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†Departamento Ciencias Baśicas, Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Campus Universitario, 5800 Río
Cuarto, Argentina
‡Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS) and Planta Piloto de Ingeniería Química - PLAPIQUI
(UNS-CONICET), 8000 Bahía Blanca, Argentina

*S Supporting Information

ABSTRACT: The optimal selection of sensor structures improves the
knowledge of the current plant state, which is a central issue for the decision-
making process. Instrumentation design is a challenging optimization problem
that involves a huge amount of binary variables that represent the possible
sensor locations. In this work, the limitations of the current design strategies
are discussed, and they support the application of evolutionary solution
methods. Among them, the estimation of distribution algorithms (EDAs)
arises as a convenient alternative to solving the problem. These are stochastic
optimization strategies devised to capture complex interactions among
problem variables by learning the probabilistic model of candidate solutions
and its sampling to generate the next population. From the broad spectrum of
EDAs that use multivariate models, two representative procedures are selected
that significantly differ in the methods used for learning and sampling those
models. Furthermore, a comparative performance study is conducted to evaluate the benefits of increasing the complexity of the
distribution model with respect to a memetic procedure based on univariate models.

1. INTRODUCTION

The design of the instrumentation system of a chemical plant is
a complex multilevel task that is composed of the definition of
the global objectives, the selection of the measured variables,
and the specification of the implementation details, such as
measurement intervals, sample procedures, interfaces, main-
tenance activities, etc.
During the online operation, the quality and availability of

process knowledge essentially depends on the instrumentation
selection performed on the second design stage. The structure
of a sensor network (SN) is defined by the type, amount,
precision, reliability, and location of its instruments.
To determine the optimal SN that minimizes the total

instrumentation cost and simultaneously satisfies the quantity
and quality of the required information, a combinatorial
optimization problem is formulated that involves binary
variables.1 Because the dimension of the search space increases
significantly for large-scale processes, a challenging optimiza-
tion problem arises that may have many local optima. Its
solution has been tackle using exact and stochastic algorithms.
Comprehensive reviews of these methods can be found
elsewere.2−5

Diverse exact procedures have been proposed to solve the
sensor network design problem (SNDP) but they do not
guarantee that the solution can be attained in polynomial time
for any instance of the problem. The tree search and
mathematical programming techniques are representative of

the exact solution procedures. The last ones are appropriate if
the constraints of the design problem can be explicitly defined
in terms of the binary variables, and the mathematical problem
can be associated with a certain formulation, e.g., mixed integer
linear or nonlinear programming problems arise.
Stochastic solution procedures provide a good balance

between the quality of the solution and the computational
resources for any instance of the problem even though the
global optima may not be attained. Techniques based on
genetic algorithms (GAs) were proposed initially. In this sense,
the GA toolbox of the MATLAB program6 and parallel
versions of the classic GA7 were used. An algorithm that
combined a structured population in the form of neighbor-
hoods and a local optimizer of the best current solutions was
also presented.4 Furthermore, a design strategy within the
framework of Tabu search (TS) that used a strategic oscillation
(SO) technique around the feasibility boundary, called SOTS,
was developed.8 It significantly reduced the number of
required calls to the evaluation function in comparison with
previous methodologies.
Recently a metaheuristic approach based on the estimation

of distribution algorithms (EDAs) and SOTS was presented.5
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The solution scheme made use of the population-based
incremental learning algorithm (PBIL) developed by Baluja,9

which assumed independent relationships among variables.
Application results of that procedure, called PBIL-SOTS,
demonstrated the synergistic effect of the combination of
EDAs and SOTS advantages on the solution of the SNDP.
According to the model complexity, EDAs can be broadly

divided into univariate, bivariate, or multivariate approaches.10

To handle variable interdependencies, the second and third
classes of EDAs require complex learning algorithms and
significant additional computational resources. The question of
deciding on the type of model to be used for a given problem is
not solved.
In contrast to any previous work, the applicability of

different approaches for solving a standard formulation of the
SNDP is analyzed using case studies of different size and
complexity. At first, the behavior of exact procedures is
discussed based on the results obtained using a tree-search
algorithm. The scalability analysis of those procedures allows
the understanding of the necessity of applying evolutionary
optimization approaches for solving large-scale design
problems. The EDAs have demonstrated a rewarding perform-
ance for this purpose, but the benefits and drawbacks of using
complex probabilistic models have not been addressed before.
From the broad spectrum of multivariate EDAs, two
representative procedures are selected that strongly differ in
the methods used for learning and sampling the probabilistic
model. One of them is the affinity EDA, AffEDA,11 whose
models are constructed using the mutual information between
pairs of variables and an affinity propagation algorithm. The
other one is the estimation of bayesian network algorithm,
EBNA,12 which determines the Bayesian network (BN)
structure that optimizes the Bayesian Network Criterion
score from the database containing the selected individuals
at each generation. Furthermore, a comparative performance
study is conducted to evaluate the benefits of increasing the
complexity of the distribution model with respect to the
memetic procedure PBIL-SOTS.
This work is structured as follows. In section 2, a standard

SNDP is formulated. Then, in section 3 an exact procedure is
applied for solving problems of incremental size. Complex
EDAs are introduced in section 4. In section 5, results are
provided and discussed for various case studies presented in
the literature. Section 6, the conclusion section, ends the
article.

2. SENSOR-NETWORK DESIGN PROBLEM

The minimum-cost SNDP that satisfies precision and
estimability constraints for a set of key variable estimates is
stated by eq 1, where q is an I-dimensional vector of binary
variables such that qi = 1 if variable i is measured, and qi = 0
otherwise, cT is the cost vector; σ̂k is the estimate standard
deviation of the k-th variable contained in Sσ after a data
reconciliation procedure is applied,13 and El stands for the
degree of estimability of the l-th variable included in SE.

13

Furthermore, Sσ and SE are the set of key process variables with
requirements in precision and ability to be estimated,
respectively:
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In this formulation, it is assumed that a linearized algebraic
model represents plant operation, measurements are subject to
noncorrelated random errors, there is only one potential
measuring device for each variable, and there are no
restrictions for the localization of instruments. Regarding the
definition of degree of estimability, let us first denote A(p) as
the set of all possible combinations of p measurements, and call
Aj(p), the j-th element (combination) of this set. The l-th
variable (measured or not) has a degree of ability for
estimation El, if it remains estimable after the elimination of
any combination Aj(El − 1)∈ A(El − 1) and it becomes
unobservable when at least one set, Aj(El) ∈ A(El), is
eliminated.14 If El is set equal to one, the feasibility of the
constraint can be checked by executing a variable classification
procedure, which can be accomplished by matrix projection,
QR decomposition, or matrix co-optation.15,16

3. EXACT SOLUTION PROCEDURES

The exact solution procedures provide the global optimal
solution of the SNDP. Up to the present time, diverse
algorithms have been presented that belong to that cathegory,
but any of them guarantees attaining the global optimum for
any instance size in polynomial time. In general, two types of
exact solution procedures can be distinguished. The first one
considers the unmeasured variables as infinite-variance
measurements to explicitly calculate certain network perform-
ance measures in terms of q. Then available commercial
software packages are applied to solve the resulting SNDPs. In
general, mixed-integer nonlinear programming, MINLP,
problems arise.17−19

The tree search is the second approach used to obtain the
global optimum of the SNDP. That versatile method does not
use any transformation of the problem into well-established
optimization formulations. It only requires that the solution set
can be divided into mutually exclusive subsets and that a lower
bound of the objective-function can be estimated for any
solution of a given subset. If these conditions are satisfied, the
tree search allows the calculation of the optimal solution of
optimization problems that involve objective functions and
constraints of any type. The tree search is a branch and bound
methodology without node relaxation that performs a smart
exploration of the tree using appropriate bound definitions and
stopping criteria. Next, an exact solution procedure, called level
traversal tree search, LTTS,2 is briefly reviewed. It efficiently
combines depth and wide tree searches to obtain minimum
cost-sensor structures.
At first, the LTTS sorts the sensors in ascending order of

cost, i.e., c (i) < c(i + 1) (i = 1···I − 1) and generates a tree
whose base unit may be a single measurement. Starting with a
root node with no variables being measured, at each level one
extra element of q is made active. The tree structure is
generated considering that the descendents of any node are
sorted in ascending order of cost from the left to the right. This
allows the disregarding of the set of solutions and family of
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nodes when the wide search is performed. If up = cTq* is the
upper bound, where q* is the better current solution, then the
branching is stopped if (a) the cost of the current node is
greater than up, i.e., cc

n > up; (b) the current node is feasible. In
this case, if cc

n < up; the value up is updated as follows: up = cc
n.

