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Quantum phase transition between one-channel and two-channel Kondo polarons
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For a mobile spin-1/2 impurity, coupled antiferromagnetically to a one-dimensional gas of fermions,
perturbative ideas have been used to argue in favor of two-channel Kondo behavior of the impurity spin.
Here we combine general considerations and extensive numerical simulations to show that the problem displays
a novel quantum phase transition between two-channel and one-channel Kondo screening upon increasing the
Kondo coupling. We construct a ground-state phase diagram and discuss the various nontrivial crossovers as well
as possible experimental realizations.
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The problem of dilute particles moving in quantum liquids
finds realizations in diverse areas of modern physics,1 such
as charge carriers in weakly doped semiconductors or Mott
insulators, ions in 3He, muons in metals, electrons in multiband
quantum wires, and multicomponent ultracold gases with a
strong population imbalance.2 For dilute particles with internal
degrees of freedom, e.g., spin, a connection to quantum
impurity problems, such as the Kondo effect, is natural. Indeed,
a recent paper3 argued that a spinful particle moving in a one-
dimensional (1D) electron gas creates a Kondo polaron which
realizes the two-channel Kondo (2CK) effect. This remarkable
many-body effect occurs if a spin 1/2 is overscreened by the
coupling to two equivalent screening channels of conduction
electrons, leading to exotic non-Fermi-liquid behavior.4–6 (For
the 2CK polaron of Ref. 3 the two screening channels are
realized by independent left- and right-moving bath fermions.)
While an unambiguous verification of 2CK behavior in solids
containing magnetic ions is still a challenge,7 success was
reported8 for a nanostructured device consisting of a quantum
dot with two reservoirs.

The 2CK effect is unstable with regard to channel asym-
metry, such that the 2CK fixed point can be understood as
a critical point separating two single-channel Kondo (1CK)
phases. However, settings with a true quantum phase transition
(QPT)9,10 between 1CK and 2CK phases are rare: The only
example known to us is a proposal involving a quantum dot
coupled to helical edge states of a topological insulator.11 In
contrast, for an impurity coupled to a standard Luttinger liquid,
it has been argued that either a 1CK or a 2CK phase is stable
depending on the host’s Luttinger parameter,12 but a QPT upon
varying an impurity parameter does not occur.

In this Rapid Communication, we shall argue that the
Kondo-polaron model of Ref. 3 realizes a novel QPT between
1CK and 2CK polarons. We consider a single spin-1/2 particle,
henceforth called “impurity”, which moves in a 1D gas of
spin-1/2 fermions. The two species (or bands) are coupled by
an antiferromagnetic exchange interaction J . The full lattice
Hamiltonian reads

H = −
∑
〈ij〉σ

(tc†iσ cjσ + t ′d†
iσ djσ ) +

L∑
i=1

(
J �Si · �si + hSz

i

)
,

(1)

where ni = ∑
σ c

†
iσ ciσ and �si = ∑

σσ ′ c
†
iσ �τσσ ′ciσ ′ , with �τ the

Pauli matrices, denote the local charge and spin densities,
respectively, of the bath fermions. Their total density is
nc = ∑

i ni/L and their bandwidth W = 4t . The impurity is
described by d operators, with local densities Ni and �Si and
a total filling of one particle,

∑
i Ni = 1. A magnetic field h

coupling to the impurity is included.
The purpose of this Rapid Communication is a discussion

of the full parameter space of the model (1), beyond the
weak-coupling limit considered in Ref. 3. To this end, we
combine the analysis of various strong-coupling limits with
comprehensive numerical studies. Our central result is that a
QPT generically separates a small-J phase with 2CK screening
of the impurity spin3 from a 1CK phase at stronger coupling J ,
as summarized in the phase diagram in Fig. 1. The transition
in Eq. (1) thus involves a change from local non-Fermi-liquid
to Fermi-liquid behavior upon increasing J , accompanied by
a jump in the residual impurity entropy from ln

√
2 to 0.6 The

transition is driven by varying only impurity parameters, J or
t ′, while keeping the bath parameters fixed, and corresponds
to a hitherto unknown QPT.

In addition to the 1CK-2CK transition, we uncover an
interesting strong-coupling regime, where the motion of the
impurity locally suppresses charge fluctuations in the electron
gas, thereby generating a “correlation cloud” (or “correlation
polaron”) whose size, ξc, is dictated by kinetic energy and can
be much larger than that of the Kondo screening cloud, ξK.

