
Physics Reports 728 (2018) 1–62

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The physics of flocking: Correlation as a compass from
experiments to theory
Andrea Cavagna a,*, Irene Giardina b,a,c, Tomás S. Grigera d,e,f

a Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
b Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy
c INFN, Unità di Roma 1, 00185 Rome, Italy
d Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET y Universidad Nacional de La Plata, Calle 59 no. 789, B1900BTE
La Plata, Argentina
e CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
f Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina

a r t i c l e i n f o

Article history:
Accepted 16 November 2017
Available online 8 December 2017
Editor:MassimoVergassola

a b s t r a c t

Collective behavior in biological systems is a complex topic, to say the least. It runs wildly
across scales in both space and time, involving taxonomically vastly different organisms,
from bacteria and cell clusters, to insect swarms and up to vertebrate groups. It entails
concepts as diverse as coordination, emergence, interaction, information, cooperation,
decision-making, and synchronization. Amid this jumble, however, we cannot help noting
many similarities between collective behavior in biological systems and collective behavior
in statistical physics, even though none of these organisms remotely looks like an Ising
spin. Such similarities, though somewhat qualitative, are startling, and regard mostly the
emergence of global dynamical patterns qualitatively different from individual behavior,
and the development of system-level order from local interactions. It is therefore tempting
to describe collective behavior in biology within the conceptual framework of statistical
physics, in the hope to extend to this new fascinating field at least part of the great
predictive power of theoretical physics. In this review we propose that the conceptual
cornerstone of this ambitious program be that of correlation. To illustrate this idea we
address the case of collective behavior in bird flocks. Two key threads emerge, as two sides
of one single story: the presence of scale-free correlations and the dynamicalmechanism of
information transfer. We discuss first static correlations in starling flocks, in particular the
experimental finding of their scale-free nature, the formulation of models that account for
this fact usingmaximum entropy, and the relation of scale-free correlations to information
transfer. This is followed by a dynamic treatment of information propagation (propagation
of turns across a flock), starting with a discussion of experimental results and following
with possible theoretical explanations of those, which require the addition of behavioral
inertia to existing theories of flocking. We finish with the definition and analysis of space–
time correlations and their relevance to the detection of inertial behavior in the absence of
external perturbations.
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1. Introduction

1.1. Biology, physics and the quest for universality

Biological systems are invariably complex, strongly interacting, and out of equilibrium: a nightmare for the physicist’s
‘‘spherical horse’’ approach. The topic of this review, namely collectivemotion in animal groups,makes no exception. The first
level of complexity in this problem is related to the strong interactions among individuals, which determine the collective
behavior of the group. But it is also clear that the individuals are themselves quite complex and out of equilibrium. Besides,
there is system diversity. Collective motion spans across many space and time scales, frommicroscopic organisms (bacteria
and cell clusters), to insects swarms (mosquitoes andmidges), up to vertebrate groups (bird flocks, fish schools andmammal
herds), living in very different environments. How can one hope to tackle these systems other than with specialized tools
for each situation? Yet many things have been understood about the problem of collective motion in biological systems by
using physics-inspired approaches that tackle different groups using similar conceptual tools. One may wonder where this
general understanding comes from.

A similar challenge is at the core of statistical physics, which studies systems where the large number of individual
components (particles) allows the successful application of a probabilistic approach. In this way the daunting complexity of
the system is tamed by focusing on a restricted set of properties: by giving up the hope to track individual particles, one can
understand and even predict the behavior of collective experimentally accessible variables, like pressure, temperature and
magnetization. In critical phenomena, an evenmore striking simplification occurs: systemswhose fluctuations are correlated
over long ranges display universality, namely the fact that their large-scale properties are independent from themicroscopic
interactions, and only determinedby the dimensions and symmetries of the system. In thisway the details become irrelevant,
and a wide variety of systems can be described by very simple models, as is the case with the Ising or Heisenberg models of
magnets.

In the past 30 years or so, biological systems characterized by a large number of interacting units have been studied
within a statistical physics approach, and this is what we do here for the problem of flocking. A common feature to all these
systems, which partly justifies such approach, is that they are all characterized by strong correlation, a key ingredient of the
statical physics’ aim at universality. Despite this, a possible objection is that statistical physics methods should be relevant
for systems with ∼ 1023 particles, while in collective behavior, and especially in flocking, we are often looking at groups
of a few thousands of individuals; scaling laws should apply at length scales of more than tens or hundreds interparticle
distances, which are larger than the size of the whole group. Moreover, the ‘‘particles’’ in the biological problem are complex
individuals which act as energy sources and can in principle move with laws completely different from the dynamical rules
that apply to physical systems. So, even if one sees that a statistical physics treatment of biological systemsworks in a couple
of cases, the question arises about how long we can get away with it before hitting the wall of the biological uniqueness of
each system.

From a theoretical point of view, the statistical physics of out-of-equilibrium systems is still an open and rapidly evolving
chapter of statistical mechanics and the question of under what dynamical conditions a statistico-mechanical approach
works, is still largely unanswered. From an experimental point of view, our best chance is to gather an increasing amount
of quantitative data where to test statistical physics concepts and tools, to prepare a firmer empirical basis upon which
building a theory of strongly correlated biological systems. For this reason, the scope of this review is quite restricted: we
only consider flocks, and only those aspects of this system for which experimental data is available to contrast or confirm
the predictions of theories and models. On the other hand, we go into quite a bit of detail on the theoretical tools we use
to interpret the experimental data. We aim to present the state of the art of our knowledge of collective motion of animal
groups and its understanding in the framework of statistical physics. Our understanding and our experimental information
has still many missing pieces and we make no attempt to hide this fact. We present here what we deem a useful summary
of progress made over the last decade or so, which points to hope for the great predictive power of theoretical physics can
be applied to this kind of biological problem.

1.2. Correlation

The overarching concept of our work is that of correlation. Correlation is such a fundamental concept in physics that the
mean physicist would normally not bother discussing its significance. However, this is a reviewwhich aims at capturing the
interest also of an audience in biology, hence a few words about what we, as physicists, mean by correlation will be useful.
Collective behavior invariably appears in systems composed of many units (particles, spins, animals, cells, etc.) that interact
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with each other. Interacting means exchanging information in a direct way; in physics this typically occurs through forces
acting on the particles which are mutually within their interaction range; in biology we often speak of ‘social forces’, which
is a merely nickname to describe the complex ways in which biological entities exchange direct information or directly act
on each other in any way. The key word when explaining interaction is ‘direct ’: interaction between units i and j, whatever
these units are, is not mediated by any third unit k (it could me mediated by some physical medium, though). The best way
to see this is to ask: would i and j be influencing each other even if all the rest of the group disappeared? If the answer is yes,
then we can say that i and j interact with each other (although the way in which i interacts directly with j may depend on
whether i and j are alone, or within a group). Correlation, on the other hand, is the indirect result of interaction: i exchanges
information with j that exchanges information with k that exchanges information with l. The result is that i and lmay share
some information, and perhaps ‘behave’ similarly even though they never talked to each other (no direct interaction). When
this happens, information has spread indirectly from i to l (and vice versa) and we say that i and l are correlated.

Such indirect exchange of information comes in two types, static correlation and dynamic correlation. The first is easier
to compute and to define, but the latter is more intuitive. Static correlation does not know about the dynamical mechanism
through which information goes about the system, but it simply measures to what extent different parts of the system
behaves similarly at the same time. This may seem weird, as if no time has passed one may wonder how information has
been transmitted between those two positions in space. In fact, static correlation between two parts of a system always does
imply the existence of dynamical phenomena that have contributed to connect these two parts is some way in the past;
however, to measure static correlations we do not need to know anything about these past dynamical phenomena: we can
simply average over the many possible configurations the system is found in, irrespective of how it arrived there. On the
other hand, we can also compute temporal correlations, namely ask howmuch one part of the system at one instant in time
is correlated to another part at a different time. In this case, as we shall see, correlation is connected to the actual propagation
of information across the system.

We have said that correlation measures to what extents different parts of the system behaves similarly, but this
is somewhat misleading and it must be specified more carefully. What is really useful to measure is how similar the
fluctuations are, namely the deviations with respect to the mean behavior of the system. This is what physicists call the
connected correlation function. The connected correlation function measures how much the deviation of i with respect to
the mean behavior of the system is similar to the deviation of j; this deviation with respect to the mean behavior is what
is called fluctuation. In this way, the connected correlation eliminates the somewhat trivial effect of behaving similarly just
because the whole system is doing so. For example: a flock of starlings is a strongly polarized system, everybody is going
(approximately) in the same direction, similarly to what happens in a ferromagnet at low temperature, where each spin
points in a similar direction. The non-connected correlation, i.e. the correlation between the full velocity of i and that of j
is always very large, irrespective of the distance between i and j, be it in space or time; this simply happens because the
whole system has developed long-range order, so that non-connected correlation is merely a replica of the mean order of
the group. Connected correlation, on the other hand, measures to what extent the change of direction of one individual is
similar to the change of direction of another individual, which is nontrivial. The experimental determination and theoretical
discussion of connected correlations, both at the static and dynamical level, will be the fil rouge of our work.

1.3. What the reader can find in this review

It is important to make clear from the outset that in this review we will be mostly discussing our own work, rather
than actually reviewing the numerous important contributions of other groups to the physics of flocking and to collective
behavior more in general. Fortunately for the reader, in the last decade or so at least two major review works appeared, the
book byDavid Sumpter [1] and the review article by Tamas Vicsek andAnna Zafeiris [2], which, togetherwith themost recent
reviews in active matter [3,4], provide a very comprehensive and balanced view of the field. As we said, our scope is more
limited: we want to focus the reader’s attention on the path connecting space–time correlation to information propagation,
and we aim to do so within the rather well-defined experimental arena of polarized biological systems, i.e. flocks. However,
even within such a narrow scope, it was essential to discuss in detail two major pillars of the physics of flocking, namely the
Vicsek model [5] and the hydrodynamic theory of Toner and Tu [6].

It is nowadays fashionable to write that the Vicsek model is too basic, lacking in biological realism. Indeed the Vicsek
model is simple: particles get around with constant speed and their only interaction is the tendency to align their direction
ofmotionwith that of their local neighbors; there is no cohesion, no short-range repulsion, no speed fluctuations, no attempt
to make the flock do anything smart or indeed anything at all. Yet, in our opinion, the brutal simplicity of the Vicsek model
is its most precious asset: it is the quintessential statistical mechanics model, in that it captures the essential trait of the
phenomenon under investigation, limiting to the bareminimum the number of details and parameters; it is not exaggerated
to say that it is the Ising model of flocking. For these reasons, the Vicsek model will be the constant reference frame of our
work in terms ofmodeling. Toner and Tu’s hydrodynamic theory has a similar role. Originally derived as a continuum version
of the Vicsek model, it promoted the topic of flocking from the somewhat narrow boundaries of numerical simulations of
discrete models, up to the very powerful framework of field theory, critical phenomena and the renormalization group.
For the first time, within the Toner–Tu theory, the physics of flocking was able to calculate essential things like correlation
functions, critical exponents, etc. This has been an enormous step forward for the whole field. As for the Vicsek model,
Toner–Tu theory will therefore be a constant conceptual reference all along this work. Part of our effort will be dedicated



A. Cavagna et al. / Physics Reports 728 (2018) 1–62 5

to generalize the Vicsek model and the Toner–Tu theory in order to capture a key experimental phenomenon, namely the
linear propagation of information within flocks. We hope it will emerge clearly that this generalization would have been
impossible without these two fundamental descriptions of collective behavior. Our aim was not to oust the Vicsek model,
nor the hydrodynamic theory of Toner and Tu, but simply to add a new ingredient (inertia), to make them more powerful,
yet keeping the parameters complexity to the bare minimum.

1.4. Plan of the work

We will start in Sections 2.1.1 and 2.1.3 with a primer on how to compute static correlations in biological systems. The
system we will study (real flocks) is not the typical statistical mechanics one, hence all classic definitions of correlations
have to be modified and adapted, with some relevant technical issues to keep into consideration; to do this we will directly
present our tools on real experimental data about flocks, in order to make the discussion as practical as possible. Once this
will be done, we will study static correlations in flocks of starlings and see what they tell us about the interaction ruling the
systems (Section 2.2). The main experimental result here will be the scale-free nature of such correlations, namely the fact
that different parts of the systems are correlated in a long-range way, which seems an interesting phenomenon. After some
further technical details on the correlation functions (Section 2.3), Section 2.4 deals with the problem of building models
compatible with the experimental information on correlations. However, all these discussions are static, hence it is unclear
how and why scale-free correlations should be relevant in determining how information propagates within a biological
system (Section 2.5).

This question will lead us to the second part of the work, where we will present experimental results about how
information travels across a flock (Section 3.1).Wewill see that the change of direction of one bird spreads very efficiently to
the rest of the group giving rise to a collective turn. We will demonstrate that scale-free correlations are indeed a necessary
condition to achieve this result, but not a sufficient one: previous theories of collective motion had scale-free correlations,
and yet were unable to describe information propagation of the sort we observe in real flocks (Section 3.2).Wewill therefore
present a new theory of flocking, whose main player will be behavioral inertia in Section 3.3.

Measuring how a signal propagates across a system is certainly the best andmost direct way to infer what is the equation
of motion ruling a system; however, it is not always practical to do so experimentally. Taking inspiration from statistical
physics, wewill therefore show that one can get information about signal propagation from theway spontaneous dynamical
fluctuations relax, without having to measure a signal actually propagating through the system. This will naturally lead us
to the third and final part of the work, dedicated to dynamical correlation functions (Section 4). Here we will show that
static correlation, information propagation and dynamical correlation are all manifestations of the same thing, namely of
the dynamical equation ruling the behavior of the system, which is ultimately what we are after.

2. Scale-free correlations

Correlation functions play a central role in the description of collective phenomena, both at the theoretical and
experimental level. In this Section we will introduce several correlation functions, briefly recall their meaning, illustrate
experimental results and discuss their consequences from a theoretical perspective. Many biological systems, and animal
groups in particular, exhibit ordered patterns or coordinated behavior in their movement. Our main interest will therefore
be in those degrees of freedom that mostly characterize such patterns: velocities, flight directions and speeds. We will
introduce global order parameters quantifying the degree of collective ordering in the system (global polarization, group
velocity and average speed) and investigate individual fluctuations and their correlations. In this respect, magnetic models
represent an important archetype of long-range directional order and will recurrently provide a benchmark and a guideline
to describe and understand these systems. Due to the active nature of their components, biological assemblies also present
non-trivial structural properties: individuals in a group exchange positions and change their mutual arrangement in space,
determining an interaction network that continuously evolves in time. Directional and positional degrees of freedom are
in general coupled, making the description of active matter extremely complex [7]. Many two-dimensional active systems,
for example, display giant density fluctuations and traveling ordered bands, symptomatic of strong coupling between local
density and local order [3,4]. On the contrary, many natural systems moving in three dimensions live in a regime where
directional fluctuations dominate over positional ones [8]. This is the case which mostly interests us in this section.

2.1. The connected correlation function

2.1.1. Order parameter
We consider a group of N ‘particles’ (birds, but also insects, fish, etc.), placed at positions {ri}, i = 1 . . .N , moving in space

with individual velocities {vi}. We are interested in the collective order that arises in the velocity degrees of freedom. In some
systems, positions may also develop a complex structure as a consequence of their coupling with velocities, but in our case
of interest (bird flocks) the main source of order are the velocities (the structural order is indeed quite poor in flocks [9]).
Thus we introduce the following order parameters to describe the degree of collective order:

Φ =
1
N

∑
i

vi
|vi|

, polarization, (1)
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V =
1
N

∑
i

vi, average velocity, (2)

S =
1
N

∑
i

|vi|, average speed. (3)

The polarizationΦmeasures the degree of global alignment; itsmodulus (scalar polarization, notedΦ) takes values between
0 and 1. Strongly polarized groups like flocks of birds typically haveΦ near 1, large values of |V|, and small speed fluctuations
around the mean [10], while non-polar aggregates like swarms of insects have rather low polarization and a very small
average velocity [11,12].

2.1.2. Fluctuations
When discussing response to external perturbations and propagation of information through the group, fluctuations,

i.e. the departure of individual behavior from the group average, are the most relevant quantities. Most importantly, when
considering correlations fluctuations will be the main players, as these are the quantities that can distinguish a truly
interacting systemwith emergent behavior fromanon-interacting one, in the presence of global order. Thus a very important
quantity in what follows will be the instantaneous deviation of the velocity of i from its global mean,

δvi ≡ vi − V = vi −
1
N

∑
k

vk. (4)

Similarly, we define the speed fluctuations as,

δsi = |vi| − S, (5)

The fluctuations are the building blocks of the connected correlation function, which we now define.

2.1.3. Definition of the correlation function
To investigate the collective nature of the system’s behavior we introduce the connected correlation functions, i.e. the

space correlations of the velocity fluctuations (4). For a given pair i and j, the product δvi · δvj measures the degree of
similarity between the two individual deviations; ideally, one would like to perform an average of this product over some
statistical ensemble, ⟨δvi · δvj⟩, in order to compute the correlation between i and j, as we do in ordinary statistical physics.
Unfortunately, in collective animal behavior we do not have a well-defined statistical ensemble over which to perform such
average. However, as long as interactions are local and distance dependent, the only property that affects the correlation
between two individuals is their mutual distance. We can therefore group pairs of individuals according to their mutual
distance and perform an average over all such pairs. We therefore define the distance dependent correlation function as,

C(r) =

∑N
i,j δvi · δvj δ(r − rij)∑N

k,l δ(r − rkl)
, (6)

where rij = |ri−rj|. Definition (6) quite naturally encapsulates the idea of a spatial average:we sumall the products δvi·δvj for
those pairs i and jwith a distance rij between r and r+dr , and thenwedivide by the number of suchpairs (the denominator). If
the system is large enough Eq. (6) involves an average overmany different pairs and C(r) gives a fair estimate of the statistical
correlation at scale r at a certain instant of time. If several experimentally determined configurations are available under
similar boundary conditions, a time average over the different configurations can also be performed, although before doing
such average it is important to check that the system under investigation is at steady-state; if, on the other hand, there
is a clear trend with time of the correlation function, it does not make sense to average over time. Connected correlation
functions can be defined in a similar way also for the fluctuations of the speeds |vi| and of the flight directions vi/|vi|. As we
shall see, it is indeed useful to distinguish the directional degree of freedom from the modulus of the velocity.

The denominator of (6) is the number of pairs at mutual distance r; in a isotropic and homogeneous system, and for large
distances r , this number can be approximated as the volume of the shell of radius r times the density ρ0 of the system, that
is,

N∑
k,l

δ(r − rkl) ∼ Nρ04πr2, isotropic – homogeneous – large distance – approx (7)

where N counts the number of centers for each pair. For this reason, one may be tempted to use a different definition of the
correlation function, namely,

Ĉ(r) =
1

Nρ04πr2

N∑
i,j

δvi · δvj δ(r − rij) , (8)

which is more similar to the definition used in standard liquid theory [13]. However, using (8) would not be a good idea.
Compared to (8), definition (6) conveniently separates and protects the correlation of the order parameter fluctuations
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(in this case the orientation, δvi), from the (often nontrivial) correlations of the fluctuations in the positions of the particles,
i.e. in the density. The point is the following: the sum over i and j of δ(r − rij) is highly sensitive to the spatial distribution of
the particles; however, in (6) this term appears both at the numerator and at the denominator, hence canceling out, while in
(8) it appears only at the numerator, whereas the denominator assumes an homogeneous and isotropicmass distribution. As
a result, definition (6) focuses only on the correlations of the order parameter (not of the positions), while (8) mixes the two
kind of fluctuations (order parameter and positions) in a way that is difficult to disentangle. There are two crucial reasons
why separating these two effects is very important:

(i) Discrete mass distribution. By far themost basic reason is that (8) is far too sensitive to the discrete nature of the system.
Consider the simplest case, namely a system on a fixed regular lattice, for example the Ising model on cubic lattice. In this
case, up to a few lattice spacings, definition (8) has very strong spikes due to the difference between the actual number of
pairs on the cubic lattice, and its approximated expression, Nρ04πr2. Of course, for large r this effect vanishes, but it may
still mask completely the correlation of the order parameter for small-intermediate r . Definition (6), on the other hand,
emancipates completely C(r) from the lattice structure.