The algorithm LTTS proceeds as follows:

(1) A standard depth-first tree search is performed until a
pre-specified number of nodes is inspected. That
number depends on the size problem. The best current
solution (q*), the level where it was found (i), and the
number of measured variables in q* are saved. Up to this
point, all the nodes located to the left of q* and their
sons are inspected.

(2) If q* is the cheapest node visited of the i-th level, then
the parent of q*, which belongs to the level i − 1, is
identified and the nodes located to the right of the q*
parent are inspected. In contrast, the examination of the
nodes located to the right of q* follows.

(3) For each family, the node that satisfies the stopping
criteria is identified. If it is the cheapest node of the
family, all of the nodes located to the right of it that
share the same parent are disregarded. If it is not the
case, the next families should be examined.

(4) If all of the nodes of the current level are examined or
disregarded, then the upper level is inspected.

(5) If all of the nodes of a given level are infeasible, then the
procedure stops.

The methodology previosuly described is applied to locate
the flowmeters of a process that involves 11 units and 28
streams (case study 1). It is assumed that variables are related
only by mass balance equations. The standard deviation of
flowmeters is 2.5% of the true variable values. Table 1 shows

the complexity of the set of constraints imposed for case
studies 1.a and 1.b. More information regarding process
variables is required for the second design; therefore, the
number of constraints of the optimization problem increases.
Table 2 reports the global optimum solutions and the

computational time required to solve both cases studies
when the procedure was executed using a Processor Intel Core
i7 CPU 920 @ 3.40 GHz, 8GB RAM, using MatLab. Results
show that the computational load is high even though the
instance size is relatively small.
The computation time of the described methodology

depends on where the global optimum is located in the tree
search. If the SNDP involves I binary variables, the complete

tree search is composed of I levels, and the number of nodes of
the i-th level is equal to (i

I). This value increases exponentially
with I, and its maximum is approximately obtained for I/2. If
the number of measured variables of the optimal solution is
around I/2, then it may be intractable to obtain it in sensible
times due to the huge amount of nodes that should be visited.
Recall that the procedure ends when all of the nodes of the
level where the solution is and those belonging to the previous
level have been explored. For example, the optimal solution of
Case 1.b corresponds to the 22th level. The number of nodes
of the 21th level is of the order of 106, while the whole search
space is 228, i.e., of the order of 108. In this case, the
computational time required to get the optimal solution was
106.5 h (4 days and 10.45 h).
Previous results show that optimal solutions that are

composed of approximately I/2 measured variables are a
bottleneck for the methodology. In consequence, the guarantee
of optimality that techniques based on tree search ensure
cannot be attained in practice when I increases, and, depending
on the optimization problem complexity, the computational
time constitutes a limiting factor to select the most appropriate
solution strategy. This problem is shared by many
combinatorial optimization problems, and this motivated that
metaheuristics have been developed. They propose different
mechanisms to provide good solutions in limited time.
Genetic algorithms have been used to solve the SNDP. In

general the performance of the standard GA is poor, this is why
many techniques presented to tackle that problem include
some type of enrichment strategy that helps them to find better
solutions. The main inconvenient of GAs is that they loose
genotypic material in the evolution procedure. For the SNDP,
that means GAs loose measured variables associations that are
repeated in good quality solutions. They may be formed at the
earlier stages of the algorithm but they disappear latter due to
the cross-over operator. This disadvantage has motivated the
development of other evolutionary algorithms (EA). In this
sense the EDAs have significantly improved the performance of
the classic GA.10,20 In the next section, the basic theoretical
concepts related to EDAs are revisited.

4. ESTIMATION OF DISTRIBUTION ALGORITHMS
Evolutionary algorithms based on probabilistic models are
distinguished as a new computing paradigm in evolutionary
computation. The EDAs adopt an evolutionary mode for
searching the best solutions that consists olf building a
probabilistic model about the distribution of good individuals
in the search space and then sampling that model to build the
next population. In this fashion, EDAs succeed to attain the
required knowledge for approaching the global optimum in the
search space step by step.
The relationships among variables are explicitly considered

in EDAs by means of the probabilistic model associated with
the individuals of each generation. The estimation of that
model constitutes one of the main issues of EDAs. According
to the model complexity, EDAs can be broadly divided into
three categories: univariate, bivariate, and multivariate
approaches.10

Regarding discrete EDAs, the univariate techniques assume
that all variables are independent. Thus, the joint probability of
a candidate solution is decomposed into the product of the
marginal probabilities of individual variables. Other EDAs are
capable of capturing some pair-wise interactions between
variables using tree-based models, in which the conditional

Table 1. Set of Constraints

case
study constraints

1.a Ele ≥ 1 for streams 17 and 23
σ4* = 2.199, σ8* = 3.281, σ21* = 1.754, and σ25* = 1.709

1.b Ele ≥ 1 for streams 7, 16, 18, and 20
σ4* = 2.199 σ5* = 1.065 σ8* = 3.281σ12* = 1.345 σ27* = 1.415σ28* =
1.445

Table 2. Global Optimum Solutions

case optimal solution cost
computational time

(h)

1.a 1, 4, 6, 7, 9−11, 14, 16−24 752.26 85.6
1.b 1, 2, 4−11, 13, 16−24, 26−28 1106.50 106.5
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probability of a variable may only depend on, at most, one
other variable, its parent in a tree structure. Univariate and
bivariate EDAs can be efficiently applied to separable problems
or to problems with low degrees of dependency among the
variables. However, those approaches might rapidly lose their
efficiencies when variable interactions increase. Thus, multi-
variate EDAs are devised to capture a broad variety of possible
relations among variables, but their modeling flexibility comes
at the expense of an extra computational work.
Among multivariate EDAs, there exist procedures based on

marginal product models (MPM). In this sense, the method-
ology of the extended compact genetic algorithm, EcGA,21

factorizes the joint probability distribution into a number of
marginal distributions defined over non-overlapping clusters of
variables. At each generation, the model building starts
assuming that all the variables are independent. Then the
two clusters whose merging most improves the quality of the
model, measured in terms of the minimum description length,
are jointed. This procedure is repeated until no link of two
clusters improves that metric. Next, a probability table is
computed for each cluster using a set of selected solutions, and
the new population is generated by sampling each group. The
AffEDA11 also uses MPM. Given a set of points and a measure
of similarity, that procedure forms groups of similar points
without fixing in advance the number of clusters. After this
stage of model building, it is sampled in the same way as EcGA
does.
Many problems contain highly overlapping subproblems

that cannot be accurately modeled by dividing the problem
into an independent set of variables. In these cases, Bayesian
networks, BNs, can be used. They allow us to encode
probability distributions through a structure, which expresses
explicit independence relations among variables and a set of
parameters. In contrast to MPM, BNs are capable of capturing
more complex problem decompositions in which subproblems
interact. The EBNA uses the Bayesian information criterion to
evaluate network structures in the greedy network construction
algorithm. That metric contains a strong implicit bias toward
simple models; therefore, it does not require a limit on the
number of allowable parents or any prior bias toward simpler
models.22,23

In addition, Markov networks can encode multivariate
interactions among variables. The structure of these networks
is similar to the Bayesian ones except that the connections
between variables are undirected. A Markov network that
ensures convergence to the global optimum may sometimes be
considerably less complex than an adequate BN, at least with
respect to the number of edges, but its sampling is more
difficult.24

Regarding BNs, the theoretical and practical issues of their
application for solving benchmarks of combinatorial optimiza-
tion problems have been extensively analyzed in the literature.
Because there exist a remarkable effort to develop EDAs based
on BNs, EBNA was selected to solve the SNDP for the first
time even though the structural learning of the probabilistic
model by BNs is a non-deterministic polynomial-time hard
(NP-hard) problem, and its applicability may be restricted to
medium-size problems. Because this work also aims at studying
multivariate EDAs that strongly differ in the methods used for
learning and sampling the probabilistic model, a representative
technique of MPM, the methodology AffEDA, is selected for
comparative purposes. It shares one common feature with all
MPM; that is, the joint probability distribution is decomposed

into marginal distributions. Next brief descriptions of the
solution schemes devised to solve Problem 1 using AffEDA
and EBNA are presented, and their pseudocodes are included
in the Supporting Information.

