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a b s t r a c t

In this work the rich phenomenology of the ternary three-phase equilibrium is studied for a CO2(1)þ
H2O(2)þ2-propanol(3)-like system which presents a highly complex behavior. This is done through
computations carried out over wide ranges of conditions using a model of the equation of state type. The
developed computation and analysis strategies are applicable to any ternary system as described by any
equation of state model, chosen for representing real systems having a high degree of complexity in their
phase behavior. A systematic identification of phase equilibrium objects (or points) from which ternary
three-phase lines (T-3PLs) originate is performed. Such points are used to start the computation of a
variety of T-3PLs. Several computed T-3PLs are used to visualize a number of ternary three-phase sur-
faces (T-3PSs). Besides, the boundaries of the T-3PSs are established. A strategy to start the calculation of
a T-3PL is proposed for each type of originating point. In addition, with the aim of avoiding convergence
problems, a numerical continuation method is used to calculate complete T-3PLs. The visualization of 3D
projections of T-3PSs in the temperature-pressure-fugacity space is proposed. This way of looking at the
T-3PSs is of much help in the understanding on how they behave and interrelate. The results suggest,
among other interesting conclusions, the possibility of continuous transitions from T-3PSs of a given type
to T-3PSs of a different type.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A type of fluid phase equilibrium of special interest is the three-
phase equilibrium (3PE) (see, e.g., refs [1] and [2]). The accurate
reproduction of experimental 3PE is a stringent test for thermo-
dynamic models for multicomponent mixtures, mainly if the
multicomponent system considered is highly non-ideal. If this test
is passed by a givenmodel, for the case of ternary systems, then, the
user should be more confident about its performance for multi-
component systems. The calculation of the ternary 3PE (T-3PE) is
also a stringent test for computation algorithms. This is because the
behavior of continuous sets of three-phase equilibria may be of
considerable complexity. Reliable algorithms are also needed in the
abaloy).
process of fitting the model interaction parameters.
A ternary system can exhibit a wide variety of three-phase

equilibria. Different 3PE points may belong to the same ternary
three-phase surface (T-3PS) or to different T-3PSs. In turn, the to-
pology of a T-3PS could be complex and difficult to interpret. In
particular, to be aware of the variety of equilibrium phenomena of
potential occurrence, when a continuous set of ternary three-phase
equilibria comes to an end, is crucial to interpret properly T-3PE
experimental results obtained in the laboratory, and even to study
failures of computation algorithms.

Important fluid phase equilibrium diagrams are those that are
made of univariant equilibrium lines and invariant equilibrium
points. We name such diagrams phase equilibrium “characteristic
maps”, more specifically, “Binary characteristic map” (B-CM) and
“ternary characteristic map” (T-CM), for binary and ternary sys-
tems, respectively. A point of a univariant equilibrium line becomes
defined when a single degree of freedom is specified. This means
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that it is ‘necessary’ to specify the value of a variable of the system
to establish the equilibrium. Actually, and more generally, speci-
fying a relationship between a sub-set of the variables of the system
is also a way of spending the single degree of freedom available. On
the other hand, an invariant equilibrium point is a point with zero
degrees of freedom.

Scott and van Konynenburg [3] described a variety of B-CMs, and
proposed a classification for their behavior. This classification is
based on the observation, in the pressure-temperature plane, of the
topology of computed univariant equilibrium lines. Such lines were
calculated in Ref. [3] using the van der Waals equation of state
(EoS). Cismondi and Michelsen [4] proposed a methodology for the
calculation of B-CMs as those shown in Ref. [3].

The equilibrium behavior of the binary system is defined over
the entire ranges of temperature, pressure and composition once
all the parameters values of the EoS are set. The univariant lines
that compose the B-CM are binary three-phase lines (B-3PLs), bi-
nary critical lines (B-CLs) and binary azeotropic lines; while the
Table 1
Acronyms used in this work and in Ref. [10e12].

Acronym Meaning

P-VPL Pure (compound) vapour-pressure line
B-3PP Binary three-phase point
B-3PL Binary three-phase line (locus of B-3PPs)
T-3PP Ternary three-phase point
T-3PL Ternary three-phase line (locus of T-3PPs)
T-3PS Ternary three-phase surface
T-4PP Ternary four-phase point
T-4PL Ternary four-phase line (locus of T-4PPs)
P-CP Pure critical point
B-CP Binary-critical point
B-CL Binary-critical line (locus of B-CPs)
B-CEP Binary-critical end point
T-CEP Ternary-critical end point
T-CEL Ternary-critical end line (locus of T-CEPs)
T-CEP-4PL Ternary-critical end point of a four phase line
T-TCP Ternary-tricritical point (this is a synonym of T-TCEP)
T-TCEP Ternary-tricritical end point (this is a synonym of T-TCP)
T-CM Ternary characteristic map (characteristic map of the fluid phase
B-CM Binary characteristic map (characteristic map of the fluid phase
NCM Numerical Continuation Method
3PE Three-phase equilibrium
T-3PE Ternary Three-Phase Equilibrium

Table 2
Thermodynamic objects present in a ternary characteristic map (T-CM).

Type of thermodynamic object No. of compone

Univariant lines Pure vapour pressure line (P-VPL) 1
Binary three-phase line (B-3PL) 2
Binary critical line (B-CL) 2
Binary Azeotropic Line 2
Ternary critical end Line (T-CEL) 3

Ternary four phase Line (T-4PL) 3
Ternary Azeotropic Line 3

Invariant Points Pure Critical Point (P-CP) 1
Binary Critical End Point (B-CEP) 2

Binary Azeotropic end Point 2

Ternary Critical End Point of a Four
Phase Line (T-CEP-4PL)

3

Ternary Tricritical Point (T-TCP) or Ternary
Tricritical End Point (T-TCEP)

3

Ternary Azetropic end Point (T-AEP) 3

L ¼ Liquid; V¼Vapour.
invariant points involved are binary critical end points (B-CEPs)
and binary azeotropic end points. Tables 1 and 2 provide, respec-
tively, the meaning of the acronyms used in this work, and the
description of the physical situation for a variety of phase equi-
librium objects. Not all binary behaviors have three-phase equi-
librium. In addition, the (univariant) vapour-liquid equilibrium
lines of the pure compounds and their respective (invariant) crit-
ical points are included in the B-CM.

When going from binary to ternary systems, a ternary fluid
phase equilibrium characteristic map arises (T-CM), and the
behavior of the 3PE becomes considerably more complex. Clearly,
the binary 3PE has a single degree of freedomwhich implies that a
continuous set of binary 3PE points is a line (or hyper-line). In
contrast, the 3PE in a ternary system has two degrees of freedom.
This implies that an unrestricted continuous set of ternary 3PE
points is a surface (or hyper-surface) and not a line, as it is in binary
systems. Consequently, the ternary 3PE is not a thermodynamic
object that contributes to the ternary characteristic map (T-CM).
# of phases # of crit. phases

2
3
3
3
3
3
4
4
1 1
1 1
1 1
2 1
2 1
2 1
3 1
1
1

behavior of a ternary system)
behavior of a binary system)

3
3

nts Phase condition

L þ V
L þ L þ V
Critical phase (L1 ¼ L2 or L ¼ V)
L þ V (phases with same composition)
Critical phase þ non-critical phase
((L1 ¼ L2)þV or L1þ(L2 ¼ V))
L þ L þ L þ V
L þ V (phases with same composition)

Critical phase (L ¼ V)
Critical phase þ non critical phase
((L1 ¼ L2)þV or L1þ(L2 ¼ V))
Two phases with same composition may become critical (L ¼ V), or can
be infinitely diluted in a component, or may become unstable by the
appearance of a third phase at equilibrium with the azeotropic
phases (L þ L þ V) [13]
A T-CEP-4PL is an endpoint of a T-4PL, where two of the four phases
become critical. (e.g., L1þL2þ(L3 ¼ V), or, e.g., L1þ(L2 ¼ L3)þV, etc.)
In a T-TCP three non-critical phases at equilibrium become critical
simultaneously. (L1 ¼ L2 ¼ V)
Not considered in this work.
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However, the thermodynamic objects which are the boundaries of
a ternary three-phase surface (T-3PS) are ternary univariant lines
which do contribute to the T-CM.

A variety of works that study the ternary three-phase equilib-
rium (T-3PE) phenomenon can be found in the bibliography.

Di Andreth et al. [5] analyze the T-3PE in a pressure range at
constant temperature (333 K) for the CO2þH2Oþ2-propanol fluid
system (Figs. 5 and 6 in Ref. [5]). The authors show the “molar
volume versus pressure” projection of the 333 K T-3PE isotherm
(L1 þ L2 þ G, Fig. 7 in Ref. [5]). Such diagram is one of the possible
3D projections of the 333 K T-3PE line (T-3PL) (or hyper-line). It can
be seen in Fig. 7 of ref. [5] that the molar volumes of the liquid
phases L1 and L2 are identical at a given pressure (lowest T-3PE
pressure), i.e., two of the three phases at equilibrium (the two liquid
phases) become critical ((L1 ¼ L2) þ G) when moving along the T-
Fig. 1. Part of the ternary fluid phase equilibrium characteristic map (T-CM) calculated fo
Tables 3 and 4. Labels: P-VPL: Pure (compound) vapour-pressure line. P-CP: Pure critical poi
point. T-CEL: Ternary-critical end line. T-CEP-4PL: Ternary-critical end point of a four phas
associated to labels: Table 2. Important: See note in Table 4.

Fig. 2. Pressure-Temperature projection of the T-CM computed for system CO2(1)þH2O(2)þ2
and T-3PL(IV). Model: SRK-EoS (see Table 4). Empty circle: B-CEP. Labels: P-VPL: Pure (comp
point. T-CEL: Ternary-critical end line. T-3PL: Ternary three-phase line. T-CEP-4PL: Ternary-c
fluid phase equilibrium characteristic map. Phase condition associated to labels: Table 2. Im
3PL from higher to lower pressures. This behavior also occurs to the
phases L2 and G, but at the highest T-3PE pressure, which results in
a second situation where a critical phase is at equilibrium with a
noncritical phase (L1 þ (L2 ¼ G)). Both physical situations set the
termination of the T-3PL. Thus, they are identified as “terminal
points” or “endpoints” ((L1 ¼ L2) þ G and L1 þ (L2 ¼ G)) of the T-
3PL. More specifically, these points are named ternary critical
endpoints (T-CEPs, see Tables 1 and 2). In Ref. [5], the authors do not
analyze the evolution with temperature of T-3PLs and T-CEPs.

Gregorowicz et al. [6] reported, for the system ethylene þ
propane þ n-eicosane, several experimental T-CEPs, which were
shown in the pressure-temperature plane (Fig. 5 in Ref. [6]). Such T-
CEPs describe a couple of special equilibrium lines which are
boundaries of the T-3PS. Such lines are named ‘ternary critical end
lines’ (T-CELs, see Tables 1 and 2). However, in general terms, the T-
r the CO2(1)þH2O(2)þ2-propanol(3)[A] system using SRK-EOS with parameters from
nt. B-3PL: Binary three-phase line. B-CL: Binary-critical line. B-CEP: Binary-critical end
e line. T-TCP: Ternary-tricritical point. T-4PL: Ternary four-phase line. Phase condition

-propanol(3)[A], with indication of location and extent of the isobaric T-3PLs: T-3PL(II)
ound) vapour-pressure line. B-3PL: Binary three-phase line. B-CEP: Binary-critical end
ritical end point of a four phase line. T-TCEP: Ternary-tricritical end point. T-CM: ternary
portant: See note in Table 4.