(ii) Open boundary effects. In real biological systems we invariably have a finite size open border, hence we cannot work
in the bulk, nor with period boundary conditions. This means that the number of pairs stops growing as r2 beyond a certain
distance, which is of the order of the system’s size; hence, (8) is normalizing by the wrong factor, as the volume of the shell
starts being empty when parts of the shell are out of the system. On the other hand, definition (6) always normalizes by the
actual number of pairs, hence giving the correct average.

Whenwe stress that the right definition of correlation function of the order parametermust separate its fluctuations from
those of the mass distribution, we do not want to suggest that the latter are irrelevant. Of course, real biological systems do
not sit on fixed regular lattices, and density fluctuations are indeed a crucial part of the physics active matter; for example,
giant density fluctuations have been experimentally observed in different systems [3,4], and more in general we do not
know a priori whether or not the system is homogeneous and isotropic. But exactly for this reason, namely because density
fluctuations are interesting per se, we need to investigate them separately, and not entangled with the order parameter
fluctuations, as (8) does. The correct way to separately investigate density fluctuations is of course to compute the density
correlation function, namely the excess of particle pairs over the volume shell,

g(r) =
1

Nρ04πr2

N∑
i,j

δ(r − rij) , (9)

which coincideswith the radial distribution function defined for liquids [13] (except at r = 0 - see Appendix A). The function
g(r) is proportional to the probability to have a particle at distance r from any given particle and it therefore describes how
particles (or individuals) are arranged in space. In a completely homogeneous system g(r) = 1, but in general g(r) has a
non-trivial space dependence (e.g. it has spikes on regular lattices/crystal, broad peaks in a liquid, or a more exotic structure
in presence of anomalous density fluctuations [13]). Once defined g(r), we finally realize that the connection between the
two correlation functions, C(r) and Ĉ(r), is simply,

C(r) =

∑N
i,j δvi · δvj δ(r − rij)

ρ0N4πr2g(r)
=

Ĉ(r)
g(r)

. (10)

For an homogeneous system g(r) = 1 and in that case dividing by number of pairs is equivalent to dividing by the shell
volume; however, we have seen that this is not at all the generic case. We therefore understand that by dividing by g(r)
in Eq. (10) we are disentangling the correlations of the order parameter (the velocities) from those of the density (see
Appendix A for an expanded discussion of this point, and for a definition of correlations starting from velocity fields rather
than individual velocities).

The bottom line is that order parameter and density fluctuations must be studied separately, hence one should use (6)
for the former and (9) for the latter. For natural flocks, experimental measurements have shown that the structure of g(r) is
quite bland [9]; its only nontrivial feature is a (rather expected) drop of probability at very small r , clear signal of a hard core:
birds have a minimum nearest neighbor distance roughly equal to their wingspan [14]. Apart form this, no other interesting
feature emerges in the density correlation of flocks. Hence, from now on, we will solely focus on the velocity fluctuations
correlation function, (6). However, other organisms can have nontrivial correlations of the density fluctuations, hence in
general it is important to study separately g(r) and C(r).

2.1.4. Non-connected vs connected correlation
Connected correlations are the primary tool of theoretical analysis and experimental work for several reasons. As we

noticed in the Introduction, a crucial feature of connected correlations is that theymeasure the amount of similarity between
the fluctuations δvi of the velocities (or of any other quantity of interest), rather than the velocities themselves. If the system
displays global order all the individual vi are necessarily similar to one another to the extent that V = 1/N

∑
ivi ̸= 0:

everybody is pointing on average in the same direction, defined by the collective group motion. The simple non-connected
correlations between velocities are therefore dominated by this common contribution. On the other hand, connected
correlations – defined in terms of the deviations of the velocities from their average value – capture correlations beyond the
effect of global order. An important consequence of this is that connected correlations can to discriminate between systems
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Fig. 1. Individual velocities in natural flocks of birds. (a) 2-d projection of the individual velocities within a starling flock at a fixed instant in time (1246
birds, linear size L = 36.5m). Vectors are scaled for clarity. The flock is strongly ordered and the velocities are aligned. (b) 2-d projection of the individual
velocity fluctuations of the same flock at the same instant (vectors scaled for clarity).
Source: From [10].

where order is due to some external common cause, in absence of mutual interactions, and systems where collective order
is truly an emergent phenomenon (due to interactions between individuals). A simple example comes from ferromagnetic
systems. If a lattice of non-interacting spins is subject to an external magnetic field, each spin will independently align with
the field and the system will display a non-zero global magnetization, i.e. collective order. The non-connected correlation
between spins will also be different from zero but for a trivial reason: all spins are aligned with the field and therefore also
with one another. However, since spins do not interact they respond independently to thermal noise: their fluctuations from
the average are therefore uncorrelated, leading to a zero connected correlation. If we consider instead a lattice of spins with
local interactions and no external field, something different happens: at low temperature the system develops a non-zero
global magnetization, but the spins fluctuate in a correlated way due to mutual interactions and C(r) is therefore different
from zero. In the context of collective animal behavior, the above examples would correspond to cases where collective
motion is due to the presence of a leader individual, to an external global disturbance or to the movement of the ambient
medium (C(r) ∼ 0), or cases where it derives from the ‘social’ forces between group members (C(r) ̸= 0).

We note that for an interacting system connected correlations can also be different from zero (and strong) even in
absence of order. This is for example what happens close to critical points separating an ordered phase from a disordered
one in condensed matter physics [15,16]. Swarms of insects are an example of animal groups where there is no collective
motion (swarms are directionally disordered) but correlated patterns (described by a non-trivial C(r)) occur at the group
scale [11,12]. Connected correlations therefore represent a better signature of collective behavior than order itself. More
broadly, in statistical physics it is the connected correlations that are tuned by the control parameter of the system, display
scaling behavior, and obey fluctuation–dissipation relationships. If, as we hope, collective behavior in biological systems can
be described within a similar approach, it is from connected correlations that we must start our investigation. To illustrate
the relevance of correlations, in the next sections we immediately show the correlation function (6) as computed from
experimental data in natural flocks of birds, and discuss the implications of such findings.

2.2. Experimental evidence

The correlation function C(r) has been computed in natural flocks of starlings in [10]. In that work, stereo-experiments
were performed in the field with a high resolution video-acquisition system [17]. Using computer vision techniques the
instantaneous three-dimensional positions and velocities of the individual birds in large groups of starlings have been
retrieved for many flocking events. Fig. 1 shows the individual velocities vi (panel A) and the corresponding fluctuations
δvi = vi − V (panel B) at a given instant in time for a flock of approximately 1000 individuals. Although the figure displays
the two-dimensional projections of the velocity and of the fluctuation vectors, it clearly shows the large degree of global
ordering (polarization is above 0.9) and the presence of two large correlated domains. The extension of such domains can be
quantified by looking at the connected velocity correlation function C(r), Eq. (6). In general, the correlation function decays
from large values at short distances, to smaller values when individuals do not belong to the same domain: the decay range
of C(r) – the correlation length ξ – is therefore a measure of how large these domains are.

The C(r) obtained from the data is shown in Fig. 2a. As can be seen from this figure, the correlation does not display
any exponential decay (which would provide a natural decay length-scale); rather it decreases almost linearly up to very
large mutual distances. As discussed more in detail in Section 2.3.3, the correlation length ξ can be estimated in this case
as the point where the correlation crosses the zero axis. This point indeed marks the distance beyond which fluctuations
become anti-correlated, corresponding to pairs of individuals that deviate from the mean group velocity in an opposite
way. It therefore measures the extension of the correlated domains observed in Fig. 1b. For a given flocking event, this
procedure can be performed at different times to obtain the average correlation length for that flock. Fig. 2c shows the
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Fig. 2. Velocity correlation functions in natural flocks of birds. (a) Space correlation of the velocity fluctuations at a given instant of time, for the same
flocking event as in Fig. 1. (b) Space correlation of the speed fluctuations for the same flocking event and for the same time as in (a). Both velocity and
speed connected correlations are normalized to 1 for r = 0. (c) Correlation length of velocity fluctuations vs. system size for all the flocking events analyzed
in [10]. (d) Correlation length of speed fluctuations vs. system size, for the same events as in (c) [10]. The density is different in different flocks, with a
mean nearest-neighbor distance r1 varying in the interval [0.6 m : 1.5 m]; the topological interaction range in units of birds is nc ∼ 8 neighbors [18,19],
corresponding to a metric range rc ∼ r1n

1/3
c varying in the interval [1m : 3.5m]. The correlation function therefore extends much beyond the interaction

range, both in units of meters and in units of birds.

average correlation length of several flocks as a function of the flock’s linear dimension, for sizes up to 4000 individuals. The
plot shows that ξ increases linearly with the size L of the group. This means that there is no typical correlation length for the
decay of correlations; rather, the only scale present in the system is its size.

2.2.1. Scale-free correlations
The fact that the correlation length is proportional to the system’s size means that the correlations are scale-free in the

thermodynamic limit: since the only characteristic length scale is the system size itself, when it becomes infinite there
remains no characteristic length scale. Usually scale-free behavior is associated to a power law decay. Let us therefore show
how the result ξ ∼ L implies a power-law decay in the thermodynamic limit. The leading contribution to the correlation
functionC(r) can in general bewritten,when ξ ismuch larger than themicroscopic scales such as the interparticle separation,
a, as [20]

C(r) =
1
rγ

f
(
r
ξ

)
(11)

where f (x) is a scaling function.1 By multiplying and dividing by ξ γ , one gets an equivalent form,

C(r) =
1
ξ γ

g
(
r
ξ

)
, (12)

where g(x) is another scaling function. The experimental finding that ξ grows proportional to the flock’s size L can be
formalized as,

ξ (L) = s ξ (L/s) , (13)

where s > 1 is a dimensionless scaling factor; that (13) makes sense can be seen by choosing the arbitrary scaling factor as
s = L/a, where a is the natural microscopic length scale (as the interparticle separation), in which case we get the scale-free
result, ξ (L) ∼ L, up to irrelevant microscopic constants. By substituting (13) into (12) we get,

C(r; L) =
1
sγ

C(r/s; L/s) , (14)

1 In Eq. (11) one considers r much larger than the microscopic scale a; in fact, C(r) has a finite limit for r → 0.
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Fig. 3. Rescaling of the correlation functions. (a) The correlation function of the velocity fluctuations C(r) is plotted as a function of the rescaled variable
x = r/ξ . Different colors correspond to different flocking events. Inset: slope of the function C ′(x = 1) vs. the correlation length. Each point corresponds to a
different flocking event; error bars are standard deviations across multiple times in the same flocking sequence. (b) Same as in (a) for the speed correlation
function.
Source: From [10].

which tells us that the correlation function scales homogeneously under a rescaling of space, r → r/s. We can now chose
the arbitrary scaling factor as s = r/a, which is equivalent tomeasuring all distances in units of themicroscopic sale a, hence
integrating over all short wavelengths details (see Sec. 3.2 of [21] for a discussion of this point); in this way we obtain,

C(r; L) =
1
rγ

h
( r
L

)
, (15)

where h(x) is yet another scaling function. This relation tells us that the correlation function becomes a pure power law for
infinitely large systems, L → ∞; on the other hand, at finite values of L, C(r) is modulated by the scaling function, whose
only scale is L itself. This is precisely what is found in flocks. We note that the behavior of the scaling function h(x) also
depends on the way one defines fluctuations: in our case, where we subtract to the fields the instantaneous space average,
h has a zero at some value of its argument, say x0 (see discussion in Section 2.3.2). As a function of r , the zero will then be
at r0 = Lx0, consistent with the fact that for L → ∞ the correlation becomes more similar to a power law. This is also in
agreement with the statement that the estimate of ξ (the point where the correlation becomes negative) is proportional to L.

2.2.2. Scaling of the correlations
From Eq. (15) we see that the product rγ C(r; L) is a function of the scaling variable r/L, so that curves for systems at

different sizesmust collapse one on top of each other.We do not know the value of the exponent γ a priori, butwe can extract
it from the data. We can try different values of γ and search for that which optimizes the collapse. Notice that, because of
the scale-free relation ξ ∼ L, using r/L or r/ξ as a scaling variable is exactly the same thing. A word of caution about this
method: it is important to notice that it is the product rγ C(r; L) and not simply the correlation C(r, L), that collapses when
plotted against the scaling variable r/L; if, on the other hand, we plot directly C(r) vs x = r/L, we find C(x) = 1/Lγ ĥ(x),
hence, if γ ̸= 0, one sees a flattening of the function for larger systems.

If we want to estimate γ more constructively, without using the collapse, we can plot C(r; L) as a function of x = r/ξ
(equivalent to r/L in our scale-free case) and evaluate its derivative in x = 1. Indeed, from Eq. (15) one has (dC(x)/dx)|x=1 =

g(1)/ξ γ : one can therefore retrieve γ by looking at the slope of C(x) at the crossing point. This procedure was followed
in [10], where the exponent has been estimated as γ ∼ 0.19 (see Fig. 3a). This very small value implies that correlations
collapse quite well also when plotting them as a function of r/ξ without themultiplicative factor rγ , as it is clearly seen from
the figure. It also indicates that velocity correlations are not only scale-free, but also decay very slowly.

2.2.3. Speed correlations
Interestingly, a similar scale-free behavior is observed also for the fluctuations of the individual speeds. Analogously to

the velocity correlation (6), we define the speed connected correlation function

Csp(r) =

∑N
i,j δsi δsj δ(r − rij)∑N

i,j δ(r − rij)
, (16)

where, we remind, δsi = |vi| − S. The speed correlation function for a flock at a given instant of time is displayed in Fig. 2b.
Again, as in the velocity the decay is not exponential, and the correlation length ξs is estimated as the distance where the
correlation crosses the x-axis. The average correlation length as a function of the flock’s size L is plotted in Fig. 2d: in this
case too the correlation length scales linearly with the size, indicating that speed correlations are also scale-free. A scaling
analysis of the same kind of the one discussed above for the velocity correlation functions shows that also for the speed
correlations decay very slowly, with an exponent of the same order as the velocity one (see Fig. 3b).



A. Cavagna et al. / Physics Reports 728 (2018) 1–62 11

2.2.4. Origins of the scale-free behavior
The presence of scale-free correlations in different degrees of freedom indicate that individuals in a flock are able to

influence one another even at large distances, whatever the size of the group is. In this respect, they quantify the intuitive
idea that these groups act and respond coherently. However, when it comes to understanding the microscopic mechanism
giving rise to such correlations, we realize that scale-free correlations in the directional degrees of freedom and in the speed
might require quite different explanations.

All models of flocking and polar active motion invoke interactions between individuals based on short-range mutual
alignment [5,22,23,2,24], much as spins in a Heisenberg ferromagnet. We will see that analysis of real flock data do indeed
support this assumption. Flocks are therefore systems endowed with a natural continuous symmetry – the rotation of the
individual velocities – which happen to live in the polarized phase. We know from the physics of equilibrium systems
that whenever a continuous symmetry is spontaneously broken, giving rise to global ordering, there are some fluctuation
modes (those perpendicular to the global order parameter) that are scale-free (Goldstone’s theorem [16,15]). The presence
of such soft modes due to a symmetry breaking also holds in off-equilibrium models and has been verified numerically and
analytically for a variety of models of active matter [7,2,25,26]. Thus, the scale-free correlations of the velocity fluctuations
found in natural flocks seem a natural manifestation of the spontaneous breaking of the rotational symmetry. From this
point of view they are generic. They are the consequence of the nature of interactions, and of the good accuracy with which
individuals follow their behavioral rules (i.e. low noise). They occur contextually to global order: as soon as the group
develops collective motion, there are some ‘easy’ fluctuations that cost very little (they do not affect the degree of order)
and extend on the group scale. No specific values of the parameters regulating the system’s behavior are required, just that
the system is in an ordered state.

The situation is completely different if we consider the speed correlations. Speed is a scalar degree of freedom, and there
is no continuous symmetry associated to it. Contrary to flight directions, speeds are stiff quantities, costly to change. In this
case, therefore, the mechanism leading to the observed long-range correlations must be different. In equilibrium statistical
mechanics, the only other way to produce scale-free static correlations is to bring the system close to a critical point. Pushing
the analogy to flocks, the experimental findings therefore suggest that natural flocks might exhibit some kind of critical
behavior. In Section 2.4 we will discuss the possible origin of such criticality. For now, we observe that such behavior –
contrary to the velocity case – is highly non-generic and requires the fine-tuning of some relevant parameter close to a
specific ‘critical’ value.

2.3. Crucial caveats (this is not an appendix)

We now need to discuss a few subtle and yet crucial issues related to the definition and interpretation of correlation
functions in real biological systems; in doing so we will introduce some other quantities that play an important role in
characterizing – both experimentally and theoretically – collective behavior.

2.3.1. Space averages vs phase averages
The connected correlation defined in Eq. (6) refers to orientational degrees of freedom, the velocities. In this respect

it is similar in spirit to the correlation usually defined in the theory of ferromagnetic systems. There are however some
interesting differences in the definition, which reflect the more complex nature of the system we had like to describe. Had
the {vi} represented the spin vectors of a ferromagnet, we would have defined the connected correlation as Cij = ⟨δvi · δvj⟩,
where the fluctuation is measured from the phase average, δvi = vi − ⟨vi⟩, and the phase averages ⟨· · · ⟩ are taken over the
stationary distribution of the {vi}. While this procedure is perfectly well-defined for an equilibrium system on a lattice, it
can become practically and conceptually problematic for an active system. As we already noticed, when we are confronted
with data from flocks or other living systems we do not know a priori what the phase average is. If we want to perform
averages and get statistically robust quantities, the only reasonable choice is to perform space averages, i.e. averages over
all the group. This is indeed what we did both at the level of fluctuations (defined as deviations from the group mean —
see Eq. (4)) and at the level of the correlation function (defined as an average over the group of correlations pairs — see
Eq. (6)). Additionally, active systems do not live on a fixed lattice, individuals exchange positions and gradually diffuse far
away from one another. In this respect, averaging the Cij for a given pair is in general not meaningful: sooner or later the
correlation becomes zero and it does not have, strictly speaking, a stationary distribution. The correlation function C(r)
however overcomes this problem: it is an average over space of a quantity that depends onmutual distance (rather than the
individuals’ identities). It is reasonable to expect that this quantity has a well-defined stationary distribution and that, if the
system is large enough, Eq. (6) gives a good estimate of the statistical behavior of this quantity.

2.3.2. The spatial constraint
The definition of C(r) given in Eq. (6) involves fluctuations with respect to the instantaneous space average, rather than

a phase (or ensemble) average, which would be the reasonable choice in equilibrium statistical mechanics, but that is here
unavailable. As a consequence, the correlation function obeys some specific constraints and behaves slightly differently from
what we are used to in equilibrium condensed matter systems. From the definition of Eq. (4), it follows that if we sum over
all the individuals we get,∑

i

δvi = 0. (17)



12 A. Cavagna et al. / Physics Reports 728 (2018) 1–62

Fig. 4. Static correlation function. Numerical simulation of the Ising model in d = 2 with periodic boundary conditions in the disordered phase. Curves of
the same color correspond to the same temperature. (a) The phase averaged correlation function Cph(r) is computed by using phase averages, while the
correlation C(r) defined in (6) is instead computed by using the instantaneous space average. C(r) always lies below Cph(r). (b) Same curves as in panel (a),
but we now plot C(r)+⟨[V − ⟨V⟩]2⟩ instead of C(r): we see that the curves computed at the same temperature now lie one on top of each other. The critical
temperature is Tc = 2.27 [27]. The system’s linear size is L = 100. Correlations are normalized in zero for a better comparison.