4.1. Affinity Estimation of Distribution Algorithm.
When an EDA is used to solve Problem 1, a solution vector q =
{q1, q2,···, qI} is considered a realization of an I dimensional
random vector Q = { Q1, Q2,···, QI}, where Qi is a binary
variable. A graphical probabilistic model of Q provides a
factorization of the joint probability distribution of Q, denoted
as pQ, that represents Pr(Q = q) = pQ(q). Furthermore, if the
marginal distribution function of each unidimensional random
variable Qi is pi, then Pr(Qi = qi) = pi(qi).
The AffEDA11 generates a random population of M

individuals, which are evaluated using a fitness function. At
each generation a tournament selection is applied to choice a t
percent of the individuals of the current population, which are
used for the structural learning.
The AffP proposed by Frey and Dueck25 is applied to group

the variables into nonoverlapping sets of strong interacting
variables; each set constitutes a factor of the probability
factorization.The technique considers the mutual information
matrix, MI, between the variables as the similarity measure.
Given two random variables Qx and Qy, the mutual information
between them, IM (Qx, Qy), is defined as follows:

∑ ∑=
i

k

jjjjjjj
y

{

zzzzzzzIM Q Q p q q
p q q

p q p q
( , ) ( , )log

( , )

( ) ( )x y
q q

x y
x y

x y
2

x y (2)

where p(qx) and p(qy) are the values of the marginal
probability distributions of variables Qx and Qy, respectively,
and p(qx, qy) represents the value of the joint probability
distribution of the random vector [Qx Qy]; that is, p(qx, qy) =
probability(Qx = qx, Qy = qy). If Qx and Qy are independent, IM
(Qx, Qy) = 0 because the joint probability distribution of these
variables is equal to the product of their marginal probability
distributions.
The clustering procedure works by exchanging messages

between points until a stop condition is fulfilled. A
responsibility message is sent from a point to a candidate
exemplar and indicates the accumulated evidence of the
suitability of the message receiver to become the exemplar of
the data point, taking into account the other potential
exemplars of that point. An availability message is sent from
a candidate exemplar to a data point and measures how
appropriate would be for the point to choose the message
sender as its exemplar, given the support provided by other
points that the sender should be an exemplar. Data points
receive availability messages from different candidate exem-
plars, while these collect responsibility messages from diverse
data points.
After the structural model is learned, the frequency tables are

calculated and the model building stage finishes. Next, the
population of the next generation, which contains M − k
individuals chosen by sampling the probabilistic model and the
best k individuals of the current population, is formed. The
stages of selection, probabilistic model learning, and sampling
are repeated until the maximum number of generations is
reached.
For illustrative purposes, let us consider a process

constituted by eight streams and five units. In this case, the
dimension of the random vector Q is eight. For a selected
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population of 11 individuals, Figure 1 shows the MI and the
clusters obtained from the application of the AffP. The

elements of the diagonal of MI are zero because only the
degree of dependence between two different variables is
considered to form the clusters. The eight variables are divided
into three groups: {Q2, Q3, Q7}, {Q1, Q5,Q8}, and {Q6,Q4}.
In this example the structural model learning provides

pQ(q), which is formulated as follows:

=p p q q q p q q q p q qq( ) ( , , ) ( , , ) ( , )2 3 7 1 5 8 6 4 (3)

The model parameters learning is based on the frequency
tables presented in Figure 2. For example, the combination of
values Q2 = 1, Q3 = 1 and Q7 = 0 for the first cluster is found
twice (individuals 1 and 2). Therefore, the occurrence
probability of that combination is 2/11 = 0.18. For each
isolated group, an inspection of the values of its variables in the
population is performed to estimate its accumulated
probability vector, from which the new population is sampled.
4.2. Estimation of Bayesian Network Algorithm. The

initial population is generated assuming variables independ-
ence and uniform marginal distributions. At each generation, a

set of individuals selected by tournament is used to learn the
probabilistic model structure.
In this work, algorithm B26 is implemented for building the

model. The procedure starts with a network with no edges. A
greedy algorithm is then used to add edges to the network. The
edge that gives the most improvement according to the
Bayesian information criterion (BIC), proposed by Schwarz,27

is added at each iteration. The algorithm finishes when an arc
addition no provides a metric increment. This model
represents the conditional dependencies among the variables,
and its parameters are estimated using the maximum likelihood
principle.
New candidate solutions are generated by sampling the

probability distribution encoded by the built network using
probabilistic logic sampling.28 Elitism is applied as in the case
of AffEDA.
Figure 3 shows the model structure learnt by EBNA for the

selected population depicted in Figure 1. Consequently, pQ(q)
is defined as follows:

=p p q p q q p q q p q q q p q q

p q q p q q p q q

q( ) ( ) ( / ) ( / ) ( / , ) ( / )

( / ) ( / ) ( / )

Q 1 2 1 3 1 4 2 3 5 3

6 5 7 6 8 6 (4)

It should be noted that the significant increment in the number
of factors of pQ(q) with respect to MPM models originates an
important increase in the computational time required to
estimate model parameters, as is shown in Figure 4 for the
p(q2/q1)factor.
The parent set of the i-th node is formed by the variables

from which an arrow comes out to the node. Those sets are
denoted as Pai. It can be seen from Figure 3 that parent sets
are variable Q1, the set composed of Q2 and Q3, variable Q5,
and variable Q6.

Figure 1. (a) Selected population. (b) MI. 103 for AffEDA.

Figure 2. Example of parameter estimation for AffEDA.
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The factorization of pQ(q) can be expressed, in a general
form, as follows:

∏=
=

pap p qq( ) ( / )
i

n

i i
1 (5)

where pai represents an assumed value for the variable Pai
taken from its set of possible instances.
The estimation of the conditional probabilities, i.e., the

parameters, consists in calculating a finite set of parameters θi
(i = 1,···, n) whose cardinality increases with the number of
parents associated with the i-th node. As is shown in Figure 4,
the set θ2 associated with node Q2 has four elements because
Q2 only depends on the two possible values of its parent node.
However, for variable Q4, whose parent set contains two
variables, θ4 is composed of 8 parameters.
The estimation of the probabilistic graphic model for BNs

consists in defining the pair (G, (θ1,···,θn)), where G is an
acyclic directed graph that represents the structural component
of the model. The estimation of the model structure and
parameters consume huge computational resources when the
number of dependencies of each node increases.