Fig. 3. Zoom of Fig. 2, with indication of location and extent of the isobaric T-3PLs: T-3PL(I) and T-3PL(V), and of the isothermal T-3PL(III). System: CO2(1)þH2O(2)þ2-propanol(3)
[A]. Labels: T-CEL: Ternary-critical end line. T-3PL: Ternary three-phase line. T-CEP-4PL: Ternary-critical end point of a four phase line. T-TCEP: Ternary-tricritical end point. T-4PL:
Ternary four-phase line. Phase condition associated to labels: Table 2. Important: See note in Table 4.

Fig. 4. Zoom of Fig. 1, with indication of location and extent of the T-3PL(VI). System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Labels: T-CEL: Ternary-critical end line. T-3PL: Ternary
three-phase line. T-CEP-4PL: Ternary-critical end point of a four phase line. T-TCEP: Ternary-tricritical end point. T-4PL: Ternary four-phase line. Phase condition associated to labels:
Table 2. Important: See note in Table 4.
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CELs are not the only type, of possible boundaries involving only
fluid phases, of a T-3PS. This was not discussed by Gregorowicz
et al. [6].

Winkler and Stephan [7] reported, for the CO2þH2Oþ1-butanol
system, experimental information on three- and four-phase equi-
libria and on critical lines and critical endpoints. They also used an
equation of state (EoS) to complete the description of the phase
behavior in regions experimentally not accessible. In Fig. 9 of ref [7]
it can be seen that, in addition to the T-CELs, a ternary four phase
equilibrium line (T-4PL) is also a possible boundary of a T-3PS. The
work of ref [7] covers limited ranges of temperature and pressure,
i.e., from 296 to 315 K and from 5.8 to 11 MPa. Therefore, bound-
aries of T-3PSs of types different from T-CELs or T-4PLs were not
considered in Ref. [7]. On the other hand, the relationship between
a T-4PL and the four T-3PSs stemming from it is not discussed by
the authors in such terms.
Adrian et al. [8] studied the phase equilibrium behavior of the
CO2þH2O þ Propionic Acid and CO2þH2Oþ2-propanol systems. The
authors experimentally found the ranges of existence of the T-3PE.
Qualitative prism diagrams were used to explain the evolutionwith
pressure of the T-3PE at constant temperature (e.g., Fig. 1 in
Ref. [8]). In addition, T-CEPs, tricritical points (T-TCPs, Table 1), and
special four-phase points were established as points of the T-3PS
boundaries (Figs. 3 and 4 in Ref. [8]). However, the study was done
in a relatively narrow range of pressure (5e11 MPa) and only for
three different temperatures (298 K, 313 K and 333 K) [8]. Later, in a
related work, Adrian et al. [9] found the regions where the T-3PE
exists for the CO2þH2Oþ1-propanol system. They detected different
T-3PSs, which however develop (again) in narrow ranges of pres-
sure and temperature. The authors [9] did not analyze in a
comprehensive way the topology of each T-3PS. They did not
discuss either, in the way we do in this work, how the four-phase



Fig. 5. Pressure-Molar Volume projection of the calculated isothermal T-3PL(III) (T ¼ 333.85 K, see Fig. 3). System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model: SRK-EoS (see Table 4).
Labels: T-3PL: Ternary three-phase line. T-CEP: Ternary-critical end point. Phase condition associated to labels: Table 2. Important: See note in Table 4.

Fig. 6. Temperature-Molar Volume projection of the calculated isobaric T-3PL(IV) (P ¼ 76.17 bar). See Fig. 2. System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model: SRK-EoS (see
Table 4). Labels: T-3PL: Ternary three-phase line. T-CEP: Ternary-critical end point. B-CEP: Binary-critical end point. Phase condition associated to labels: Table 2. Important: See
note in Table 4.
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equilibrium relates to the T-3PSs.
Details on phase equilibrium calculation procedures are scarce

in the works quoted above.
To better understand the behavior of the ternary three-phase

equilibrium, it is convenient to know the complete fluid phase
equilibrium “ternary characteristic map” (T-CM). For ternary sys-
tems, Pisoni et al. [10] carried out a study analogous in many ways
to that of Scott and van Konynenburg [3] for binaries. In such work
[10], the thermodynamic objects that compose the T-CM are
established and properly named (such objects are univariant lines
and invariant points for ternary systems). In addition, the authors
defined and implemented [10] algorithms to compute complete T-
CMs. From the computed T-CMs in Ref. [10] (Figs. 2e14 in Ref. [10]),
it can be deduced that the ternary three-phase behavior is
considerably more complex than the binary three-phase behavior.
This is related to the previously mentioned fact that the T-3PE is
described by hyper-surfaces and not by hyper-lines as it is the case
for the binary three-phase equilibrium. In the context of phase
equilibria computations, once the T-CM has been generated, the
thermodynamic objects defining the boundaries of the T-3PSs
become available. The information that this boundaries provide is
very useful for calculating sets of ternary three-phase equilibrium



Fig. 7. Temperature-Mole Fraction projection of the calculated isobaric T-3PL(IV)
presented in a ternary Gibbs prism. System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model:
SRK-EoS (see Table 4). Concentration scale: mole fraction. Five three-phase equilibrium
points are indicated as horizontal triangles of variable area, whose sides are the
equilibrium tie-lines. Labels: T-3PL: Ternary three-phase line. T-CEP: Ternary-critical
end point. B-CEP: Binary-critical end point. Phase condition associated to labels:
Table 2. Important: See note in Table 4.
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lines (T-3PLs) which describe the topology of the system's T-3PSs.
A given T-3PE thermodynamic object, such as ternary three-

phase equilibrium points (T-3PPs), T-3PLs and T-3PSs, is described
by a number of variables (pressure, temperature, component mole
fractions, etc.). For this reason, occasionally the terms “hyper-point”
or “hyper-line” or “hyper-surface” are used. The multidimensional
nature of T-3PLs and T-3PSs imply the existence of several pro-
jections for these thermodynamic objects, e.g., pressure vs. mole
fraction, temperature vs. density, etc.

The goals of the present work are the following: [a] to propose
and test robust calculation methodologies to compute ternary
Fig. 8. Pressure-Temperature projection of the T-CM computed for system CO2(1)þH2O(2)
equilibrium characteristic map. P-VPL: Pure (compound) vapour-pressure line. P-CP: Pure cr
critical end line. T-TCP: Ternary-tricritical point. Phase condition associated to labels: Table
three-phase equilibrium lines (T-3PLs), to be used for building T-
3PSs, and, [b] to show how the study of the topology and behavior
of computed T-3PSs can be conducted in a quite comprehensive
way, for highly non-ideal systems. Of particular interest in this
study is to understand how the ternary four-phase equilibria and
the T-3PSs interrelate. This is done with the help of a thermody-
namicmodel used to describe a couple of model systems. The use of
model systems makes possible to study the ternary phase equi-
librium with no limitations in the ranges of conditions (as those
associated to experimental equipment), a no interference of solids
(which limits the range of existence of fluid phase equilibria in
experimental studies). The scientific community has a long tradi-
tion in using model systems to improve the understanding of phase
equilibria (e.g., ref [3]).

We anticipate now that to compute a ternary three-phase point
(T-3PP), the corresponding equilibrium conditions are solved using
the Newton-Raphson method; and that to compute a complete T-
3PL, a numerical continuation method (NCM) is used. The NCM
uses crucial information on a previous, already converged, T-3PP (of
the T-3PL being built) to generate excellent initial estimates for the
system variables of the next T-3PP to be computed, and to identify
the optimum variable to be specified for calculating such next T-
3PP.

2. Ternary characteristic map (T-CM)

The fluid phase equilibrium T-CM is constituted exclusively by
“univariant equilibrium lines” and “invariant points”. These lines
and points are those found in the three related B-CMs, plus those
for which the three components are present. The T-CM provides the
boundaries of the system's T-3PSs.

The terminology for the thermodynamic objects present in T-
CMs is defined in Table 2 (also see Table 1) which, among other
pieces of information, reports the number of components and
features of coexisting phases, for every listed thermodynamic
object.

To illustrate how a T-CMmay look like, Fig. 1 shows a part of a T-
CM for the CO2þH2Oþ2-propanol[A] system, computed using the
SRK-EOS [14] with parameters from Tables 3 and 4. In this figure,
the pure vapour pressure line (P-VPL) of CO2 is shown to extend up
to the pure critical point (P-CP) for this compound (see the Zoom
þ2-propanol(3) [B]. Model: SRK-EoS (see Table 4). Labels: T-CM: ternary fluid phase
itical point. B-CL: Binary-critical line. B-CEP: Binary-critical end point. T-CEL: Ternary-
2. Important: See note in Table 4.



Fig. 9. Zoom of Fig. 8. Labels: P-VPL: Pure (compound) vapour-pressure line. P-CP: Pure critical point. B-3PL: Binary three-phase line. B-CL: Binary-critical line. B-CEP: Binary-critical
end point. T-CEL: Ternary-critical end line. T-CEP-4PL: Ternary-critical end point of a four phase line. T-4PL: Ternary four-phase line. Phase condition associated to labels: Table 2.
Important: See note in Table 4.

Fig. 10. Pressure-Temperature-lnðf1
∧
Þ projection of several T-3PLs computed for the

CO2(1)þH2O(2)þ2-propanol(3) [B] system. These T-3PLs (together with the T-4PL and
other boundaries) outline the T-3PSs (1) and (2). Model: SRK-EoS (see Table 4).
Fugacity units: bar. The “B-3PPs” correspond to system H2Oþ2-propanol. The phase
combination for the T-3PS (2) is a�b�u. Triangle: T-CEP-4PL. Labels: B-CEP: Binary-
critical end point. B-3PP: Binary three-phase point. T-3PL: Ternary three-phase line.
T-CEL: Ternary-critical end line. T-CEP-4PL: Ternary-critical end point of a four phase
line. T-TCP: Ternary-tricritical point. T-4PL: Ternary four-phase line. T-3PS: Ternary
three-phase surface. Phase condition associated to labels: Table 2. Important: See note
in Table 4.

Fig. 11. Zoom of Fig. 10. System: CO2(1)þH2O(2)þ2-propanol(3) [B]. The “B-3PPs”
correspond to system H2Oþ2-propanol. Labels: B-CEP: Binary-critical end point. B-3PP:
Binary three-phase point. T-3PL: Ternary three-phase line. T-CEL: Ternary-critical end
line. T-CEP-4PL: Ternary-critical end point of a four phase line. T-4PL: Ternary four-
phase line. T-3PS: Ternary three-phase surface. Phase condition associated to labels:
Table 2. Important: See note in Table 4.
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(A) insert in the lower right corner of Fig. 1). From the P-CP, a binary
critical line (B-CL) of the CO2þH2O system begins [Zoom (A)], and
then ends at a binary critical end point (B-CEP) for this system
[Zoom (A)]. From the B-CEP, two equilibrium lines begin, i.e., the
binary three-phase line (B-3PL) of the CO2þH2O system [Zoom (A)]
and a first ternary critical end line, i.e., T-CEL(a). See Zoom (A) and
Zoom(B). Zoom(B) is the insert in the top left corner of Fig. 1, which
corresponds to higher temperatures than Zoom(A). The T-CEL(a)
extends up to the ternary critical end point of a four phase line T-
CEP-4PL(2) [Zoom (B), see Tables 1 and 2]. From this last point, a
second T-CEL(b) [Zoom (B)] begins, and then ends at the ternary
tricritical point T-TCP(II) [in Zoom (B), see Tables 1 and 2]. The third
T-CEL(c) extends between the T-TCP(II) and the T-CEP-4PL(1) [in
Zoom (B)]. Between the two T-CEPs-4PL a T-4PL develops [in Zoom
(B), see Tables 1 and 2]. From the T-CEP-4PL(1) the T-CEL(d) begins,
and ends at an another ternary tricritical point, i.e., T-TCP(I) (see
main Fig. 1). Finally, from the T-TCP(I) the T-CEL(e) begins, which
extends towards low pressures and temperatures.