This spatial constraint has a key consequences on the behavior of C(r); from Eq. (6), (10), we have,

0 =
1
N

∑
i,j

δvi · δvj = ρ0

∫
dr g(r)C(r). (18)

Since g(r) is positive, this relation implies that C(r) must have a zero. Hence the correlation function will not asymptotically
decay to zero from above at large distances, as it does when defined in the standard way (i.e. subtracting the phase
average), but must cross the axis and become negative. Since the space average V approaches the phase average ⟨V⟩ in the
thermodynamic limit, we expect C(r) to correctly describe the typical decay of correlations for large systems. At a given size,
if the decay rate of the correlation is much smaller than the system’s size, the effect of the constraint is barely visible. On the
contrary, if correlations extend over the whole system the constraint forces the correlation function to become negative in a
region where correlations are still strong (we will see in the next section how to exploit this fact). To illustrate this point let
us consider a case where we know how to compute phase averages and can therefore compare the correlation C(r) defined
in (6) (where one subtracts the space average) with the standard one where one uses the phase average, Cph(r): this case is
the ferromagnet. In Fig. 4 we display the behavior of the two correlation functions in the disordered phase of the 2d Ising
model. We can see that for temperatures well above the critical temperature, the exponential decay behavior is the same
and is clearly visible in both correlations; when T approaches Tc the standard connected correlation function approaches a
power law behavior, while C(r) has a zero due to the constraint. We note that, since δvi = vi − V = vi − ⟨V⟩ + ⟨V⟩ − V, we
easily get

C(r) = Cph(r) − ⟨[V − ⟨V⟩]2⟩ . (19)

This expression shows that the two correlation functions differ by a constant, whichmeasures the average fluctuations of the
global order parameter (we shall see in the next Section that this constant is essentially the susceptibility). At equilibrium
such fluctuations decrease with increasing the system size as 1/N (unless we are close to a critical point), showing that in
the thermodynamic limit the two correlations come close one to each other. In the simple example we are considering (2d
Ising model), we can numerically verify Eq. (19) (see Fig. 4b).

2.3.3. Subtleties about the correlation length
The role of the correlation length is to measure the extension of the correlated domains, i.e. the distance belowwhich the

individual deviations from the mean fluctuate in a correlated way. As usual, we expect the correlation to be strong at small
distances and then fade away, which should be captured by the decay of C(r) as r increases. However, C(r) must cross the
zero axis at some point r0 due to the constraint. How can we then define ξ in an unambiguous way? Let us imagine that C(r)
exhibits an exponential decay well before the crossing point (as in the red curve of Fig. 4): in this case themost natural thing
to do is to define ξ as the range of the exponential decay. Correlations become indeed negligible beyond that distance; the
zero crossing happens due to a mathematical constraint, but correlations are already vanishing at that scale. The situation is
different, however, when no exponential behavior is present: in this case correlations are non-zero for all distances and the
only obvious scale that the correlation exhibits is the crossing point itself (as is the case for natural flocks of birds discussed
in Section 2.2). We shall therefore adopt the following definition:

exponential decay −→ ξ : C(ξ ) ∼
1
e
, (20)

no exponential decay −→ ξ : C(ξ ) = 0 (i.e. ξ = r0) (21)
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When correlated domains are small with respect to the size of the system, at any given instant of time there are many
correlated regions within the system each one with coherent fluctuations along some direction. When considering pairs at
distances larger than the domains’ extension we count correlations between different regions: since such regions are many
and uncorrelated their overall contribution is very small and one gets a correlation function decaying exponentially and
being negligible beyond the domains typical size. However, when the size of the domains starts becoming comparable to
the system’s size this is no longer true. There will be few domains within the system: when considering pairs with distances
larger than the domain size ξ , the correlation that we get describes the mutual orientation of these few domains, and it
does not average to zero. In particular, the largest possible correlated domains must be two and have opposite orientations
to satisfy the constraint

∑
iδvi = 0, in which case the correlation would be positive for r < ξ and negative for r > ξ ;

this scenario can be quantitatively verified using random synthetic velocities chosen to be correlated on a given scale, and
computing the correlation function (6) [10]. We note in this respect that the presence of anti-correlations is very different
from the absence of correlations

To fully appreciate the difference between the crossing point r0 and the correlation length ξ , and understand when the
first can be used as a proxy for the second, it is convenient once again to consider the reference case of ferromagnetic systems.
Looking back at Eq. (19), we notice that,

N⟨[V − ⟨V⟩]2⟩ = (1/N)
∑
i,j

⟨(vi − ⟨V⟩)(vj − ⟨V⟩)⟩ = ρ0

∫
dr g(r)Cph(r) , (22)

where Cph(r) is the correlation function defined with the phase average; from this we get,

C(r) = Cph(r) −
ρ0

N

∫
dr′ g(r ′)Cph(r ′) . (23)

From this equation we can obtain an explicit expression for r0, the crossing point where C = 0, i.e.

Cph(r0) =
ρ0

N

∫
dr g(r)Cph(r) , (24)

where the integral is extended up to the system’s size, L. Quite in general, we can assume that the correlation function Cph(r)
is the product of a power-law (scale-free) part and of an exponential part (or any other short-range function) [15,16],

Cph(r) =

(a
r

)γ

exp(−r/ξexp) , (25)

where a is the lattice spacing, γ the degree of the power law, and ξexp is the correlation length defined by the exponential
decay. If we measure the correlation over distances much larger than a, then the system is homogeneous and g(r) ∼ 1.
Putting all this back into Eq. (24) we can solve for r0. The results depend on how large ξexp compared to the system’s size L.
There are two cases:

(i) ξexp ≪ L. In this case we get, to leading order,

r0 ∼ ξexp log
(

L
ξexp

)
, (26)

where L is the linear size of the system. We therefore see that, if ξexp is finite and small compared to the system’s size, r0
increases with ξexp but has a logarithmic dependence on the system’s size L too. In this case r0 is not such a good proxy of
ξexp and one is better off by fitting the exponential decay of the correlation.

(ii) ξexp ≫ L. In this case Cph(r) effectively decays as a power law,

Cph(r) ∼

(a
r

)γ

. (27)

In this case there is no well-defined length scale in the systems apart from L itself, which is why we call this case scale-free.
When this happens we cannot strictly speak of a ‘correlation length’ because there is no such thing. Indeed, given L and with
ξexp ≫ L, we cannot distinguish between a correlation length finite but much larger than L and a truly infinite correlation
length. In this case Eq. (24) gives,

r0 ∼ L , (28)

which is quite faithful to what is actually happening: the system has no intrinsic scale apart from L, hence the only scale that
we were able to practically compute, r0, grows with L itself. This is why in real flocks we used r0 as a marker of scale-free
correlation. Note that sometimes one says that in the scale-free case the correlation length growswith the system size; there
is a slight abuse of language in that, which can be forgiven if by ‘correlation length’ one does not mean the decay rate of an
underlying exponential correlation function, but simply the only length scale experimentally available.

2.3.4. Susceptibility
The correlation function C(r) measures the degree of pair correlations as a function of distance. Another quantity that

is very useful to characterize collective behavior of the group is the total degree of correlation present in the system. In
equilibrium statistical physics this quantity is called susceptibility, i.e. the statistical average of the sum of all the fluctuating
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pairs [28],

χph
=

1
N

∑
i,j

⟨δvi · δvj⟩ , (29)

where again the superscript stresses that this is a phase average. In equilibrium systems, χph is related through the
fluctuation–dissipation theorem to the linear response of the system to an external field conjugate to the vi (Appendix C).
When correlations are strong and long-range, for example at a critical point, fluctuations are correlated over all scales, the
degree of correlation ismaximal, and the system responds collectively to any external field, corresponding to a susceptibility
that grows with the system’s size.

Although we do not have the luxury of the fluctuation–dissipation theorem in biological systems (at least not yet), we
would like to introduce a quantity, χ , as close as possible to the phase susceptibility, χph, also for flocks, swarms and other
living systems on the move, where phase averages are not available and we can only use fluctuations with respect to the
instantaneous group mean and compute spatial averages. To do this, however, we have to be careful, because the spatial
constraint we have discussed in the previous Section prevents us from merely replicating relation (29), given that,∑

i,j

δvi · δvj =

∑
i

δvi ·
∑

j

δvj = 0 . (30)

We therefore need to define χ in a smarter way. The aim of the susceptibility is to quantify the total amount of correlation
present in the system by integrating (i.e. summing) fluctuations over space. We have seen that the correlation length marks
the typical size of the correlated domains; therefore, if we sum pairs of fluctuations up to distances r < ξ we expect the
integrated correlation to increase. On the other hand, when we consider pairs with r > ξ , we are no longer adding bona fide
correlation; moreover, due to the spatial constraint, the integrated correlation starts decreasing, eventually becoming zero
when we integrate over the entire system, Eq. (30). This argument suggests defining χ as the maximum of the integrated
correlation,

χ =
1
N

∑
ij:rij<ξ

δvi · δvj , (31)

where we sum all pairs up to the correlation length. This definition of χ captures the degree of correlation in the system
when fluctuations are definedwith respect to the instantaneous average. Besides, one can check that in standard equilibrium
systems (e.g. in the same model of Fig. 4) it behaves asymptotically in the same way as the standard definition of
susceptibility with phase average, Eq. (29). We also note that Eq. (29) implies,

χph
= N

[
⟨V2

⟩ − ⟨V⟩
2] , (32)

where, V = (1/N)
∑

ivi. Hence the susceptibility is also equal to the (phase) fluctuation of the global order parameter [28].
Interestingly, this shows that the constant giving the difference between phase-averaged and space-averaged correlation
functions in (19) is indeed the susceptibility. In principle, one could compute the susceptibility by using (32) substituting
the phase average with the time average of the variance of the order parameter. In practice, this may work in numerical
simulations, in which one has time sequences as large as one wants; in experiments, on the other hand, one is very often
limited in the time duration of the acquired sequences, hence using (32) is not convenient in most cases. The best thing to
do is to compute the susceptibility χ at each time frame by using (31) and then, if the experiment allows for such bonanza,
to further average χ over the available time frames.

In some cases it might be convenient to define the susceptibility by using normalized dimensionless fluctuations,

δv̂i ≡
δvi√

1
N

∑
k δvk · δvk

(33)

rather than the standard ones, Eq. (4). Thismight be useful for two reasons; first, dimensionless fluctuations allow to compare
biological systems to numerical simulations, which have arbitrary physical dimensions. secondly, even in absence of a
comparison with numerical simulations, sometimes one needs to analyze at the same time biological systems with the
same physical units, but different scales (typically of velocity); by using dimensionless fluctuations one can do this in a
homogeneous way, as it was done for insect swarms in [12] and [11]. Note, however, that using dimensionless fluctuations
to compute the susceptibility has a drawback: the normalizing factor in (33) depends on the polarization of the system.
For example, in a system where each velocity has constant modulus, |vi| = v0, the susceptibility χ̂ calculated by using the
dimensionless fluctuations δv̂i is connected to the standard susceptibility χ by the relation,

χ̂ =
χ

v2
0 (1 − Φ2)

. (34)

If the system is in the unpolarized phase (as the swarms analyzed in [12,11]), then Φ ∼ 0 and the two susceptibilities are
indeed very similar; if, on the other hand, the system is polarized, as it is clearly the case for flocks, then both the numerator
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and the denominator at the r.h.s. of (34) decrease by entering in the ordered phase, thus giving an awkward susceptibility
that may remain constant even for Φ → 1. For systems where the speed is not constant the relation is more complicated
than (34), but the physics is the same, namely the normalization depends on the global degree of order of the system, which
is in general very inconvenient. We therefore urge the reader not to use the dimensionless normalized fluctuations (33) to
compute the susceptibility, unless one is sure that the system in unpolarized.

2.3.5. Correlation function in Fourier space
Sometimes it is useful to look at the correlation function in Fourier space, rather than in real space. As we shall discuss at

the end of this work, this is indeed the case when extending the definition of correlation to its time-dependent version. We
define the Fourier-space equal-time correlation as,

C(k) =
1
N

N∑
i,j

δvi · δvjeik·(ri−rj) . (35)

If the system is isotropic, after averaging over the polar angles of k we get,

C(k) =
1
N

N∑
i,j

∫
+1

−1
d(cos θ )eikrij cos(θ ) δvi · δvj

=
1
N

N∑
i,j

sin krij
krij

δvi · δvj. (36)

If we consider the definition of the space-dependent correlation given in Eq. (6), we see that the relationship between C(k)
and C(r) is

C(k) = ρ0

∫
dr g(r) C(r) e−ik·r . (37)

The presence of the radial distribution function g(r) (defined in (9)) in the integral may seem strange and one could wonder
why we did not define the C(k) directly as the Fourier transform of the C(r). The reason is that in defining C(k) we want
to preserve an important equation of statistical field theory, namely the relation between susceptibility and correlation at
k = 0. To see this, let us momentarily work again with phase averages, so to emancipate from the usual sum-rule of space
averages. If we set k = 0 in Eq. (37) and use (10), or simply from (36), we obtain,

C(k = 0) =
1
N

∑
i,j

⟨δvi · δvj⟩ = χph , (38)

which is the proper relationship between correlation in Fourier space and susceptibility [28]; (38) is also quite convenient
when it comes to actually compute the susceptibility, because one single function, C(k), contains all the information about
both the spatial correlation and its total integral. Another way to understand Eq. (37) is to remember that we want to focus
exclusively on the correlation and susceptibility of the order parameter, not of the density fluctuations. If instead of using
(37), we performed the Fourier transform of C(r) without the factor g(r) in the integral, we would get,

Ĉ(k = 0) =
1
N

∑
i,j

⟨δvi · δvj⟩
1

g(rij)
, (39)

which is certainly not the order parameter susceptibility, as each fluctuating pair is now weighted by the inverse of the
density correlation, g(rij). In this respect, the term dr g(r) in (37) can be interpreted as an integration measure dµ(r) that
makes the integration insensitive to the density fluctuations of the system (see also Appendix A). We notice that this
prescription has nothing to dowith the off-equilibriumactive nature of biological systems; it is somethingwewould sensibly
do even for a standard statistical mechanics model on a regular fixed lattice in order to fulfill (38).

In the active biological case, where we have space rather than phase averages, we need as usual to be careful, lest we
obtain a trivial result. Indeed, because of the spatial constraint, if we evaluate C(k) at k = 0 we get a trivial result,

C(k = 0) =
1
N

∑
i,j

δvi · δvj = 0 . (40)

There is however a natural way to link the correlation in Fourier space with the susceptibility χ defined in Eq. (31). To see
this, we notice that C(k) provides an alternative route to computing ξ . If we compute C(k) at large k and then slowly decrease
it, we will be averaging over progressively larger length scales, therefore adding to (36) more correlated pairs, causing C(k)
to increase. When the momentum arrives at kmax ∼ 1/ξ , we start adding uncorrelated pairs, hence, C(k) must level. Further
decreasing k down to 1/L (where L is the system’s size) we start to be affected by the spatial constraint, C(k = 0) = 0, hence
C(k) decreases until it eventually vanishes for k = 0 [29]. In a system where ξ ≪ L the static correlation therefore has – in
log scale – a broad plateau between kmax ∼ 1/ξ and k ∼ 1/L. Hence, to compute the susceptibility χ from the C(k) we must
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not look at too small values of k, which would include correlated and non-correlated pairs, but rather add up only the pairs
in the correlated domains. This is what we get by setting k = kmax, because then the oscillating term in Eq. (35) will weigh
only pairs with rij < ξ , hence giving,

C(k = kmax) ∼
1
N

∑
ij:rij<ξ

δvi · δvj = χ . (41)

Therefore, to preserve the natural relation between correlation function in Fourier space and susceptibility, even in the
presence of the spatial constraint dictated by space averages, we simply evaluate C(k) at its maximum; this is quite
reasonable and in a way it is also what we do in a standard system with phase averages, where the maximum is achieved at
k = 0. The effect of the space average is simply to shift this maximum at a larger value of k, but we still evaluate the Fourier
correlation at its maximum.

2.4. The maximum entropy approach to flocks

In the previous sections we introduced the correlation functions of velocities and speeds, explained their definitions and
described their behavior in natural flocks of birds. In doing so, we often resorted to the analogy between flocks and standard
systems of statistical mechanics, or mentioned results obtained in models of active matter. Given the experimental data
at hand, however, one would like to do better: can we exploit the knowledge of the empirical correlation functions to say
something about the microscopic inter-individual mechanisms producing them? This question boils down to a problem
of statistical inference. An approach that has been successfully applied to a variety of biological networks is the maximum
entropy (ME) method. ME provides a systematic framework to infer statistical models from experimental data. Given a set of
measuredquantities {Oµ(X)}, function of themicroscopic degrees of freedomX of the system, themaximumentropymodel for
the statistical distribution P(X) of the X , is the least structured model consistent with the experimental measurements. The
prescription for ‘‘least structured’’ is that the entropy associated to themodel, S[P(X)] = −

∑
XP(X) ln P(X), be themaximum

with the constraint that the expected values of the {Oµ(X)} must be equal to the experimental results. Mathematically, one
introduces a generalized entropy function

S[P(X), {λµ}] = −

∑
X

P(X) ln P(X) −

∑
µ

λµ

[
⟨Oµ(X)⟩ − ⟨Oµ(X)⟩exp

]
, (42)

where ⟨· · · ⟩ =
∑

XP(X)(· · · ), ⟨· · · ⟩exp are the experimental values, and {λµ} are a set of Lagrange multipliers. Maximization
of S with respect to P(X) ensures maximal entropy, while optimization with respect to the {λµ} ensures that the model’s
predictions for the {Oµ(X)} are equal to the experimental values. The resulting distribution has a Boltzmann form [30,31]

P(X) =
1

Z({λµ)}
exp{−

∑
µ

λµOµ(X)}, (43)

where the values of the {λµ} are fixed by the equations

⟨Oµ(X)⟩ = ⟨Oµ(X)⟩exp, (44)

or, equivalently, by substituting expression (43) into (42) and optimizing the generalized entropy S({λµ}) = ln Z({λµ}) +∑
µλµ⟨Oµ(X)⟩exp with respect to the Lagrange parameters.
The ME model given by Eqs. (43) and (44) is an effective model: it gives the minimal description of the system that

correctly reproduces the statistics of a given set of observables. Clearly, the larger the number of the input observables, the
more detailed the resultingMEmodel. Still, using a large set of {Oµ(X)} is both unrealistic and counterproductive. On the one
hand, it is very difficult to obtain experimentally robustmeasurements ofmany independent quantities (otherwise one could
try to directly build the P(X) from the data). On the other hand, a model with too many parameters is not very informative
and might be redundant. A viable strategy is to start by considering ME models built on a small number of well-measured
quantities. If this minimal ME model also provides good predictions for other quantities not included in the constraints,
then it captures some important ingredient of the real behavior and can be considered as a relevant – though approximate –
effective description of the system. If it does not, then one needs to progressively include further experimental information
and develop more complex ME models.

2.4.1. The simplest ME model for flocks
Applied to empirical data of natural flocks, the aim of the ME approach is to build an effective model able to explain the

statistics of the velocities and the emergence of scale-free correlations. To proceedwe need a non-trivial quantity that can be
robustly measured in an experiment. Since we suspect that scale-free correlations in the orientations are the consequence
of symmetry breaking while some kind of critical point might be related to the speed behavior, we start by focusing on the
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directional degrees of freedom. With this spirit, in [32] a ME model was built using as input experimental observable the
directional correlation between a bird and its first nc neighbors,

Cint =
1
N

N∑
i=1

1
nc

∑
j∈nic

σ i · σ j. (45)

where σ i = vi/|vi| is the individual flight direction and ni
c is the set of the first nc nearest neighbors of bird i. Cint is a local

scalar quantity, averaged over all the group; it can therefore be measured in a robust way even at a single instant of time.
The resulting ME model has a very simple form [32]

P({σ i}) =
1

Z(J, nc)
exp

⎡⎣ J
2

N∑
i,j=1

nijσ i · σ j

⎤⎦ , (46)

where the adjacency matrix nij is 1 if j is one of the first nc neighbors of i or vice-versa, and zero otherwise. J is the Lagrange
multiplier associated to Cint, and its value is fixed by the condition

⟨Cint⟩ = ⟨Cint⟩exp (47)

The parameter nc can also be fixed following a maximum likelihood criterion and optimizing the generalized entropy (42)
with respect to nc . The distribution (46) corresponds to a Heisenberg model with short range interactions over the scale nc ,
and alignment strength J . In general, inferring the parameters of themodel can be a hard problem. In many cases one resorts
to numerical simulations to do this, but in the case of flocks, the computation can be done analytically in the spin-wave
approximation (see Appendix B).

We can write each velocity vector as the sum of a longitudinal and a perpendicular component: vi = vL
i n + πi, where n

represents the direction of collective motion. Disregarding speed fluctuations, we have |vi| = v0 and σ i = σ L
i n + πi/v0. In

the highly polarized phase the |πi| are very small, then σ L
i ∼ 1 − (1/2)π2

i /v2
0 and σ i = n(1 − (1/2)(π2

i /v2
0)) + πi/v0. With

this approximation, the partition function (46) can be computed by integrating out the longitudinal degrees of freedom [32]
to find at leading order in π,

Z(J, nc) =

∫
dNπ δ

(∑
i

πi

)
exp

⎡⎣−
J

2v2
0

N∑
i,j=1

Λijπi · πj +
JNnc

2

⎤⎦ , (48)

where Λij = ncδij − nij is the discrete Laplacian. Notice that, within the spin wave expansion followed so far, the probability
distribution of the πi is therefore Gaussian.