5. RESULTS AND ANALYSIS
In this section, the application results of AffEDa and EBNA for
solving diverse SNDPs are presented and compared with those
provided by the strategy pPBIL-SOTS.5 An outline of this
memetic solution procedure and its pseudocode are provided

in the Supporting Information. The application examples
comprise one small-scale, two middle-scale, and two large-scale
processes.3 Regarding the small and middle-scale designs,
reference values of the global optima are at hand that allows a
more-precise evaluation of the metaheuristics performance.
These values are the global optima obtained for case studies 1.a
and 1.b (see section 3) and the ones reported in the literature
for case studies 2 and 3, which were computed using other
methodology.3

5.1. Experimental Setup. A total of five process
flowsheets (case studies 1−5) are considered. The first one
corresponds to the example used in section 3, for which the
global optima of two designs of different complexity are
available. Case study 2 is a continuous stirred tank reactor
(CSTR)29 whose operation is represented by a nonlinear
model that is composed of 13 variables (total flow rates,
compositions, and temperatures) and 5 mass and energy
balances. The mineral flotation problem,30 MFP, is selected as
case study 3. Its model is bilinear and composed of 24 variables
(8 flow rates and 16 compositions) related by total and
component mass balances. For case studies 2 and 3, the model
is linearized around the nominal operation point of the
process. Finally, case studies 4 and 5 correspond to large-scale
process flowsheets, and variables are related by total mass
balances. (case study 4, 19 units and 52 streams; case study 5,
47 units and 82 streams). Interested readers can gain access to
the files containing information about the case studies from
https://www.ing.unrc.edu.ar/archivos/sndp_cases.doc.
It is assumed that there are no restrictions for the location of

sensors to measure any variable; consequently, the search
spaces for case studies 1−5 are made up of 228, 213, 224, 252, and
282 solutions, respectively. The standard deviation of
flowmeters is 2.5%, 1%, 2%, 2%, and 2% of the corresponding
true flow rates for case studies 1−5, respectively. Data about
the precision of temperature and composition observations is
extracted from the literature.3 Information about sensor costs
is not provided for the sake of space.
Table 3 shows the complexity of the set of constraints

imposed on case studies 2−5, and the parameters of the
solution procedures are presented in Tables 4 and 5. In general
the selected values are the commonly used in the literature for
the metaheuristics involved in this study. In particular, the
population size has been analyzed in detail because it originates

Figure 3. Bayesian network for the example population.

Figure 4. Parameter estimation and conditional probabilities
evaluation.

Table 3. Set of Constraints

case
study constraints

2 Ele ≥ 1 for streams 3, 4, and 10
σ3* = 2.227 × 10−3. σ4* = 5.700, σ10* = 3.800 × 10−1

3a Ele ≥ 1 for streams 1, 7, 9, and 22
σ1* = 1.500, σ7* = 0.142, σ9* = 2.850 × 10−4 σ,22* = 1.045 × 10−2

3b Ele ≥ 1 for streams 1, 4, 6, 7, 9, 10, 15, 16, 19, 20, 21, and 22
σ1* = 1.500, σ4* = 1.267, σ6* = 0.126, σ7* = 0.142, σ9* = 2.850 × 10−4,
σ10* = 6.840 × 10−3, σ15* = 2.000 × 10−5, σ16* = 8.200 × 10−5, σ19* =
4.232 × 10−3, σ20* = 9.900 × 10−4, σ21* = 1.020 × 10−4. σ22* =
1.045 × 10−2

4 Ele ≥ 1 for streams 2, 5, 15, 29, 31, 32, 38, 39, 40, 44, 45, 46, 47, 48,
49, 50, 51, and 52

σ15* = 12 410, σ31* = 1370, σ32* = 130, σ40* = 1380, σ44* = 570, σ45* = 590,
σ46* = 720, σ47* = 550. σ49* = 1440

5 Ele ≥ 1 for streams 5, 10, 12, 14, 17, 35, 37, 39, 44, 56, 62, 69, 70, and
77

σ10* = 1584, σ17* = 1359, σ35* = 200, σ39* = 1580, σ56* = 123, σ69* = 1284
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differences in the performance for AffEDA and EBNA, as can
be seen below. Regarding the pPBIL-SOTS parameters, the
population size and the frequency of calls to the local search
are determined empirically. It was verified that the solutions
and the execution times have negligible variations when
parameters values are around the select ones.
All procedures are executed using a Processor Intel Core i7

CPU 920 at 2.67 GHz, 6GB RAM using MatLab Release 14.
The parallel implementation of PBIL-SOTS is simulated by
sequentially running NPBIL instances of that procedure and
updating their probability vectors using uniform cross-over.
Therefore, computation times are only reported for illustrative
and comparative purposes.
In this work, three main metaheuristics based on EDAs are

considered. For the SNDP defined by eq 1, the fitness
function, F, used by the stochastic methodologies to evaluate a
solutions q, is formulated as follows:
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i1 is the cost of the SN when all variables are
measured (upper bound of the SNDP objective function), and
S(q) takes into account constraint violations as follows:
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where rno and rnp are the number of unsatisfied observability
and precision constraints, respectively, for a solution vector q.
The stochastic methodologies perform the same number of

calls (evaluation) to fitness or evaluation function if the
algorithms are executed using the same values for the
population size and the number of generations. However, it
is interesting to compare their performances when different
tools are added to the basic algorithms. Regarding pPBIL, a
local search procedure is subordinated to the main
metaheuristics. This necessarily increases the number of calls
to the fitness function. With respect to multivariate EDAs, the
additional tool is the capability to estimate the structure of the
underlying probabilistic model. This task requires solving a
clustering optimization problem for the AffEDA. Regarding
EBNA, it is necessary to optimally estimate the BN that best
represents the samples (that is, a NP complete problem).
Therefore, multivariate algorithms require solving additional
optimization problems, which also consume resources. Instead
of calls to the fitness function, they perform calls to the
objective function of the aforementioned optimization
subproblems.
Even though the number of evaluations of the fitness

function is a commonly used stopping criterion, in this work,
the number of generations is used with that purpose, taking
into account the previous discussion. In this way, algorithms
evolve using all of the resources they need, which are of
different nature, until the stopping criterion is achieved. After a
certain number of trials, solutions are evaluated taking into
account industrial criteria: solution quality (instrumentation
cost) and computational time.
For problems with unknown global optima, the minimum

objective function values achieved by an stochastic algorithm,
which correspond to the best solutions it can attain, are
important performance measures, and they are analyzed in
detail in this work.
Regarding the computational load, in general the computa-

tional time used to solve an instance of the SNDP can be
divided into four parts:

(1) the total time consumed in evaluating the objective
function, which depends on the time required to

Table 4. Parameter Settings for EDAs

parameter pPBIL-SOTS AffEDA EBNA

NPBIL 4 − −
M 12 50−100−300 50−100−300
#MaxGeneration 200 200 200
LR 0.1 − −
PMUTA 0.02 − −
MS 0.05 − −
Pinteraction 0.25 − −
t − 50% 50%
k 1 10 10

Table 5. Parameter Settings for SOTS

parameter value

Pso 0.05
Nso 25
Nc 2
#maxiter 120

Pt I1.5
Ph I/2

Table 6. Best Solutions

case best solution standard deviation of the estimates cost

1.a 1, 4, 6, 7, 9, 10, 11, 14, and 16−24 σ̂4 = 2.186, σ̂8 = 2.564, σ̂17 = 0.804 = , σ̂21 = 1.502, σ̂23 = 0.065, σ̂25 = 1.486 752.26
1.b 1−15, 18−20, 22, 24, 25, and 27 σ̂4 = 2.061, σ̂5 = 0.888, σ̂7 = 0.058, σ̂8 = 1.499, σ̂12 = 0.959, σ̂16 = 0.585, σ̂18 = 0.405, σ̂20 = 0.261, σ̂27

= 1.200, σ̂28 = 1.444
1106.50

2 2, 3, 9, and 12 σ̂3 = 2.193 × 10−3, σ̂4 = 0.339, σ̂10 = 0.369 735
3a 1, 3, 5−9, 11, 17, and 22 σ̂1 = 1.272, σ̂7 = 0.142, σ̂9 = 2.833 × 10−4 σ̂22 = 1.045 × 10−2 1448
3b 1, 3, 5−11, 15−17, and 20−22 σ̂1 = 1.269, σ̂4 = 1.261, σ̂6 = 0.103, σ̂7 = 0.141, σ̂9 = 2.832 × 10−4, σ̂10 = 1.188 × 10−3σ̂15 =

2.000 × 10−5, σ̂16 = 8.199 × 10−5, σ̂19 = 3.347 × 10−3, σ̂20 = 9.899 × 10−4σ̂21 = 1.020 × 10−4σ̂22 =
1.042 × 10−2

2928

4 10, 16, 31−33, 35, 37, 39−41, 43−48,
and 50−52

σ̂2 = 2549, σ̂5 = 2549, σ̂15 = 2495, σ̂29 = 2455, σ̂31 = 916, σ̂32 = 84 σ̂38 = 2058, σ̂39 = 92, σ̂40 = 919 σ̂44
= 379, σ̂45 = 40, σ̂46 = 478, σ̂47 = 364, σ̂48 = 36, σ̂49 = 566, σ̂50 = 30 σ̂51 = 40, σ̂52 = 25

1154.34

5 1, 2, 5, 10, 12, 15, 21, 30, 33−37, 44, 50,
55, 56, 60, 62, 63, 66−68, 74−78, and
82

σ̂5 = 386, σ̂10 = 1531, σ̂12 = 1531, σ̂14 = 985 σ̂17 = 985 σ̂35 = 198, σ̂37 = 210, σ̂39 = 1166 σ̂44 = 8,σ̂56 =
108,σ̂62 = 24, σ̂69 = 988σ̂70 = 988, σ̂10 = 18

50845.16
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perform one evaluation and the number of calls to the
fitness function (this quantity is related to the
population size and the number of solutions explored
and evaluated by the local search if the algorithm
performs this step);

(2) the time required for building the probabilistic model,
which involves the calculation of the marginal
probabilities and the structural learning;

(3) the time used to generate the neighboring structure of
the local search; and

(4) other times of lower incidence.