Fig. 1 presents only a part of the complete T-CM (such complete
T-CM for this system is shown in Fig. 12 of reference [10]). The level



Fig. 12. Pressure-Temperature-lnðf1
∧
Þ projection of several T-3PLs computed for the

CO2(1)þH2O(2)þ2-propanol(3) [B] system. These T-3PLs (together with the T-4PL and
other boundaries) outline the T-3PSs (3) and (4). Model: SRK-EoS (see Table 4).
Fugacity units: bar. Labels: B-CEP: Binary-critical end point. B-3PL: Binary three-phase
line. T-3PL: Ternary three-phase line. T-CEL: Ternary-critical end line. T-CEP-4PL:
Ternary-critical end point of a four phase line. T-4PL: Ternary four-phase line. T-3PS:
Ternary three-phase surface. Phase condition associated to labels: Table 2. Important:
See note in Table 4.
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of complexity of a computed T-CM depends on the chosen ther-
modynamic model, and on the pure compound and interaction
parameters values. In Ref. [10] a variety of T-CMs were computed,
which presented from simple to very complex topologies. Ref. [10]
provides a flowchart for the T-CM calculation algorithm.

3. Boundaries of a T-3PS

From section 1, the possible types of boundary lines of a T-3PS
Fig. 13. Temperature-Molar Volume projection of the calculated isobaric “Special T-3PL (D)”
EoS (see Table 4). This T-3PL is also visualized in the top part of Fig. 11. Labels: T-CEP: Tern
condition associated to labels: Table 2. Important: See note in Table 4.
are: T-CELs, T-4PLs and B-3PLs (Fig. 1). Besides, the following types
of invariant points may be located on the boundaries of a T-3PS: T-
CEPs-4PL, T-TCPs and the B-CEPs (Fig. 1).

At a T-CEP-4PL, a T-4PL and a couple of T-CELs meet (Fig. 1),
bounding, each T-CEL, a different T-3PS. At a T-TCP, two T-CELs of
the same T-3PS meet (Fig. 1). At a B-CEP, a B-3PL and a T-CEL meet
(Fig. 1), being both lines boundaries of the same T-3PS. In conclu-
sion, an invariant point belonging to a T-3PS is in all cases a point
where two boundary lines of such T-3PS meet.

The lines T-CEL, T-4PL and B-3PL, and the points T-CEP-4PL, T-
TCP and B-CEP, have all a phase condition related to that of the
ternary three-phase equilibrium. Thus, it is possible to start off the
calculation of a T-3PL using information from these lines and
points. In other words, the knowledge of computed boundaries of a
T-3PS makes possible to calculate a set of T-3PLs, which define (or
outline) the topology of such T-3PS.

Section 5 describes a strategy to start the calculation of a T-3PL
from information taken from an already converged T-4PP (this is a
point of a T-4PL, which is a boundary of a T-3PS). Appendix A does
the same for the other thermodynamic objects considered above
(e.g., B-CEP).

The next section describes the thermodynamic conditions that
must be satisfied to compute a T-3PP. It also describes, briefly, the
coupled numerical continuation method used to compute a com-
plete T-3PL.

4. Ternary three-phase equilibrium: T-3PPs, T-3PLs and T-
3PSs

A T-3PS can be basically described by an appropriate set of a
large enough number of T-3PLs. In turn, a T-3PL is a continuous set
of T-3PPs (a T-3PP has two degrees of freedom). It is convenient to
have available a methodology that makes possible to compute a
complete T-3PL in a single run.

To compute a T-3PP, the iso-fugacity condition for each
component in the three phases at equilibrium must be satisfied.
Also, the pressure must be the same for the three phases. The
system of equations (2), whose variables are those of vector L (eq
(1)), is the one used in this work to compute a T-3PP.
(P ¼ 83.36 bar ¼ T-CEP-4PL pressure). System: CO2þH2Oþ2-propanol [B]. Model: SRK-
ary-critical end point. T-CEP-4PL: Ternary-critical end point of a four phase line. Phase



Fig. 14. Temperature-Molar Volume projection of the calculated isobaric “Special T-3PL (E)” (P ¼ 83.36 bar ¼ T-CEP-4PL pressure). System: CO2þH2Oþ2-propanol [B]. Model: SRK-
EoS (see Table 4). This T-3PL is also visualized in the top part of Fig. 12. Notice that the pressure specification for this T-3PL is the same than that of Fig. 13. The B-3PP is for system
CO2þ2-propanol. Labels: B-3PP: Binary three-phase point. T-CEP-4PL: Ternary-critical end point of a four phase line. Phase condition associated to labels: Table 2. Important: See
note in Table 4.

Table 3
Pure compound parameters [31].

Compound Critical Temperature (K) Critical Pressure (bar) Acentric Factor

2-propanol 508.3 47.64 0.6669
CO2 304.21 73.83 0.2236
H2O 647.13 220.55 0.3449
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The vector L has 14 variables. T is the absolute temperature, P is
the absolute pressure, and Vj is the molar volume of phase j. xji is the
mole fraction of component i in the phase j, where i¼ 1..3 and j¼a, b
or g. The Greek letters a, b and g distinguish the three phases at
equilibrium. The vector F has 14 functions. The system of equations
(2) is such that eqs F1 ¼ 0, F2 ¼ 0, F3 ¼ 0, F4 ¼ 0, F5 ¼ 0 and F6 ¼ 0
impose the iso-fugacity condition for all components in the three
phases at equilibrium. fi

∧
is the fugacity of component i in the

mixture. Eqs F7 ¼ 0, F8 ¼ 0 and F9¼0 impose the equal pressure
condition for the three phases at equilibrium.
j is the function that connects explicitly the temperature (T), the

molar volume (Vj) and the mole fractions xji with the pressure of
phase j. The mathematical forms of j and fi

∧
are imposed by the

selected EoS, in this work the SRK-EoS [14]. Eqs F10 ¼ 0, F11 ¼ 0 and
F12 ¼ 0 impose that the sum of the mole fractions of the three
components must be equal to unity, for each of the three phases
present.

The F13¼0 and F14¼0 equations are related to the two degrees of
freedom that must be specified to compute a ternary three-phase
equilibrium point.

The function hcutðLÞ in F13 ¼ 0 defines the variable that is to
remain constant during the computation of the T-3PL.

For example, if hcutðLÞ ¼ T and Scut¼ 330 K, then, F13¼0 becomes
[Te330 K¼0]. F13¼0 keeps its expression invariant throughout the
calculation of the T-3PL.

The gspecðLÞ function in equation F14¼0 is related to the second
degree of freedom that must be specified to compute a T-3PP of the
T-3PL.

The function [gspecðLÞ] relates to the numerical continuation
method (NCM) implemented in this work [11,15]. In general, the
mathematical expression of gspecðLÞ is not the same for the
computation of different T-3PPs of the same T-3PL. This is dictated
by the NCM.

For example, for computing a given T-3PP, the following defi-
nitions could be made: gspecðLÞ ¼ Va and Sspec ¼ 0.1 L/mol. Then,
F14¼0 takes the form [Va � 0:1 L=mol ¼ 0]. This means that the
NCM has decided that the most appropriate variable to be specified
for this particular T-3PP is Va, and that its value should be equal to
0.1 L/mol.

For the next T-3PP to be computed, the function gspecðLÞ could
remain unmodified, or the NCM could decide to change it to, e.g.,
gspecðLÞ ¼ P, and to set, e.g., Sspec¼101.1 bar. In such a case, the NCM
would have decided that the most appropriate variable to be
specified was P instead of Va as in the previous T-3PP.

Thus, the expression for F14¼0 for the next point would be
[P � 101:1 bar ¼ 0]. The NCM uses a sensitivity analysis to identify
the variable that must be specified for each point to be calculated.
In addition, it determines the step length for the specified variable
and predicts the values for the rest of the system variables. This
ensures that the specified variable and its value, and the initial



Table 4
Interaction parameters (SRK-EOS) [14].

Ternary System Interaction Parameters Ref.

k12 k13 k23 l12 l13 l23

CO2(1)þH2O(2)þ2-propanol(3)[A] �0.053 0.017 �0.207 0 0 0 [21]
CO2(1)þH2O(2)þ2-propanol(3)[B] 0.19 0.1215 �0.1727 0 0 0 [20]

1-k12 1-k13 1-k23

CO2(1)þH2O(2)þ2-propanol(3)[A] 1.05 0.98 1.21
CO2(1)þH2O(2)þ2-propanol(3)[B] 0.81 0.88 1.17

Note: No attemptwasmade in this work to comparemodel predictions with experimental data. These interaction parameter values generate a highly complex phase behavior,
which is enough for algorithm testing purposes and for reaching some general conclusions about the ternary fluid phase behavior.
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values of the remaining variables are appropriate to obtain
convergence. For more details on the NCM implemented in this
work see Refs. [11,15].

A T-3PP is characterized by a number of variables (vector L), i.e.,
it is described by several coordinates, i.e., temperature, pressure,
mole fractions of the components and molar volumes.

However, it is possible to add even more coordinates to a T-3PP,
e.g., component fugacities, phasemolar enthalpies, entropies, Gibbs
energies, etcetera. Thus, (because of its several coordinates) a T-3PP
is actually a hyper-point, a T-3PL a hyper-line, and a T-3PS a hyper-
surface. Clearly, the prefix “hyper” means in this work “existing in
more than three dimensions”. Hence, a T-3PL has several possible
projections in 3D space.

Two variables, chosen basically at random, out of the fourteen
variables in vector L, can be given the status of independent vari-
ables of the T-3PP. Indeed, some restrictions apply. For instance,
choosing the set of independent variables hxa2; xa3i is not acceptable,
since eq ½xa1 þ xa2 þ xa3 � 1 ¼ 0� becomes autonomous, and thus the
system of equations (2) cannot be solved for 11 of its variables.

The allowed ranges of variation of the two independent vari-
ables define the domain of the vector functionwhich connects such
domain to the vector made of the 12 dependent variables, i.e., to the
image of the vector function. A plot of a variable of the image as a
function of two independent variables, is a 3D projection of a T-3PS.
2D and 3D projections are possible for T-3PLs, since a specification
remains constant along a T-3PL. 2D projections are not possible for
a T-3PS since the number of degrees of freedom is 2 for a T-3PS.
Another ternary object that has two-degrees of freedom is a ternary
critical point. Thus, the ternary critical condition gives rise to crit-
ical surfaces. Fig. 2 of ref [16] provides an example of a critical
surface calculated for the system carbon dioxide þ ethylene þ
helium, while Fig. 2 of ref [17] does the same for the systems
methane þ hexane þ carbon dioxide and decane þ hexane þ
carbon dioxide.

Notice that if a T-3PS is intersected by a hyper-plane where one
of the system variables remains constant, e.g., the temperature, a T-
3PL becomes defined. Similarly, a ternary critical surface gives rise
to a ternary critical line when the surface is intersected by a hyper-
plane of, e.g., constant temperature or pressure, or, e.g., constant
ratio (c ) of mole fractions for two of the components of the ternary
system (c ¼ x1=x2). Ref. [18] presents a number of constant c

ternary critical lines, each referred to as “critical profile of a ternary
mixture at a constant value of c”.

