´ 2, i´ 1, i P Au; then | rA| ě p1´ 3δqN ´ 3. If we set

Λj “ pKi, LiqiPrjs,

then (i), (ii) above show that |Λj`1| “ |Λj| if j P rA and |Λj`1| “ Op|Λj|q otherwise.
Hence |ΛN | ď Op1q3δN , as claimed.

Since the number of subsets A of rN s of size j ě p1 ´ δqN is bounded by
exppOpδ logp1{δqNqq (using e.g. Stirling’s formula), we conclude that there are
exppOpδ logp1{δqNqq pairs pKN , LNq, and also exppOpδ logp1{δqNqq pairs pLN , LN´1q,
such that maxp|εn|, |δn|q ă 1{cH for at least p1´ δqN values of n P rN s. Hence the
set (3.1) can be covered by exppOpδ logp1{δqNqq balls of radius λN1 , and this finishes
the proof. �

We can now conclude the proof of the proposition.

Proof of Proposition 3.1. Let HM “ r1{M, 1´ 1{M s ˆ r1{M,M s. Let cM “ cHM
be

the constant given by Lemma 3.2 for this set, and denote the set given in (3.1) with
δ “ 1{` by EM,`,N . Define

E “
ď

M

č

`

lim sup
N

EM,`,N .

Let us first show that dimHE “ 0. For this it is enough to show that, for any fixed
M ,

lim
`Ñ8

dimH

ˆ

lim sup
N

EM,`,N

˙

“ 0. (3.2)

By Lemma 3.2, EM,`,N can be covered by exppOpN`´1 log `qq balls of radius p1 ´
M´1qN . Hence

Hs

˜

8
ď

N“N0

EM,`,N

¸

ď

8
ÿ

N“N0

exppOpN`´1 log `qqp1´M´1
q
sN
ď expp´ΩpN0qq,
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provided s ą OMp`
´1 log `q. (Recall that Y “ ΩpN0q means that Y ě cN0 for some

constant c ą 0.) Thus dimH plim supN EM,`,Nq “ OMp`
´1 log `q, showing that (3.2)

holds, and so that dimHpEq “ 0.
Now suppose pλ, aq is such that pλ, uq R E where u “ pak ´ aiq{paj ´ aiq and

ai ă aj ă ak. Since the HM exhaust p0, 1qˆp0,8q, we can fix M such that u P HM .
The definition of E then implies that there are `,N0 P N such that, for any N ě N0,

max
tPr1,θs

1

N

ˇ

ˇ

 

n P rN s : maxp}tλ´n}, }tuλ´n}q ď cM
(
ˇ

ˇ ă 1´ 1{`. (3.3)

Since µpλ, a, pq is homothetic to µpλ, b, pq where bj “ paj ´ a0q{pa1´ a0q, we may
assume, after relabeling and without loss of generality, that a0 “ 0, a1 “ 1 and
a2 “ u.

Let µ “ µpλ, b, pq. Write ξ “ λ´N t with 1 ď t ď λ´1. Then, using the expression
(2.2) for the Fourier transform of a self-similar measure,

|pµpξq| ď
N´1
ź

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPrms

pj exppiπλn´N tbjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since tb0 “ 0, tb1 “ t and tb2 “ tu, we conclude from (3.3) that there is ρ “
ρpcM , pq ą 0 such that

|pµpξq| ď expp´ρN{`q “ Op|ξ|´ρ| log λ|{`
q.

�

3.3. Projections of self-similar measures. We next establish another result of
Erdős-Kahane type, which will be needed to establish Theorem B.

Proposition 3.3. Fix λ P S2zR, m ě 2 and a P R2m which is not of the form
a “ pv, . . . , vq for v P R2. There exists a set E Ă r0, πq of Hausdorff dimension 0,
such that for all β P r0, πqzE and all p P Pm,

Pβµpλ, a, pq P D1,

where Pβ is the projection onto a line making angle β with the x-axis.

As in Proposition 3.1, we first establish a combinatorial lemma.

Lemma 3.4. Let θ ą 1, α P p0, 2πq, α ‰ π, be fixed. There is a constant cθ,α ą 0
such that the set

"

β P r0, 2πq : max
|t|Pr1,θs

1

N
|tn P rN s : }tθn cospβ ` nαq} ď cθ,αu| ą 1´ δ

*

(3.4)

can be covered by exppOpδ logp1{δqNqq balls of radius θ´N .
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Proof. The constants implicit in the O-notation are allowed to depend on θ and α.
All the calculations involving angles below are understood to be modulo 2π. We
write

tθn cospβ ` nαq “ Kn ` εn, Kn P Z, εn P r´1{2, 1{2q.

For any γ P R, write ωγ “ pcos γ, sin γq, and notice that

tθn`jxωβ`nα, ω´jαy “ Kn`j ` εn`j. (3.5)

From this it follows that

cospαq ´ sinpαq tanpβ ` nαq “
xωβ`nα, ω´αy

xωβ`nα, ω0y
“
Kn`1 ` εn`1

θpKn ` εnq
,

whence

β ` nα “ arctan

ˆ

cotpαq ´
Kn`1 ` εn`1

θpKn ` εnq sinpαq

˙

“: f

ˆ

Kn`1 ` εn`1

Kn ` εn

˙

.

Here the function f is C1 with bounded derivative.
Since α ‰ 0, π, it follows from (3.5) that maxpKN´1, KNq “ ΩpθNq. Thus it

follows from the above that

β P B
`

´pN ´ jqα ` fpKN´j`1{KN´jq, Opθ
´N
q
˘

for some j P t0, 1u. (3.6)

Let C1, C2 be real constants (depending on α) such that ω´2α “ C1ω0 ` C2ω´α.
Then, using (3.5) again,

Kn`2 ` εn`2 “ C1θ
2
pKn ` εnq ` C2θpKn`1 ` εn`1q,

whence

Kn`2 “ C1θ
2Kn ` C2θKn`1 `Opmax |εn|, |εn`1|, |εn`2|q.