For pPBIL-SOTS, the first and third times are dominant,
and the second one is negligible. In contrast, this is relevant for
AffEDA and EBNA, and the time they use for the local search
is zero.
5.2. Analysis of Results. At first 100 runs of AffEDA and

EBNA are performed for M = 50 individuals. To compare
results using similar population sizes, pPBIL-SOTS is run
setting M = 12 and NPBIL = 4; therefore, 48 individuals are
considered at each generation of that algorithm. Table 6
reports the best attained solutions. These are expressed in
terms of the set of measured variables, the standard deviations
of the estimates calculated by the data reconciliation procedure
for all the variables contained in SE and Sσ, and the total
instrumentation cost. That table shows that all of the
constraints on the ability to be estimated are satisfied because
estimates can be calculated for all of the variables included in
SE; that is, they are measured or unmeasured but observable.
From Table 6, it can also be observed that the standard
deviations of the estimates for the variables included in Sσ are
equal or lower than their upper bounds.
For cases 1.a and 1.b, the global optima were calculated

using an exact procedure (see section 3). This allows us to
perform an accurate analysis regarding the quality of the
solutions obtained running the proposed heuristics. Regarding
case study 1.a, Table 7 shows the statistics [mean, standard
deviation (SD), coefficient of variation (CV), minimum,
median, maximum, and 99% quartile (P99)] for the best
solutions obtained for 100 runs of each algorithm. The
evaluation function values of the best solutions are sorted in
ascending order. Furthermore, a new integer variable called the
index is defined in the range of 0 to 100, such that index = 1
for the lowest value of the evaluation function and ondex = 100
for the highest one. That is, the index represents the position
of objective function value obtained for each run in the sorted
vector. To show the variability of the best solutions, the sorted
values of F are displayed in Figure 5. For case study 1.b, the
same information is provided in Table 8 and Figure 6.
Regarding the quality of the solution, it can be seen that
pPBIL-SOTS out-performs the other algorithms, given that it
obtains the global minimum for all the runs. In contrast, EBNA
shows the poorest behavior. It can not find the reference
minimum for case study 1.b, and all statistics are greater than
those provided by pPBIL-SOTS and AffEDA. With respect to
AffEDA, it efficiently solves case study 1.a, but its performance
decreases for case study 1.b, which is a more-challenging

optimization problem. It achieves the best solution of this
problem only for 10% of the runs.
The statistics of the execution times for case studies 1.a and

1.b are included in Tables 9 and 10, respectively. It can be seen
that the computation requirements for pPBIL-SOTS are the
highest, and AffEDA out-performs EBNA regarding that
performance measure. Runs execution times of AffEDA are
similar; and the same behavior is observed for EBNA. In
contrast, pPBIL-SOTS shows variability in the computation
time required by different runs. The fact that pPBIL-SOTS
randomly performs additional calls to the fitness function
explains that variability.
For case study 2 (CSTR), the key variables are total flow

rates, compositions, and temperatures. The statistics of the
best solutions and the execution times are reported in Tables
11 and 12, respectively. Furthermore, the evaluation function
values are displayed in Figure 7. It can be seen that both
AffEDA and pPBIL-SOTS attain the same value ($735.00) for
each run. This optimal value has been previously obtained
using different exact procedures.3 In contrast, the behavior of
EBNA is poor. The mean and the maximum of the evaluation
function values for 100 runs are 746.47 and 817, respectively.
Furthermore, execution times show the behavior observed for
case studies 1.a and 1.b. The computational time of AffEDA is
the lowest and pPBIL-SOTS requires the highest computa-
tional resources.
For the MFP, two sets of design constraints are analyzed

that involve an increasing number of key variables (flow rates
and compositions). Tables 13 and 14 reports the statistics of
the evaluation function values for case studies 3a and 3b,
respectively. Furthermore, Figures 8 and 9 display these values
for each run. Regarding case study 3a, both pPBIL-SOTS and
AffEDA attain the minimum cost ($1448.00) for the 100% of
the executions. This value is the same reported in the literature

Table 7. Statistics of the Best Solutions (Case Study 1.a)

strategy mean SD CV min median max P99

AffEDA M = 50 763.75 19.13 0.03 752.26 754.36 864.06 850.76
EBNA, M = 50 1511.30 343.25 0.23 754.76 1801.60 1835.87 1832.50
pPBIL-SOTS, 752.26 0.00 0.00 752.26 752.26 752.26 752.26

Figure 5. Evaluation-function values of the best solutions (case study
1.a).
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for this SNDP.3 The procedure EBNA only achieves the
minimum cost for some runs, and 50% of the evaluation
function values for the best solutions are greater than
$2113.00.
Remarkable differences in the performance of the method-

ologies are observed for case study 3b, which involves a
complex set of design constraints. From Table 14, it can be
observed that the behavior of EBNA is rather poor. It attains
an evaluation function value equal to $2978 for the best
solution, while the minimum value achieved by pPBIL-SOTS is
$2928. The reproducibility of EBNA is low; in fact, the median
of the objective function values for 100 runs is equal to the cost
of installing sensors to measure all the variables. In contrast,
AffEDA behaves better than EBNA. It can be seen that the
aforementioned median lowers to $3300.50, the procedure
attains the reference solution ($2928) but the CV (0.22)
increases with respect to those achieved for the previous cases.
Regarding the procedure pPBIL-SOTS, it obtains the best
solution for almost all the runs, the CV is equal to 0.002, and
moreover, it achieves a reference minimum that is lower than
the value reported in the literature for this SNDP.3

Tables 15 and 16 report the statistics of the execution time
for case studies 3a and 3b, respectively. The computational
time of AffEDA is the lowest, and EBNA shows the opposite
behavior.
With respect to case study 4, Tables 17 and 18 show the

statistics of the best solutions and the execution times for 100
runs of each algorithm. In Figure10, the evaluation function
values of the best solutions are displayed in ascending order.
Figure 10 clearly indicates that when the size of the
optimization problem increases the quality of the solutions
obtained using pPBIL-SOTS is the best. Even though AffEDA
attains the reference minimum cost for case studies 1, 2, and
3a, it fails to obtain that value for case studies 3b and 4. The

Table 8. Statistics of the Best Solutions (Case Study 1.b)

strategy mean SD CV min median max P99

AffEDA M = 50 1262.81 148.83 0.12 1106.50 1224.11 1798.95 1798.85
EBNA, M = 50 1722.37 157.70 0.09 1288.86 1805.88 1824.96 1821.19
pPBIL-SOTS, 1106.50 0.00 0.00 1106.50 1106.50 1106.50 1106.50

Figure 6. Evaluation-function values of the best solutions (case study
1.b).