The system of equations (2) was written without specifying a
particular equation of state model. Thus, it is valid for any equation
of state, be it the one used here (SRK-EoS), an EoS of the SAFT
family, or any other EoS.

5. Calculation of a T-3PL from a known T-4PP

The ternary three-phase behavior becomesmore complex in the
presence of ternary four-phase equilibrium.
Already computed ternary four-phase equilibria can be used to

obtain useful information to start the calculation of T-3PLs.
At a ternary four-phase point (T-4PP), four non-critical phases

coexist in equilibrium. These four phases can be identified by the
labels a, b, g, and d. Four different combinations of three phases in
equilibrium are associated to a T-4PP, i.e., a-b-g, b-g-d, a-b-d and a-
g-d. In other words, at a T-4PP four different three-phase equilibria
exist.

This implies that there are four different isothermal T-3PLs, all of
them specified by identical temperature values (TT-3PL(1) ¼ TT-
3PL(2) ¼ TT-3PL(3) ¼ TT-3PL(4) ¼ T*), that originate at a T-4PP of equal
temperature (TT-4PP ¼ T*) than the one that specifies the T-3PLs.
This statement is also valid for isobaric T-3PLs as long as PT-
3PL(1) ¼ PT-3PL(2) ¼ PT-3PL(3) ¼ PT-3PL(4) ¼ PT-4PP ¼ P*. Actually, and
more generally, four T-3PLs arise from a T-44P as long UT-3PL(1)¼UT-

3PL(2) ¼ UT-3PL(3) ¼ UT-3PL(4) ¼ UT-4PP ¼ U*, where U is the temper-
ature, or the pressure, or another ‘field’ variable, or combination of
‘field variables’ (a field variable is a variable that has the same value
for every one of the phases at equilibrium). The mentioned four T-
3PLs develop in different directions in the multidimensional space.
This implies that four different T-3PSs meet at a T-4PL.

The specification of a T-3PL is not to be confusedwith that of a T-
3PP: a single specification defines a T-3PL (e.g., a temperature
value), while two specifications define a T-3PP.

The variables that characterize a T-4PP (similarly to a T-3PP) are:
T , P, Va, Vb, Vg, Vd, xa1, x

a
2, x
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vector L in eq (1), the values for the molar volume (Vd) and of the
components mole fractions in phase d appear for a T-4PP.

Now, assume that for a converged T-4PP the “a-b-g” combina-
tion is chosen. Then, the values of the variables for this combination
of phases will satisfy the system of equations (2). In this way, the T-
4PP provides a ‘converged’ T-3PP for the “a-b-g” combination.

From this converged T-3PP it is possible to start building an
associated (properly specified) complete T-3PL using the numerical
continuation method.

Note that each of the four three-phase combinations is a
mathematically converged T-3PP (under the T-4PP conditions of
such combination).

However, even though the T-3PP is a converged point, the di-
rection in which the calculation of an associated T-3PL must
progress is yet to be determined.

For example, along the T-3PL, the temperature of a T-3PP located
very close to the T-3PP coincident with the T-4PP, could be either
greater than the T-4PP temperature, or less than the T-4PP tem-
perature. Nevertheless, there is only one direction in which the T-
3PL is thermodynamically stable. The right direction along which
the T-3PL develops is not known in advance.

To determine the direction along which the T-3PL is stable, a
stability test is applied to the second (already computed) point of
the T-3PL. If such point is stable, then, the calculation proceeds in



Table 5
Types of phase behavior of the binary sub-systems.a

Ternary System Type of binary behavior [3]

1e2 1e3 2e3

CO2(1)þH2O(2)þ2-propanol(3)[A] III II I
CO2(1)þH2O(2)þ2-propanol(3)[B] III III II

Model: SRK-EoS [14]. Parameters from Tables 3 and 4.
a Obtained from computed binary univariant lines.
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the direction indicated by such point (e.g., in a direction of
increasing temperature), otherwise, it is made to proceed in the
opposite direction (e.g.: in a direction of decreasing temperature).
The stability test applied in this work is described in general terms
in Ref. [19].

Appendix A describes ways of obtaining a first converged point
for T-3PLs which originate at equilibrium points which are not T-
4PPs.

6. Results

In order to study the complexities of the ternary three-phase
equilibrium behavior, a variety of T-3PLs for the CO2(1)þH2O(2)þ
2-propanol(3) system were computed.

This system was selected due to the asymmetry between its
components, which results in more complex behaviors, including
the phenomenon of ternary equilibrium among four fluid phases.

As previously stated, the computed phase behavior for a given
system depends on the chosen equation of state and on the values
of pure compound and interaction parameters used in the calcu-
lations. In this work the SRK-EoS [14], coupled to van der Waals
quadratic mixing rules, was used to perform the calculations. Two
different sets of interaction parameters (Table 4) were used to
compute T-CMs and a variety of T-3PLs. The interaction parameters
were taken from the literature [20,21]. No attempt wasmade in this
work to compare the model predictions with experimental data,
such as data on three-phase equilibria of the component binary
sub-systems, or data on ternary four-phase equilibria. The choice of
the SRK-EoS is acceptable, in spite of the relative simplicity of the
pressure-temperature-density-composition relationship that it
sets. This is because such EoS is capable of capturing, at least at
qualitative level, phenomena of great complexity, e.g., the multi-
plicity of T-3PSs in ternary systems. Such capability is all we need
for performing the task of subjecting the calculation algorithms (of
general applicability here proposed) to stringent enough tests.

The SRK-EoS is not a state-of-the-art EOS, while more modern
molecularly based EoSs of the SAFT family are. SAFT-type EoSs are
significantly more complex, in their mathematical forms, than the
simple SRK-EoS, giving rise to problems such as the existence of
multiple molar volume roots [22]. This may imply the prediction of
a liquideliquidevapour (LLV) triple point for a pure compound [22],
which is, already at qualitative level, nonrealistic. This behavior,
which is not acceptable, was found for a large number of chemicals
[22]. If the chosenmodel predicts the existence of a pure compound
LLV point, for one of the components of a binary system, then, it will
also predict the existence of a binary LLV line originating at such
triple point. In principle, such kind of binary LLV line has never been
experimentally observed. In turn, this binary LLV line will be, if a
third component is added, a boundary line of a predicted (indeed
spurious) T-3PS that could eventually extend towards high tem-
peratures and pressures. Under such circumstances, the molecu-
larly based nature of the model might not be of enough help in
generating valuable insights into the underlying causes of three-
phase equilibria in ternary mixtures. Beyond these remarks on
older and newer EoSs, it is not the purpose of this work to advocate
or criticize particular EoSs. Otherwise, it is to test algorithms (which
are applicable to any EoS-type model) in challenging situations;
and also to properly interpret the results that they generate. See
Refs. [23e27] to explore the wide variety of available EOSs, and to
find out about their strengths and limitations, and about challenges
to be faced in their future development.

It is worth noting the exceptional behavior of helium, which
does have a fluid-fluid-fluid triple point, i.e., a helium I/helium II/
gas triple point. Helium I is a normal liquid and helium II a super-
fluid (see page 391 of ref [28]).
Actually, the parameters in Ref. [20] do not correspond to the
SRK-EOS but to a similar model, i.e., to the Peng-Robinson EOS. This
is not a problem since the focus of this work is the study of the
possibilities for the three-phase ternary behavior, and not the
evaluation of the quantitative performance of the model. This
approach is essentially the same that the one used in Ref. [3] for
binary systems. Ref. [3] was a contribution of significant impor-
tance for the identification of the main patterns of the binary phase
behavior.

To distinguish between the two different sets of parameters, the
labels/terms “CO2(1)þH2O(2)þ2-propanol(3) [A]” system (or system
[A]) and “CO2(1)þH2O(2)þ2-propanol(3) [B]” system (or system [B])
are used.

Table 3 shows the values for critical temperature (Tc), critical
pressure (Pc) and acentric factor (w) for the pure components. The
numerical values of each set of interaction parameters are shown in
Table 4. Table 5 shows the types of phase behavior (types of B-CMs)
obtained for each binary sub-system, according to the classification
in Ref. [3]. These behaviors were identified in this work through the
use of the calculation algorithms described in Ref. [4]. Each set of
parameters results in a qualitatively different behavior of the T-CM
and, consequently, of the computed T-3PLs.

Section 6.1 shows results for system [A]. Such results, among
other outcomes, confirm the reliability of the calculation proced-
ures proposed in section 5 and in Appendix A. Section 6.2 focuses
on the relationship among T-3PSs and T-4PLs through the study of
computation results obtained for system [B].

6.1. Phase behavior of the ternary system [A]

In this section, the system [A] (Table 4) is used in testing the
calculation procedures proposed in section 5 and Appendix A. 2D
and 3D projections of a number of T-3PLs are shown.

Figs. 2e4 show the extent and endpoints of the T-3PLs (I), (II),
(III), (IV), (V) and (VI), in the pressure-temperature plane, together
with computed univariant lines of the T-CM of system [A].

The mentioned T-3PLs are straight lines in the PT plane, because
their calculation was performed at constant temperature, or at
constant pressure, or maintaining a non-isobaric non-isothermal
linear relationship between P and T.

Figs. 2e4 do not provide information about the topology of the
T-3PLs in the multi-dimensional space, but are useful to illustrate
the variety of bounds between which the T-3PLs exist.

The T-CM of Fig. 2 for system [A] is the same than that of Fig. 1.
The endpoints indicated for the T-3PLs in Fig. 2 help in inferring
what the possible limits are for the T-3PSs.

It is important to remember that the T-3PLs and the T-3PSs are
not thermodynamic objects of the T-CM: but the boundaries of the
T-3PSs are (e.g., the T-CELs). The isobaric T-3PL (II) (Fig. 2) begins in
a B-3PP of the B-3PL (CO2þH2O) and ends in a T-CEP of the T-CEL(e).

The also isobaric T-3PL (IV) (Fig. 2) begins in a B-CEP (CO2þH2O)
(Fig. 2, empty circle) and ends in a T-CEP of the T-CEL(e). The pro-
cedures described in Appendix A in sections A.1 and A.3, were used
to compute the T-3PLs (II) and (IV) (Fig. 2) respectively.
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Fig. 3 (zoom of Fig. 2), shows the isobaric T-3PLs (I) and (V).
The calculation of the T-3PL (I) (Fig. 3) began in a T-4PP of the T-

4PL and ended in a T-CEP of the T-CEL (c) (Fig. 3). On the other hand,
the computation of T-3PL (V) (Fig. 3) started off at the T-CEP-4PL
and also ended in a T-CEP of the T-CEL(c) (Fig. 3).

The isothermal T-3PL (III) shown in Fig. 3, develops between two
T-CEPs, one of the T-CEL (b) and the other of the T-CEL (c). The
calculation of the T-3PL (I) has been described in section 5; of the
T-3PL (III) in Appendix A, section A.2; and of the T-3PL (V) in
Appendix A, section A.4.

In order to illustrate the phenomena that takes place close to the
T-TCP when a continuous set of three-phase equilibria approaches
such point, a linear relationship between pressure and temperature
(which are both ‘field’ variables) was established to compute the T-
3PL (VI) shown in Fig. 4. T-3PL (VI) begins in a T-4PP and ends at the
T-TCP (II) (¼T-TCEP(II)).

The linear relationship (Pe (aTþ b)¼0), where a¼(1.8841 bar/K)
and b¼(-519.04 bar), was established as equation F13 ¼ 0 in the
system of equations (2) of section 4, to specify the T-3PL (VI) of
Fig. 4. A linear relationship between P and T, used to specify a T-3PL,
can be set in a laboratory equilibrium study if a variable volume cell
and a thermostat are available.