Following the scheme of the proof of Lemma 3.2, we obtain that there exists cθ,α ą
0 such that there are exppOpδ logp1{δqNqq possible sequences pKnqnPrNs satisfying
|εn| ă cθ,α for at least p1 ´ δqN values of n P rN s. Together with (3.6) this yields
the claim. �

Proof of Proposition 3.3. Fix λ, a, p as in the statement of the proposition, and write
µ “ µpλ, a, pq. Let λ “ θ´1ωα, where θ ą 1 and ωα “ pcosα, sinαq. After applying
a similarity to µ, which does not affect the statement (it does rotate the exceptional
set of β), we may and do assume that a1 “ p0, 0q and a2 “ p1, 0q. Let

E “
č

`PN
lim sup
NÑ8

E`,N ,

where

E`,N “

"

β : max
|t|Pr1,θs

1

N
|tn P rN s : }tθn cospβ ´ pN ´ nqαq} ď cθ,αu| ą 1´

1

`

*

,
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and cθ,α ą 0 is the constant from Lemma 3.4. As in the proof of Proposition 3.1
above, it follows from Lemma 3.4 that dimHE “ 0. Thus the task is to show that if
β P r0, 2πqzE, then Pβµ P D1. Assume then that β R E; this means that there are
`,N0 P N such that β R E`,N for all N ě N0.

Fix a frequency ξ “ tθN where |t| P r1, θs. Denote by Rα the rotation through the
angle α, so that λaj “ Rαθ

´1aj. Then, since the Fourier transform of a projection
is the restriction of the Fourier transform to the line with the corresponding slope,
(2.2) implies:

yPβµpξq “ pµpξωβq

ď

N´1
ź

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPrms

pj exppiπxθ´nRnαaj, tθ
Nωβyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

N´1
ź

n“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPrms

pj exppiπtθN´nxaj, ωβ´nαyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since xa1, ωγy “ 0 and xa2, ωγy “ cos γ, there is ρ “ ρpλ, a, pq ą 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPrms

pj exp
`

iπtθN´nxaj, ωβ´nαy
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1´ ρ

whenever }tθN´n cospβ ´ nαq} ą cθ,α. The desired conclusion then follows from the
definition of E`,N . �

3.4. Convolutions of self-similar measures. We conclude with yet another vari-
ant of Erdős-Kahane, this time suited to study convolutions of self-similar measures;
it will be a key part of the proof of Theorem D.

Proposition 3.5. Given λ1, λ2 P p0, 1q, there exists a set E Ă R of zero Hausdorff
dimension, such that the following holds: if u P RzE, then for any m1,m2 ě 2, any
ai P Rmi, and any pi P Pmi

, i “ 1, 2,

µpλ1, a1, p1q ˚ Tuµpλ2, a2, p2q P D1,

where Tupxq “ ux.

As before, this depends on the following combinatorial statement.

Lemma 3.6. Fix θ2 ą θ1 ą 1, and write kpnq “ mintk : θk2 ă θn1 u. Also let
H “ r´M,´1{M s Y r1{M,M s. Then there exists a constant cH ą 0 such that

"

u P H : max
|t|Pr1,θ1s

1

N

ˇ

ˇ

ˇ

!

n P rN s : maxp}tθn1 }, }tuθ
kpnq
2 }q ď cH

)
ˇ

ˇ

ˇ
ą 1´ δ

*

(3.7)
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can be covered by exppOHpδ logp1{δqNqq intervals of length θ´N1 .

Proof. All constants implicit in the O notation may depend on H. For n P rN s,
write

tθn1 “ Kn ` εn,

tuθ
kpnq
2 “ Ln ` δn,

where Kn, Ln are integers and εn, δn are in r´1{2, 1{2q; these numbers depend on

t, u. Write rn “ θn1 {θ
kpnq
2 ; note that rn “ Θp1q, and therefore

u P BprnLn{Kn, Op1{Knqq Ă B
`

rnLn{Kn, Opθ
´n
1 q

˘

. (3.8)

We estimate the number of possible sequences pKi, LiqiPrNs. We bound this crudely
by the product of the number of sequences pKiqiPrNs and the number of sequences
pLiqiPN . For Ki, note that

Kn`1 ´ θ1Kn “ Opmaxp|εn|, |εn`1|qq,

and therefore

(i) Given Kn, there are at most Op1q possible values for Kn`1, uniformly in t, u.
(There are also Op1q possible values for K1.)

(ii) There is a constant cH ą 0, such that if maxp|εn|, |εn`1|q ă cH , then Kn

uniquely determine Kn`1, again independently of t, u.

An argument analogous to that in the proof of Lemma 3.2 shows that there are
exppOpδ logp1{δqNqq possible values for pKnqnPrNs.

Regarding the sequence Ln, note that Ln`1 ` δn`1 ‰ Ln ` δn only when kpn `
1q “ kpnq ` 1. Hence, the same analysis restricted to the set tn P N : kpn `
1q “ kpnq ` 1u (which obviously has fewer than N elements) yields also that there
are exppOpδ logp1{δqNqq values for LN (here we use that u lies in a compact set).
Thus there are exppOpδ logp1{δqNqq values for rNLN{KN , and in light of (3.8) this
completes the proof.