In a flock the matrix nij depends on time because individuals can exchange positions, but we can disregard this mutual
motion on timescales where this positional rearrangement is small (we will come back to this assumption later on). In this
case the partition function can be computed by expressing the integral in terms of the eigenvectors of Λij (which would
be the Fourier modes, or plane waves, in a regular lattice, and are called spin waves in the theory of magnetism). The
discrete Laplacian is a positive semi-definite matrix and has a zero mode – the Goldstone mode – which corresponds to
the translational invariance of the πi, a remnant of the original rotational invariance of the flight directions. Calling ak and
wk the eigenvalues and the eigenvectors of Λ, we get

ln Z(J, nc) = −

∑
k>1

ln(ak) +
JNnc

2
, (49)

⟨πi · πj⟩ =
(d − 1)v2

0

J

∑
k>1

wk
i w

k
j

ak
. (50)

These expressions allow to find analytically the values of J and nc (see Fig. 5). They also show a very important property of
the model: according to Eq. (50), the largest contribution to the pair correlation comes from the modes with the smallest
eigenvalues, which are of order 1/L2 for a system roughly homogeneous in space. On a lattice this corresponds to a 1/k2
behavior in Fourier space and a power-law decaywith distance.We therefore see that the scale-free nature of the correlation
is strictly connected to the presence of the zero mode and to a spectrum that reaches out to zero. Scale-free correlations are
therefore a consequence of the symmetry breaking of the rotational symmetry.

But does this model have any predictive power? It was shown in [32] that it does: with the appropriate boundary
conditions, it reproduces not only the local correlation Cint (as it must, by construction), but also instantaneous correlation
function C(r) at large distances, as well as fourth-order correlations. It therefore appears that this very simple model truly
captures some important property of the real system.

The ME model tells us that if we want to describe the statistical behavior of the flight directions in a flock, the most
effective minimal model is one with pairwise short-range alignment. This conclusion translates within the ME approach the
intuition of many flocking models that birds move driven by a social imitative force due to neighbors. The ME analysis also
tells us for each flock the range and strength of such interaction: using the inferred parameters one sees that indeed these
effective interactions are short-ranged.
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Fig. 5. A simple MEmodel for the flight directions. (a) The value of the parameter J is found by requiring that the prediction of the model for Cint is equal to
the experimental value. (b) The value of nc is found bymaximizing the generalized entropy (log-likelihood) with respect to nc . (c) and (d) Inferred values of
J and nc as a function of the flock size. (e) Inferred value of nc as a function of the flock sparseness (i.e. the average nearest-neighbor distance r1). (f) Inferred
value of the metric interaction range as a function of sparseness.
Source: From [32].

2.4.2. Topological interactions
The inferred values of J and nc [32] (Fig. 5) do not show any increase with the flock’s size, showing that interactions are

indeed short range.More interesting is the behavior of nc with the flock’s density, measured in terms of the nearest-neighbor
distance r1. Many flocking models assume that interactions have a well-defined metric range: an individual keeps track of
neighbors closer than a certain interaction distance rc . If this were the case, the number of interacting neighbors should
decrease with increasing r1, because the number of neighbors within distance rc from a focal individual is (calling ρ the
average density)

nc =
4
3
πρr3c −→ n1/3

c ∼ ρ1/3rc −→ n−1/3
c ∼

r1
rc

. (51)

This is not what is found in natural flocks. On the contrary, Fig. 5e shows that the number of interacting neighbors does
not depend on the group’s sparseness. This indicates that interactions in a flock are not based on metric proximity: each
bird coordinates its motion with a given number nc of neighbors independently of the flock’s density. We call this kind of
density-invariant interaction a ‘‘topological interaction’’ [18,32,19].

2.4.3. Short-range vs. long-range correlations
A further step in the ME approach consists in using more complex input observables. One can consider, for example, the

topological pair correlation function

C(n) =
1
N

∑
ij

σ i · σ jδ(kij − n), (52)

where kij is the order of neighborhood of jwith respect to i (i.e. kij = n if j is i’s nth-nearest neighbor [19]). C(n) is analogous
to the C(r) defined in the previous sections but expressed in terms of the topological distance. It can also be measured quite
robustly from empirical data and it is therefore an appropriate quantity for the ME procedure. The resulting ME model has
again a Heisenberg form,

P({σ i}) =
1

Z(J)
exp

[
N
∑
n

J(n)C(n)

]
=

1
Z(J)

exp

⎡⎣ N∑
i,j=1

J(kij)σ i · σ j

⎤⎦ , (53)

where J(n) are the Lagrange multipliers and J(kij) =
∑

nJ(n)δ(kij − n). Here the discrete function J(n) represents the strength
of the effective alignment interaction between pairs at topological distance n. Solving this model therefore allows to infer
the whole (topological) distance dependence of interactions, rather than just average range and strength. Again most of the
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Fig. 6. Correlations vs interactions. (a) and (c) Experimental connected correlation functions (blue) compared to the inferred interaction function J(n) for
two flocking events. (b) and (d) Close-up of the interaction for the same events as in (a) and (c); insets: semilog plots of the same quantity. Event in (a) and
(b): N = 2126, J0 = 5.63, nc = 6.11; event in (b) and (d): N = 717, J0 = 25.63, nc = 7.41.
Source: From [19].

computations can be performed analytically in the spin wave approximation [19]. Interestingly, one can show that only
a small subset of the experimental C(n) is necessary to perform the full inference (i.e. considering C(n) for n > nmax,
with nmax ≪ N , does not change the results). The retrieved interaction strength is an exponentially decaying function
J(n) = J0 exp(−n/nc) (Fig. 6) with range nc ∼ 8, consistent with previous estimates of the interaction range [18] and with
the results of the simple ME model of Section 2.4.1. Since the ME procedure allows to choose among all possible functions
J(n), including long-range ones, thatmatch the empirical correlations, the fact that the retrieved J(n) is an exponential clearly
shows that the long-range correlations observed in experimental data are generated by (effective) interactions that are in
fact short-range.

2.4.4. ME for the speed
TheMEmethod can also be applied to analyze the speed correlations [33]. The procedure is analogous to the one outlined

in Section 2.4.1, but now including the speed in the input experimental observables. One considers a measure of local
correlation of the full velocities that provides information of the mutual similarity of orientation and speed,

Qint =
1

2ncN

∑
i

∑
j∈nic

(vi − vj)2, (54)

plus the scale of individual speeds,

S =
1
N

∑
i

|vi|, S2 =
1
N

∑
i

|vi|2. (55)

The three quantities are scalar, local and averaged over all the flock. The corresponding ME distribution is

P({vi}) =
1

Z(J, nc, g)
exp

⎧⎨⎩−
J
4

∑
ij

nij(vi − vj)2 −
g
2

∑
i

(|vi| − v0)
2

⎫⎬⎭ , (56)

where v0 = ⟨S⟩exp is the experimental value of the mean speed. There are now three Lagrange multipliers: J and nc , as
before, plus g , that controls the fluctuations of the speed around themean value. This model therefore describes two distinct
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Fig. 7. Correlation function of the speed fluctuations, for different values of the control parameter g (color lines). The arrow indicates the direction of
increasing g . The red points correspond to the prediction of the ME model for the optimal value of g , with g/(Jnc ) ∼ 10−2 close to the critical point; the
blue points correspond to the experimental correlation.
Source: From [33].

competing mechanisms: the mutual adjustment of velocities driven by the social imitative interaction, and the individual
control of the speed towards a preferred cruising value. In the highly polarized phase the spin-wave approximation gives [33]

⟨πi · πj⟩ = (d − 1)
v2
0

J

∑
k>1

wk
i w

k
j

ak
, (57)

⟨(|vi| − v0)(|vj| − v0)⟩ =
v2
0

J

∑
k>1

wk
i w

k
j

(ak + g/J)
. (58)

For the orientations, the result is the same as before, with long range correlations arising from the continuous symmetry
breaking that implies the eigenvalues reach down to zero. In contrast, for the speed correlations we find a finite correlation
length for g ̸= 0 due to the g/J term in the denominator of (58). The correlation length is approximately [33]

ξspeed ∼ rc

√
Jnc

g
(59)

where rc is the average distance of the first nc neighbors. Thus the speed correlations are scale free only when the
adimensional ratio g/(Jnc) = 0: this value therefore corresponds to a critical point for the model.

Interestingly, the inferred value (i.e. that which satisfies the ME equations) of g/Jnc is very low (∼ 10−2) indicating that
natural flocks are described by a ME model very close to its critical point (see Fig. 7). In summary, the ME model is telling
us that in natural flocks the social imitative pressure (i.e. mutual adjustment interactions) dominates over speed control
poising the system close to criticality.

2.4.5. Concluding remarks on the ME approach: what do we get and what do we miss
There aremanymodels, which have been used in the last years to describe the collective behavior of biological assemblies

and animal groups [34,1,2,35]. Models are usually based upon a priori reasonable assumptions, and eventually justified on
the basis of their predictions, or fitted to experimental datawhen available. Inmany cases, though, it is difficult to understand
the realm of validity of themodel, its predictive content, and its limits. TheME approach follows a different strategy: it starts
from the data, and from some variables one decides to describe, and produces an optimal model for those variables. What
we get are effective models, whose degree of predictability can be systematically quantified and improved.

In the case of flocks, the method allowed us to infer some important properties of the interactions between individuals
in a group. Some of these properties are consistent with intuitive ideas of the coordination mechanisms in a flock (and with
typical assumptions of flocking models); some others, on the contrary, are much less trivial. Let us summarize them here:

(i) Interactions between birds in a flock are pairwise short-range alignment interactions.
(ii) Interactions are ‘topological’ rather than ‘metric’ (contrary to what assumed in typical flocking models).
(iii) Social imitation dominates over speed control, setting flocks in a very special point in parameters space, where the

system behaves quasi-critically and scale free correlations arise.

What is, on the other hand, thatwemiss from theMEapproach?All theMEmodels thatwederived in this section, are built
on static equal-time quantities. As a consequence, the models consist in static probability distributions. Flocks, however, are
off-equilibrium systems where self-propelled organisms move in space with non-trivial spatio-temporal properties. If we
want to capture and describe more exhaustively their dynamics we need to look at dynamical equations, and at multi-time
experimental quantities. This is what we will do in the next sections.
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2.5. Why are scale-free correlations relevant?

As we have seen, velocity fluctuations in starling flocks are correlated over long distances, and this applies to fluctuations
of speed as well as direction. While long-range-correlated fluctuations of direction are an inescapable consequence of the
breaking of a continuous symmetry and are found all throughout the ordered phase, long-range-correlated fluctuations of
speed occur only for values of the control parameter very near a specific value (i.e. in the close vicinity of a critical point).
It is thus natural to ask whether there is some ‘‘usefulness’’ to long range correlations that acts as evolutionary pressure in
fine-tuning the system’s parameters near criticality, which would otherwise result from an unlikely chance tuning. We will
argue below that long-range correlations are related to information propagation, which is essential to collective decision
making and maintaining group cohesion, which is in turn advantageous in the face of predators. Thus the argument implies
that orientation fluctuations are biologically useful as well as physically necessary, and suggests that speed fluctuations
are tuned to criticality to achieve information propagation of speed variations, although up to now only transmission of
orientation variations has been unambiguously observed.

At first sight, it seems that information propagation does not require long range correlations: sound propagation in air
is an example where meaningful information can propagate (as in human speech) in a medium where fluctuations are only
correlated at very short distances. However, this depends on how information is encoded and decoded. Here we are seeking
for a mechanism that can effect a permanent (or long-lived at least) change on the recipient: it is not enough that a distant
bird changes briefly its orientation and then goes back to its original direction, but the whole flock must turn. To accomplish
this with a passing wave one needs memory: a way (such as a change in the internal cognitive state of the recipient) that
ensures the information that a wave has passed by is retained, and the other variables are adjusted accordingly. The other
solution is to transmit what we call directly useful information, that is, information that does not require decoding (e.g. the
orientation waves of Section 3.1). This simpler solution (in the sense that it requires less capabilities from the recipient of
the information) needs, as we proceed to argue, long range correlations.

2.5.1. Transfer of information in linear response theory
Consider a field φ(x, t) (say, the local orientation). We wish to achieve a change of the field by applying a perturbation at

the origin. The field should change everywhere within the volume occupied by the system; in particular we will use the fact
that x can be a point very far from the origin. We can write the localized perturbation as h(x, t) = δ(x)f (t) and express its
effect on the field at linear order as (see Appendix C)

φ(x, t) =

∫ t

0
dt ′ G(x, t − t ′)f (t ′) =

∫ t

0
du G(x, u)f (t − u), (60)

where G(x, t) is the system’s linear response G(x, x′
; t, t ′) = δφ(x, t)/δh(x′, t ′). The function G(x, t) encodes quite generally

the response of φ to the perturbation, but h(x, t) and φ(x, t) need not represent fields that interact directly at the physical
level: φ could be the direction of an aircraft and h(x, t) a radio signal generated by an air controller. Or, in a simpler case,
φ could be the local air pressure and h a pressure disturbance, so that G would be the Green’s function of some differential
equation. We impose the condition of permanent change on φ,

φ(x, t → ∞) > ϵ, (61)

where ϵ is a sensitivity threshold.
Consider first h(x, t) as a control or trigger signal that lives for a short time T (the air controller radio signal). For large

times then

φ(x, t) =

∫ T

0
dt ′ G(x, t − t ′)f (t ′), t > T , (62)

and permanent change (61) requires that G(x, t → ∞) > 0, i.e. long term memory. This excludes situations where G
represents propagation in a simple physical medium (which eventually returns to its equilibrium state and thus has no
long termmemory2), and requires instead a complex (e.g. cognitive) mechanism at work. It corresponds for example to the
case of two human walkers coordinating the direction of motion through verbal communication (‘‘wolf coming from the
right!’’). This case does not imply long-range-correlated fluctuations of φ(x, t), but it requires instead a complex decoding
mechanism.

The alternative to decoding is directly useful information. If we can alter the field at the origin and find a mechanism
that propagates this change across space, we do not need decoding: the message is carried by φ itself, so that when the
signal arrives, the intended effect is already achieved. A permanent change at x is thus in this case accompanied by a similar
permanent change at the origin, so assuming that G(x, t) decays to zero with some characteristic time τ (i.e. there is no
long-term memory) we have

φ(x, t → ∞) = lim
t→∞

∫ t

0
du G(x, u)f (t − u) ≈

∫ τ

0
G(x, u)f (∞). (63)

2 Actually there are a few cases of physical systemswith infinitememory, linked to conservation laws, like the one-dimensionalwave equation. However
these cases do not arise in practice in the systems we are considering (three dimensional).
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Introducing the static susceptibility χ (x − x′) = δφ(x)/δh(x′) (see Appendix C),

χ (x) =

∫
∞

0
du G(x, u) ≈

∫ τ

0
du G(x, u) ≈ φ(x, t → ∞) > ϵ, (64)

where we used the permanent change condition. Since G(x, t) is here the response of a physical system, we invoke the
static fluctuation–dissipation theorem (Appendix C), which links the static susceptibility χ (x) to the connected correlation
function to find,

C(x) = ⟨φ(x, t)φ(0, t)⟩ − ⟨φ(x, t)⟩⟨φ(0, t)⟩ ∝ χ (x) > ϵ. (65)

Thus, under these assumptions, in the absence of long termmemory, to achieve a permanent change of the field at x requires
that the fluctuations of the field be correlated over a distance |x|.

The argument is subtler than saying ‘‘since a change at the origin implies a change at x, the field at the origin is obviously
correlated with the field at x’’, for this simply implies nonconnected correlations. The argument above, going through the
response function, concludes that the connected correlation (i.e. the correlation of fluctuations) is long-ranged.

The weak part of the argument when applied to active matter systems is the use of the fluctuation–dissipation relation,
which is a result that applies to equilibrium systems. Under what conditions can it be applied to active systems remains to
be clarified, but we accept it as valid, at least approximately, on the grounds that Onsager’s principle (that relaxation from a
spontaneous fluctuation or relaxation from an external-field-induced value must proceed in the same way) should hold.

2.5.2. The need for dynamics
The argument above thus suggests that long-range correlations of fluctuations are a feature that must accompany

transfer of information in the absence of a decoding mechanism. But this alone does not suffice to guarantee an efficient
communication. In particular, we have not taken into account the fact that the information must arrive timely: if the signal
that triggers a direction change takes too long to arrive, different parts of the group will have been moving in different
directions for a long time, and the group’s cohesion will be lost. One can guess that diffusive propagation (where the signal
speed vanishes for long distances) orwavelike propagation in amediumwith high damping are situationswhere information
will not be efficiently transferred. Indeed, transfer of turning information in flocks occurs through wave propagation, in
which inertia plays a crucial role, as we discuss in Section 3. Although this seems the most efficient attainable way of
propagating information, and perhaps the only that guarantees timely propagation, the issue of the role played by inertia in
information transfer has yet to be fully explored.

3. Information propagation

In the previous sections we discussed one of the distinctive features of collective behavior in flocks: the presence of
scale free correlations between the velocities of individual birds. As we argued, such long range correlations are linked to
the ability of the system to transfer information throughout the group, a minimal requirement for achieving a collective
response. To further investigate the mechanism of information propagation, we will now consider phenomena that fully
take into account the temporal evolution of the directional degrees of freedom. In the following sections we will describe
some experimental findings that very clearly exhibit transfer of directional signals: collective turns in flocks of birds. Next,
we will discuss the predictions of current models of collective motion, show that they are inconsistent with experimental
data, and develop a new theoretical framework able to explain what is observed in natural groups.

3.1. Experimental evidence

Orientation waves (i.e. wave-like propagation of turn information) have been observed in starling flocks in the field [36]
by studying the full 3-d reconstruction of the trajectories of individual birds within flocks that visually perform a turn while
in the field of view of the experiment.

The trajectories were obtained with a trifocal method [37] which employs video sequences from three digital cameras.
The recorded groups were European starlings (Sturnus vulgaris) that roost at the Piazza dei Cinquecento site in Rome, and
12 distinct flocking events including one collective turn were recorded.

The acceleration ai(t) of each bird can be used to locate the time of the individual’s turn, as its modulus has a noticeable
peak during the turn (see Fig. 8). A robust way of establishing the time differences between individual turns in the presence
of experimental errors and noise is through the acceleration overlap function

Qij(t) =
1

σiσj

[⟨
ai(t0) · aj(t0 − t)

⟩
t0 − ⟨ai(t0)⟩t0 ·

⟨
aj(t0 − t)

⟩
t0

]
, (66)

where the average is over t0: ⟨. . .⟩t0 =
∫
dt0 (. . .) and σi =

√
⟨ai(t0)2⟩ − ⟨ai(t0)⟩2. The time shift τij is defined as the time that

maximizes Q (t), and a positive shift τij > 0means that j turns before i. In the absence of noise, one would have τij = τik + τkj
for every triplet i, j, k, but this time ordering is sometimes violated due to experimental errors. Thus to establish the order
of the turns one can resort to a ranking procedure employed in sports, where the relation ‘‘wins over’’ is not necessarily
transitive. In Ref. [36] the ranking was assigned according the score Ωi =

∑
j̸=isign τij, as in a round robin tournament [38].
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Fig. 8. Propagation of the turn across the flock. (a) Rank of each bird vs. absolute turning time (see text) for a single turning event. (b) Maximum mutual
distance between the first 5 birds in the turning sequence. Inset: actual position of the first 5 birds (red) within the flock. (c) Distance x traveled by the
turning information as a function of the absolute turning time, for three different turning events. The speed of propagation c2 is given by the slope of the
curve in the linear regime (solid lines are linear fits). (d) Radial acceleration as a function of the absolute turning time for several birdswith low, intermediate
and high rank in the turning sequence. The intensity of the peak (filled symbols) decreases very weakly in passing from the first to the last turning birds.
Inset: value of the acceleration at the peak as a function of the rank of the bird.
Source: From Ref. [36].