In the body of this Rapid Communication, we present
general arguments and numerical results from the density
matrix renormalization group (DMRG) which lead to the
above conclusions. In the impurity’s magnetic response, we
find universal behavior in each phase which we use to
characterize them. We also discuss possible realizations of the
phenomena in the field of ultracold atomic gases; we note that
related impurity problems have been recently studied using
cold bosonic atoms in optical lattices.13

Weak-coupling limit, T 0
K � t ′ � t . We begin by summa-

rizing the physics of the model (1) in the limit of small J ,
discussed in Ref. 3. We use T 0

K as shorthand for the Kondo
temperature of a static impurity coupled with exchange J to a
band of width W ; for J � t we have ln(T 0

K/W ) ∝ −W/J . The
fate of the magnetic moment can be accessed in an expansion

140407-11098-0121/2013/88(14)/140407(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.140407


RAPID COMMUNICATIONS
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FIG. 1. (Color online) Ground-state phase diagram of the Kondo-
polaron model, Eq. (1), obtained from DMRG at nc = 1. Triangles
(squares) denote parameters with 1CK (2CK) behavior. The two
phases are separated by a QPT in the thermodynamic limit; in
our finite-size numerics this transition is smeared, with circles
corresponding to parameters in the crossover region. At large J , a
correlation polaron forms, with size ξc � ξK. For t = 0 and finite
t ′/J , kinetic ferromagnetism (FM) is realized at nc = 1, while phase
separation (PS) occurs away from half filling (schematically shown).

in J around the decoupled J = 0 fixed point. This expansion is
similar to the standard weak-coupling expansion in the Kondo
model, with the key difference being that the recoil energy of
the impurity renders 2kF backscattering processes from J to be
absent from the low-energy sector. Hence, only processes with
small momentum transfer—involving either left movers near
(−kF ) or right movers near kF —contribute to the logarithmic
singularities, leading to flow equations equivalent to that of the
2CK effect. In other words, the motion of the Kondo impurity
causes left-moving and right-moving c fermions to form two
separate screening channels for the impurity spin.

Importantly, this argument in favor of 2CK physics requires
both T 0

K � t ′, as otherwise the recoil is too small to be relevant,
and T 0

K � t , as otherwise the separation into left movers and
right movers is not justified.

Strong-coupling limit, J 	 t 	 t ′. In the limit J → ∞
the impurity electron locks into a singlet with one conduction
electron. For t ′ = 0 this singlet is immobile and effectively
cuts the 1D electron gas. From first-order perturbation theory
in t ′ one finds that the singlet forms a Bloch wave with a kinetic
energy of order t ′. Clearly, this corresponds to a slowly moving
1CK polaron of minimal size, i.e., 1CK physics is realized in
this limit.

Strong-coupling limit, J 	 t ′ � t . It is interesting to
discuss the evolution of the singlet polaron upon increasing
t ′/t . Whereas for t ′/t → 0 the conduction electrons simply
adjust to the position of the singlet, the case t ′ � t implies a
faster motion of the polaron which is only possible (without
breaking the singlet) along a sequence of singly occupied c

sites. As a result, the c-electron kinetic energy will be quenched
in a vicinity of size ξc of the impurity. Within this correlation
polaron the impurity moves with a kinetic energy of order t ′,
while the polaron itself—consisting of the singlet surrounded
by singly occupied c sites—is a heavy object with kinetic

energy of order t (in a manner similar to the ferromagnetic
Kondo polaron described in Ref. 14). A variational estimate,
assuming an immobile correlation polaron, yields ξc ∝ t ′/t .
Thus, the correlation polaron emerges from the competition of
impurity and c-electron kinetic energies in the large-J limit.

Nagaoka limit, t = 0. For completeness, we also mention
the case of immobile c electrons, t = 0. Consistent with the
above discussion, ξc → ∞ in this limit, i.e., the motion of
the impurity electron, prefers singly occupied c sites in the
entire system. While the spin alignment on the c sites can be
arbitrary for J = ∞, ferromagnetic alignment is preferred for
any finite t ′/J—this kinetic magnetism can be understood as
double-exchange or Nagaoka ferromagnetism. If nc deviates
from half filling, the system consequently phase separates into
a half-filled ferromagnetic region and a region where 〈ni〉 �= 1.

For both t and t ′ finite and small compared to J , the
tendency towards ferromagnetic alignment survives inside the
correlation polaron. A detailed study of this interesting regime
is beyond the scope of this Rapid Communication.