A procedure to start off the calculation of a T-3PL from a known
T-TCP has not yet been developed (see Appendix A, section A.5).

Figs. 5e7 show projections for the calculated T-3PLs (III) and (IV)
involving the phase molar volumes or the phase compositions. The
labels L1, L2 and L3 identify the phases at equilibrium in the
different T-3PLs.

Fig. 5 shows the pressure-molar volume projection of the
isothermal T-3PL (III). Fig. 5 makes possible to read the molar vol-
umes of each of the phases at equilibrium at a specified pressure.

In this projection, the critical phenomenon can be clearly
appreciated when the T-3PL(III) reaches the T-CEP (b) or the T-
CEP(c).

The molar volumes of the phases L1 and L2 tend to be equal as
the three phases at equilibrium approach the T-CEP(c) at low
pressure, i.e., both phases become critical at the T-CEP(c) (L1 ¼ L2,
Fig. 5).

Similarly, the molar volumes of the phases L2 and L3 become
equal, and such phases become critical, when the T-3PL(III) reaches
the T-CEP (b) at high pressure (L2 ¼ L3, Fig. 5).

Fig. 6 shows the T-3PL (IV), which has a B-CEP as its endpoint at
low temperature, for which the critical phases are L2 and L3(¼L2).
Note that this T-3PL begins at a point of a binary system (CO2þH2O)
where, actually, 2-propanol is at infinity dilution. When the T-3PL
(IV) in Fig. 6 reaches the T-CEP (e) the critical phases are L1 and
L2(¼L1). The curve labeled L2 in Fig. 6 does not seem to be smooth
enough in the region around a temperature value of about 315 K.
This perception arises from the fact that Fig. 6 is just a 2D projection
of the multidimensional T-3PL(IV). We have verified that 3D pro-
jections of the T-3PL(IV), whose variables are the temperature, the
molar volume of phase L2, and some other variable such as the
mole fraction of CO2 in phase L2, show curves that are clearly
smooth along the whole range of existence of the T-3PL(IV), as are
the curves shown in Fig. 7 for the same T-3PL. In other words, the
apparent lack of sufficient smoothness for curve L2 in Fig. 6 is
spurious. In general terms, 2D projections of smooth multidimen-
sional curves can even show discontinuities in their slopes.

Another type of projection of T-3PL(IV) is shown in Fig. 7.
The base of the prism is the Gibbs triangle where phase com-

positions are represented. The vertical axis is the temperature. The
concentration scale is the mole fraction.

The (horizontal) triangle inside the prism with vertices L1, L2
and L3 is a T-3PP, at set pressure and temperature, and the seg-
ments L1-L2, L1-L3 and L2-L3 are the corresponding tie lines. Other
(horizontal) T-3PPs are indicated in Fig. 7.
The region enclosed by the tie-lines, is the region where the

three-phase equilibrium exists for a given pressure and tempera-
ture. Any overall composition of the ternary system (for a specified
temperature and pressure) within this region will produce three
phases at equilibrium (L1þL2þL3), where the composition of each
phase is given by the vertices of the three-phase triangle.

The end points in Fig. 7 are indeed the same than those in Fig. 6
[B-CEP(CO2þH2O) and T-CEP(e)].

Fig. 7 clearly shows that the B-CEP of the T-3PL(IV) is on the
(CO2þH2O) side (vertical prism face). In the low temperature end
(B-CEP) of the T-3PL(IV) the length of the L2-L3 side tends to zero.
The same is true for the L1-L2 side in the high temperature end (T-
CEP(e)).

In Appendix B, the temperature-molar volume projections for T-
3PLs (I), (II), (V) and (VI) are shown.

Ternary two-phase equilibria can also be represented in Gibbs
prisms as the one shown in Fig. 7. These equilibria have three de-
grees of freedom, and their representation in Gibbs prisms is
possible only after having spent one of them, e.g., by setting the
pressure value (as it has been done in Fig. 7, where pressure equals
76.17 bar). A continuous set of ternary two-phase equilibria at set
pressure (or set temperature) would be seen, in a Gibbs prism, as a
surface or as a couple of surfaces, depending on the presence or
absence of a critical line. However, in general terms, the geomet-
rical object associated to an unrestricted continuous set of ternary
two-phase equilibria is not a surface (or hyper-surface, which only
has two degrees of freedom) but another geometrical object that
has three degrees of freedom. Such geometrical object has no
projections in the 3D space. These require that the number of de-
grees of freedom be less than or equal to two. Ternary two-phase
equilibria at set temperature, represented in a Gibbs prism, can
be seen in, e.g., fig C.1. of Ref. [11]. Fig. 5 in Ref. [29] is another
example of calculated two-phase and three-phase equilibria rep-
resented in a Gibbs prism. Such figure was obtained for the system
carbon dioxide-benzene-water at 14.2 MPa in a wide temperature
range [29].

6.2. Phase behavior of the ternary system [B]

In this section, the system [B] (Table 4) is used to analyze the
relationship among the ternary four-phase equilibria and the T-
3PSs.

Fig. 8, shows the computed univariant lines and invariant points
for the pure components, for the binary sub-systems and for the
ternary system [B]. Fig. 8 is the complete T-CM for the system [B].

From the B-CEP (H2Oþ2-propanol) (highest temperature empty
circle in Fig. 8), the T-CEL(I) begins, and ends at a T-TCP. From this T-
TCP the T-CEL (II) begins and extends towards high pressures
(Fig. 8).

Fig. 9 (zoom Fig. 8), shows in its top left insert (Zoom B) the T-
CEL (III) which begins at the B-CEP (CO2þH2O) and ends at a T-CEP-
4PL (empty triangle), at which the T-CEL (IV) originates. This line
ends at the B-CEP (CO2þ2-propanol, Fig. 9). Finally, from the T-CEP-
4PL the T-4PL begins and extends towards low pressures and
temperatures.

The existence of B-3PLs, T-CELs and T-4PLs in Figs. 8 and 9 imply
that three-phase equilibria exist for system [B]. Besides, the pres-
ence of the T-4PL indicates that there are four different T-3PSs that
originate at this line. The phases at equilibrium in the T-4PL are
distinguished by the labels “a-b-u-ε” where each Greek letter
represents one of the phases at equilibrium. To outline the topology
of each of the four T-3PSs, different sets of T-3PLs were computed.
To distinguish among the four T-3PSs the labels (1), (2), (3) and (4)
are used. Figs. 10e12 show P-T-lnðf1

∧
Þ projections for the T-3PSs (1),



Table 6
Description of the four T-3PSs originating at the T-4PL for system [B].a

T-3PS Combination of phases
from the T-4PL that give
rise to the T-3PS

Constitution of boundaryb

T-3PS (1)
(Figs. 10 and 11)

a-u-ε T-CEL (I), T-TCP, T-CEL(II),
T-4PL and T-CEP-4PL

T-3PS (2)
(Figs. 10 and 11)

a-b-u B-3PL (H2Oþ2-propanol),
B-CEP (H2Oþ2-propanol),
T-CEL(I),
T-4PL and T-CEP-4PL

T-3PS (3)
(Fig. 12)

b-u-ε B-3PL (CO2þH2O),
B-CEP (CO2þH2O),
T-CEL(III),
T-CEP-4PL and T-4PL

T-3PS (4)
(Fig. 12)

a-b-ε B-3PL (CO2þ2-propanol),
B-CEP (CO2þ2-propanol),
T-CEL(IV),
T-CEP-4PL and T-4PL

a See Table 4.
b All T-3PSs have no definite low pressure low temperature boundaries.
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(2), (3) and (4) (green labels). f1
∧

is the fugacity for the component 1
(CO2 in this case) in the ternary heterogeneous system at equilib-
rium. The advantage of selecting the variable f1

∧
, in Figs. 10e12, is

that it has the same value in each of the equilibrium phases (i.e., the
component fugacity is a field variable, as are T and P). The use of the
three field variables P, T and lnðf1

∧
Þmakes possible to visualize more

easily the T-3PSs and their boundaries.
To fix ideas, notice that, e.g., Fig. 10, makes possible to read, e.g.,

the value of the fugacity of CO2, at set temperature and pressure,
when CO2 participates in a three-phase equilibrium together with
water and 2-propanol. In the process of reading such fugacity, the
two degrees of freedom associated to the ternary three-phase
equilibrium (T and P) are set.

Fig. 10 shows the T-3PS (1), which is outlined by the shown “set
1” (S1) and “set 2” (S2) of isothermal and isobaric T-3PLs (red lines
indicated by arrows). The phase combination of the T-3PS (1) is: a-
u-ε. The S1 T-3PLs are isothermal and the S2 T-3PLs are isobaric.
The boundary of T-3PS (1) [S1þS2] is made of the T-CEL (I), the T-
TCP, the T-CEL(II), the T-4PL, and the T-CEP-4PL.

The sets of T-3PLs “set 3” (S3) and “set 6” (S6) (Fig. 11) outline
the T-3PS (2). The phase combination of the T-3PS (2) is: a-b-u. The
S3 T-3PLs (Fig. 11) are isobaric and the S6 T-3PLs are isothermal. The
T-3PS (2) [S3þS6] can be appreciated in Fig. 11. The boundary of T-
3PS (2) [S3þS6] is made of the B-3PL (H2Oþ2-propanol), the B-CEP
(H2Oþ2-propanol), the T-CEL(I), the T-4PL, and the T-CEP-4PL.

Note that the B-3PL (H2O(2)þ2-propanol(3)), to which the “B-
3PPs” indicated in Figs. 10 and 11 belong, cannot strictly be shown
in a diagram (such as Figs. 10 and 11) having as one of its variables
the lnðf1

∧
Þ, i.e., the variable lnðfCO2

∧
Þ. When a T-3PL tends to a point

of the B-3PL(H2Oþ2-propanol), the concentration of CO2 tends to
zero, so does fCO2

∧
, and lnðfCO2

∧
Þ tends to minus infinity. In Figs. 10

and 11, the “red empty circles” are strictly T-3PPs (strictly not B-
3PPs), but they are located very close to the B-3PL (H2Oþ2-
propanol), due to their very low CO2 concentration. In the same
way, the “blue empty circle” in Figs. 10 and 11 is strictly a T-CEP
(strictly not a B-CEP) located however very close to the B-CEP
(H2Oþ2-propanol), at which the T-CEL (I) originates.

The isothermal T-3PL (B) and T-3PL (C) indicated in Figs. 10 and
11 were computed at the same temperature. Both are located
within the same vertical plane. Hence, both lines meet the same
point (T-4PP) of the T-4PL in the projection of Figs. 10 and 11. The T-
3PL (B) is located above the T-4PL while the T-3PL (C) is below it
(Fig. 11).

For a point on the T-3PL(B) at a pressure infinitesimally greater
than the T-4PP pressure, the phases are a-u-ε (Fig. 11). On the other
hand, for a point of the T-3PL(C) at a pressure infinitesimally below
the T-4PP pressure the phases are a-b-u (Fig. 11). In this case, there
is an evident change in the type of one of the phases at three-phase
equilibriumwhen crossing the T-4PL. We would thus state that the
T-4PL separates the T-3PS(1) from the T-3PS(2).

Let us focus now on the isothermal high-temperature (special)
T-3PL (A) [T ¼ 348.38 K] shown in Fig. 10. This T-3PL is located
within a vertical plane and originates at a point on the T-CEL (II),
and ends at a B-3PP (H2Oþ2-propanol). At high pressure, i.e., close
to the T-CEP(II) at 348.38 K, the phases of the T-3PL (A) are a-u-ε.
This combination of phases corresponds to the T-3PS (1). In
contrast, at low pressure, close to the B-3PP at 348.38 K, the phases
of the T-3PL (A) are a-b-u, and this combination corresponds to the
T-3PS (2). Thus, in T-3PL (A), the ε phase present at high pressure
evolved, through a continuous transition, into phase b.