In this way each individual is a assigned a rank ri, so that ri = nmeans bird iwas the nth to turn, and an absolute turning
time ti, i.e. the delay with respect to the top-ranked bird (the first to turn, rtop = 1, ttop = 0), computed as

ti =
1

ri − 1

∑
rj<ri

tj + τij. (67)

In this way the ranking curve r(t) is obtained (Fig. 8a), which is the starting point of the information propagation analysis.

3.1.1. A propagation phenomenon
The first finding from the ranking curves is that there is a propagation phenomenon behind the dynamics of turns. The

top-ranked birds (i.e. the first to turn) are always found spatially close to each other: in Fig. 8b, themaximummutual distance
between the top 5 birds is seen to be independent of flock size, indicating a spatially localized origin of the turn. Hence, the
decision to turn is taken at some point in space, and then propagates across the group through a bird-to-bird (‘‘social’’)
transfer of information [39]. The alternative view, namely that the turn is caused by an external stimulus hitting all birds
at the same time, would imply an independent response of each bird and thus a spatially unstructured distribution of the
delay times, whereas the delays have a clear spatial modulation (Figs. 8c and 9). The propagation mechanism of the turn
information has to be efficient enough that it reaches the whole group before the transient differences in velocity can split
the group apart. Our aim is to determine the mechanism through which information propagates from its local origin to the
rest of the flock.

3.1.2. Linear dispersion law
The second crucial finding is that the turn information propagates with a constant speed. This is seen when we compute

the distance x(t) the information has traveled in time t , which can be done from the ranking curve. Since we are in three
dimensions and the turn has a localized origin, x(t) is equal to the radius of the sphere containing the first r(t) birds in the
rank, namely

x(t) =

(
3r(t)
4πρ

)1/3

, (68)

where ρ the density of the flock.
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Fig. 9. Turn propagation for an event in a flock of 176 birds. Shown are projections of the birds’ positions in an orthogonal system (n1,n2,n3) centered at
the flock’s center of mass (the view is from the top in panel (a), from the front in panel (b) and from a side in panel (c)). Before the turn, the velocity is V1
(orange vector), and after the turn it is V2 (green vector). The vector d0 is the mean position of the first 10 birds to turn. Colors indicate the turning time
delays ti as indicated by the color bar on the right.
Source: From Ref. [40].

Themost important feature of the curve x(t) (Fig. 8c) is that there is a clear linear regime for early and intermediate times.
For long times border effects appear: in the bulk the rank grows as ∼ x3, but when the perturbation is near the border the
number grows with a smaller exponent (for example, for a disc-shaped flock one would have r ∼ x2 when the perturbation
has traveled the distance of the shortest linear dimension, for a tube-shaped flock it would be r ∼ x), so that for late times
rlate ∼ xα with α < 3, and then x ∼ r1/3 ∼ xα/3

late , i.e. x(t) shows a saturation for long times as is seen in the figure.
We conclude that the distance traveled by the information grows linearly with time,

x(t) = c2t. (69)

The parameter c2 is the speed of propagation of the directional information; it was measured in the range 20–40 m/s in the
center-of-mass reference frame, for all the turning events. These values are high: this makes it possible that the decision to
turn can sweep through a flock of 400 birds in little more than half a second. We stress that x(t) is the distance traveled by
the information in the flock’s reference frame, and that it is also uncorrelated to the birds’ speed v0 (which is in the range
7–12 m/s). Thus this transport is not the mere effect of the flock’s absolute motion, and the information is not being carried
through the displacement of individuals themselves (which in the center-of-mass frame can be at most 2v0 for the case of
a bird that makes a 180◦ turn). This conclusion is confirmed by the measured stability of the network during the turn [40],
i.e. the fact that the local neighborhood of a bird does not change significantly during a turn.

3.1.3. Negligible attenuation
Another interesting piece of information comes from the acceleration curves: the information to turn propagates across

the flock with negligible attenuation (Fig. 8d). Flocks are large, and the information to turn reaches all birds through
many intermediate steps, so that substantial damping might be expected. Yet it is not so. Both sublinear propagation and
attenuation would result into a physical spread of the flock, and eventually into its disruption, but on the contrary, the fact
the propagation is linear and fast, together with the low damping of the signal, are key factors in preserving the flock’s
cohesion.

3.1.4. Equal-radius paths
During the process of turning, each bird performs its own individual turn following a specific trajectory in space, and as

a consequence the flock as a whole performs a collective turn. These two dynamics are strictly interconnected, and the way
individuals move relative to each other during the global turn was studied in detail in Ref. [40]. From this analysis it emerges
that starlings turn following paths of approximately the same radius, a feature first observed in a seminal experimental work
on flocks of rock doves [41].

Equal-radius turning is very different from how a rigid assembly would turn (Fig. 10): in the rigid case, all particles turn
around the same center point (fixed in the center-of-mass reference frame), following parallel paths with different radius of
curvature and different speeds. To an external observer (reference frame fixed to the ground), the relative positions change
(after a 180degree turn, bird i, whichwas to the left of bird j, is now to the right of j), but the relative positions andorientations
in the center-of-mass frame remain unaltered. In contrast, in equal-radius trajectories, the relative positions as seen by an
external observer remain unchanged, but the internal orientational topology and organization changes (a bird that was near
the front of the group finishes near its back, the orientation of the axes giving the shape of the group can change with
respect to the direction of polarization, see Figs. 10 and 12). Equal-radius turning is advantageous in the sense that a very
quick collective turn can be accomplished without significant changes in the individuals’ speeds. The resulting change in the
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Fig. 10. Schematic depiction of the difference between a rigid and an equal-radius turn. For a perfectly ordered flock of four birds, the final state is shown
after a 90◦ turn in the case of a rigid turn (left) and an equal-radius turn (right). In the latter case the orientational topology is altered: for example bird 1,
which was at the left of the flock, ends up at the rear. See also Fig. 12.

relative local orientations causes as by-product a redistribution of boundary locations and consequently of risk among the
individuals [40].

Evidence of equal-radius turning is shown in Fig. 11. A quantity that can be computed to check for equal-radius turning
is the change in the angle of the vector giving the relative position of two birds. We define

cos θij(t) =
rij(0)
|rij(0)|

·
rij(t)
|rij(t)|

, rij(t) = ri(t) − rj(t). (70)

The angle θij(t) measures how much the relative positions have rotated at time t , as seen from an external reference frame.
This angle should be zero for a perfect equal-radius turn, which preserves the relative positions as seen from the outside.
The average of θij over all pairs, θr (t) is plotted in Fig. 11, and is seen to remain very small during a turn of about 180◦. The
internal reorientation is also clearly observed (Fig. 12).

3.1.5. Wavelike propagation
The experimental findings we have described point to a wavelike propagation of turn information: a perturbation with a

localized origin reaches the whole flock propagating with a well-defined front that moves with constant speed. In addition
this speed is independent from the speed of the source, and is instead a property of the propagation medium (the flock).

In Fig. 8c one sees that c2 is different for different flocks. However, it is not immediately obvious what properties of the
flock determine the speed. The familiar sound waves suggest examining a possible relationship between c2 and density,
but Fig. 13 makes it clear that the propagation speed is unrelated to the density. One might perhaps have guessed that
c2 should be independent of density given the finding that the interactions determining static correlations are topological
(Sections 2.4.2 and 2.4.5). But anyway Fig. 13 shows that propagation speed varies significantly from flock to flock.

It is a remarkable prediction, verified by experimental data, of the second sound theory developed below (Section 3.3)
that the speed of propagation of turning waves c2 depends on the polarization of the flock (see Fig. 14). The relationship
between speed and polarization derives from the former’s dependence on the velocity–velocity coupling, and is explained
in Section 3.3.4; it turns out that in the high polarization phase (the regime relevant to the data of Fig. 14) one has

c2 ∝
1

√
1 − Φ

. (71)

The link between c2 and behavioral polarization Φ is the mathematical consequence of a symmetry. However, the
specific level of polarization of a given flock is not fixed by mathematics or by symmetry, but by adaptive factors. In many
social species, polarization is very large [42,35,32]: global order is indeed the most conspicuous trait of collective behavior.
However, an especially large polarization is not required if the only concern of a bird were just to avoid colliding with its
neighbors, since flocks are rather dilute systems, with packing fractions lower than 0.01 [14]. Yet these same flocks are very
ordered, with polarization Φ close to 1. Why is that?

Relation (71)may be one of the reasons behind the large value of polarization. In collective decision-making, swift transfer
of information is beneficial to the cohesion of the group (this is quite clear in the case of turns, since during the turn the
wavefront divides the flock into two groupswith different directions ofmotion, and suchmisalignment causes spatial spread
of the flock and loss of cohesion). The slower the speed c2 of the wavefront, the more severe this loss. It is reasonable to
believe that this is a general mechanism for moving biological groups. Every collective decision causes momentary lapse of
cohesion in the group, due to the transient coexistence of different behavioral states. The link (71) between high behavioral
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Fig. 11. Equal-radius turning of starling flocks. (a) Three-dimensional trajectories of thewhole flock during a turning event. (b) Two-dimensional projection
of three individual trajectories of nearby birds, showing the equal-radius path with each bird turning around a different center but with the same radius
of curvature. (c) Evolution of the angles θr (t) measuring the change in relative positions as seen from an external observer during the turn (see text and
Eq. (70)), and the angle θV (t) the instantaneous average velocity V(t) makes with the initial orientation.
Source: From Ref. [40].

Fig. 12. Experimental observation of internal reorientation of a flock during a turn. A reference bird (painted black) is chosen near the center of the flock,
and the rest are painted according to their orientation with respect of the reference (front: green, sides: light blue, behind: orange). After the turn, the light
blue birds are in front and behind the reference, while green (orange) birds finish to its right (left).
Source: From Ref. [40].
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Fig. 13. Speed of propagation vs. nearest-neighbor distance (panel a) and flock size (panel b). Each point corresponds to a different turning event. There is
no correlation between the propagation speed and the density or the size of the flock.

Fig. 14. Propagation speed vs. polarization. (a) Propagation speed (indicated as cs in the original paper), normalized by the average nearest neighbor
distance, plotted as a function of (1 − Φ)−1/2 . The new theory discussed in Section 3.3 predicts a linear relationship between these two quantities. This
highly non-trivial functional relationship between propagation speed and polarization is very well obeyed by the empirical data (p value: p = 3.1 × 10−4;
correlation coefficient R2

= 0.74). (b) polarization as a function of time for three turning events. The value of Φ used in (a) corresponds to a time average
over the entire turning sequence.
Source: From Ref. [36].

polarization and fast propagation of information suggests that keeping this lapse to a minimum, therefore achieving a fast
collective decision, may be the adaptive drive for the high degree of order observed in many living groups.

3.2. First sound

We have seen that bird flocks are characterized by propagating phenomena. In this Section we will provide a discussion
of the various theoretical frameworks that can be introduced to describe linear signal propagation in the context of collective
motion.

3.2.1. The Vicsek model of collective motion
The Vicsek model [5] (VM) is a prototypical model of flocking, perhaps the simplest active matter model that displays a

transition from a disordered state with no polarization to a symmetry-broken phase with finite polarization (see e.g. [43]
for a review). In three dimensions, the Vicsek model is defined by the equations,

vi(t + 1) = v0RηΘ

⎡⎣vi +
∑

j

nijvj(t)

⎤⎦ , (72)

ri(t + 1) = ri(t) + vi(t + 1), (73)

where Θ(x) = x/|x| is the normalization operator and Rη rotates its argument randomly within a spherical cone centered
at it and spanning a solid angle 4πη. The connectivity matrix nij defines as usual which pairs interact. In the original VM
the connectivity matrix elements take only the value 0 or 1. The matrix can be metric (i.e. nij ̸= 0 if and only if rij < rc) or



28 A. Cavagna et al. / Physics Reports 728 (2018) 1–62

topological (i.e. nij ̸= 0 if j is one if i’s first nc neighbors3). The active nature of the model is encapsulated in the constraint
on the speed of the particles, which is fixed to v0,

|vi| = v0, ∀i. (74)

Except in the fully connected case where nij = 1, the {nij} depend on the positions {ri}, which in turn change with the
velocities, which are determined by the connectivity matrix itself (and the random noise). This dependence introduces a
coupling between local order and local density fluctuations characteristic of active systems and responsible for the peculiar
properties of the VM, such as the spontaneous breaking of a continuous symmetry even in d = 2 and the presence of
giant density fluctuations [25,43]. Several variants of the model have been introduced in the literature [2,24], with vectorial
rather than scalar noise, slightly different update rules, or cohesion forces. All the variants describe a phenomenology where
a transition occurs between a disordered phase (high noise, small density) and a polarized phase of collective motion (small
noise, large density).

The VM incorporates within a dynamical framework the alignment interactions that we inferred for natural flocks in the
context of the Maximum Entropy (ME) approach. In the same way as the ME models Eqs. (46) and (53) for the statistics of
the flight directions, it is endowed with a continuous rotational symmetry, which is broken in the polarized phase. Indeed it
also exhibits scale-free correlations of the velocity fluctuations (only of the orientations, of course, as the speed is fixed), as
observed in natural groups (even though with a different exponent). Contrary to the simple static ME distributions that we
derived in the previous sections, however, it is a dynamical model and explicitly includes the rearrangement of the network
in its description.

3.2.2. Continuous time Vicsek model
The VM has been extensively investigated using numerical simulations, and its original formulation (discrete update

equations, minimal number of parameters) has been important to obtain a deep understanding of the phase diagram, and
of the control parameters regulating the transition. Some of the features of Eq. (72) are however unpractical for an analytic
investigation: (1) they are defined for discrete steps, while it would be helpful to have a model defined in the continuous
time limit; (2) the normalization operatorΘ is difficult to handle; (3) there is no parameter explicitly regulating the strength
of alignment. For these reasons, we now define a slightly different version of the original model, which can be more easily
studied in the continuous time limit and within the spin wave expansion.

As a first step, we notice that in the social force at the r.h.s. of Eq. (72), the term i = j has the same weight as the other
neighbors. If we want to consider the limit for small time increments (rather than ∆t = 1 as in (72)), we need the self
contribution to remain finite at the r.h.s. of the update equation in order to build a time derivative. Besides, we expect the
force exerted by neighbors to become smaller if we consider smaller time increments. Thus instead of vi +

∑
j̸=inijvj(t),

for small increments dt we will consider a term of the kind vi + Jdt
∑

j̸=inijvj(t), where J is the strength of the alignment
interaction, also known as stiffness. Besides, instead of the Θ operator, we can use a Lagrangemultiplier to enforce the fixed
speed constraint. In this way we can take the limit for dt → 0 and get

η
dvi
dt

= J
∑

j

nijvj(t) + λivi + ζi, (75)

dri
dt

= vi, (76)

where we added a parameter η fixing the timescale of the dynamical update. Here ζi is a Gaussian noise with variance,

⟨ζi(t) · ζj(t
′)⟩ = 2dηTδijδ(t − t ′) , (77)

and the Lagrange multiplier λi is fixed by the condition |vi| = v0. We note that, in this formulation, Eq. (75) is very similar
to a Langevin spin dynamics in presence of ferromagnetic interactions [44]

η
dvi
dt

= −
δH
δvi

+ λivi + ζi , (78)

with the pseudo Hamiltonian,

H = −J
∑
ij

nijvi · vj. (79)

Of course, compared to the lattice ferromagnetic case, in the VM the network is not fixed, nij changes with time, and the
system is in general out of equilibrium. However, it is useful to keep inmind this analogy. On timescaleswhere the network’s
movement is not relevant, Eq. (75) describes a standard relaxational dynamics for the orientational degrees of freedom. It
also illustrates how dynamical update equations of the VM kind are related to the ME analysis of Section 2.4: the pseudo
Hamiltonian appearing in Eq. (78) is of the same kind as theME one (see Eq. (46)). Indeed, continuous time Vicsekmodels can

3 This is the case relevant to starling flocks, which have nc ≈ 6 − 7, as discussed in the previous sections.
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Fig. 15. Attempt to propagate turn information in the 3-d Vicsek model, showing that the turn cannot propagate and results in an individual leaving the
flock. A direction change is imposed on one individual (black trajectory). Top panel: 2-d projection of trajectories. Middle panel: cosine of the individual
velocities with respect to the original direction (before forcing the turn). Lower panel: individual acceleration profiles.
Source: From Ref. [46].

be derived directly from the data using a dynamical ME approach: one can show that the MEmodel consistent with velocity
data at consecutive time intervals (rather than at the same time), is a Markov model of the VM kind similar to (75) [45,8].

To conclude, we note that if we explicitly compute λi (e.g. by multiplying both sides of Eq. (75) by vi, and imposing
d(v2i )/dt = 0) we get an equivalent expression for the velocity update equation

η
dvi
dt

=

⎡⎣J
∑

j

nijvj(t)

⎤⎦⊥

+ ζ⊥

i , (80)

wherew⊥
= w − (w · vi)vi/v2

0 indicates the component of the vectorw perpendicular to vi. In the rest of the paper we will
often use this continuous time version of the VM as reference benchmark of models of the Vicsek kind.

3.2.3. Collective turns in the Vicsek model
TheVM is successful atmodeling the static properties of flocking behavior, explaining howa short-range velocity-aligning

interaction can lead to globally ordered phase where all members of the group share a common velocity, and producing
scale free correlations. Besides, it offers the minimal Markovian description of collective motion. Given this success and the
simplicity of the VM, it is natural to ask whether it can also describe time-dependent quantities, the kind of information
propagation observed in real flocks, and the occurrence of collective turns. The answer to this question is negative; we
will thoroughly discuss the theoretical reasons for this in the next sections, but we can anticipate that the problem is that
the VM describes an overdamped update equation for the velocities of the active particles (see Eq. (75)). This issue was
first studied numerically in Ref. [46], where one of the particles of an otherwise aligned and highly polarized flock was
forcefully assigned a different direction. It was found the over-damped dynamics in a Vicsek-like model cannot effectively
propagate this perturbation across the system, with the result that the initiator of the turn leaves the group, while the rest
of the particles display at most a slight and transient change in their orientation, and the group sticks to the initial direction
(Fig. 15).

Thus the dynamics of flocks is not captured by the VM and requires the introduction of a model that, while preserving
the statics of the VM, allows fast (wave-like) propagation of turning information. This is true even if the VM can sustain
waves: but the waves in the VM are densitywaves, not orientation waves. They are related to the coupling of local order and
density fluctuations mentioned above, and have different properties from the orientation waves that have been observed to
propagate the turn information. A detailed explanation of the VM waves, their inadequacy, and how to formulate a model
that can sustain orientation waves is rather challenging, and is the subject of the next sections.

3.2.4. Spin-wave expansion of the Vicsek equation: fixed network case
Numerical simulations show that the Vicsek model (VM) in the polarized phase does not exhibit collective turns as real

flocks. How can we understand this behavior from a theoretical perspective? Clearly the VM – despite its simplicity – is very
complex to treat analytically as it involves interactions between velocities (orientational degrees of freedom) andmovement
in space, within an off-equilibrium context. We will therefore address some limiting situations where computations can be
performed: the fixed network case and the hydrodynamic regime. In the first case, we assume that the particles have fixed
mutual positions so that the interaction network nij does not depend on time. This approximation is reasonable to describe
processes that occur on timescales smaller than the rearrangement scale of the network (collective turns in natural flocks
seem to be close to this limit). The hydrodynamic regime, on the other hand, describes the very large scales, where network
movements cannot be disregarded and the system behaves as an active fluid fully mixing orientational and density modes.
Let us start by discussing the fixed-network approximation.