Table 9. Statistics of the Execution Times (s) (Case Study
1.a)

strategy mean SD CV min median max

AffEDA 35.02 1.29 0.04 32.74 36.67 39.66
EBNA 113.72 2.67 0.02 107.36 113.67 119.87
pPBIL-SOTS, 185.38 17.53 0.09 142.23 181.95 220.10

Table 10. Statistics of the Execution Times (s) (Case Study
1.b)

strategy mean SD CV min median max

AffEDA
M = 50

34.54 0.98 0.03 32.34 34.42 37.54

EBNA
M = 50

113.15 2.50 0.02 108.50 112.67 119.93

pPBIL-SOTS, 197.00 14.70 0.10 15.73 198.70 223.30

Table 11. Statistics of the Best Solutions (Case Study 2)

strategy mean SD CV min median max P99

AffEDA
M = 50

735.00 0.00 0.00 735 735 735 735

EBNA,
M = 50

746.47 20.07 0.03 735 735 817 813.5

pPBIL-
SOTS,

735 0.00 0.00 735 735 735 735

Table 12. Statistics of the Execution Times (s) (Case Study
2)

strategy mean SD CV min median max

AffEDA
M = 50

17.09 17.09 0.38 16.42 17.07 18.35

EBNA M = 50 36.63 0.71 0.02 35.75 36.43 38.71
pPBIL-SOTS 117.97 46.99 0.39 23.4 106.2 286.2

Figure 7. Evaluation-function values of the best solutions (case study
2).
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results of EBNA are the poorest. Regarding the computational
time, pPBIL-SOTS presents the highest time requirements, but
it should be noticed that the reported elapsed times
correspond to a simulated parallel execution, in which four
PBIL-SOTS procedures are run sequentially.
Regarding case study 5, Tables 19 and 20 include the

statistics of the best solutions and the execution times for 100
runs of each algorithm. Furthermore, Figure 11 shows the
evaluation function values of the best solutions in ascending
order.
In relation to the quality of the solutions, the minimum SN

cost obtained using EBNA is almost twice greater than the
reference minimum, and the CV (36.6%) is 1 and 2 orders of
magnitude greater than those provided by AffEDA and pPBIL-
SOTS, respectively. In comparison to EBNA, the repeatability
of the solution of AffEDA is better (CV = 6.8%), but the
minimum SN cost obtained using AffEDA exceeds in 70% the
one achieved using pPBIL-SOTS. The best solution is only
attained by the methodology pPBIL-SOTS. Consequently, its
statistics are also the best ones. The remarkable capability of
that procedure to replicate good solutions is revealed by its
very low CV (0.8%). In Figure 11, the gap between the
reference minimum and the best solutions obtained using
AffEDA and pPBIL-SOTS should be noted. With respect to
the computation time, Table 20 indicates that EBNA is the
most-time-consuming algorithm for this case study, even
though the number of individuals of the population is relatively
small.
From Tables 9, 10, 12, 14, 16, 18, and 20, it can be observed

that all of the algorithms require more computational time for
case studies of incremental size. However, the influence of the
size instance is notorious for EBNA. The time used by EBNA
to model the interrelations among all the variables increases at
the highest rate in comparison with the requirements of the
other procedures.
The compared algorithms have structural differences. The

pPBIL-SOTS procedure manages a small population, but the
use of local search allows the exploration of a neighborhood of
the solution constituted by similar genotypes, which may
significantly differ in the evaluation function value. Because the
local search provides an additional exploratory capability to
pPBIL-SOTS, the population size is not a key parameter

Table 13. Statistics of the Best Solutions (Case Study 3a)

strategy mjean SD CV min median max P99

AffEDA M = 50 1448.00 0.00 0.00 1448.00 1448.00 1448.00 1448.00
EBNA, M = 50 2265.12 745.77 0.32 1448.00 2113.00 5213.00 5213.00
pPBIL-SOTS, 1448.00 0.00 0.00 1448.00 1448.00 1448.00 1448.00

Table 14. Statistics of the Best Solutions (Case Study 3b)

strategy mean SD CV min median max P99

AffEDA M = 50 3608.77 801.54 0.22 2928.00 3300.50 5213.00 5213.00
EBNA, M = 50 5017.21 570.27 0.11 2978.00 5213.00 5213.00 5213.00
pPBIL-SOTS, 2929.20 6.85 0.002 2928.00 2928.00 2968.00 2968.00

Figure 8. Evaluation-function values of the best solutions (case study
3a).

Figure 9. Evaluation-function values of the best solutions (case study
3b).

Table 15. Statistics of the Execution Times (s) (Case Study
3a)

strategy mean SD CV min median max

AffEDA 17.09 0.38 0.02 16.42 17.08 18.35
EBNA 109.02 2.40 0.02 105.54 108.48 119.31
pPBIL-SOTS 85.86 5.85 0.07 72.23 85.11 104.06

Table 16. Statistics of the Execution Times (s) (Case Study
3b)

strategy mean SD CV min median max

AffEDA M = 50 32.38 2.77 0.08 28.1 32.31 39.54
EBNA M = 50 102.98 4.05 0.04 95.31 102.50 118.81
pPBIL-SOTS, 87.88 5.73 0.06 72.74 87.57 102.01
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regarding the quality of the solution. In contrast, AffEDA and
EBNA do not use a local search procedure, and perform a
complex structural learning to estimate the probabilistic model.
It is expected that the increment of the population size
enhances the quality of their solutions given that it allows the
exploration of different regions of the search space.
Next the effect of increasing the population size on the

performances of AffEDA and EBNA are analyzed for 100 runs
of cases 1.a, 1.b, and 4. Tables 21 and 22 report the statistics of
the best solutions and execution times for the aforementioned
strategies and also include the same measures for pPBIL-
SOTS. Regarding the most complex design, only the
performance of AffEDA can be analyzed because EBNA’s
computational load is extremely huge.
For case study 1.a, Table 21 and Figure 12 show the

statistics of the best solutions for 100 runs of AffEDA and
EBNA with different values of M (M = 50, 100, and 300), and
the results previously obtained using PBIL-SOTS (M = 12,
NPBIL = 4). Furthermore, the elapsed time statistics are
displayed in Table 22. Considering the solution quality, a

significant increment of the population size enhances AffEDA
performance more than EBNA behavior.
For case study 1.b, Tables 23 and 24 and Figure 13 show the

results of experiments analogous to those performed for the
previous case. It can be noticed that an increment of the
number of individuals in the population from 50 to 300 allows
us to reduce the difference between the solution mean and its
lower bound from 1.53% to 0.33% for AffEDA and from more
than 100% to 11% for EBNA.
Regarding case study 4, results are presented in Tables 25

and 26 and Figure 14.
Based on previous results, it is sensible to make comparisons

only between AffEDA with increasing population sizes and
pPBIL-SOTS. Thus, the performances of both algorithms are
analyzed for the large-size example (that is, case study 5).
Table 27 shows the statistics of the best solutions for 100 runs
of AffEDA with different values of M (M = 50, 100, and 300)
and the results previously obtained using pPBIL-SOTS (M =
12, NPBIL = 4). It can be seen that pPBIL-SOTS outperforms
AffEDA even though its population size has been increased to
300 individuals. The minimum value of the best solutions
achieved using pPBIL-SOTS is 50 845.16, and the median and

Table 17. Statistics of the Best Solutions (Case Study 4)

strategy mean SD CV min median max P99

AffEDA 1455.73 153.98 0.11 1197.38 1429.93 1974.36 1936.62
EBNA 3907.56 1336.34 0.34 2355.33 3777.65 12669.31 9736.83
pPBIL-SOTS, 1154.34 0 0.00 1154.34 1154.34 1154.34 1154.34

Table 18. Statistics of the Execution Times (min) (Case
Study 4)

strategy mean SD CV min median max

AffEDA 1.42 0.02 0.01 1.38 1.42 1.50
EBNA 8.02 0.16 0.02 7.68 8.01 8.41
pPBIL-SOTS, 10.18 0.96 0.09 7.89 10.16 12.83

Figure 10. Evaluation-function values of the best solutions (case
study 4).