�

Proof of Proposition 3.5. Let HM “ r´M,´1{M s Y r1{M,M s. Let cM “ cHM
be

the constant given by Lemma 3.6 for this set, and denote the set given in (3.7) with
θi “ λ´1

i and δ “ 1{` by FM,`,N . Further, let EM,`,N “ tu{rN : u P FM,`,Nu, where

rN “ λ´N1 λ
kpNq
2 and kpNq is the smallest integer k such that λ´N1 λk2 ă 1. Define

E “ t0u Y
ď

Mą0

č

`PN
lim sup

N
EM,`,N .

An analysis nearly identical to that in the proof of Proposition 3.1 shows that
dimHE “ 0.
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Suppose u P RzE. Then u P HM for some M , and there are `,N0 P N such that,
for all N ě N0,

min
|t|Pr1,λ´1

1 s

1

N

ˇ

ˇ

ˇ

!

n P rN s : maxp}tλ´n1 }, }turNλ
´kpnq
2 }q ą cM

)ˇ

ˇ

ˇ
ě

1

`
.

Thus, one of the following two alternatives occur for each t with |t| P r1, λ´1
1 s and

N ě N0:

(i)
1

N

ˇ

ˇ

 

n P rN s : }tλ´n1 } ą cM
(
ˇ

ˇ ě
1

2`
,

(ii)
1

N

ˇ

ˇ

ˇ

!

n P rN s : }turNλ
´kpnq
2 } ą cM

)
ˇ

ˇ

ˇ
ě

1

2`
.

Pick a frequency ξ “ tλ´N1 where |t| P r1, λ´1
1 s. Then also ξ “ trNλ

´kpNq
2 . Thus,

denoting ν “ µ1 ˚ Tuµ2, where µ1 “ µpλ1, a1, p1q and µ2 “ µpλ2, a2, p2q we have,
using the convolution formula,

pνpξq “ pµ1ptλ
´N
1 qpµ2pturNλ

´kpNq
2 q.

If the alternative (i) above holds, then a standard argument (similar to that of
Proposition 3.1) shows that

|pµ1ptλ
´N
1 q| “ Op|ξ|´γq

for some γ ą 0 independent of t and N and hence of ξ. Otherwise, if alternative
(ii) holds then, using the fact that kpnq stays constant for at most Op1q values of n
before increasing by 1, we analogously get that

ˇ

ˇ

ˇ
pµ2pturNλ

´kpNq
2 q

ˇ

ˇ

ˇ
“ Op|ξ|´γq,

for some γ ą 0. Since the Fourier transform of a probability measure is bounded
by 1, in either case we obtain |pνpξq| “ Op|ξ|´γq, as desired. �

4. A criterion for the absolute continuity of a convolution

In this section we establish a new criterion to guarantee that the convolution of
two measures is absolutely continuous with an Lq density. Before stating it, we
review several concepts of dimension of a measure.

For q ą 0, q ‰ 1, the (lower) Lq dimension of a measure µ P Pd of compact
support is defined as

Dqpµq “ lim inf
nÑ8

logSn,qµ

p1´ qqn
,

where
Sn,qµ “

ÿ

IPDn

µpIqq,
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with Dn the partition into dyadic cubes of side length 2´n. Recall that logarithms
are to base 2. There are several equivalent formulations of this definition; we will
require the following one.

Lemma 4.1. For any µ P Pd and q ą 1,

Dqpµq “ lim inf
rÓ0

log
`

r´d
ş

µpBpx, rqqq dx
˘

pq ´ 1q log r
.

Moreover, the lim inf may be taken along any sequence rn Ó 0 with log rn`1{ log rn Ñ
1.

Proof. This is standard but we include the proof as we have not been able to trace it
in the literature. Thanks to the logarithms, it is enough to prove it for the sequence
rn “ 2´n and interpolate. Let ` be such that 2` ą

?
d. Writing In,x for the dyadic

cube of side length 2´n that contains x, we have

Sn``,qµ “ 2pn``qd
ż

µpIn``,xq
q dx ď Odp1q2

nd

ż

µpBpx, 2´nqqq dx.

On the other hand, µpBpx, 2´nqq ď
ř

IPDn,x
µpIq, where Dn,x are the cubes in Dn

which intersect Bpx, 2´nq. Since there are Odp1q such cubes, and each cube in Dn

is in Dn,x for a set of x of Lebesgue measure Θp2´nd), we have

2nd
ż

µpBpx, 2´nqqq dx ď 2nd
ż

˜

ÿ

IPDn,x

µpIq

¸q

dx

ď Od,qp1q2
nd

ż

ÿ

IPDn,x

µpIqq dx

ď Od,qp1q
ÿ

IPDn

µpIqq “ Od,qp1qSn,qµ.

But Sn``,qµ “ Θ`pSn,qµq (see e.g. [23, Lemma 2.2]), hence combining both inequal-
ities yields the lemma. �

We will also need the concept of Fourier dimension. This is usually defined for
sets, but here we need it for measures.

Definition 4.2. For any µ P Pd, its Fourier dimension is

dimF µ “ suptσ ě 0 : pµpξq “ Oµ,σp|ξ|
´σ{2

qu.

The 1{2 factor arises because of the connection between Fourier decay and Haus-
dorff dimension: for any µ P Pd it holds that dimF µ ď dimH µ, see e.g. [17, Section
12.17]. The inequality may be (and often is) strict for self-similar measures. For ex-
ample, any self-similar measure (indeed, any measure) on the middle-thirds Cantor
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set has Fourier dimension zero. We recall that measures with dimF µ “ dimH µ are
called Salem measures, but we will not require this concept here.

The L2 dimension plays a distinguished rôle due to its connection with energy and
L2 norms, and is also known as correlation dimension. The following was proved in
[25, Lemma 2.1].

Lemma 4.3. Let µ, ν P Pd.
(i) If dimH µ “ d and dimF ν ą 0, then µ ˚ ν ! Ld.