Expected QPT. As argued above, 2CK screening is realized
for TK � min(t ′,t), where TK is now a Kondo temperature
in the presence of t ′. On the other hand, the 1CK state of an
immobile impurity (t ′ = 0) can be expected to be stable against
small t ′ � TK (the 1CK polaron simply starts to move). Hence,
a transition from 2CK to 1CK will occur upon increasing J or
decreasing t ′, as indeed confirmed by our numerics (Fig. 1).

DMRG results. We have studied the model (1) using the
DMRG technique15,16 on finite systems with 2 × L lattice
sites. As the open boundary conditions commonly used with
DMRG lead to boundary pinning of the impurity electron, we
have instead used antiperiodic boundary conditions (APBCs),
with L < 40. This implies that Kondo screening with small
TK < 10−2t will be hard to observe due to ξK 	 L.17 Unless
otherwise noted, we have performed calculations varying t ′/t ,
J/t , h/t , and L; for details of the DMRG calculations, see
Ref. 18. In the interest of numerical stability, most runs were
done at nc = 1, but we have checked for selected J/t and t ′/t

and our conclusions remain robust also for nc �= 1.
The key quantity in our analysis is the impurity magne-

tization, M = ∑
i〈Sz

i 〉/L, as a function of applied impurity
field h and system size L. Sample data for M/h are shown
in Fig. 2. In all cases, M ∝ h as h → 0, which allows us to
define the local impurity susceptibility χ = M/h|h→0. This
quantity is seen to strongly depend on system size for small
J . Indeed, for the standard case of an immobile impurity, the
finite-size behavior of the susceptibility distinguishes 1CK
and 2CK Kondo effects: χ approaches a constant in the
1CK case, χ ∝ 1/TK, whereas it diverges logarithmically
with system size in the 2CK case, χ ∝ (1/TK) ln(TKL). The
same qualitative behavior can be expected for mobile Kondo
polarons—this is well borne out by our numerics: The data for
χ in Fig. 3 clearly show log-divergent χ (1/L) for large t ′ and
constant χ (1/L) for small t ′.

The distinct behavior at small and large J is further
illustrated in the inset of Fig. 2, where the data points at fixed
L, J/t , t ′/t , and high fields, h/t > 2, are fitted to the 1CK
strong-coupling expression17

M(h) = χ0h√
1 + 4(χ0h)2

, (2)
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FIG. 2. (Color online) DMRG results for the impurity magneti-
zation, plotted as M/h, as a function of h/t for L = 5,9,13,17,21.
Data are shown for J/t = 5, t ′/t = 0.1 (blue) and t ′/t = 4 (red),
corresponding to the 1CK and 2CK phases, respectively. The inset
shows the same data as M/(χ0h) vs χ0h, where χ0 has been obtained
from a fit at large fields to Eq. (2) (for details see text). Lines are
guides to the eye.

and then plotted as M/(χ0h) vs χ0h. The large-J data follow
Eq. (2), again indicative of 1CK, whereas the small-J data
systematically deviate at small h, with a deviation increasing
with increasing L.

To make the finite-size analysis of the susceptibility
quantitative, we fit our DMRG data for χ (L) utilizing the
following crossover formulas:18,19

χ1CK = 2π2� + �L

2(π2� + �L)2
(3)

and

χ2CK = 1

2(�L + 4π2�)
ln

[
1 + 4��L + (4π�)2

�2
L

]
. (4)
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FIG. 3. (Color online) DMRG results for the local susceptibility
χ (divided by its value at length L = 5) as a function of inverse
system size 1/L for parameter sets with J/t = 4 and 5 and various
t ′/t . While the data at small t ′ show a clear saturation as L → ∞,
indicative of 1CK (blue), χ at larger t ′ increases logarithmically,
consistent with 2CK (red). The lines represent fits to Eqs. (3) and
(4) (for details see text). One data set in the crossover region is also
shown (green).

Here, � is an energy scale proportional to the (polaron) Kondo
temperature, and �L = b/L parametrizes finite-size effects on
the level spectrum. The formulas have been adopted from a
finite-size bosonization analysis of the Kondo problem of an
immobile impurity;19 in this case �L represents the bath level
spacing, with b = 4πt in the L → ∞ limit. Here we assume
that Eqs. (3) and (4) provide reasonable descriptions of the data
in the mobile-impurity case and for small L as well, but we treat
b as a second fit parameter, b = b(t ′/t,J/t), in addition to �.