Table 19. Statistics of the Best Solutions (Case Study 5)

strategy mean SD CV min median max P99

AffEDA 104 055.68 7142.19 0.07 87 282.49 105 128.89 122 632.53 121 365.27
EBNA 184 736.07 67 670.99 0.37 105 643.06 105 128.89 292 409.45 292 404.24
pPBIL-SOTS 50 886.63 412.88 0.01 50 845.16 50 845.37 54 974.18 52 909.78

Table 20. Elapsed Time Statistics (min) (Case Study 5)

strategy mean SD CV min median max

AffEDA 5.90 0.04 0,01 5.82 5.90 6.07
EBNA 31.59 1.47 0.05 27.86 31.54 35.61
pPBIL-SOTS, 25.12 2.65 0,11 17.62 24.90 30.99

Figure 11. Evaluation-function values of the best solutions (case
study 5).
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the CV values are 50 845.37 and 0.8%, respectively. The 99%
of the best solutions are lower than 52 909.78 for pPBIL-
SOTS, but the same measure for AffEDA when M = 300 is
77 391.18. The evaluation function values of the best solutions
are represented in Figure 15 in ascending order. Furthermore,
the execution times are shown in Figure 16, and Table 28
provides a statistical analysis of these elapsed times. When the

population size increases a proportional increment of the
execution times is observed for AffEDA. Furthermore, the
elapsed times of pPBIL-SOTS and AffEDA with M = 300 are
similar, which is a sensible result when taking into account that
the performance of AffEDA for that population size
approximates the behavior of pPBIL-SOTS.

Table 21. Best-Solution Statistics for Different Population Sizes (Case Study 1.a)

mean SD CV min median max P99

AffEDA M = 50 763.75 19.13 0.03 752.26 754.36 864.06 850.76
AffEDA M = 100 758.32 12.35 0.02 752.26 752.26 803.46 786.26
AffEDA M = 300 754.74 829.00 0.01 752.26 752.26 786.26 786.26
EBNA, M = 50 1511.30 343.26 0.23 754.76 1801.60 1835.87 1832.50
EBNA, M = 100 1207.56 346.33 0.29 757.26 1080.11 1813.00 1812.02
EBNA, M = 300 836.39 58.11 0.07 752.26 840 995.36 982.36
pPBIL-SOTS, 752.26 0.00 0.00 752.26 752.26 752.26 752.26

Table 22. Elapsed Time Statistics (Case Study 1.a)

mean SD CV min median max

AffEDA
M = 50

35.02 1.29 0.04 32.74 36.67 39.66

AffEDA
M = 100

55.95 0.88 0.02 54.25 55.80 59.93

AffEDA
M = 300

147.58 0.56 0.01 146.19 147.58 149.50

EBNA
M = 50

113.72 2.67 0.02 107.36 113.67 119.87

EBNA,
M = 100

143.07 4.65 0.03 131.19 143.19 154.27

EBNA
M = 300

250.64 4.70 0.02 237.55 250.68 262.25

pPBIL-SOTS, 185.38 17.53 0.09 142.23 181.95 220.10

Figure 12. Comparison of evaluation-function values (case study 1.a).

Table 23. Best-Solution Statistics for Different Population Sizes (Case Study 1.b)

mean SD CV min median max P99

AffEDA M = 50 1262.81 148.83 0.11 1106.50 1224.11 1798.95 1798.85
AffEDA M = 100 1144.36 48.98 0.04 1106.50 1106.50 1251.86 1246.26
AffEDA M = 300 1118.66 33.75 0.03 1106.50 1106.50 1226.56 1226.56
EBNA, M = 50 1722.37 157.70 0.09 1288.86 1805.88 1824.96 1821.19
EBNA, M = 100 1664.97 195.68 0.11 1226.56 1798.74 1810.42 1809.95
EBNA, M = 300 1365.98 215.69 0.16 1106.50 1224.11 1798.95 1798.85
pPBIL-SOTS, 1106.50 0.00 0.00 1106.50 1106.50 1106.50 1106.50

Table 24. Elapsed Time Statistics (s) (Case Study 1.b)

mean SD CV min median max

AffEDA
M = 50

34.54 0.98 0.03 32.34 34.42 37.54

AffEDA
M = 100

56.13 1.10 0.02 53.78 56.93 60.07

AffEDA
M = 300

149.73 1.24 0.01 145.81 149.70 156.00

EBNA
M = 50

113.15 2.50 0.02 108.50 112.67 119.93

EBNA,
M = 100

140.93 5.19 0.04 132.88 139.80 155.09

EBNA
M = 300

253.74 9.43 0.04 224.90 256.00 268.65

pPBIL-SOTS, 197.00 14.70 0.10 15.73 198.70 223.30

Figure 13. Comparison of evaluation-function values (case study 1.b).
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The best SNs attained using pPBIL-SOTS (Table 6) are also
compared with the solutions of the minimum number sensor
network design problem (MNSNDP). It determines the set of
variables that should be measured with the objective of
calculating all the unmeasured variables, as a function of the
observations and the process model, at minimum cost.16 For
the MNSNDP, the percentage of unmeasured variables that are
unobservable is 0%.

Regarding case study 1, the solution of the MNSNDP is [1,
2, 7, 9−11, 16−24, 27, 28], and the cost of this SN is $555.46.

Table 25. Best-Solution Statistics for Different Population Sizes (Case Study 4)

mean SD CV min median max P99

AffEDA M = 50 1455.73 153.98 0.11 1197.38 1429.93 1974.36 1936.62
AffEDA M = 100 1215.35 63.31 0.05 1154.34 1207.66 1605.96 1522.52
AffEDA M = 300 1258.75 38.13 0.03 1154.34 1154.34 1532.20 1371.27
EBNA, M = 50 3907.56 1336.34 0.34 2355.33 3777.65 12 669.31 9736.83
EBNA, M = 100 2435.97 572.45 0.24 1361.81 2295.48 4400.73 4284.00
EBNA, M = 300 1484.34 267.80 0.18 1154.83 1367.19 2406.18 2279.04
pPBIL-SOTS, 1154.34 0.00 0.00 1154.34 1154.34 1154.34 1154.34

Table 26. Elapsed Time Statistics (min) (Case Study 4)

mean SD CV min median max

AffEDA M = 50 1.42 0.02 0.01 1.38 1.42 1.50
AffEDA M = 100 2.33 0.02 0.01 2.28 2.33 2.39
AffEDA M = 300 6.20 0.02 0.01 6.16 6.20 6.25
EBNA M = 50 8.02 0.16 0.02 7.67 8.01 8.41
EBNA, M = 100 9.55 0.20 0.02 9.07 9.55 10.13
EBNA M = 300 14.26 0.38 0.03 13.44 14.22 15.09
pPBIL-SOTS, 10.18 0.96 0.09 7.89 10.17 12.83

Figure 14. Comparison of evaluation function values (case study 4).

Table 27. Best-Solution Statistics for Different Population
Sizes (Case Study 5)

AffEDA
M = 50

AffEDA
M = 100

AffEDA
M = 300

pPBIL-
SOTS

mean 104 055.68 65 670.80 56 176.08 50 886.63
standard
deviation

7142.19 7880.64 7981.59 412.88

coefficient of
variation

0.069 0.12 0.142 0.008

minimum 87 282.49 53 061.31 50 846.18 50 845.16
median 105 128.89 64 656.74 51 657.44 50 845.37
maximum 122 632.53 81 189.39 80 547.8 54 974.18
P99 121 365.27 84 641.94 77 391.18 52 909.78

Figure 15. Evaluation-function values of the best solutions for
AffEDA and pPBIL-SOTS.

Figure 16. Execution times for AffEDA and pPBIL-SOTS.