(ii) If D2µ “ d and dimF ν ą 0, then µ ˚ ν has a density in L2, and it also has
fractional derivatives of some order in L2.

In light of this result, it seems natural to ask if a similar result holds if Dpµ “ d
for p ‰ 2. Although the proof of [25, Lemma 2.1] does not seem to extend to other
values of p, we are able to show that the answer is affirmative:

Theorem 4.4. Let 1 ă p ă 8. Let µ, ν P Pd, with µ of compact support. If

d´Dpµ ă dimFpνq if p P p1, 2s,

pp´ 1qpd´Dpµq ă dimFpνq if p P p2,`8q,

then µ ˚ ν is absolutely continuous with an Lp density. In particular, this is the case
if Dpµ “ d and dimF ν ą 0.

Proof. We use a Littlewood-Paley decomposition: let ψ P C80 pRdq be a function
supported on the annulus t1{2 ď |x| ď 2u with 0 ď ψ ď 1 such that

ř8

k“0 ψkpxq “ 1,
with ψkpxq “ ψp2´kxq for k ě 1, and ψ0 P C

8
0 pRdq is supported on t|x| ď 2u. See e.g.

[20, Lemma 4.1] for its construction (we remark that often one defines ψk “ ψp2´k¨q
for all k P Z; our ψ0 corresponds to adding ψp2´k¨q over all non-positive k and
setting ψ0p0q “ 1).

Let ∆k be the multiplier operator with symbol ψk: y∆kη “ ψkpη; hence ∆kη is the
localization of η to frequencies of size „ 2k. It is enough to prove that there is δ ą 0
such that

}∆kpµ ˚ νq}p ă Op1q2´δk for all k P N. (4.1)

Indeed, pµ ˚ νqk “
řk
i“0 ∆ipµ ˚ νq converges to µ ˚ ν weakly, and (4.1) shows that it

is an Lp-Cauchy sequence, hence it must converge to µ ˚ ν in Lp.
Any constants implicit in the O notation below may depend on p, but are inde-

pendent of k, σ and Dpµ.
Consider the operator Tkf “ f ˚∆kν (in other words, the multiplier with symbol

ψkpν). On the one hand, we have

}Tkf}1 ď }∆kν}1}f}1 ď } qψk}1νpRd
q}f}1 “ } qψ}1}f}1,

}Tkf}8 ď }∆kν}1}f}8 ď } qψk}1νpRd
q}f}8 “ } qψ}1}f}8.
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On the other hand, by Plancherel, and using the hypothesis, there exists σ ą d´Dpµ
(if 1 ă p ď 2) or σ ą pp´ 1qpd´Dpµq (if p ą 2) such that

}Tkf}2 “ }ψkpν pf}2 ď Op1q 2´σk{2}f}2.

Hence, by Riesz-Thorin,

}f ˚∆kν}p ď Op1q2´σk{q}f}p if p P p1, 2s; (4.2)

}f ˚∆kν}p ď Op1q2´σk{p}f}p if p P r2,`8q, (4.3)

where q is the conjugate exponent of p.
Let ϕ P C80 pRdq be a function supported on t1{4 ď |x| ď 4u such that ϕ “ 1 on

supppψq; set ϕkpxq “ ϕp2´kxq. Then ϕkψk “ ψk, and therefore,

∆kpµ ˚ νq “ pqϕk ˚ µq ˚∆kν. (4.4)

Fix ε ą 0 and a sufficiently large N “ Npεq; taking N “ pεpq´1 works. Since qϕ is a
Schwartz function, and qϕkpxq “ 2dk qϕp2kxq, we can estimate

}qϕk ˚ µ}
p
p ď 2pdk

ż
ˆ
ż

|qϕp2kpx´ yqq| dµpyq

˙p

dx

ď 2pdk
ż
ˆ
ż

Oεp1q
`

1` 2kpx´ yq
˘´N

dµpyq

˙p

dx

ď Oεp1q2
pdk

ż

µpBpx, 2´kp1´εqqqp dx`Oεp2
´k
q, (4.5)

where the last line is obtained by estimating the inner integral in the second line
over the domains Bpx, 2´kp1´εqq and its complement separately.

On the other hand, by Lemma 4.1 applied with rk “ 2´kp1´εq,

2p1´εqdk
ż

µ
`

Bpx, 2´kp1´εqq
˘p
dx ď Op1q2´kp1´εqpp´1qpDpµ´εq. (4.6)

From (4.5) and (4.6), we deduce

}qϕk ˚ µ}p ď Oεp1q2
kOpεq2kpd´Dpµq{q.

Recalling (4.2), (4.3), (4.4) and the choice of σ, we conclude that

}∆kpµ ˚ νq}p ď Oεp1q2
kpOpεqq2´δk,

for some δ ą 0 and arbitrary ε ą 0. This shows that (4.1) holds, as desired. �
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5. Continuity of Lq dimensions of self-similar measures

The Lq dimension is not a priori defined for q “ 1. However, for fixed n,

lim
qÑ1

logSn,qµ

p1´ qqn
“
Hnµ

n
, (5.1)

where

Hnµ “
ÿ

IPDn

µpIq logp1{µpIqq.

This suggests defining

D1µ “ lim inf
nÑ8

Hnµ

n
.

The quantity D1µ is known as the entropy dimension or information dimension of
µ. In light of (5.1), it seems reasonable to ask whether q ÞÑ Dqµ is continuous at
q “ 1. It is not hard to construct counterexamples for general measures. However,
for self-similar measures, we can establish continuity from the right.

Theorem 5.1. Let µ be a homogeneous self-similar measure on Rd (recall that this
means that µ “ µpT, a, pq for some T P Sd, a P Rmd, p P Pm). Then

D1µ “ lim
qÑ1`

Dqµ.