We now revise our previous statement and say that the T-4PL
does not separate completely the T-3PS (1) from the T-3PS (2).
Fig. 11 shows that it is possible to draw a relatively arbitrary, but
continuous, path, on the T-3PSs, for going from point (A) of the T-
3PS(2) to point (B) of the T-3PS(1) without ever crossing the T-4PL,
which implies that a continuous transition between phases b and ε

occurs. This is an interesting outcome that could be visualized
because only field variables were considered in the projection of
Figs. 10 and 11.

Fig. 12 shows the T-3PSs (3) and (4).
The boundary of the T-3PS (3) is made of the B-3PL (CO2þH2O),

the B-CEP (CO2þH2O), the T-CEL(III), the T-CEP-4PL and the T-4PL.
This surface is outlined by the “set 4” (S4) of T-3PLs, where some of
the T-3PLs were computed at constant temperature and some of
them at constant pressure.

The phase combination that characterizes the T-3PS (3) is b-u-ε.
The boundary of T-3PS (4) is made of the B-3PL (CO2þ2-

propanol), the B-CEP (CO2þ2-propanol) the T-CEL(IV), the T-CEP-
4PL and the T-4PL. This surface is outlined by the “set 5” (S5) of T-
3PLs, again with some T-3PLs computed at constant temperature
and some at constant pressure.

The phase combination that characterizes the T-3PS (4) is a-b-ε.
It is not possible to draw a continuous path in Fig. 12 connecting

a T-3PP of the T-3PS (3) to a T-3PP of the T-3PS (4) without meeting
the T-4PL. Thus, there is no continuous transition between T-3PS (3)
and T-3PS (4).

The T-4PL, as previously stated, extends indefinitely towards
low temperatures and pressures. Consequently, the same is true for
the T-3PSs (1), (2), (3) and (4), i.e., these surfaces have no definite
low temperaturee low pressure limit. This is because the T-4PL is a
boundary common to all four T-3PSs, or, in other words, any of the
T-3PSs has the T-4PL as one of its boundaries.

Table 6 summarizes the boundary constitution for each of the
four T-3PSs.

We stress that, as Fig. 11 shows, at a temperature T less than the
T-CEP-4PL temperature (¼T4), i.e., at T < T4, the T-3PSs (1) and (2)
provide a couple of isothermal T-3PLs (a T-3PL each), while at
T > T4 they provide a single isothermal T-3PL. The transition from
two to one T-3PLs happens at T ¼ T4. Thus, when considering only
the T-3PSs (1) and (2) of Fig. 11, we conclude that only a single
isothermal T-3PL contains the T-CEP-4PL, or, vice versa, that a single
isothermal T-3PL originates at such point, with the particular
feature of being stable at either side of the T-CEP-4PL. Notice that
the T-CELs of the T-3PSs (1) and (2) (i.e., T-CEL(I) and T-CEL(II),
Figs. 10 and 11) do not contain the T-CEP-4PL.

The previous statements are also valid for isobaric T-3PLs, i.e.,
when considering only the T-3PSs (1) and (2) (Fig. 10), a single
isobaric T-3PL originates at the T-CEP-4PL and it is stable both at
higher and at lower temperatures than T4. Such isobaric line is
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indicated as “Special T-3PL (D)” in Fig. 11, and it is shown in Fig. 13.
There we see that no pair of phases become identical at the T-CEP-
4PL, which could be regarded as curious or even surprising. Actu-
ally, such behavior would also be seen in, e.g., a binary two-phase
equilibrium isotherm (Pxy diagram) of temperature equal to that
of a B-CEP; or, e.g., in a continuous set of ternary two-phase equi-
libria at set T and P, if, e.g., the pressure P is set equal to that of a T-
CEP at the set T.

The critical phase of the T-CEP-4PL in Fig. 13 is the one with
highest molar volume (empty square in Fig. 13). Although no pair of
phases is such that both phases become identical at the tempera-
ture of the T-CEP-4PL, it is seen in Fig. 13 that the dashed branch
becomes extremely flat when the branch-phase becomes critical
(empty square). The flatness of curves involving a phase molar
volume and a field variable such as T (as in Fig. 13 dashed line) is a
behavior seen in other contexts, e.g., for the critical isobar (T vs
molar volume, P¼Pc) at V¼Vc for a pure compound; or for the
experimental T vs molar volume vapour-liquid equilibrium hyper-
curve, at V¼Vc for a pure compound. Notice that the intersection
point (in Fig.13) between the dashed branch and the dashed-dotted
branch, which happens at a pressure (about 290 bar) less than the
T-CEP-4PL pressure in Fig. 13, is not a critical point. An experi-
mentalist following the T-3PL of Fig. 13 in a visual cell when going,
e.g., from lower to higher temperatures, would not notice passing
through the T-CEP-4PL, this being said in the sense that he/she
would not see the appearance or disappearance of a phase at such
point, or a change in the number of phases. What it would probably
be seen is the critical opalescence of the phase indicated with the
empty square in Fig.13, when passing through the T-CEP-4PL. There
is a second instance where a critical state is met by the T-3PL in
Fig. 13. This happens at the highest temperature in Fig. 13, where
the two phases which were not critical at the T-CEP-4PL (empty
triangle and full square) become critical (cross (�), label T-CEP(I) in
Fig. 13).

On the other hand, from looking at Fig. 12 (or at Fig. 9), corre-
sponding to the T-3PSs (3) and (4), at T < T4 two isothermal T-3PLs
exist, while at T > T4 a single isothermal T-3PL exists, which is
contributed by the T-3PS (4). Again, the transition between these
two behaviors takes place at T ¼ T4, where the T-3PS (4) provides a
single T-3PL that contains the T-CEP-4PL. The T-CELs of the T-3PSs
(3) and (4) (i.e, T-CELs (III) and (IV)) do contain the T-CEP-4PL
(Fig. 9).
Fig. 15. Phase equilibria of Figs. 13 and 14 shown together. Labels: B-3PP: Binary three-ph
associated to labels: Table 2. Important: See note in Table 4.
In conclusion, if the specification T ¼ T4 is made, with the aim
of computing, at such temperature, all the T-3PLs related to the T-
4PL, then, each couple of T-3PSs contributes, for the case of system
[B], with a single T-3PL. In other words, only two isothermal T-3PLs
stem from a T-CEP-4PL for system B. This conclusion (i.e., maximum
number of T-3PLs equal to two) should be valid, for system [B], also
for specifications involving other field variables, or combinations of
them.

For system [B], the second isobaric T-3PL of pressure equal to
that of the T-CEP-4PL (P ¼ 83.36 bar), is shown in Fig. 14. This T-3PL
is identified in Fig. 12 as “Special T-3PL (E)”.

This T-3PL (Fig. 14) originates at a B-3PP(CO2þ2-propanol) and
ends at the T-CEP-4PL of which only two phases (out of three) are
shown in Fig. 14. The qualitative behavior at the T-CEP-4PL is for the
T-3PL(E) in Fig. 14 clearly different from that of T-3PL(D) in Fig. 13.
This is more easily seen in Fig. 15: while two phases become
identical at the T-CEP-4PL temperature for T-3PL(E) (black
branches), no pair of phases do so for the T-3PL(D) (red branches).
At a given temperature, say, at 317 K, in Fig. 15, there is a range of
overall composition of the ternary system compatible with one
(black) of the two possible three-phase sets, and a different range
(which does not overlap with the previous one) compatible with
the other (red) three-phase set.

The phase behavior in Fig. 8 is significantly different from that of
Fig. 2, i.e., the impact of the changes (shown in Table 4) in the
interaction parameters on the phase behavior of the ternary system
is very important. The attractive energy parameter of the SRK-EOS,
when used coupled to quadratic mixing rules, is proportional to the
factors (1-kij). We remind that kii ¼ 0 and that kij ¼ kji (symmetric
crossed interaction parameters), and that all (1-kij) factors should in
principle be greater than zero, regardless the sign of kij. The actual
restriction is that the mixture attractive energy parameter has to be
positive at all temperatures and system compositions, which is met,
in particular, by setting (1-kij) greater than zero. At constant
composition and temperature, an increase in the factor (1-kij)
makes the attractive energy parameter of the mixture increase. The
values of the (1-kij) factors are presented in Table 4 for systems [A]
and [B]. All three values of (1-kij) are greater for system [A], i.e.,
system [A] is more attractive than system [B] (bear in mind that all
pure compound parameters are the same for both systems). For the
SRK-EOS, a higher attractive energy parameter implies, in general, a
higher tendency to liquid homogeneity or “affinity” [30]. Thus, due
ase point. T-CEP-4PL: Ternary-critical end point of a four phase line. Phase condition



G.O. Pisoni et al. / Fluid Phase Equilibria 457 (2018) 18e3732
to its higher affinity, system [A] should have less tendency to three-
phase equilibria than system [B], i.e., the size in the PT plane of the
three-phase equilibrium region should be less for system A, when
compared to system B. This can be verified from comparing Fig. 2
with the set of Figs. 8 and 10.

In Fig. 2 (system [A], higher affinity), the ternary three-phase
equilibria is confined, in the PT plane, to the region in between
the T-CEL(e) and lines: B-3PL(CO2þH2O), T-CEL(a) and T-CEL(d). In
Fig. 8, such equilibria is basically found to the left of T-CEL(I) and T-
CEL(II), with no lower limit in temperature and no upper limit in
pressure. Clearly, in the temperature range of Fig. 2, system [A]
(higher affinity) has ternary three-phase equilibria in a significantly
smaller region than system [B] (lower affinity, Figs. 8 and 10).
Actually, from computation results not shown here, system A pre-
sents ternary three-phase equilibria also at low temperatures,
outside the temperature range of Fig. 2, such that, at high enough
pressure, such equilibria happens in narrow ranges of temperature.
Thus, at low temperature, system B (Fig. 10) still has more tendency
to three-phase equilibria than system A.

To fix ideas even further, notice that the binary H2O(2)þ2-
propanol(3) is of type II (Table 5, last column, system [B]) for (1-
k23) ¼ 1.17 (Table 4, system [B]) and type I for (1-k23) ¼ 1.21. Type
II systems have binary three-phase equilibrium, while Type I sys-
tems do not. In other words, when increasing the affinity level from
1.17 to 1.21 the three-phase equilibrium disappears.

The B-CEP of system CO2(1)þ2-propanol(3) is located at about
327 K for system [B] (Fig. 9), and (from calculation results not
shown here) at about 86 K for system [A]. Since the B-CEP is the
endpoint of the B-3PL, it should be clear that when the affinity level
increases from (1-k13) ¼ 0.88 (system [B], Table 4) to (1-k13) ¼ 0.98
(system [A], Table 4) the termination of the binary three-phase
equilibrium is moved to much lower temperatures, over a dis-
tance in the order of 200 K (from 327 K to 86 K). Notice that binary
liquid immiscibility for systems of type II and III (Table 5, “1e3”
column) is not possible at temperatures greater than the B-CEP
temperature.