Table 28. Elapsed Time Statistics (min) (Case Study 5)

mean SD CV min median max

AffEDA M = 50 5.90 0.04 0.007 5.82 5.90 6.07
AffEDA M = 100 10.42 0.03 0.003 10.35 10.41 10.53
AffEDA M = 300 29.26 0.14 0.005 28.92 29.26 29.69
pPBIL-SOTS, 25.13 2.66 0.106 17.62 24.89 30.99
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For case study 1.a, both the solution of the SNDP that satisfies
precision and estimability constraints (eq 1) and the
corresponding one to the MNSNDP are composed of the
same number of sensors (17) but the optimal sets of
instruments are different. Precision restrictions are imposed
on the 14.3% of the variables. Even though the cost of the SN
that fulfills constraints on a set of key variables increases
($752.26) in relation to the one obtained for the MNSNDP,
some unmeasured variables are not estimable. The set of
observable unmeasured variables is [5 8 12 15 25]; therefore,
the 54% of the unmeasured variables remain unobservable.
Regarding case study 1.b, the complexity of the constraints
increases with respect to case study 1.a. Precision restrictions
involve the 21.4% of the variables. The solution is composed of
more sensors (23) than the one obtained for case study 1.a and
its cost increases to $1106.50. For case study 1.b, all of the
unmeasured variables are observable; that is, the percentage of
unobservable variables is 0%.
With respect to case study 2, the solution of the MNSNDP

is [4−6 8 12] (5 sensors), and the cost of this SN is $280.00.
The solution of the SNDP defined by eq 1 is [2 3 9 12]. Even
though it is composed of 4 sensors, its cost is higher ($735.00)
than the corresponding one to the MNSNDP ($ 280.00).
Precision constraints are related to the 23% of the process
variables. As in case studies 1.a and 1.b, it is observed that the
incorporation of precision constraints on key variables
increases the cost more than the reduction achieved by
decreasing the number of required estimable variables. The set
of observable unmeasured variables is [1 4 10 11], and the
55.5% of the unmeasured variables are unobservable.
Regarding case study 3, the solution of the MNSNDP is [3

5−7 9 10 13 15 17 20 22 24] (12 sensors), and the cost of this
SN is $2365.00. For case study 3a, the solution of the SNDP
defined by eq 1 involves only 10 sensors [1 3 5−9 11 17 22],
and its cost is $1448.00. Precision constraints are imposed on
the 16.6% of the variables. The set of unmeasured observable
variables is [2 4], and the 85.7% of the unmeasured variables
remain unobservable. For this case study, the reduction in the
number of required estimable variables lowers the cost more
than the incorporation of precision restrictions. The opposite
happens for case study 3b. Precision constraints are related to
the 50% of the variables. The optimal SN that satisfies
constraints on a set of key variables [1 3 5−11 15−17 20 21
22] (15 sensors), its cost is $2928.00, the set of unmeasured
observable variables is [2 4 13 14 19 23], and only the 30% of
the unmeasured variables are unobservable.
Case study 4 is similar to case study 3a. The solution of the

MNSNDP for case study 4 is [3 7 9 10 14 17−27 31−33 35
37−39 41 43−52] (34 sensors), and the cost of this SN is
$3478.38. Precision constraints are considered for the 17.3% of
the variables. The solution of case study 4 involves only 19
sensors [10, 16, 31−33, 35, 37, 39−41, 43−48, 50−52], its
cost is $1154.34, the set of unmeasured observable variables is
[1 2 5 11 12 15 16 29 30 34 36 38 42 49], and 57.6% of the
unmeasured variables remain unobservable.
With respect to case study 5, the solution of the MNSNDP

is [1 2 5 13 15 21 25 31 35 37 44- 46 49 51 54−57 61 62 64 65
67 68 71 74−82] (35 sensors). The cost of this SN is
$42 287.56. Precision constraints are considered for 7.3% of
the variables. The solution of case study 5 contains 29 sensors,
and its cost is $50 845.16. Only the unmeasured variables [52
58 69 70] are observable; therefore, the percentage of the
unobservable ones is 92.4%.

Previous results are obtained for different process flowsheets.
Therefore, results depend both on the process configuration
and the percentage of variables for which restrictions are
considered. In general, it can be concluded that the
incorporation of precision constraints originates an increment
of the cost greater than the reduction achieved by decreasing
the number of required estimable variables. Only case studies
3a and 4 do not follow this tendency. Furthermore, the
formulation of the SNDP defined by eq 1 favors an increment
in the number of unobservable variables with respect to the
obtained one solving the MNSNDP. Results show this fact
except for case study 1.b. In this example, the solution is an
expensive SN that satisfies the precision constraints and allows
us to observe all of the unmeasured variables.

6. CONCLUSIONS
In this work, the solution of the SNDP for chemical plants is
addressed using exact and stochastic algorithms. This
challenging optimization problem involves a huge amount of
binary variables, which represent the possible location of
instruments.
First, an exact solution procedure, the LTTS, is imple-

mented and used to obtain the global optima of middle scale
SNDPs at the expense of consuming high amounts of
computational resources. This shows that the guarantee of
optimality that techniques based on tree search ensure may not
be attained in practice when the number of the binary variable
increases. Depending on the optimization problem complexity,
the computational time may constitute a limiting factor to
select the most appropriate solution strategy.
Besides the solution of the SNDP is tackled using

multivariate EDAs. Among the broad spectrum of EDAs that
use multivariate models, two representative procedures are
selected that differ in the methods used for learning and
sampling those models. In this sense, AffEDA uses MPM
models and EBNA manages BNs. Furthermore, a comparative
performance study is conducted to evaluate the benefits of
increasing the complexity of the distribution model with
respect to a memetic procedure based on univariate models,
PBIL-SOTS.
Diverse SNDPs are formulated and solved using the

procedures AffEDA, EBNA, and PBIL-SOTS. Problems differ
in the type of model used to represent process operation
(linear−nonlinear), restriction complexity, and the number of
binary variables. In this sense, 3 flowsheets of incremental size
(28, 52, and 82 streams) are analyzed for linear models, and
two nonlinear examples extracted from the literature (CSTR
and MFP) are used. For three case studies, reference values of
the global optima are available that allow us to validate the best
solutions attained using metaheuristics.
For the analyzed case studies, EBNA provides low-quality

solutions and consumes significant computation resources
when the problem size increases. The increment of the number
of individual of its population is also analyzed for middle-scale
and large-scale instances, but it does not enhance its
performance. This study can not be carried out for the
largest-size problem because the computation requirements are
huge.
The performance of AffEDA is better than the correspond-

ing to EBNA. For medium-size instances, AffEDA attains the
reference minimum, but the convergence to that solution is not
achieved for all the runs. For large problems, AffEDA is not
able to find high-quality solutions, and the search is entrapped
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in suboptimal regions. The increment of the population size
enhances the behavior of the algorithm.
The procedure for pPBIL-SOTS has shown itself to be a

rewarding performance for the solving of the formulated
SNDPs. Good quality and reproducibility of solutions is
achieved for problems of incremental size. The null or
extremely low dispersion of the set of possible solutions
indicates an appropriate behavior of the procedure for solving
the combinatorial problem.
A direct relationship obviously exists between the

computation time and the problem size. As mentioned before,
the computation times are only reported for comparative
purposes because the procedures are executed by an
interpreter program such as Matlab, and the parallelization
capability of PBIL-SOTS has not been properly exploited
because PBIL instances are run sequentially.
Application results indicate that the best performances are

achieved using pPBIL-SOTS and AffEDA for large population
sizes. In contrast to AffEDA, pPBIL-SOTS uses a smaller
number of individuals in the population. This reduces its
exploration capability of the search space, but the incorpo-
ration of the local search mechanisms significantly enhances
the exploitation capability of good regions.
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■ NOMENCLATURE
B = best individual of the generation
C = acquisition cost vector
Ele = degree of estimability of variable le
F = evaluation function
k = number of elite solutions
I = number of process variables
LR = learning rate
M = number of individuals of the population/subpopulation
MI = mutual information matrix
MS = mutation amount
nc = number of clusters
N = neighborhood of possible solutions
NPBIL = number of instances of PBIL executed in parallel

#MaxGeneration = maximum number of iterations for
pPBIL
#maxiter = maximum number of iterations for SOTS
nso = number of iterations between allowable calls to SOTS
P = probability vector
ph = number of iterations before h is reset
Pinteraction = cross-over probability
PMUTA = mutation probability
pQ = joint probability distribution
p(qi/qj) = conditional probability
Pr = probability
pso = application probability of SOTS
Pt = Tabu tenure period
Q = solution vector
Q = Rrandom I-dimensional vector
Sσ = set of key variables subject to precision constraints
SE = set of key variables subject to estimability constraints
t = truncation selection parameter
σ̂lj = standard deviation of the lp-th variable estimate
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