Remark 5.2. The proof can be adapted to show that the result holds for all (not
necessarily homogeneous) self-similar measures, and even for self-conformal mea-
sures on Rd under standard bounded distortion assumptions. To see this, one needs
to modify the proof of [23] with the sharper estimates we develop in the proof of
Proposition 5.4 below.

Together with Theorem 4.4, this result is the key to the proof that the densities
are in some Lq space, q ą 1, in the settings of Theorems A, B and D, but we believe
that it may also be of independent interest. We prove Theorem 5.1 at the end of
this section, after establishing two preliminary results.

Lemma 5.3. Let µ be a probability measure on a set K. Suppose tAiuiPI and
tBjujPJ are two measurable partitions of K such that each Ai is covered by at most
M of the sets Bj. Then, for any q ě 1,

ÿ

iPI

µpAiq
q
ďM q´1

ÿ

jPJ

µpBjq
q.
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Proof. Using Hölder’s inequality and the inequality
ř

i p
q
i ď p

ř

i piq
q for q ě 1, we

estimate

ÿ

iPI

µpAiq
q
“
ÿ

iPI

˜

ÿ

jPJ

µpAi XBjq

¸q

ď
ÿ

iPI

M q´1
ÿ

jPJ

µpAi XBjq
q

“M q´1
ÿ

jPJ

ÿ

iPI

µpAi XBjq
q

ďM q´1
ÿ

jPJ

µpBjq
q.

�

The above lemma will be used repeatedly in the proof of the following sub-
multiplicativity result for the Lq dimension.

Proposition 5.4. Let µ “ µpT, a, pq for some T P Sd, a P Rmd, p P Pm; i.e. µ is a
homogeneous self-similar measure on Rd. Then there exists M ą 1 such that for all
q ą 1,

Sn`m,qµ ďM q´1 Sn,qµSm,qµ.

We remark that in the course of the proof of [23, Theorem 1.1], it is shown that
(for a more general class of measures) Sn`m,qµ ď Cq Sn,qµSm,qµ, for some constant
Cq ą 1. Although Cq is not made explicit, one can check that there is C ą 1 such
that Cq ě C for all q and (as will become apparent later) this is insufficient for the
application to Theorem 5.1. Hence, although we use the general scheme from [23],
we also need to introduce new, more efficient bounds. Roughly speaking, we need
to work with partitions at all times, rather than just efficient coverings.

Proof of Proposition 5.4. Let λ P p0, 1q be the contraction ratio of T . After iterating
the IFS if needed we can assume λ ă 1{2. Fix n,m P N, and let h be the integer
such that

λh`1
ď 2´n ă λh.

It will be more convenient to work in the code space. We will denote the Bernoulli
measure pN on rmsN by η, and the coding map by Π. Hence, µ “ Πη, where
Πpiq “

ř8

n“1 T
n´1ain . We want to replace Euclidean cubes Q P Dn by symbolic

analogues Q1 which are unions of cylinders of comparable size, and which partition
the code space. So we need to assign some cylinders to each dyadic cube Q of size
2´n so that every cylinder is assigned to one and only one cube Q. To this end, we
label all cubes in Dn by their coordinates and consider the induced lexicographic
order ă.
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For each Q P Dn, we consider Q1 Ă rmsN defined as follows:

Q1 “
ď

tris : i P ΣQu,

where

ΣQ “ ti P rms
h,Πris XQ ‰ ∅ and Πris XR “ ∅ if R P Dn, R ă Qu.

Recall that for i P rmsh, the symbolic cylinder ris consists of all infinite words in
rmsN that start with i. Notice that:

(1) tQ1 : Q P Dnu is a partition of rmsN;
(2) each ΠQ1 intersects at most Op1q cubes in Dn, and vice versa;
(3) For each i P rmsh and each Q P Dn, either ris Ă Q1 or ris XQ1 “ ∅.

Properties (1) and (3) are clear by construction. Property (2) holds, since the
diameter of each Πris, with i P rmsh, is Op1q2´n, and every Πris, for ris P Q1,
intersects Q. By (1), (2) and Lemma 5.3,

ÿ

QPDn

ηpQ1qq ď Op1qq´1
ÿ

QPDn

ηpΠ´1Qqq “ Op1qq´1 Sn,qµ. (5.2)

We also claim that, for a given i P rmsh,

ÿ

RPDm`n

ηpΠ´1R X risqq ď Op1qq´1 pqi Sm,qµ. (5.3)

Indeed, since η is Bernoulli, ηpA X risq “ piηpσ
hpA X risqq for any set A Ă rmsN.

The sets

tσhpΠ´1R X risq : R P Dm`nu

form a partition of rmsN, and each σhpΠ´1RXrisq can be covered by Op1q of the sets
Π´1Q, Q P Dm. To see why the last statement holds, observe that ΠpσhpΠ´1R X
risqq X Q “ f´1

i R X Q. Since fi has contraction ratio λh P p2´n, 2´n`1s, the set
f´1
i R has diameter Op1q2´n for R P Dm`n. Hence (5.3) follows from Lemma 5.3.
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We conclude

Sn`m,qµ “
ÿ

RPDm`n

ηpΠ´1Rqq

“
ÿ

RPDm`n

˜

ÿ

QPDn

ηpΠ´1R XQ1q

¸q

By (1)

ď Op1qq´1
ÿ

RPDm`n

ÿ

QPDn

ηpΠ´1R XQ1qq By Hölder and (2)

“ Op1qq´1
ÿ

QPDn

ÿ

RPDm`n

¨

˝

ÿ

iPΣQ

ηpΠ´1R X risq

˛

‚

q

By (3)

ď Op1qq´1
ÿ

QPDn

¨

˝

ÿ

iPΣQ

˜

ÿ

RPDm`n

ηpΠ´1R X risqq

¸1{q
˛

‚

q

Minkowski’s ineq.