The location of the CO2(1)þ H2O(2) B-3PL is similar for systems
[A] and [B] (Fig. 1, insert in right bottom corner; Fig. 9, insert in top
left corner). However, the critical line that originates at the pure
H2O critical point is significantly different for such systems. In Fig. 8
(system [B]), it can be seen that the critical temperature value found
in the B-CL (CO2(1)þH2O(2)) at 600 bar is about 600 K. If pressure is
increased to 1936 bar, the calculated critical temperature becomes
approximately equal to 597 K. On the other hand, the same binary
system, but with parameters corresponding to system [A] (Table 4)
has, at 1939 bar, a calculated critical temperature of only 486 K. In
other words, when the pressure is in the order of 1940 bar, the
critical temperature of system CO2þH2O is reduced by about 110 K
(from 597 K to 486) when going from system [B] to system [A], i.e,
when going from (1-k12) ¼ 0.81 to (1-k12) ¼ 1.05. The reduction of
the critical temperature at such high pressure indicates an increase
in liquid miscibility, i.e., an increase in affinity, due in this case to
the increase in the attractive energy parameter of the binary
system.

7. Remarks and conclusion

The calculation procedures developed in this work for
computing different types of ternary three-phase equilibrium lines
(T-3PLs) were found to be efficient and free from convergence
problems.

Such procedures are described in section 5 and in Appendix A.
They take advantage of the information contained in (previously
computed) phase equilibrium objects which contribute to the
boundaries of the ternary three-phase surfaces (T-3PSs). Such in-
formation is used to start off the calculation of the T-3PLs. The
mentioned objects are invariant points of the ternary fluid phase
equilibrium characteristic map (T-CM), or points of univariant lines
of such map; and they act as termination/originating points of the
T-3PLs. The absence of convergence problems during the building
of the T-3PLs is due to the use of a numerical continuation method
(NCM). The NCM makes possible to compute a complete T-3PL in a
single run. The couple of ternary model systems studied are highly
asymmetric. The computation of their phase behavior is a stringent
test for any proposed calculation algorithm.

A large enough number of computed T-3PLs makes possible to
visualize the topology of T-3PSs (e.g. Fig. 11), if 3D projections
involving only field variables are used. Computation results show
that there can be continuous transitions between T-3PSs. This in
turn implies the existence of special T-3PLs having a point for
which one of the phases reaches a critical condition but without
becoming identical to any of the other two phases (Fig. 13). This
may be considered to be surprising or unexpected.

A thorough account of the possible constitutive elements of the
boundaries of T-3PSs seems not to have been available in the open
literature up to now. This work fills such void.

The knowledge of the potential variety of the ternary three-
phase equilibrium that can be unveiled through computations as
those of the present work, should be helpful in the interpretation of
measurements carried out in the laboratory.

The changes found in the ranges of conditions, where the
computed ternary three-phase equilibrium takes place, are
explained in this work in terms of changes in the attractive energy
parameter of the system.
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Appendix A. Techniques for starting off the computation of T-
3PLs from known B-3PPs, T-CEPs, B-CEPs and T-CEPs-4PL

A.1-Starting off from a B-3PP to which the T-3PL tends

From section 4, the variables that characterize a T-3PP are T , P,
Va, Vb, Vg, xa1, x

a
2, x

a
3, x

b
1, x

b
2, x

b
3, x

g
1, x

g
2 and xg3. In a B-3PP the mole

fraction variables xa3, x
b
3 and xg3 (which imply the presence of the

third component in each of the three phases) do not exist. A known
converged B-3PP is useful to obtain a T-3PP where the third
component is practically at infinity dilution while the other com-
ponents have concentrations practically equal to those of the B-3PP.

More specifically, the procedure to initialize the variables of this
T-3PP is to set T , P, Va, Vb, Vg, xa1, x

a
2, x

b
1, x

b
2, x

g
1, x

g
2 equal to those of

the known B-3PP, while xa3, x
b
3 and xg3 are initialized to a value such

that component 3 is highly diluted, for example at a mole fraction
value equal to 1 � 10�6. If convergence is not achieved, then, only
one of the three mole fractions of the third component is set equal
to a value in the order of 1 � 10�6, e.g., xa3;∞ ¼ 1� 10�6. The
subscript “∞” indicates “close to infinite dilution”. Subsequently,
the mole fractions of the component “3” in phase “b” and in phase
“g” are estimated using the following equations:
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xb3;∞ ¼ b4a
3
�
T ;Va; xa1; x

a
2; x

a
3/0

�
b4b
3

�
T ;Vb; xb1; x

b
2; x

b
3/0

�$xa3;∞ (A.1.1)

xg3;∞ ¼ b4a
3
�
T ;Va; xa1; x

a
2; x

a
3/0

�
b4g
3

�
T ;Vg; xg1; x

g
2; x

g
3/0

�$xa3;∞ (A.1.2)

where xb3;∞ and xg3;∞ are the mole fractions of component “3” in the
“b” and “g” phases respectively, while b4a

3, b4b
3 and b4g

3 are the
fugacity coefficients of component 3 in the phases a, b and g

respectively. The fugacity coefficients are evaluated under the
condition that the mole fraction of component 3 tends to zero in
each of the phases. This is expressed as xa3/0, x

b
3/0 and xg3/0; in

this work xj3/0y1� 10�30 is set. Note the difference between xji;∞
and xji/0. The initialization scheme based on eq (A.1.1) and (A.1.2), is
consistent with the values of the equilibrium ratios (or distribution
coefficients) of component 3 when infinitely diluted in the binary
three-phase system.

In this way, an initial value has been assigned to all the variables
of the first T-3PP of the T-3PL to be built. The specifications for
converging the first T-3PP are the mole fraction of component 3 in
one of the phases (which is set equal to an extremely low value) and
some other variable such as, e.g., the temperature for the case of an
isothermal T-3PL (being such temperature indeed equal to that of
the B-3PP).

After convergence is achieved for the T-3PP, the calculation of
the T-3PL is initiated with the help of a numerical continuation
method.

A.2-Starting off from a T-CEP contained in the T-3PL

A T-CEP with known numerical values for its variables is useful
to obtain a T-3PP where two of the phases are quasi-critical. This T-
3PP can be named “quasi-critical T-3PP” (qc-T-3PP). In a T-CEP two
phases coexist in equilibrium, a critical phase with a non-critical
phase. The variables that characterize a T-CEP are: T , P, Vc, Va, xc1,
xc2, x

c
3, x

a
1, x

a
2, x

a
3, u1, u2, u3 and l. T is the absolute temperature, P is

the absolute pressure, Vj is themolar volume of phase j, and xji is the
mole fraction of component i in the phase j, with i ¼ 1.3 and j¼c or
j¼a. The superscript “c” refers to the critical phase, and the su-
perscript “a” refers to the non-critical phase. u1, u2 and u3 are the
three components of certain eigenvector related to the critical
conditions to be satisfied by the ternary critical phase present in the
T-CEP, and l is the eigenvalue associated to such eigenvector. The
variables u1, u2 and u3 provide useful information for the calcula-
tion of a qc-T-3PP (described below). Details about the conditions
that must be satisfied to compute a ternary critical point and a T-
CEP are given in Refs. [11,19].

Initializing variables to calculate a qc-T-3PP using the
information from a T-CEP is relatively more complex than the
procedures presented in sections 5 and A.1. The values of tem-
perature (T) and pressure (P) of the qc-T-3PP are set equal to those
of the known T-CEP. And the values of molar volume (Va) and of
mole fractions xa1, x

a
2 and xa3 of the (far from critical) phase “a” of

the qc-T-3PP are set equal to the corresponding values of the
variables of the phase a (noncritical phase) present in the known
T-CEP.

To produce a qc-T-3PP, the critical phase of the T-CEP is taken to
a condition where it splits into two quasi-critical phases (phases b
and g), having compositions close to that of the critical phase of the
T-CEP. To achieve this separation, it is necessary to estimate the
direction (in the mole fractions space) along which it occurs. This
would be somewhat complicated for the case of ternary mixtures,
since the tie-line connecting the compositions of phases b and g,
could have, at first sight, any direction. However, a direction chosen
at random will in most cases lead to a lack of convergence. To es-
timate the compositions of the quasi-critical phases, the following
equations are used:

xbi ¼ xci þ sui
ffiffiffiffiffi
xci

q
i ¼ 1::3 (A.2.1)

xgi ¼ xci � sui
ffiffiffiffiffi
xci

q
i ¼ 1::3 (A.2.2)

where xbi and xgi are the unknown mole fractions of component i in
phase b and phase g of the qc-T-3PP, respectively, and xci is the
known mole fraction of component i in the critical phase “c” of the
T-CEP. ui is a known component of the eigenvector mentioned
above, and “s” is a distance parameter that is set in this work equal
to a value of about 1 � 10�5. Eigenvector u! is the direction along
which the split of the critical phase is to be carried out.

Once the values for the mole fractions of each component in the
phase “b” and phase “g” are obtained from eq (A.2.1) and (A.2.2), Vb

and Vg are calculated at the temperature and pressure of the T-CEP
using the chosen EOS (SRK-EOS [14] in this work). At this point all
variables of the qc-T-3PP have initial values assigned. Next, the qc-
T-3PP point is converged. To do so, the specified variable is, in this
work, chosen to be the ratio of molar volumes Va/Vb of the quasi-
critical phases. This ratio is set equal to a value close to unity, e.g.,
0.9995. This value makes possible to avoid the trivial solution
during the process of converging the qc-T-3PP, since it forces the
quasi-critical phases to be different, while keeping their properties
very similar. The second degree of freedom to be specified is, in
general, the temperature or the pressure, which indeed equals,
respectively, the temperature or the pressure of the T-CEP. This
variable is the one that remains constant along the T-3PL to be
computed.

With this qc-T-3PP already converged and with the help of a
numerical continuation method, the complete T-3PL is calculated.
A.3-Starting off from a binary critical end point (B-CEP) to which the
T-3PL tends

In a B-CEP two phases coexist in equilibrium, a critical phase and
a non-critical phase. The variables that characterize a B-CEP are: T ,
P, Vc, Va, xc1, x

c
2, x

a
1, x

a
2, u1, u2 and l. The conditions that must be

satisfied to compute a binary critical point or a B-CEP will not be
treated in this work (see Ref. [4]), although, these conditions are
similar to those for the calculation of a T-CEP. The mentioned var-
iables are the same than those of a T-CEP with the difference that
xc3, x

a
3 and u3 corresponding to the third component are not present

in the B-CEP. The information available in a converged B-CEP is
useful to obtain a qc-T-3PP for which the third component is at
significantly high dilution. We refer to such point as ID-qc-T-3PP
(infinity dilution - quasi critical e T-3PP).

The first step consists of obtaining a converged quasi-critical
binary three-phase point (qc-B-3PP) from the known B-CEP. This
is done by applying the procedure of section A.2, except that now
the number of components is two instead of three. Since the
converged qc-B-3PP is a known B-3PP, the procedure of section A.1
is applied to obtain a T-3PP with very low component 3 concen-
trations in the system's phases, and with a couple of phases having
very similar composition and density (qc-T-3PP).
A.4-Starting off from a ternary critical end point of a four phase line
(T-CEP-4PL) to which the T-3PL tends

In a T-CEP-4PL three phases coexist in equilibrium, a critical
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phase with two non-critical phases. The variables that characterize
a T-CEP-4PL are: T , P, Vc, Va, Vb, xc1, x

c
2, x

c
3, x

a
1, x

a
2, x

a
3, x

b
1, x

b
2, x

b
3, u1, u2,

u3 and l. The superscript “c” means ‘critical phase’, and the su-
perscripts “a” and “b” refer to the non-critical phases.