Fitting χ (L) for all parameter sets (characterized by fixed
values of J/t , t ′/t , nc = 1) to both Eqs. (3) and (4) we
observe the following: (i) Some data sets can be fitted well
by only one of the two forms, allowing us to immediately
discriminate between 1CK and 2CK behavior—this mainly
applies if the data cover a range of �L/� = 0.1 . . . 1. (ii) Other
data sets can be fitted by both forms, but often at the expense of
extreme values of the fitting parameters. In particular, b/t � 1
occurs when attempting to fit large-J data with the 2CK form
Eq. (4). The evolution of the fitting parameters with J and t ′
is nonmonotonic, which allows us to distinguish two regimes
which clearly show 1CK and 2CK behavior, respectively.18 (iii)
At intermediate values of J , we observe data sets which are not
well fitted with either of the two forms. Given that a putative
QPT between 1CK and 2CK phases will be smeared for finite
L, such behavior is consistent with the existence of a quantum
critical transition regime. This interpretation is supported by
our observation of significantly impaired convergence in this
regime, which can be ascribed to long-range entanglement
which cannot be well captured by the matrix product states
underlying DMRG.

The existence of two distinct screening regimes, together
with the quality of the fits, is demonstrated in Fig. 4, which
shows a universality of χ (L) when plotted as χ� vs �L/�.
Here, we have shown those data sets which could be uniquely
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FIG. 4. (Color online) Scaling collapse of the DMRG results for
the impurity susceptibility χ (L; J/t,t ′/t) in the 1CK and 2CK phases.
In each of the phases, χ� follows a universal behavior as a function
of the finite-size parameter �L/� where �L = b/L, and � and b are
fit parameters for each pair of J/t and t ′/t . The symbols represent
all data sets in Fig. 1, which could be uniquely associated with either
1CK (blue) or 2CK (red) behavior; the black symbols corresponds to
t ′ = 0. The lines represent the scaling curves according to Eqs. (3)
and (4); the data deviate from these at small L.
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FIG. 5. (Color online) Kondo energy scale �, as extracted from
the fits of χ to Eqs. (3) and (4), as a function of J/t for different values
of t ′/t for the 1CK (2CK) regimes, shown in blue (red). The black
line corresponds to � = J , indicating the strong-coupling behavior.
Data points with � < 10−2t are subject to severe finite-size effects as
ξK 	 L here.

assigned to either the 1CK or the 2CK phase; deviations from
universality occur for the data sets in the crossover region (for
details see Ref. 18).

The fit parameter �, reflecting the polaron Kondo tempera-
ture TK, is plotted in Fig. 5. First, we observe that 1CK behavior
is seen for � > min(t,t ′) as anticipated, whereas 2CK behavior
is seen otherwise. Second, � becomes exponentially small for
small J and is proportional to J for large J , as typical for the
Kondo effect. Third, � is found to decrease with increasing t ′
in the 2CK regime. This can be rationalized by the fact that
the motion of the Kondo polaron requires a spatial adjustment
of the screening cloud which tends to suppress screening. In
contrast, � is weakly dependent on t ′ in the 1CK regime,
because here � > t ′, i.e., the polaron moves sufficiently slowly
for the screening cloud to adjust.

Conclusions. We have established that a spinful particle
moving in a 1D Fermi gas displays a novel QPT between two
phases with 1CK and 2CK screening of the particle’s spin.
While earlier perturbative arguments in favor of 2CK behavior
apply to small Kondo coupling J only, TK � min(t ′,t), our
numerical results give evidence both for 1CK behavior at larger
J and for a transition to 2CK upon decreasing J . We also find
robust universal behavior in each phase which we fit using
previous expressions from the static-impurity case. Finding
the universal field theory for this QPT is an interesting open
issue.

The model in Eq. (1) can in principle be realized using two
species of atoms (with two hyperfine states each) in an optical
lattice.20 Due to the trapping potential, left and right movers
will be coupled, such that the transition between 2CK and
1CK turns into a crossover. A suitable distinction between the
two regimes is given by the low-temperature mobility, which
follows T −2 (T −4) in the 2CK (1CK) case.3 Alternatively,
dilute spinful holes in doped semiconductor nanowires21 can
realize the model Eq. (1). Here, the change from local non-
Fermi-liquid to Fermi-liquid behavior may be detected using
the magnetic response in a Zeeman field, which is singular
(regular) in the 2CK (1CK) case.7,19,22

Future work could possibly investigate the nonequilibrium
dynamics near the Kondo-polaron QPT as well as the influence
of bath interactions, i.e., the physics of Kondo polarons in a
Luttinger liquid.
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