ď Op1qq´1
ÿ

QPDn

¨

˝

ÿ

iPΣQ

Op1qpq´1q{qpipSm,qµq
1{q

˛

‚

q

By (5.3)

“ Op1qq´1 Sm,qµ
ÿ

QPDn

ηpQ1qq

ď Op1qq´1 Sm,qµSn,qµ. By (5.2)

�

We can now easily deduce Theorem 5.1.

Proof of Theorem 5.1. It is known that Dqµ ď D1µ for all q ą 1, see [6, Theorem
1.4]. Thus we need to establish that lim infqÑ1` Dqµ ě D1µ.

Fix ε ą 0 and choose n P N such that 1{n ă ε and Hnµ ą p1´ εqnD1µ. In view
of (5.1), there is δ ą 0 such that if |q ´ 1| ă δ, then

logSn,qµ

p1´ qqn
ą p1´ 2εqD1µ.

On the other hand, by Proposition 5.4 there is M ą 1 such that, if q ě 1, then the
sequence

plogSn,qµ` pq ´ 1q logMqnPN
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is sub-additive, whence, for q P p1, 1` δq,

Dqµ “ lim
mÑ8

logSm,qµ

p1´ qqm

“ sup
mPN

logSm,qµ` pq ´ 1q logM

p1´ qqm

ě
logSn,qµ

p1´ qqn
´

logM

n

ě p1´ 2εqD1µ´Opεq.

Since ε was arbitrary, this completes the proof. �

We record the following consequence of Theorems 4.4 and 5.1; this is the statement
that will be applied in the proofs of our main results.

Corollary 5.5. Let ν be a self-similar measure for a homogeneous IFS on Rd (that
is, ν “ µpT, a, pq for appropriate T, a, p) with dimH ν “ d, and let η P Dd. Then
ν ˚ η is absolutely continuous with a density in Lq for some q ą 1.

Proof. We start by recalling that Hausdorff and entropy dimensions coincide for
self-similar measures, see [8] (in fact, the proofs of all results we have stated for the
Hausdorff dimension of self-similar measures actually apply to entropy dimension).

By assumption, there is σ ą 0 such that pηpξq “ Op|ξ|´σ{2q. By Theorem 5.1, there
is q P p1, 2s such that Dqpνq ą 1 ´ σ. The conclusion then follows from Theorem
4.4. �

6. Proofs of main results

6.1. Proof of Theorem A. Empowered with the tools developed in the previous
sections, and the dimension results from [18, 13, 11], we can now give short proofs
of our main results. We begin here with Theorem A. We first state a result that
follows from Hochman’s work [11, 12]; notice that it is very close to the statement
of Theorem A, except that the conclusion is about Hausdorff dimension rather than
absolute continuity.

Theorem 6.1. Let tpλu, auquuPU be a real-analytic map R` Ą U Ñ S1 ˆ Rm such
that the following non-degeneracy condition holds: for any distinct infinite sequences
i, j P rmsN, there is a parameter u such that Πupiq ‰ Πupjq, where Πu is the
projection map corresponding to pλu, auq.

Then there exists a set E Ă U of Hausdorff (and even packing) dimension at most
`´ 1, such that for any u P UzE and any p P Pm,

dimHpµpλu, au, pqq “ minpspλu,m, pq, 1q.
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This theorem follows from more general results in [12]. For ` “ 1 it is a special
case of [11, Theorem 1.8], and the general case follows along similar lines although
there are some new technical issues. We should point that the special case in which
λu is constant and only the translations depend on the parameters follows from
[11, Theorem 1.8] rather easily, see [9, Prop. 4.3] for the special case in which
the translations are the parameters. This is all that will be needed to derive our
Theorems B and D.

We will also need the following simple lemma.

Lemma 6.2. Let f : R` Ą U Ñ R be a non-constant real-analytic function. Then
dimHpf

´1Eq ď `´ 1` dimHpEq for any set E Ă R.

Proof. Since f is non-constant and real-analytic, its gradient vanishes on a (possi-
bly empty) countable union S of analytic hypersurfaces. By the implicit function
theorem, we can decompose UzS as a countable union

Ť

i Ui, such that for each
i there is diffeomorphism gi : R` Ą Vi Ñ Ui that linearizes f in the sense that
fgipx1, . . . , x`q “ x1. Since f´1pEq Ă S Y

Ť

i gipE ˆR`´1q, the lemma follows. (We
have used that dimHpE ˆ F q “ dimHE ` dimH F if F has equal Hausdorff and
box-counting dimensions, see [4, Product formula 7.3].) �

Proof of Theorem A. Recall from Section 2.3 that, given k P N, the self-similar
measure µu,p “ µpλu, au, pq can be decomposed as

µu,p “ µpλku, a
pkq
u , ppkqq ˚ µpλku, au, pq “: νu,p,k ˚ ηu,p,k,

where νu,p,k is obtained by skipping every k-th digit, and ηu,p,k is obtained by keeping
only every k-th digit. By construction, the projection map Π1u,k for νu,p,k is related
to the projection map Πu for µu,p in the following way: if i “ pi1i2 . . .q, with
ij P rms

k´1, then

Π1u,kpiq “ Πupi1,1 . . . i1,k´10i2,1 . . . i2,k´10 . . .q.