We consider the VM in the deeply polarized phase. In this regime we can use the spin-wave approximation discussed
in Appendix B. We expand each velocity vector with respect to the mean velocity direction (that we consider as the x
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direction): vi = vx
i nx + πi ∼ nx v0

(
1 −

1
2π

2
i /v2

0

)
+ πi, with π = v0(0, ϕy, ϕz). We can now plug these expressions into

the full dynamical equations describing the model (e.g. in Eq. (80)) and expand them up to the first order in the phase, so to
obtain equations directly for the ϕi. We get the same equation for both ϕy and ϕz , namely,

η
dϕi

dt
= −J

∑
j

Λijϕj + ζi , (81)

where Λij is the discrete Laplacian matrix defined in Section 2.4, Λij = −nij + δij
∑

knik.
The Laplacian matrix depends in general on time, since nij is updated every time individuals exchange positions and

leave each other’s neighborhood. Let us assume that this process is slow on the scales of interest so that the network can be
considered as fixed. If we look at spatial scales larger than the mean inter-particle distance – and we must do that, lest all
our scaling relations lose their validity – we can then approximate the discrete Laplacian with its continuous counterpart
(we call a the mean inter-particle distance and nc the number of interacting neighbors),

J
∑

j

Λij → −Jnca2∇2 . (82)

Similarly, we can substitute the discrete-space phases with continuous fields,

ϕi(t) → ϕ(x, t) . (83)

In this way we can rewrite the VM as,

η∂tϕ(x, t) = Jnca2 ∇
2ϕ(x, t) + ζ (x, t) . (84)

where ζ is a Gaussian white noise,

⟨ζ (x, t)ζ (x′, t ′)⟩ = 2η T a3δ(3)(x − x′)δ(t − t ′) (85)

andwhere the factor a3 is necessary to keep the original physical dimensions oncewe introduce the spatial Dirac’s delta. From
Eq. (84), going to Fourier space, we immediately get the dispersion relation of the VM in the fixed network approximation
(Appendix E):

ω = i
Jnca2

η
k2 = iDk2, (86)

where we introduced the ‘diffusion’ coefficient

D = Jnca2/η. (87)

The structure of the homogeneous equation is therefore that of a diffusion equation and the dynamical propagator for the
VM is indeed a diffusive propagator (see Appendix D). A disturbance of the phase at the origin spreads diffusively through
the system, and arrives at distances r – damped – after a typical time t ∼ r2/D. This is clearly very different fromwhat found
in natural flocks where the disturbance, the deviation of the initiator of the turn from the group flight direction, travels
distances linearly in time and spreads undamped through the whole flock. Hence, within a fixed network approximation the
VM does not produce linear waves. However, the fixed network one is indeed an approximation, so let us ask: does the full
Vicsek model, with a moving network, produce linear waves?

3.2.5. Toner–Tu theory and the coupling between density and phase: first sound
The fixed-network approximation of the previous Section may seem unreasonable given that collective motion is all

about motion, so that particles move following their own velocities and in so doing they change the local density. Hence,
it is clear that a continuum limit description of the VM must incorporate density fluctuations. This is what Toner and Tu
(TT) did in their remarkable theoretical effort [6,47–49]. The approach developed in these works follows the hydrodynamic
perspective: instead of looking at themicroscopic dynamics and fields on the scale of the single particles, one defines coarse-
grained velocity and density fields over small volumes of the ‘active’ fluid of particles. The dynamical equations for such
coarse-grained fields can be written on the basis of symmetry arguments [6], or by performing in detail the coarse-graining
procedure [50–52]. As usual, one expects the coarse-grained fields and the microscopic ones to display the same correlation
and response functions at large scales, whereas differences can occur below some hydrodynamic crossover scale. Crucially,
since hydrodynamics deals with the large scales, the movement of the network is fully included in the description and the
dynamical equations are coupled equations for the orientational (velocity) and positional (density) fields.

The hydrodynamic approach allowed to demonstrate theoretically the occurrence of a transition to the ordered phase,
underlying the crucial role of the non-linear terms related to the activity in stabilizing order even in d = 2. Here we are
interested in understanding the structure of the normal modes predicted by the theory in the low-noise region. To do so,
we can simplify the TT equations to only those ingredients that are essential to capture the form of the dispersion law. We
therefore disregard the non-linear terms and the terms explicitly breaking the Galilean invariance, as well as the anisotropy
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present in the modes in the polarized phase. All these aspects are certainly important in the general theory, but do not
change the essence of the TT arguments. We refer the interested reader to [7,3,48] for an exhaustive explanation of the TT
hydrodynamic equations and their analysis.

The hydrodynamic equations of Toner and Tu in their simplest form [3] are given by

Dtv = J ∇
2v − ∇P −

∂V
∂v

, (88a)

∂tρ = −∇ · (ρv). (88b)

In these equations, v and ρ are the velocity and density hydrodynamic fields (i.e. they represent a coarse-grained version of
the microscopic fields defined in Appendix A; we use the same symbols in an abuse of notation). Dt = ∂t + λv · ∇ is the
covariant derivative; the parameter λ breaks the Galilean invariance if λ ̸= 1, which is the case in active fluids; however,
since this difference is not relevant to our analysis we will set λ = 1 in the following. The pressure P(ρ) is a function of
the density, ρ0 is the average density, and the confining potential V (v) =

∫
dr[−(α/2)v2

+ (β/2)(v · v)2] sets the value of
the average fluid velocity in the polarized phase, v̂0 = α/β > 0. The parameter J plays the role of the kinematic viscosity
or stiffness depending on whether one views v as a velocity or an orientation, a difference of interpretation that will play
a major role in the following sections. To write the spin-wave expansion of Toner–Tu equations we consider fluctuations
around the equilibrium values, ρ = ρ0 + δρ and P = P0 + σδρ; in this way we obtain [7,3]

∂tϕ = J∇
2ϕ −

σ

v̂0
∂⊥δρ, (89)

∂tδρ = −ρ0v̂0∂⊥ϕ, (90)

where δρ is the density fluctuation and ϕ is either the y or z component of the velocity fluctuation, i.e. δv⊥
= v̂0(0, φy, φz). It

is crucial to compare this system of equations with the fixed-network Vicsek equation (84): whereas in (84) there is clearly
no propagation, as that is simply the diffusion equation with purely imaginary frequency ω = iDk2, Eqs. (89) and (90) are
different: having taken into account the motion of the particles through the introduction of the density fluctuation field,
δρ, has changed radically the dispersion relation. In the Toner–Tu equations velocity fluctuations are coupled to density
fluctuations, so that if we take the second derivative of the phase ϕ with respect to time we obtain a closed second-order
dynamic equation for the velocity fluctuations,

∂2
t ϕ − J∇

2∂tϕ − ρ0σ∇
2
⊥
ϕ = 0. (91)

If we forget for a moment the strange form of the first-order dissipative term and the anisotropic Laplacian, we see that (91)
has the form of a linear wave equation, so that propagating phenomena are to be expected. Indeed, the dispersion relation
associated to (91) is,

ω± = −i/τ1 ± c1k
√
sin2θ − k2/k21, (92)

where c1 is the sound speed, τ1 = 2/k2J is the damping time, k1 = c1τ1k2, and θ is the angle between the wave vector k and
the mean direction of motion. The frequency Eq. (92) has a nonzero real part, and thus propagating waves, in some region
of the parameter space; in particular, for k → 0, and θ ̸= 0 there is always propagation. The bare speed of propagation is
given by

c21 = ρ0σ . (93)

Because these modes are carried by density fluctuations, as in standard fluids, we call this propagating mode first sound, to
distinguish it from the spin-wave modes that we will introduce later. However, it is important to note that these density
fluctuations are coupled to velocity fluctuations, hence a propagating perturbation in the density is inevitably associated to
a propagating wave in the orientations of the particles.

Hence, the hydrodynamic translation of the VM, namely the theory of Toner–Tu admits propagating phenomena. This
seems good news, as linear propagation of velocity fluctuations, with finite sound speed, is exactly what we observe in real
flocks (Section 3.1). As we shall see in the next Section, the situation is in fact more complex.

3.2.6. The problems with first sound
The first odd thing we notice in the first sound equations is that J acts as a damping factor: the φ-dependent part of

Eq. (89) has the same structure as the diffusion equation, hence J acts as a diffusion constant, which is why we find it as the
prefactor of the first-order dissipative term in (91),J∇

2∂tϕ. In the deeply polarized phasewe can expect the (coarse-grained)
parameter J to be mainly determined by the microscopic alignment interaction coefficient J . Hence, the first sound theory
of Toner and Tu implies that signal propagation is more damped (and thus less effective) the stronger the tendency to get
ordered is in the flock. This seems unnatural: at amerely intuitive level we are inclined to think that ‘closing ranks’ (boosting
the alignment order of the group) should not damp signal propagation, but rather strengthen it. One would naively expect
that in the correct theory, a larger J should at least not impair signal propagation. We shall see that this is exactly what
happens in the new theory that we will develop in the next sections.
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At amore quantitative level, first sound has other problemswhen compared to empirical signal propagation in real flocks.
From Eq. (92) we see that first sound is strongly anisotropic: it does not propagate in the direction of motion of the flock
(θ = 0, the longitudinal direction) but it is a transverse mode. In fact, a longitudinal mode exists in TT theory, but it is a
rather trivial one as its speed of propagation in the laboratory reference frame is approximately the same as the mean speed
of the group, meaning that the speed of this mode in the flock reference frame (i.e. the co-moving frame) is negligible [53].
Turningwaves in flocks, on the other hand, have a speed that is totally unrelated to the speed of the flock and that, aswe have
seen, is quite large (up to 40 ms−1 in the flock reference frame). Such anisotropy of first sound is quite odd at the biological
level, as it would imply that a change of direction started by an individual at the front of the flock could not propagate
backward to the rest of the group. Although empirical evidence is scant about the direction of propagation of turns [40], a
mechanism of propagation that does not work in the longitudinal direction seems unlikely in a real biological system.

Secondly, as we have seen, first sound is carried by density fluctuations, whose coupling with the velocity fluctuations is
crucial to give a real frequency; however, the data about turning flocks shows no trace of propagating density fluctuations
coupled to propagating velocity fluctuations [36]. In fact, the structure of the network of the individuals is quite stable during
the (very fast) propagation of the signal [36]. Moreover, the speed of propagation of first sound, c1, depends on density, while
no such dependence is found in the data: as we have seen in the previous Section, the speed of signal propagation in flocks
varies quite significantly from flock to flock, but we have excluded a dependence of this speed on density.

Finally, a crucial feature of signal propagation in the TT theory is its k dependence: we see from (92) that first sound
is overdamped (imaginary frequency) at short wavelengths, namely at large k. First sound, and in fact the whole TT
construction, is an eminently hydrodynamic theory, valid and universal only at long wavelengths. Because in any finite
system of size L the smallest wave vector is of order 1/L, we conclude that first sound only propagates in asymptotically large
flocks. This has been confirmed by numerical simulations [47], which succeeded to observe first sound only in very large
systems (N = 320 000 particles). On the other hand, in small systems k is too large, and first sound does not propagate.
Such feature of first sound clashes directly with experimental evidence, which shows that signal propagation in turning
flocks occurs clearly also in medium–small flocks, suggesting that this cannot be purely a k → 0 feature, but that it must
be sustainable also at intermediate values of the wave number. In fact, even though we do not have empirical data on very
large flocks (N > 103), our field experience while collecting data is that very large flocks are very inefficient in transporting
waves, and rather show a ‘wobbling’ attitude, with very rare sharp changes of direction. At a more general level, we may
accept upper limits in the maximum size a biological group can attain to sustain linear waves, while it seems very unnatural
to accept a lower limit in the size: very small groups changing swiftly direction of motion, or propagating other kinds of
signal, are a common experience that is very hard to ignore.

To summarize, in Section 3.1 we have presented clear evidence of propagating turning waves in flocks; these waves are
linear, very weakly damped, with a variable speed that we could not account for. Simulations show that the simple VM is
unable to reproduce these phenomena, at least on the scales and size of realistic flocks. The best theoretical treatment of
Vicsek model, namely the Toner–Tu hydrodynamic theory of flocking, displays propagating linear phenomena, but of a kind
that does notmatch the experimental evidence. This is consistentwith the inability of simulations of the 3-dVM to reproduce
orientational waves. We conclude that a new theory of propagating phenomena is needed to explain the empirical evidence
of signal propagation in bird flocks.

3.3. Second sound

As we have seen, the Vicsek model has a diffusive character, Eqs. (81) and (84). A diffusion-like equation is clearly non-
ideal for the description of propagating phenomena; however, the network over which this diffusive dynamics takes place
moves in time, giving an extra degree of freedom (density fluctuation), which is ultimately responsible for the appearance of
non-diffusivemodes. It is precisely the strong coupling between velocity and density fluctuations that allows the emergence
of propagating modes in the Vicsek model, as clearly described by the hydrodynamic theory of Toner and Tu.

Unfortunately,wehave seen that such strong coupling betweendensity and velocity is not observed in real flocks, possibly
due to their finite size, whereas TT theory is only valid in the hydrodynamic limit of very large size and very long times:when
Vicsek dynamics is observed on medium–short scales, its diffusive character takes over and all propagating TT modes are
damped. On the other hand, we have seen in the sections about static correlations that the short-range alignment interaction
of the Vicsek model, which translates into the Laplacian of Eq. (84) describes the data rather well, suggesting that this kind
of interaction is probably not the main problem with the Vicsek equation. Hence, we need to formulate a new theory that
reproduces linear propagating phenomena in absence of velocity–density coupling and that it does so even at short–medium
scales, namely a theory whose frequency is real not only in the hydrodynamic limit, k → 0.

3.3.1. The key point: the double role of the velocity
To make progress, we must reflect on the double role played by the velocity in the Vicsek model at the conceptual level.

Let us go back to the Toner–Tu equation,

Dtv = J ∇
2v − ∇P +

∂V
∂v

. (94)

The last term is specific to active fluids and is responsible for fixing the average fluid speed in the polarized phase. Let us
for the moment disregard this term, and focus instead on the others. On one hand, and quite obviously, v can be viewed as
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a velocity (in fact, it is the velocity): according to this interpretation, the l.h.s. of (94) is an acceleration, and thus a second-
order time derivative, while at the r.h.s. we have the diffusive term, J ∇

2v, which is morally a dissipation, and the force
term embodied by the pressure gradient, −∇P . This is the standard fluid-dynamic view, where the hydrodynamic version
of the Vicsek model, Eq. (94), is essentially interpreted as a Navier–Stokes-like equation, that is basically Newton’s equation.
It is important to note that in this context J plays the role of kinematic viscosity (or diffusion constant) and for this reason
it ends up as a prefactor of the dissipative term in the dispersion relation of TT theory, Eq. (92). This is the ordinary role
of J , which is also present for normal (non active) fluids, where it arises from the shear stress divergence. For a fluid of
active particles, however, as we have already noted, the dissipative role of J is odd. In these systems – where we have not
considered cohesive forces among the particles – this term arises from the microscopic alignment interactions between the
velocities: at low noise we expect J to resemble the microscopic interaction strength J of the Vicsek model, which we do
not intuitively identify with a viscosity. In fact, the term J ∇

2v is the continuous version of the discrete term J
∑

jnijvj in the
original Vicsek model,

∂tvi = J
∑

j

nijvj + · · · (95)

But the r.h.s. of this equation obviously has the role of a social force, not of a viscosity! This force actuallymoves andmodifies
the birds’ velocity in order to keep the system polarized. This leads us to a second, and radically different, interpretation of
the velocity and of Eq. (94): v is an orientation vector whose dynamics is regulated primarily by the force J ∇

2v, so that
J is not a viscosity, but a stiffness regulating the strength of this orientational force [3,54]. In this alternative view of active
dynamics, the velocity is the fundamental degree of freedom of the theory, i.e. its generalized coordinate. So that the correct
way to interpret the l.h.s. of (94) is that of a first-order time derivative of the principal degree of freedom, whereas at the
r.h.s. we have the force,J ∇

2v. Hence, under this second interpretation of the velocity as an orientational degree of freedom,
Eq. (94) becomes an overdamped first-order Langevin equation, and not an underdamped second-order Newton equation. This
view is manifest in the microscopic model, when we remember (as we did on Section 3.2.2, Eq. (75)), that the social force is
actually the derivative with respect to the velocity of an alignment pseudo-Hamiltonian,

∂tvi = Fi + ζi Fi = −
δH
δvi

. (96)

Here the overdamped Langevin structure is evident: the r.h.s. is a social force and indeed it is the derivative of a cost function
(the pseudo-Hamiltonian H) with respect to v. This clearly indicates that v is the actual generalized degree of freedom of
interest, but in this view the Vicsek equation describes an overdamped theory for the orientation. No surprise, then, that
orientation waves do not exist within TT theory as independent modes, but only coupled to propagating density modes.

On the contrary, what we need is a new theory able to support propagating orientational modes irrespective of density
fluctuations. To do this, let us (momentarily) brutally simplify the arena: given that we need a theory able to propagate
information also in absence of density fluctuations, let us set to zero the pressure term coupling density to velocity, and
concentrate solely on the dynamics of the velocity (we will reinstate such term later in Section 3.3.7). In this way, the Vicsek
equation (and thus TT theory) becomes,

Dtv = F, (97)

where the force is F = J ∇
2v. As we have said, this seems a Newton equation if we assign to v the role of velocity (time

derivative of the primary degree of freedom); however, along that path we meet a contradiction, because if v is a velocity,
thenJ ∇

2v is a viscosity, not a force. If indeedwewant to interpretJ ∇
2v as a force, wemust recognize that it is a derivative

of a ‘Hamiltonian’ with respect to v, and therefore v becomes the primary degree of freedom, not its time derivative.

3.3.2. How viscosity kills inertia and Newton’s law becomes an overdamped Langevin equation
To try and fix ideas in this rather confusing situation, let us put aside the velocity for a moment and talk about a generic

degree of freedom, i.e. a generalized coordinate, y. This could be anything relevant we choose to describe our system. We
have a theory based on the equation

ẏ ∼ F , (98)

which is unable to sustain propagating waves for an obvious reason: the r.h.s. (which in our case is a Laplacian) is a second-
order space derivative of y, while the l.h.s. is a first-order time derivative of y, i.e. the structure of the diffusion equation.

In fact, given a generic degree of freedom y and a force F acting on it, Eq. (98) is not in general the correct starting point.
Instead, Newton’s law states,

ÿ ∼ F , (99)

because force controls the second-order time derivative, not the first. What is the general mechanism by which Eq. (99)
reduces to (98)? This is a very basic piece of statistical mechanics and we apologize with the connoisseur, but it is essential
to be clear on this point. In both Eqs. (98) and (99) we have disregarded all physical coefficients to convey the general idea,
but if we want to understand what really happens we have to be more specific. First of all, wemust introduce the coefficient
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of the second-order time derivative, that is inertia. Because y is a generalized degree of freedom (not necessarily the position)
wewill callχ the generalized inertia (instead of the usual coefficientm for themass, which is themechanic inertia associated
to the second-order time derivative of position). Hence we write

χ ÿ = F . (100)

This is the correct equation for y in absence of friction. If, however, dissipation is present in the system (and it is always wise
to assume so), we must add two terms to the r.h.s.,

χ ÿ = F − ηẏ + ζ (101)

where η is the viscosity and ζ is the noise. Viscosity and noise are just two sides of the same coin, representing all the
interactions with the surrounding environment that we are unable to directly describe with explicit forces; for this reason
the correlator of the noise contains η, according to Einstein relation [55]. But let us not linger on this point. Dimensional
analysis of Eq. (101) shows that χ/t2 ∼ η/t , hence a fundamental time scale immediately emerges:

τd ∼ χ/η. (102)

For t ≪ τd or, equivalently, for fixed time but large inertia-to-viscosity ratio, inertial effects dominate; this is the transient
short-time regime. On the other hand, for t ≫ τd or, equivalently, for fixed time but low inertia-to-viscosity ratio, inertia
becomes sub-dominantwith respect to viscosity; this is the so-called asymptotic long-time regime, inwhichwe can therefore
disregard inertia and write,

ηẏ = F + ζ . (103)

This asymptotic regime is also called overdamped, because damping and friction completely wash out inertia. But it is
important to understand that this is a regime defined by time, not simply by the mutual values of viscosity and inertia;
in other words, we cannot say that the equation is overdamped because viscosity is large, as there is always a time regime
(however short thismay be) inwhich inertial effectsmatter. Hence, overdamping is a propriety that holds in a certain regime,
i.e. for times much longer than the ratio χ/η.

We clearly understand now the origin of the Vicsek overdamped equation: the underlying assumption of it is that we
are observing the system for asymptotically long times (and, once space is introduced, asymptotically long distances), in
which all inertial effects are washed out by dissipation. At first sight, this seems reasonable: after all, who is interested in
transients? In physics, we typically never are: we are only interested in very large times and very long distances. However,
this is biology, not physics, and when we think about the phenomenon we want to describe, namely the propagation of fast
information waves across finite-size groups, we realize that in fact we may very well be interested in transients. Everything
about information transfer in biological systems is about transients. Bottom line: we must reinstate inertia in the theory.