Phases “c” and “a” satisfy, if considered together, the conditions
of a T-CEP, since a T-CEP is an equilibrium situation between a
critical phase and a non-critical phase. Hence, the computation of a
T-3PL can be, in principle, started off from the information in phases
“c” and “a”, as described in section A.2. The same is true for the pair
of phases “c” and “b”. We will identify these T-3PLs as T-3PL-ac and
T-3PL-bc. The suffixes eac and ebc refer to the way in which the T-
3PLs are calculated, i.e., by generating, as a first step (in the process
of obtaining a first T-3PP), two quasi-critical phases from phase “c”.
Actually, this critical phase “de-stabilization” step needs to be done
only once, and the result then used for both T-3PLs (T-3PL-ac and T-
3PL-bc).

At a T-CEP-4PL two T-CELs and a T-4PL meet. This is always so
(see Fig. 1).

It seems at first sight that the T-3PL-ac and the T-3PL-bc should
always be calculable. However, for a given T-CEP-4PL, whether
both T-3PLs (T-3PL-ac and T-3PL-bc), or only one of them, or none
of them, are calculable, seems to depend on the relative angles
(seen, say, in the PT plane) at which the T-CELs and the T-4PL
reach the T-CEP-4PL; and also on the T-3PL specification, e.g., the
T-3PL-ac and the T-3PL-bc could be set to have the same tem-
perature than that of the T-CEP-4PL, or, otherwise, set to have, e.g.,
the same pressure than that of the T-CEP-4PL. For instance, the
isobaric T-3PL(V) (say, that this is the T-3PL-ac) in Fig. 3 of the
main text originates at the T-CEP-4PL: but there is no isobaric T-
3PL-bc, or, in other words, such isobaric T-3PL-bc has a null
length.

It is important to bear in mind that the T-3PL-ac is such that two
of its three phases become identical when the T-3PL-ac reaches the
T-CEP-4PL, being this point the termination point of T-3PL-ac. The
same is true for T-3PL-bc. An example of this kind of T-3PLs is
shown in Fig. 14 of the main text.

A third T-3PL, which we name T-3PL-abc, is obtained by directly
using the information from the three phases of the T-CEP-4PL, in a
simultaneous way. This can be done since the T-CEP-4PL is an
already converged T-3PP (with the special feature of having a phase
that satisfies the critical conditions). Notice that the suffix eabc
implies that the T-3PL computation does not require a step of de-
stabilization of the critical phase “c”, i.e., the suffix eabc refers to
a way of calculating the T-3PL-abc that differs from the way indi-
cated by suffixes eac and ebc in T-3PL-ac and in T-3PL-bc. The
absence of a de-stabilization step makes the computation of the T-
3PL-abc more straightforward than the calculation of T-3PL-ac and
of T-3PL-bc.

The T-3PL-abc contains the T-CEP-4PL as one of its three-phase
equilibrium points. However, the T-CEP-4PL does not set, for T-
3PL-abc, its termination or origin, i.e., the T-CEP-4PL is not an
endpoint of the T-3PL-abc. Although the computation of the T-
3PL-abc will progress in a given direction with respect to the
location of the T-CEP-4PL, T-3PL-abc will also be stable in the
opposite direction. This may be regarded as surprising, but it is
not. An interesting feature of the T-3PL-abc is the following:
when, while moving along this line, the T-CEP-4PL is approached,
none of the two phases of any of the three possible pairs of phases
(of the ternary three-phase equilibrium) tend to be identical, in
spite of the fact that one of the phases tends to be critical. Such
phase has access to the critical state exactly at the T-CEP-4PL.
Fig. 13 of the main text shows a T-3PL-abc. Fig. 15 of the main text
simultaneously shows the two T-3PLs which originate a the T-
CEP-4PL of system [B].
A.5-Starting off from a ternary tricritical point (T-TCP) contained in
the T-3PL

The variables [10] that characterize a T-TCP are: T , P, Vc, xc1, x
c
2,x

c
3,

u1, u2, u3, w1, w2, w3 and l. The superscript “c” refers in this case to
the tricritical fluid mixture. w1, w2, w3 are the components of a
certain [10] vector orthogonal to u (i.e., uTw ¼ 0). Since a T-TCP is an
end point of a (properly specified) T-3PL, it seems, from the ideas of
section A.2, that it should be possible to initialize the variables of a
quasi-tri-critical T-3PP (qtc-T-3PP) from the information contained in
a converged T-TCP. However, we have not yet found away of doing so.

Differential perturbations (in the appropriate directions) set on the
composition of a T-TCPwould result in the separation of the tri-critical
phase into three quasi-tri-critical phases, whose compositions would
be used to estimate the molar volumes of such phases. This infor-
mationwould be used to initialize the calculation of the qtc-T-3PP. The
differential perturbations could be realized in infinite directions, if
only the T-TCP composition, out of the full known T-TCP information,
were to be used in such perturbation step. If such directions are set at
random, no convergence for the qtc-T-3PP is obtained.

Unfortunately, so far it was not possible to find a way of using
the information contained in vectors u and w to develop a method
to initialize the variables of a qtc-T-3PP.

Fig. 4 and B.4 show different projections of a T-3PL (T-3PL(VI))
which develops between a T-4PP and a T-TCP (the acronyms T-TCP
and T-TCEP have identical meaning, see Table 1).

Appendix B. Additional charts showing a number of T-3PLs
for system [A]

Fig. B.1 shows the temperature (T)-molar volume (V) projection
of T-3PL (I) (system [A]) (see also Fig. 3). This line begins in a T-4PP
(low temperature) of the T-4PL (see T-CM, Fig. 3). The critical
phenomenon (high temperature) can be appreciated when the T-
3PL (I) reaches the T-CEP(c). At this point L1 ¼ L2 (Fig. B.1). At the
minimum temperature in Fig. B.1 (T-4PP) the three-phase system is
not globally stable and a 4th phase appears, whose molar volume is
not indicated in Fig. B.1.

Fig. B.2 shows the T-3PL (II) (T-V projection, see also Fig. 2). This
line begins in a B-3PP(CO2þH2O) of the B-3PL(CO2þH2O) at low
temperature (Fig. 2). The T-3PL (II) reaches the T-CEP (e) at high
temperature, where L1 and L2 become critical (L1 ¼ L2).

By rising the pressure from 69.35 bar (Fig. B.2) to 76.17 bar
(Figs. 6 and 7) the phases L2 and L3 of minimum temperature (B-
3PP in Fig. B.2) become critical (at the B-CEP temperature in Figs. 6
and 7). The T-CEP(e) is not the same in Fig. B.2 and Fig. 6, as it is
evident from the temperature values of the T-CEPs(e).

Fig. B.3 shows the T-3PL (V) (T-V projection, see also Fig. 3). This
line begins at the T-CEP-4PL. The phases L2 and L3 are critical at the
temperature of the T-CEP-4PL (Fig. B.3). As the temperature increases
the phases L1, L2 and L3 coexist in equilibrium. When the T-3PL(V)
reaches the T-CEP(c), L1 and L2 become critical (L1 ¼ L2, Fig. B.3).

When pressure increases from 109.3 bar (Fig. B.1) to 109.6 bar
(Fig. B.3) pressure, the phases L2 and L3 at the T-4PP temperature
(Fig. B.1) become critical, as shown in Fig. B.3 at the temperature of
the T-CEP-4PL. Notice that the temperature range of the T-3PL(II)
(Fig. B.2) is much wider than the temperature ranges of T-3PL(I) in
Fig. B.1 and T-3PL(V) in Fig. B.3.

Fig. B.4 shows the T-3PL (VI) (T-V projection). This line, also shown
in Fig. 4, was calculated maintaining a specific linear relationship
between temperature and pressure. This PT relationship is such the
T,P coordinates of the T-TCEP (II) (Fig. 4) satisfy such relationship. The
T-3PL(VI) begins in a T-4PP (low temperature) of the T-4PL (see T-CM,
Fig. 4) and ends at the T-TCEP (II). When the T-3PL (VI) reaches the T-
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TCP (II), the phases L1, L2 and L3 become identical simultaneously
(L1 ¼ L2 ¼ L3, Fig. B.4). Notice that, in Fig. B.4, changing the tem-
perature implies changing the pressure. In other words, Fig. B.4 is
neither an isobaric nor an isothermal phase diagram.

There is a slight difference in Fig. B.4 between the maximum
value of the molar volume of the L1 phase and the molar volume of
the T-TCEP. This is attributed to numerical limitations related to this
type of calculations. Note that Fig. 4 shows that the T-3PL (VI) tends
exactly to the T-TCEP. This is because the specification imposes an
exact match of the (previously known) T,P coordinates of the T-
TCEP. Variables other than T and P show small numerical differ-
ences with respect to the expected known values, at T,P coordinates
equal to those of the T-TCEP.
Fig. B.1. Temperature-Molar Volume projection of the calculated T-3PL(I) (P ¼ 109.3 bar). S
SRK-EoS (see Table 4). The T-CEP(c) indicated in this figure is not the same than that of T-3P
three-phase line. T-4PP: Ternary four-phase point. Phase condition associated to labels: Tab

Fig. B.2. Temperature-Molar Volume projection of the calculated T-3PL(II) (P ¼ 69.35 bar). C
EoS (see Table 4). Labels: T-CEP: Ternary-critical end point. T-3PL: Ternary three-phase l
Important: See note in Table 4.
A second T-3PL (named T-3PL(VII), not shown in this work)
different from T-3PL(VI) (of Fig. 4 and Fig. B.4) could be calculated
under the same specification than that of T-3PL(VI), being, the T-
3PL(VII), stable also at temperatures higher than the T-4PP tem-
perature (readable in Fig. B.4). T-3PL(VII) corresponds to a three-
phase combination at the T-4PP different from the one of the T-
3PL(VI) (combination shown in Fig. B.4). Besides, the T-3PL(VII)
does not end at the T-TCEP(II) shown in Fig. 4, in spite of the fact
that the T-3PL(VII) has a T-3PP of T, P coordinates identical to those
of the T-TCEP(II). The T-3PL(VI) and T-3PL(VII) belong to different T-
3PSs (both surfaces originate at the same T-4PL). Finally, the T-
3PL(VII) does not meet critical or tri-critical conditions at the T,P
values of the T-TCEP(II).
ee Fig. 3 and compare with Fig. B.3. System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model:
L(III) and T-3PL(V) (see Fig. 3). Labels: T-CEP: Ternary-critical end point. T-3PL: Ternary
le 2. Important: See note in Table 4.

ompare to Fig. 6 and see Fig. 2. System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model: SRK-
ine. B-3PP: Binary three-phase point. Phase condition associated to labels: Table 2.



Fig. B.3. Temperature-Molar Volume projection of the calculated T-3PL(V) (P ¼ 109.6 bar). See Fig. 3 and compare with Fig. B.1. System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model:
SRK-EoS (see Table 4). The T-CEP(c) is the same than the T-CEP(c) indicated in Figs. 3 and 5. The molar volume of the third phase of the T-CEP-4PL is not indicated in this figure.
Labels: T-CEP: Ternary-critical end point. T-3PL: Ternary three-phase line. T-CEP-4PL: Ternary-critical end point of a four phase line. Phase condition associated to labels: Table 2.
Important: See note in Table 4.

Fig. B.4. Temperature-Molar Volume projection of the calculated T-3PL(VI).
System: CO2(1)þH2O(2)þ2-propanol(3) [A]. Model: SRK-EoS (see Table 4). A linear relationship between temperature and pressure remains valid along this T-3PL. The T-3PL
specification is the following: P ¼ aT þ bwhere a¼(1.8841 bar/K) and b¼(-519.04 bar). See Fig. 4. Labels: T-TCEP: Ternary-tricritical end point. T-3PL: Ternary three-phase line. T-4PP:
Ternary four-phase point. Phase condition associated to labels: Table 2. Important: See note in Table 4.
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