Hence the non-degeneracy assumption for the family tµu,puuPU transfers to the family
tνu,p,kuuPU , and we can apply Theorem 6.1 and Lemma 2.1 to deduce that there exists
a set E 1k Ă U of Hausdorff dimension at most `´ 1, such that

dimHpνu,p,kq “ min pp1´ 1{kq spλu,m, pq, 1q for all u P UzE 1k, p P Pm. (6.1)

To handle the measures ηu,p,k, the argument differs depending on whether u ÞÑ λu is
constant or not. In the former case, we must have m ě 3. Indeed, suppose m “ 2. If
|λ| ă 1{2, then spλ, 2, pq ă 1 for any p and there is nothing to do, while if |λ| ě 1{2,
there are two sequences i, j P t0, 1uN such that

ř8

n“0pin ´ jnqλ
n´1 “ 0, and this

implies that the non-degeneracy assumption fails for this pair of sequences. Hence
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we assume that m ě 3 from now on. In this case, the function

fpuq “
a3puq ´ a1puq

a2puq ´ a1puq

is non-constant and real-analytic outside of a countably union of hyper-surfaces of
dimension ` ´ 1 (where the denominator vanishes). Otherwise, if either numerator
or denominator were constant, the non-degeneracy condition would fail. Now let
F Ă p0, 1q ˆ R be the zero-dimensional exceptional set given by Proposition 3.1,
and let Fk Ă R be the λk-slice of F . Finally, let E2k “ f´1pFkq. Then ηu,p,k P D1

for all u P UzE2k and all p P Pm. Moreover, it follows from Lemma 6.2 that E2k has
Hausdorff dimension at most `´ 1.

In the case λu is not constant, we rely on [28, Theorem 1.5] (see also [25, Propo-
sition 2.3]) and an analogous argument to also conclude that there is a set E2k Ă U
of Hausdorff dimension at most `´ 1, such that ηu,p,k P D1 for all u P UzE2k and all
p P Pm.

Let E “
Ť

kPNE
1
k Y E2k ; then dimHpEq ď ` ´ 1. Fix u P UzE and p P Pm such

that spλu,m, pq ą 1. It follows from (6.1) that dimH νu,p,k “ 1 if we take k large
enough. We now conclude from Corollary 5.5 that µu,p “ νu,p,k ˚ ηu,p,k is absolutely
continuous with an Lq density for some q ą 1. �

6.2. Proof of Theorems B and C. In this section we establish Theorem B and
deduce Theorem C as a corollary. As suggested by the statement, there are two dif-
ferent cases depending on whether the rotational part of the similitude λ is rational
or not. In the irrational case we can say more, thanks to the following result.

Theorem 6.3. Let λ “ r expp2πiαq, where α{π R Q and r P p0, 1q, and let m P N,
a P R2m be such that the measure µ “ µpλ, a, pq satisfies the strong separation
condition. Assume further that rq´1 ě

řm
i“1 p

q
i for some q P p1, 2s. Then DqpPβµq “

1 for all β P r0, πq.

Proof. This can be proved via a similar method to the proof of [18, Theorem 1.1]
(the current setting is in fact somewhat simpler). We sketch the proof, leaving the
details to the interested reader. The key is the inequality

Sk``,qpPβµq ď Cq Sk,qpPβµqS`,qpPβ`kαµq, (6.2)

for some constant Cq ą 0, which implies that

fkpβq :“ logSk,qpPβµq ` logCq

is a subadditive cocycle over the α rotation on the circle. The proof of (6.2) is
similar to the analogous derivation of [18, (3.1)] (where q “ 2), but simpler since in
our case the irrational rotation arises in a geometrically transparent way. It is also
closely related to the proof of Proposition 5.4 above.
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Since µ satisfies the strong separation condition, Dqµ “
log

řm
i“1 p

q
i

pq´1q log r
. Hence the

assumption rq´1 ě
řm
i“1 p

q
i ensures that Dqµ ě 1.

The conclusion of the proof now follows exactly the argument in [18]. By a version
of Marstrand’s projection Theorem due to Hunt and Kaloshin [15], DqpPβµq “ 1 for
almost all β (this is where the hypothesis q ď 2 gets used). A result of Furman [10,
Theorem 1] on subadditive cocycles over uniquely ergodic transformations, applied
to the cocycle fk, yields that DqpPβµq ě 1 for all β (this is the step that uses the
irrationality of α{π). Since the upper bound is trivial, this concludes the proof. �

Remark 6.4. A version of the above theorem for Hausdorff dimension (rather than
Lq dimension) was proved for more general self-similar measures in [13, Theorem
1.6]. The above strengthening is required to obtain the additional information on
the densities in Theorem B, but if one is only interested in absolute continuity
(which is enough to deduce Theorem C), then [13, Theorem 1.6] suffices.

We can now finish the proof of Theorem B.

Proof of Theorem B. Consider first the rational rotation case, α{π P Q. By iterating
the IFS, which does not affect the assumptions, we may and do assume that there
is no rotation, that is, λ P p0, 1q. We fix the vector of translations a “ pa1, . . . , amq.

Write µp “ µpλ, a, pq. Then Pβµp “ µpλ, Pβa, pq, where Pβa “ pPβa1, . . . , Pβamq.
In particular, Pβµp is a self-similar measure of similarity dimension dimH µp. More-
over, the family pPβµpqβPr0,πq satisfies the non-degeneracy assumption of Theorem
6.1, since Πβ “ Pβ ˝ Π, where Π,Πβ are the projection maps for µp, Pβµp, and Π is
injective since the IFS generating µp satisfies the strong separation condition. The
first claim, in the rational rotation case, then follows from Theorem A.

We now turn to the irrational rotation case, α{π R Q. For each k P N, decompose
µp “ µpλ, a, pq “ νp,k ˚ ηp,k, where νp,k corresponds to skipping every k-th digit, and
ηp,k to keeping every k-th digit. An argument similar to that in Lemma 2.1 yields
(using (1.2)) that

Dqνp,k “ p1´ 1{kqDqµp.