3.3.3. Reinstating inertia: symmetry, generators, Poisson brackets and the emergence of spin
So we have to reinstate inertia in the theory. But what kind of inertia are we talking about? Since our primary degree of

freedom is the velocity orientation vector, v, not the position, inertia cannot be the standard mechanical mass m. This is a
crucial point: we are not going to simply recover the mass, i.e. the standard Newtonian inertia of birds. In fact, that kind of
inertia is already implicitly contained in the theory, because, as we have seen, if we had interpreted v as the velocity, and
thus as the first-order derivative of the primary degree of freedom – space – then the term ∂tv in Vicsek equation (and in TT
theory) would be the inertial term, the acceleration. Yet we have argued that this is not the right interpretation of v and that
the right role of this vector is that of an orientation subject to a ferromagnetic alignment force with its neighbors. So, again,
what kind of inertia do we need in this context?

To make progress it is useful to turn to the Hamilton–Poisson formalism, according to which inertia is the crucial link
between the parameter and the generator of a symmetry. Let us illustrate this with the simplest symmetry, namely space
translations: the coordinate parametrizing translations is the space position q, while the generator of this symmetry is the
linearmomentum p. Themutual relationship of parameter and generator of the symmetry is formally defined by the Poisson
relation,

df
dq

= {f , p}, (104)

i.e. the change of any observable f along the transformation parametrized by q is ruled by the Poisson bracket of f with the
symmetry generator p. Within this general structure, the canonical pair of coordinate andmomentum, (q, p), is regulated by
Hamilton dynamics,

q̇ = p/m, (105)
ṗ = F , (106)

which defines the inertia, in this case the mechanical massm. This formalism is useful because it indicates a possible path to
build the new theory:
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1. identify the fundamental degree of freedom (the generalized coordinate);
2. find the symmetry parametrized by this coordinate;
3. find the generator of this symmetry — this will be the conjugate momentum;
4. write the dynamical equations and define inertia.

We have repeatedly explained that what we need to describe is the dynamics of the orientations of the birds. Hence, it
seems reasonable to assume that the fundamental degree of freedom is an angle, which clearly parametrizes a rotation. But
what angle and what rotation is that? To answer this question wemust carefully reflect on the different ways a set of points
can turn. There are two ways to turn (to fix ideas we work in a planar context, in which a rotation is parametrized by one
angle — we will generalize to 3-d rotations later on):

• Parallel path turning. Let us consider a set of points (the birds of the flock) on the plane and let us nowoperate a rotation
by an angle θ . This rotation acts on the position of each point with respect to the common origin of coordinates, so the
overall effect of the transformation is actually of rotating thewhole flock, namely a turn. This symmetry is generated by
angular momentum, l, and parametrized by the angle θ . However, if we look at the trajectories drawn by the particles
during this kind of turn, we see that there is somethingwrong: this is a parallel path turn, also known as rigid assembly
turn (Fig. 10) in which the particles’ trajectories do not cross, but the radius of curvature (with respect to the origin) is
different from bird to bird. This kind of turn is correct for a rigid body, but it is definitely not what happens in animal
groups: during parallel path turning particles on the external side of the turn have a speed larger than particles on the
internal side of the turn, a fact not biologically plausible, and which becomes completely absurd as the group grows
in size. In all biological groups, individual speeds can fluctuate, but only within physiologically reasonable ranges,
certainly not proportionally to the turning radius.

• Constant radius turning. In fact, we have seen in Section 3.1.4 that not only common sense, but real experiments show
that flocks (both of pigeons [41] and starlings [14,40]) do not turnwith parallel paths, butwith constant radius turns: in
this kind of turn, each particle has the same radius of curvature, and therefore the same speed; as a consequence paths
cross (Fig. 11), a scheme impossible for a rigid body, but obviously ideal for a biological group. Hence, experiments
themselves clearly indicate that the symmetry we need to describe is the rotation giving rise to equal radius turning.
This kind of rotation is not described by the canonical pair (θ, l) (which generate parallel path turning). What is the
correct generator–parameter pair in the case of constant radius turning? In order to attain equal radius rotations we
must rotate the direction of motion of each bird i, which is what we call phase, ϕi. Unlike θ , a rotation of ϕi changes
only the orientation of the velocity of i, not its position. The phase is thus our fundamental degree of freedom and it
parametrizes the internal rotations, i.e. the rotation within the internal space of the order parameter vi, as opposed
to the rotation in the external space of coordinates (or world sheet). We must now identify the generator of this
symmetry; inasmuch ϕ is different from θ , the generator we are looking for must be different from the angular
momentum l. Perhaps surprisingly, some help comes from quantum mechanics, which has a simple name for the
generator of the rotation in the internal space of the order parameter: it is the spin. We will use this same name, and
indicate it with the symbol s. We conclude that the canonical pair of coordinate and conjugated momentum, (ϕ, s).

Mathematically, the relation between phase and spin is as usual expressed by Poisson’s bracket,

df
dϕ

= {f , s}. (107)

The canonical dynamics of phase and spin defines the inertia, χ :

ϕ̇ = s/χ, (108)
ṡ = F (109)

where the effective force F is actually an effective torque. It is important to understand that χ is a generalized inertia: it is
not the mechanical mass, m, nor the mechanical moment of inertia, I; χ is effectively defined by (108). To understand its
meaning we merely proceed as in textbooks and write,

ϕ̈ = F/χ (110)

from which we clearly see that the generalized inertia χ embodies the resistance of the active particle to a change of ϕ̇,
namely to a change of its turning rate, caused by a social force (or social torque, actually), F . The ingredients of this resistance,
both mechanical and neural, are certainly complicated and it is safe to assume that χ is an effective (or phenomenological)
parameter. For this reason in [36] we called χ behavioral inertia. We invite the reader to see the Supplementary Information
of [36] for a thorough discussion of the link between χ and the flight parameters of a bird.

We stress again that phase and spin is a different pair from angle and angular momentum. The Poisson relation between
the latter is,

df
dθ

= {f , l} (111)
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and their dynamics is governed by the equations,

θ̇ = l/I, (112)

l̇ = F . (113)

The inertia in this case is the standard moment of inertia I . As we have repeatedly explained above, Eqs. (112) and (113)
describe parallel path turning, which is not the relevant case in biological systems.

Hence, we have finally reinstated inertia in the Vicsek model of mutual imitation. Let us see what are the practical
consequences on the information transfer mechanism.

3.3.4. The conservation of the spin and the emergence of second sound
We can now recall that in the Vicsek model and in the TT equation the ‘social force’, F , (or social torque) is in fact the

Laplacian of the velocity, J∇
2v, which expresses the tendency of each bird to align with its neighbors; under the spin wave

expansion this term becomes simply the Laplacian of the phase, J∇
2ϕ (see Eq. (89)). Hence, from (108) and (109) we obtain

the new equations for the spin and phase fields,

ϕ̇(x, t) = s(x, t)/χ, (114)

ṡ(x, t) = J∇
2ϕ(x, t). (115)

We notice that the second equation can be rewritten as a continuity equation for the spin: if we define the current j = J∇ϕ,
(115) becomes,

∂s(x, t)
∂t

− ∇ · j(x, t) = 0, (116)

from which we conclude that the total spin is conserved:
d
dt

∫
dx s(x, t) = 0. (117)

The conservation of the spin is a consequence of the symmetry of the problem under the rotations parametrized by the
phase, ϕ. By taking a second derivative of the phase in (114) we get,

∂2ϕ

∂t2
−

J
χ

∇
2ϕ = 0, (118)

which is nothing else than D’Alembert equation of wave propagation, stating that a signal generated as a disturbance of the
phase, i.e. of the direction of motion of one bird, travels linearly across the flock with a speed

c2 =

√
J
χ

. (119)

Several remarks are in order here. First, we have assumed that the network is fixed, hence density fluctuations cannot
participate in this signal propagation; we will reinstate density fluctuations later, but for now this proves that the
propagationmechanism described by (118) is not due to the coupling between density and phase, but rather to the coupling
between spin and phase, namely between the momentum and its canonically conjugated coordinate. Second, because
density is out of the question, this linear sound mode is radically different from the first sound of Toner–Tu equations. We
will discuss this in detail later, but for now it is sufficient to notice the completely different expression of c2 with respect
to first sound speed (93); in particular, it is crucial to notice that this new sound mode propagates faster in flocks with a
stronger alignment interaction, J , while first sound speed does not depend on J and in fact, as we have seen, the alignment
acts as a damping of first sound. Third, the theory we have introduced is mathematically identical to a spin wave model
introduced in the 1960s for the description of superfluid Helium, where ϕ is the phase of the complex wave function of the
particles, which is the order parameter of the system [56–58]; in that context, the propagating mode of the phase is called
second sound, to distinguish it from the standard (first) sound coupled to density waves. Given our need to distinguish these
phase modes from the first sound of Toner and Tu, in [36] we have adopted the same nomenclature, hence c2 is the second
sound speed.

The new theory is very simplified and it needs of course some adjustments, chiefly the introduction of some dissipative
term (we passed from a completely overdamped equation to a completely undamped one, which is unrealistic) and a
generalization of it from the level of the phase (which is only meaningful in the context of the spin wave expansion,
namely for polarized systems), to the more general level of the velocity v. However, before we take care of these aspects,
there is an immediate prediction the new theory makes, which is worth seeing. The second sound speed, Eq. (119), must
match quantitatively the speed of propagation of the signals that have been experimentally observed in real flocks. We
saw in Section 3.2.6 that previous theories are unable to do this: a purely diffusive dynamics does not even have a linear
speed of propagation, while first sound, Eq. (93) predicts a speed that fundamentally depends on the density, which is not
experimentally the case. In fact, we could not account in any way, not even phenomenologically, for the wide variations of
propagation speed that we observe in real flocks; we can therefore say that this experimental fact was not one of the inputs
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of developing the new theory. Nowwe have (119): does it work? The behavioral inertia, χ , is a phenomenological parameter
and we do not know its value: calculating it on the basis of an ab initiomechanical calculation is out of question and the only
way we could infer it is from c2, which would of course beg the question. However, it seems reasonable to assume that χ is
on average approximately the same from flock to flock, so that the different observed values of c2 are not due to differences
in the behavioral inertia. The stiffness J , on the other hand determines how strongly birds tend to align to each other and
therefore it must have an effect on the global polarization of the flock. We conclude that second sound should be faster in
more polarized flocks: alignment’s strength boosts signal propagation. This sounds reasonable, especially compared to the
prediction of first sound, according to which alignment’s strength depresses signal propagation. More importantly, this is a
prediction we can check quantitatively.

In Appendix B, Eq. (B.9), we have derived an explicit relation between polarization and phase fluctuations within the spin
wave expansion, namely

Φ = 1 − ⟨ϕ2
⟩. (120)

On the other hand, we have seen in Section 2.4.1 that within the spin wave approximation the distribution of the phases is
Gaussian, Eq. (48). In the present continuum space context we can write,

P(ϕ) ∼ exp
(

−
1
2
β

∫
d3k
a3

J (∇ϕ)2
)

, (121)

from which we have

⟨ϕ2
⟩ ∼

1
βJ

. (122)

From (120) and (122) we finally obtain

J =
T

1 − Φ
, (123)

where T = 1/β is the temperature, in a static sense (see Section 2.4 on maximum entropy). Eq. (123) states the intuitive
fact that, in the polarized phase, the only way to push the polarization to exactly 1 at finite temperature is to have infinite
alignment strength J . By plugging this relation into (119), we obtain a nontrivial dependence of second sound speed on
polarization, first obtained in [36],

c2 ∼
1

√
1 − Φ

. (124)

This is the central prediction of the new theory and experimental data show that it is verified (Fig. 14 and [36]). Notice that
(124) is a nonlinear, dimensionless function of Φ that was hard to guess a priori merely on the basis of the flock-to-flock
variation of the speed of propagation across the experimental data. It is also a hard quantitative fact not reproduced by
other theories. We conclude that inertia is indeed essential to account for the experimental evidence about information
propagation in flocks.

Eq. (124) is important for a second reason: it provides the most compelling explanation about why network rearrange-
ments are scarcely relevant for second sound. According to (124) the speed of propagation of second sound is larger the
larger the polarization, Φ: more ordered flocks (in which, thus, the stiffness J is larger) sustain faster phase waves. Hence,
the time scale needed for the signal to cross the system, and therefore the time scale of second sound propagation, τprop,
decreaseswhen the polarization increases. On the other hand, let us ask ourselves: how does the time scale over which some
substantial rearrangements of the interaction network occur depend on polarization? For low Φ , everybody is going in a
different direction, hence the rearrangement will be quick; conversely, if the polarization is very close to 1, the fluctuations
of each individual with respect to the mean velocity will be very small; but these fluctuations are responsible for the
mutual diffusion of the individual, which is the origin of network rearrangement. This means that the time scale for network
rearrangement, τnetw, increaseswhen the polarization increases.We conclude that these two time scales have opposite limits
for large polarization,

lim
Φ→1

τprop = 0, lim
Φ→1

τnetw = ∞. (125)

Given (125), it is natural to expect that, at least in polarized systems, the two time scales separate sharply, so that second
sound propagation can be studied under the assumption of fixed interaction network. As we have seen, this is exactly what
seems to be happening at the experimental level in real flocks, which do not significantly change their networkwiring during
turns.

In fact, this argument can be generalized beyond information transfer to themore general level of the correlation between
fluctuations in flocks. The time scale of network rearrangement can be compared to a third time scale, namely the local
relaxation time of the velocities, τrelax. When this is done [8], one discovers that τprop ≫ τrelax, hence the local degrees of
freedom are relaxedwell before the network has dynamically changed. This is the fundamental reason behind the success of
pseudo-equilibrium theories for these systems, as those we have described in the maximum entropy section. The interested
reader can learn more about this topic in [8].
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3.3.5. Dissipation, quasi-conservation of the spin and the cut
The new theory for the phase that we have built up to now lacks a crucial ingredient, namely dissipation. The dissipative

term of the former theory, J∇
2ϕ, now acts as a social force; accordingly, J is now a stiffness. A consequence of having

reinstated inertia is that spin is conserved, meaning that it can only be transferred from bird to bird (this is exactly how
a disturbance of the direction of motion propagates across the flock in the new theory), but cannot be dissipated locally.
However, this means that a single noninteracting birdwouldmaintain its turning state forever, which is not very reasonable.
Clearly, to solve this paradox we need to introduce a weak dissipative term, slowly driving to zero the spin in absence of any
perturbation, so that the unperturbed state of motion of a bird is to fly straight. At the same time, we need to recognize that
this can only be true on average: small adjustments around the direction of motion are always likely. In fact, it is intuitive to
expect that the many factors leading to a slow dissipation of the spin are also responsible for its random fluctuations. This
is the classic duality between dissipation and noise typical of statistical mechanics: they are just two sides of the same coin,
their common origin being the unknown interaction with the environment (i.e. the heat bath). Here, we follow an identical
approach and write

ϕ̇ = s/χ, (126)

ṡ = J∇
2ϕ −

η

χ
s + ζ , (127)

where η is a generalized friction coefficient and ζ is a white noise satisfying

⟨ζ (x, t)⟩ = 0, (128)
⟨ζ (x, t)ζ (x′, t ′)⟩ = 2ηTδ(x − x′)δ(t − t ′), (129)

where T is the analogue of the temperature in physical systems, namely the parameter linking noise and viscosity. The spin
is no longer conserved, but if the friction η is small enough there is still linear propagation in the system. Let us see this
explicitly. The deterministic part of the equation for the phase now becomes

χ
∂2ϕ

∂t2
− J∇

2ϕ + η
∂ϕ

∂t
= 0 . (130)

The dispersion relation (Appendix D and Appendix E) of this equation is

χω2
− iηω − J k2 = 0. (131)

By dividing by χ and introducing the reduced friction

γ =
η

2χ
(132)

we can rewrite the dispersion relation as

ω2
− 2iγω − c22k

2
= 0, (133)

where c2 is the second sound speed introduced before. From this we can solve for the frequency:

ω = iγ ± c2k
√
1 − k20/k2, k0 = γ /c2. (134)

If η = 0, the dispersion relation is trivial: ω = ±c2k, the frequency is purely real and there is linear propagation. The
crucial parameter to understand the effect of dissipation is k0, which is an inverse length scale, andmust be compared to the
wavenumber k. For k > k0 (which happens either for small wavelength, or small dissipation, or large stiffness), the square
root is real, so that the frequency has a propagating part; in this case the imaginary part is constant, giving a damping time
equal to τ = 1/γ . On the other hand, for k < k0 (large wavelength, large dissipation, low stiffness) the frequency has no real
part: all modes are overdamped, and they do not propagate (these kind of modes are sometimes called evanescent waves).
Hence, the dispersion relation has a cut at k = k0: above this cut modes propagate and the equation is underdamped (in
fact, for k ≫ k0 propagation is as good as undamped), below the cut modes are overdamped. So we see that the overdamped
limit of the theory is not only a large friction limit, but is also a small k limit, i.e. the hydrodynamic limit: even a very small
dissipation takes over in this limit. As we shall see in the next section, in this limit the new theory goes back to the old one,
namely to the Vicsek model and Toner and Tu theory.

Before that, we notice that the cut k0 immediately sets a limit on the maximum size of a flock across which a linear signal
can propagatewithin this theory: in order to transfer immediately useful information (Section 2.5.1) across a system of finite
size L we need to be able to propagate the mode with wave number k = 1/L, but this also has to be above the cut, lest it be
overdamped. We conclude that we must have,

L < 1/k0 . (135)

In this way we can talk about overdamped vs. underdamped case in relation to the system’s size, rather than to the
wavenumber k, which is perhaps more intuitive. When the system is such that L < 1/k0 propagation is effectively linear,
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with constant damping γ . Notice that this does not necessarily imply a very small system: if η is small and J large, the cut
k0 may be very very small, so that even large flocks may enjoy linear and weakly damped propagation of phase waves. This
seems to be the case in real flocks, as the data presented in Section 3.1 show. On the other hand, unlike in first sound, the
small L limit is clearly always a propagating regime for second sound; this seems to meet our intuition that coordinated
changes of direction are easier, rather than more difficult, in small flocks.

It is interesting to obtain the same constraint on the size of the flocks by comparing time scales, rather than length scales.
When there is propagation, the speed is c2, hence the time the signal needs to cross the system is L/c2. On the other hand,
due to dissipation, the signal gets damped in a time 1/γ . Clearly, we need the signal to reach the entire system before it gets
damped, hence we impose the condition,

L/c2 < 1/γ (136)

By using the expressions for k0 as a function of γ and c2 we obtain exactly the same constraint as (135).
To summarize, the second sound theory we have introduced is able to sustain linear propagation of the disturbances

in the direction of motion even in absence of density fluctuations, but not in the hydrodynamic limit, k → 0. In the next
sections wewill reinstate themotion of the network and therefore density fluctuations; we shall see that in going from large
to small k the theory will cross over from second to first sound.

3.3.6. The Inertial Spin Model (ISM)
Let us now proceed to build a complete theory, which also takes into account density fluctuations. As we have discussed

at the beginning of this section, this can be done following two different strategies: writing equations for the individual
particles (i.e. as in the Vicsekmodel), or looking at coarse-grained fields (as in the TT equations). In Section 3.3.4wehave been
discussing the role of inertia in terms of fields (see Eqs. (114) (115)): in this context our aim is to write coupled equations for
the velocity field, the spin field, and the density field. Before doing that, however, it is convenient to go back to a description
in terms of individual particles and write a self-propelled particle model, generalization of the VM, which incorporates the
inertial dynamics described above. To do so, we notice that we can write equations analogous to (114)(115) also for the
phases and spins of the individual particles (remembering that ∇

2
→ −

∑
jΛij - see Eq. (82))

ϕ̇i = si/χ, (137)

ṡi = −J
∑

j

Λijϕj −
η

χ
si + ζi, (138)

where now J is the microscopic interaction strength and we have a discrete rather than a continuous Laplacian. In [46] it is
shown how to go from ϕi to vi by using Poisson brackets. Here we will simply ‘read’ the equations for vi directly from those
for ϕi and si by appealing to the similarity with standard rotatory motion. In that case, Eqs. (112) and (113) give rise to the
standard equations for the position r,

dθ
dt

=
δH
δl

−→
dr
dt

= r ×
δH
δl

, (139)

dl
dt

= −
δH
δθ

−→
dl
dt

= −r ×
δH
δr

. (140)

In complete analogy with this, using the correspondence, r → vi, I → χ , l → si, we obtain
dvi
dt

=
1
χ
si × vi, (141)

dsi
dt

=
vi
v0

×

(
J
v0

∑
i

nijvj −
η

v0

dvi
dt

+ ζi

)
, (142)

dri
dt

= vi, (143)

where the third equation expresses the fact that the system is active; hence, the network of interaction now does depend on
time, namely nij = nij(t). This system of equations defines a newmodel of collective motion, which can be readily simulated
numerically; it was introduced in [46] and, due to the crucial role played by the behavioral inertia χ and by the spin s it has
been called Inertial Spin Model (ISM).