Since the assumption rq´1 ą
řm
i“1 p

q
i says precisely that Dqµp ą 1, we can fix a

sufficiently large k so that Dqνp,k ą 1. We can therefore apply Theorem 6.3 to νp,k
and conclude that DqpPβνp,kq “ 1 for all β.

On the other hand, it follows from Proposition 3.3 that there is a set Ek Ă r0, πq
with dimHEk “ 0, such that Pβηp,k P D1 for all β P r0, πqzEk. Set E “

Ť

kPNEk.
By linearity of convolving and projecting, Pβµp “ Pβνp,k ˚ Pβηp,k. Theorem 4.4

now yields part (ii) of the theorem, and letting q Œ 1 also part (i) in the irrational
rotation case. �



30 PABLO SHMERKIN AND BORIS SOLOMYAK

Proof of Theorem C. Let A be a self-similar set on R2. We consider first the case
dimHA ą 1. Then A contains a self-similar set A1 which satisfies the strong sepa-
ration condition and still satisfies dimHA

1 ą 1; this is folklore, see e.g. [19, Lemma
3.4]. In turn, A1 contains a self-similar subset A2 which is also homogeneous, see
[22, Proposition 6] (although it is not stated explicitly, it is clear from the proof that
the IFS generating A2 also satisfies the strong separation condition). The claim now
follows by applying Theorem B(i) to the natural self-similar measure on A2.

For completeness we comment on the (essentially known) case dimHA ď 1. When
the IFS contains a scaled irrational rotation, it was proved in [22, Theorem 5] that
there are no exceptions at all, i.e. dimH PβA “ dimHA for all β. Otherwise, we
can approximate from inside as above to reduce the statement to the case of a
homogeneous, no-rotations, self-similar set with strong separation, which follows
from [11, Theorem 1.8]. �

6.3. Proof of Theorems D and E. The proof of our last two main theorems is not
unlike those of Theorems B and C, except that there is a twist in the decomposition
into “large” and “Fourier decay” parts. Here we need to appeal to Proposition 3.5
and the following result from [18].

Theorem 6.5. Let µi “ µpλi, ai, piq be two homogeneous self-similar measures on
the real line satisfying the strong separation condition. Assume log λ2{ log λ1 R Q.
Then for any q P p1, 2s and any u ‰ 0,

Dqpµ1 ˚ Tuµ2q “ min pDqpµ1q `Dqpµ2q, 1q .

A particular case of the above is [18, Theorem 5.1] (which corresponds to the
case where µ1, µ2 are natural measures on central Cantor sets). However, applying
the remarks on the biased case and on general self-similar measures in [18, Section
5], the proof easily extends to this generality. To be more precise, the key cocycle
estimate [18, (3.1)] continues to hold in this generality (the proof of this requires
only notational changes) and the conclusion of the proof from here is identical to
that of [18, Theorem 1.1].

Proof of Theorem D. Fix λi,mi, ai as in the statement. We consider the cases
log |λ2|{ log |λ1| P Q and log |λ2|{ log |λ1| R Q separately. We start with the ra-
tional case. In this case, there are integers h1, h2 such that λh11 “ λh22 ą 0, so that,
after iterating each IFS a suitable number of times (which does not affect the hy-
potheses of the theorem), we can assume λ1 “ λ2 ą 0. This implies that, for any
choice of pi P Pmi

,

µpλ, a1, p1q ˆ µpλ, a2, p2q “ µpλ,ra, rpq,

where ra P Rm1m2 is defined (after relabeling) by raij “ pai, ajq, and rp P Pm1m2 is
given by rpij “ pipj. Since the family of convolutions µpλ, a1, p1q ˚ Tuµpλ, a2, p2q is,
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after smooth reparametrization, the family of orthogonal projections of µpλ,ra, rpq in
non-principal directions, the claim (i) in the rational case follows from Theorem A
as in the proof of Theorem B.

Assume now that log |λ2|{ log |λ1| R Q. After iterating, we may assume that
λi ą 0. For simplicity, write µipi “ µpλi, ai, piq. For a given k, we will decompose

both µ1
p1

and µ2
p2

as

µipi “ νipi,k ˚ η
i
pi,k
,

where as usual νipi,k is obtained from µipi by skipping every k-th digit, and ηipi,k by
keeping every k-th digit. By linearity of convolution,

µ1
p1
˚ Tuµ

2
p2
“
`

ν1
p1,k

˚ Tuν
2
p2,k

˘

˚
`

η1
p1,k

˚ Tuη
2
p2,k

˘

It follows from (1.2) and the assumption (1.6) that if k is large enough, then

Dqpν
1
p1,k
q `Dqpν

2
p2,k
q ą 1.

Thus Theorem 6.5 yields that Dqpν
1
p1,k

˚ Tuν
2
p2,k
q “ 1 for all u ‰ 0 (here we use the

assumption q ď 2).
To handle η1

p1,k
˚ Tuη

2
p2,k

, we appeal to Proposition 3.5, which guarantees that
these measures are in D1 for all u outside of a set Ek of zero Hausdorff dimension
(independent of p1, p2). Set E “

Ť

k Ek. The proof of part (ii) is now concluded in
view of Theorem 4.4, and part (i) in the irrational case follows by letting q Œ 1. �

We conclude the paper with the short derivation of Theorem E.

Proof of Theorem E. Let A1, A2 be as in the statement. As in the proof of Theorem
C, it follows e.g. from [19, Lemma 3.4] and [22, Proposition 6] that there are
self-similar sets A1i Ă Ai (i “ 1, 2), which are homogeneous and satisfy the strong
separation condition, and of dimensions arbitrarily close to those of Ai; in particular,
we may assume dimHA

1
1 ` dimHA

1
2 ą 1. The theorem now follows at once from

Theorem D applied to the natural self-similar measures on A11, A
1
2. �
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