It is straightforward to check [46] that the spinwave expansion (large polarization limit) of (141) and (142) coincideswith
the equations for the phase and spin discussed above, Eqs. (137) (138); hence, the ISM contains all the linear propagation
features that we need to describe waves in real flocks. This can be clearly seen with numerical simulation. We have seen in
Section 3.2.3 that an attempt to propagate a local change of direction within a Vicsek flock is not successful: the pilot bird
turns, but the rest of the flock fails to follow it. One can perform the same numerical experiment using the ISM: in the ordered
phase of the flock, we select one particle (say, around the center of the flock, as we did for Vicsek) and turn it by 90 degrees.
What happens in this case? The video provided in Ref. [46] speaks more than a thousand words, but the same quantitative
message can be seen in Fig. 16: because propagation is now linear, the phase disturbance has a chance to travel faster than the
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Fig. 16. Propagation of turn information in the 3-d ISMmodel, in the deeply underdamped regime. A direction change is imposed on one individual (black
trajectory), following the same procedure as in Fig. 15. Top panel: 2-d projection of trajectories.Middle panel: cosine of the individual velocitieswith respect
to the original direction (before forcing the turn). Lower panel: individual acceleration profiles.
Source: From Ref. [46].

pilot bird; hence, provided that c2 =
√
J/χ is large enough (namely, larger than v0, which happens if the stiffness is large),

the turn propagates coherently to the entire flock. All birds change direction giving rise to a global collective turn. Notice
that the time the signal takes to cross the flock is much shorter than the time needed to significantly rearrange the network,
hence this is a phenomenon that effectively happens over a fixed network, even though the ISM equations (141)–(143) do
allow for the movement of the network.

The linearly traveling waves we have just described occur when the ISM equations are underdamped, namely for large
stiffness J and low friction η. On the other hand, in the overdamped limit, namely when the effective friction η is large
compared to the behavioral inertia χ , the ISM equations reduce exactly to the Vicsek model [46]. This is consistent with
what we have seen above: the inertial theory has a cut, which can be crossed either by increasing friction over inertia, or by
increasing the wavelength; beyond this cut the theory enters into the overdamped regime, identical to the Vicsek model, in
which second sound is completely damped and non-propagating. As we have seen in Section 3.2.3 numerical simulations of
this case show that a local change of direction does not propagate at all across the flock.

3.3.7. A single field theory for both first and second sound
So the ISMhas a linearly propagating second soundmode in its underdamped regime,while thismode does not propagate

in the overdamped regime, where the ISM reduces to the Vicsek model. However, we have shown in Section 3.2.5 that the
Vicsek model, in the continuous formulation of Toner–Tu, does have a propagating mode, first sound. Hence, we expect to
recover first sound in the overdamped limit of a continuous version of the ISM, with the mild paradox that this regime is
overdamped for what concerns second sound, not first. We have to understand how one crosses over from second to first
sound propagation by increasing friction (or wavelength) in the inertial equations. To do this we need to write the field
counterpart of Eq. (143), namely we need to write a set of field equations that include the density fluctuations.

Applying to (141)–(143) the same strategy as Toner–Tu for turning a discrete self-propelled dynamical system into a set
of continuous field-theoretical equations, we can write [59],

Dtv =
1
χ
s × v − ∇P −

δV
δv

, (144)

Dts =
v
v0

×
J
v0

∇
2v −

η

χ
s, (145)

∂ρ

∂t
= −∇ · (ρv), (146)

where we recall that P is the pressure and V is a nonquadratic potential for the velocity, working effectively as a soft
constraint on itsmodulus v0. This is a continuous dynamical field theorywhich includes both density fluctuations and inertial
effects; it has an additional field (spin) apart from the velocity and density fields of the original Toner–Tu theory. In the large
friction limit, though, the spin drops out of the equations and we recover Toner–Tu equations (88).

Hence, Toner–Tu theory is the overdamped limit of the inertial field equations (144)–(146). Calling this regime ‘over-
damped’ may seem odd, since the Toner–Tu equations also have propagating modes (Section 3.2.5). To avoid this paradox
we should call this limit the spin-overdamped limit, as this is what really happens in the large η/χ limit (i.e. second sound,
namely propagating spin disturbances, are killed). However, in the regime where spin fluctuations are overdamped, density
fluctuations are not, and because of their coupling with velocity fluctuations they give rise to first sound. We have seen
this mechanism in Section 3.2.5, leading to the first sound frequency (92). On the other hand, in the limit of negligible
density fluctuations, the field ρ(x, t) drops out of the calculation and we get the ‘spin-underdamped’ dispersion relation
of Section 3.3.5, Eq. (134). To bridge the gap between these two limits, one has to write the full dispersion relation of
(144)–(146), which has been done in [59]. In this general case there are three different fields, hence (after linearization
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Fig. 17. Appearance of a gap in the dispersion relation (147) for the hydrodynamic theory including first and second sound. The axis represent the
components k∥ and k⊥ of the wavevector k, respectively parallel and perpendicular to the direction of motion. The blue regions indicate the overdamped
regions where the frequency is purely imaginary and there is no propagation. Left: the case ϵ < ϵc , where the overdamped region has the shape of two
roundedwedges, and a gap appears only for k in directions near the parallel axis k∥ . First and second sound are not well separated, and hybridization occurs.
Right: the case ϵ > ϵc . In this case the overdamped region separates the plane into regions where only first sound (yellow) or second sound (white) can
propagate, separated by a gap of nonpropagating (imaginary frequency) wavevectors.
Source: From Ref. [59].

of the equations), three degrees of freedom. The dispersion relation is thus of the third order and it reads [59],

ω̃3
+ iω̃2

− k̃2(sin2θ + ϵ2)ω̃ − ik̃2sin2θ = 0 (147)

where ω̃ and k̃ are the dimensionless frequency and wave number respectively [59], whereas ϵ = c2/c1 is the ratio between
second and first sound, a key parameter many of the propagation properties of the theory depend on. The mathematical
details of the general dispersion relation (147) are quite intricate and are discussed in [59]; here we simply summarize the
final result. There is a critical value of the speed ratio, ϵc =

√
8, separating two different regimes. For ϵ < ϵc (first sound

speed large compared to second sound speed), there is a hybridization of first and second sound, i.e. of the Toner–Tu and
ISM propagating modes, in a large part of the k plane. On the other hand, for ϵ > ϵc these two modes become completely
separated: at small k we only find first sound propagating modes, at large k only second sound modes and between these
two regions there is a gap where no propagating modes exist (purely imaginary frequency). These results are depicted in
Fig. 17.

The situation for ϵ > ϵc has two interesting consequences: first, the gap in k implies that no sound, be it first or second,
can propagate inmedium-sized flocks [59]. Second, the fact that second sound propagates faster than first soundmeans that
inertial phase disturbances travel much faster than density fluctuations, and for this reason it seems reasonable to expect
to have little or no density fluctuations during these second sound waves; the mathematical implication is that the fixed
network assumption seems reasonable when we study second sound, while it is clearly not so when we deal with first
sound, which is explicitly carried by density fluctuations.

4. Space–time correlations

It should by now be clear that efficient propagation of information across the group can be key to its survival, and that
the most efficient realistic mechanism one can imagine is one that allows transfer of information with constant speed and
minimal dissipation. Wave propagation is precisely one suchmechanism, which is rendered possible due to the existence of
behavioral inertia. This mechanism was formulated in the Inertial Spin Model (ISM) after direct experimental observation
of wave fronts propagating in starling flocks. However, if behavioral inertia is present in the dynamics, it will play a role
in situations where there are no visible propagating fronts. This may be because one observes a group where no external
perturbation has been applied (say an undisturbed flock of birds) or a groupwhich is naturally disordered so that evenwhen
a perturbation is applied its propagation is very hard to follow (such as an insect swarm). Hence it is important to find a way
to assess, given some experimental observations of a group, whether its dynamics is ruled by inertia or not. This is what we
discuss in this section.

The toolweuse follows froman idea that is natural in the context of linear response theory of equilibriumsystems: instead
of studying how the system responds to an external perturbation, we focus on its unperturbed spontaneous fluctuations:
we are then able to tell whether or not a system is inertial by sampling its dynamics, rather than manipulating it. The
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mathematical tool is the space–time correlation function that measures how the behavioral change of individual i at time t0
influences that of individual j at a later time t0 + t .

We will first examine the behavior of the time correlation in the ordered phase of the Vicsek model (VM) and of the ISM
and explore the differences introduced by the inertial dynamics, and then provide a definition of the space–time correlation
suitable for the analysis of experiments and numerical simulation.

4.1. The space–time correlation of velocity fluctuations

The actual correlation functions suitable to study experimental or simulated systems are a direct generalization of those
defined in Section 2.1.3. We define a correlation function in space and time that compares fluctuations at different places
and times:

C(r, t) =

⟨
N∑
i,j

δvi(t0) · δvi(t0 + t)δ
[
r + ri(t0) − rj(t0 + t)

]∑
k,l δ [r + rk(t0) − rl(t0 + t)]

⟩
t0

, (148)

where positions are computed in the center-of-mass reference frame, ri(t) = Ri(t) − RCM(t), and the bracket indicates an
average over the time origin,

⟨f (t; t0)⟩t0 =
1

Tmax − t

Tmax−t∑
t0=1

f (t; t0), (149)

and Tmax is the total timeof the signal. To remain as general as possible, in Eq. (148)we consider the casewhere the correlation
can depend on the full vector r. In an isotropic system, C(r, t) will be independent of the orientation of r; in this case it is
more convenient to compute the isotropic version of (148),

C(r, t) =

⟨
N∑
i,j

δvi(t0) · δvj(t0 + t)δ
[
r − rij(t0, t)

]∑
k,l δ [r − rkl(t0, t)]

⟩
t0

, (150)

where rij(t0, t) = |ri(t0) − rj(t0 + t)|. For t = 0, this definition reduces to the static correlation discussed before (Eq. (6) in
Section 2.1.3).

The sum rule (17) constrains the time correlation as well. The argument of Section 2.3.2 applies for all t (see Section 4.2),
so that C(r, t) must have at least one zero as a function of r for all times.

The isotropic correlation (150) (or its Fourier space counterpart Eq. (152) introduced below) is suitable for systemswhere
orientations are indistinguishable, such as swarms, where there is no net collective displacement. Flocks, on the other hand,
are not isotropic: the existence of a nonzero polarization breaks rotational invariance and the average velocity defines a
special direction (the longitudinal direction), different from the transverse directions (those lying in the plane orthogonal
to the average direction of motion). Two kinds of anisotropies arise: One is that the transverse fluctuations of velocity
are far stronger than the longitudinal ones, leading to different susceptibilities in the two directions, and implying that
the correlations of δvi are actually dominated by the transverse correlations [60,61]. This anisotropy is present also in
equilibriumphysical systems such asmagneticmaterials. The second kind is particular to active systemswith spontaneously
broken symmetry, and is caused by a feedback between velocity and position that produces an anisotropic decay of the
correlation [47,48].

Thus in principle one should use (148) to study space–time correlations in flocks. However, this is true if one attempts a
detailed characterization of fluctuations. In Section 4.4 we will use correlations to attempt to distinguish between different
dynamics (inertial vs. non-inertial). As we will show, it turns out that for this purpose the isotropic definition (150) is
sufficient. This is rather fortunate, as in most real biological data it is very difficult to obtain enough statistics to be able
to separate the longitudinal and transverse components of the correlation.

4.2. Space–time correlations in Fourier space

We define the Fourier-space counterpart of (148) analogously to (35):

C(k, t) =
1
N

⟨
N∑
i,j

δvi(t0) · δvj(t0 + t)e−ik·[ri(t0)−rj(t0+t)]

⟩
t0

. (151)

In the isotropic case C(k, t) does not depend on the direction of k, i.e. C(k, t) = C(k, t). Of course, the individual terms
in the sum above can in general depend on the full vector k, the isotropic function resulting only after averaging. To obtain
an expression that explicitly depends only on the modulus k, one can average over the directions of k and then switch the
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order of the averages. In 3-d, we have C(k) = (1/4π )
∫
dΩ C(k, t) = (1/4π )

∫
dΩ C(k, t), so that

C(k, t) =
1
N

⟨
N∑
i,j

δvi(t0) · δvj(t0 + t)
1
4π

∫
dΩe−ik·[ri(t0)−rj(t0+t)]

⟩
t0

=
1
N

⟨
N∑
i,j

sin krij(t0, t)
krij(t0, t)

δvi(t0) · δvj(t0 + t)

⟩
t0

.

(152)

For t = 0 we recover the static correlation function in Fourier space, C0(k) ≡ C(k, t = 0). Generalizing (37), the relation
between C(k, t) and C(r, t) is

C(k, t) = ρ0

∫
dr g(r, t)C(r, t)eik·r, (153)

where g(r, t) = (1/ρ0N)
∑

ijδ(r − rij(t)) is proportional4 to van Hove’s space time-dependent pair correlation function [13]
(the generalization of the pair correlation function g(r) introduced in Section 2.1.3). We note that both C(r, t) and C(k, t)
can be defined starting frommicroscopic space–time dependent velocity fields, rather than the individual velocities — for a
discussion of this derivation see Appendix A.

Let us consider the limits k → 0 and k → ∞. When k → 0, both eik·[ri(t0)−rj(t0+t)] and sin krij/krij tend to 1, so that due to
the sum rule (17) we have

lim
k→0

C(k, t) =
1
N

∑
i,j

⟨
δvi(t0) · δvj(t0 + t)

⟩
t0

= 0. (154)

As in the static case, this result implies that C(r, t) must have a zero, for using (153) we have

0 = C(k = 0, t) = ρ0

∫
dr g(r, t)C(r, t), (155)

and since g(r, t) is positive we conclude that C(r, t) must have a zero as a function of r for all times.
We canwork out the opposite limit for t = 0.We note that the sum is dominated by pairs with distance such that krij < 1,

as larger distances are suppressed by the rapidly oscillating sine factor. For k → ∞ all terms with rij ̸= 0 are killed, and

lim
k→∞

C(k, t = 0) =
1
N

⟨
N∑
i

δv2i

⟩
t0

. (156)

When decreasing the momentum from k = ∞, the sum starts including neighbors separated by r ∼ 1/k. If k > 1/ξ (where
ξ is the correlation length) these pairs will be correlated and thus C0(k) will increase. Further lowering k will include still
more pairs, so we expect that C0(k) will continue increasing up to k ∼ 1/ξ , where it should level off, and start decreasing
again for k ∼ 1/Lwhen the sum starts feeling the effects of the sum rule.

4.3. Space–time correlations in the ordered phase of the Vicsek and inertial spin models

In this section we compute, in an approximate case, the space–time correlations we have just defined for the twomodels
(VMand ISM)we have discussed in Section 3.Wewish to establish themain qualitative features peculiar to inertial dynamics
that showup in the correlations.We startwith the theoretical case because it is simpler to appreciate the differences between
the inertial and overdamped dynamics when one can assume a system of infinite size and time signals of infinite duration.
In actual experiments and simulations, finite-size effects (in time as well as in space) introduce a series of complications we
postpone until Section 4.4.

The full analytic treatment of the VM or ISM is very difficult, but as before we will restrict ourselves to the case of
the highly polarized regime, and for time scales smaller than the ones of network rearrangements. Then we can resort to
two approximations that make the problem analytically tractable: the fixed network approximation, which decouples the
connectivity matrix from the particles’ positions (making it time-independent) and the spin-wave expansion, which allows
linearization of the equations of motion. We have presented the linearized equations for this case in Section 3, which we
recall here:

η∂tϕ(x, t) − Jnca2∇2ϕ(x, t) = ζ (x, t), VM (157)

χ∂2
t ϕ(x, t) + η∂tϕ(x, t) − Jnca2∇2ϕ(x, t) = ζ (x, t, ) ISM (158)

4 The difference is just a factor 1/ρ0 we add to arrive at a formula as similar as possible to the static formula (37).
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with the random force obeying ⟨ζ (x, t)ζ (x′, t ′)⟩ = 2ηTa3δ(x−x′)δ(t − t ′). In this case we have a scalar field, so that the time
correlation analogous to (148) is

C(x, t) = ⟨ϕ(x, t)ϕ(0, 0)⟩. (159)

To compute (159) one solves Eqs. (157) and (158) by Green’s function method (see Appendix D, the equations are of
form (D.5)). Once obtained, the Green’s function is used to write the full time evolution of the field under a given realization
of the random force. Then one can write the product ϕ(x, t)ϕ(0, 0) and perform the average. The average is done over the
realization of the random force ζ (x, t), because, since we can assume that the time duration of the signal is infinite, the time
average is equivalent to an average over the random force. Details are in Appendix F; here we just quote the results. The
Green’s function in Fourier space is

G(k, ω) =

{(
−iηω + Jnca2k2

)−1
, VM(

−χω2
− iηω + Jnca2k2

)−1
. ISM

(160)

From these, the Fourier transform of (159) is obtained as

C(k, ω) = 2ηTa3G(k, ω)G(−k, −ω). (161)

Finally the integral over ω to transform back into the time domain can be done Appendix F, yielding the analogous of (151)
for the scalar case. With the definitions

γ ≡
η

2χ
, c22 =

nca2J
χ

, k20 =
γ 2

c22
, τ0(k) ≡

γ −1c22k
−2

2
=

nca2J
ηk2

, (162)

ω± ≡ −iγ ± c2
√
k2 − k20 ≡ −iγ ± ω̂(k), (163)

the result is

C(k, t) = C0(k)e−t/τ0(k), VM (164)

C(k, t) = C0(k)e−γ t
[
cos ω̂(k)t +

γ

ω̂(k)
sin ω̂(k)t

]
, ISM. (165)

The static correlation C0(k) is the same for both models, since they share the interactions and only differ in the dynamic
equation. It reads

C0(k) =
Tτ0(k)

η
=

Tnca2J
k2

. (166)

Three important observations can bemade about these results. The first is that the presence of inertia drastically alters the
shape of the correlation function. In the VM, the correlation decays as a pure exponential with τ ∼ k−2 for all k. In contrast,
the ISM correlation has damped oscillations at sufficiently high k. In fact, the frequency that enters the ISM correlation (165)
is given by the dispersion relation (163), which we have already encountered in the discussion of second sound, Eq. (134).
This is an explicit example that shows how the correlation functions can yield information on the response of the system,
since the oscillations of the correlation, ruled by the same dispersion relations as the waves caused by the propagation
of a perturbation induced by an external field, are present in the absence of such field, driven solely by the system noise
(represented here as the random force ζ ). The discussion of the dispersion relation in Section 3.3.5 applies here as well,
and the inverse length scale k0 marks the cut below which ω̂ is imaginary and the relaxation is exponential also in the ISM:
for k < k0, the correlation decays with a combination of two exponentials, with the dominant relaxation time for k → 0
behaving as k−2. On the other hand, when k > k0, there are damped oscillations (with a k-independent damping constant
γ ), with a frequency that is almost linear in k for k ≫ k0.

The second observation is that the expansion to lowest order in time reads

C(k, t)
C0(k)

∼ 1 −
ηk2

nca2J
t, VM, (167)

C(k, t)
C0(k)

∼ 1 −
c22k

2

2
t2, ISM, (168)

where the ISM expression is valid for all k (even below k0). Thus the initial decay has different shape (linear for VM, quadratic
for ISM), but also the dominant time scale at short times scales differently with k in the two models (as k−2 for VM, as k−1

for ISM).
Finally, the initial time derivative of the correlation is different: in the ISM the derivative at t = 0 vanishes, while it is

finite (proportional to k2) in the VM case. This is related to the previous comment (the initial derivatives can be directly
read from the short-time expansion), but the vanishing of the derivative is a more general feature that can be seen to follow
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quite from the pole structure of the Green’s function: as we prove in Appendix G, the null initial derivative is caused by the
existence of two or more poles in the Green’s function, which cannot be the case in a diffusive (first-order in time) equation.

The last point deserves further comment. The derivative can be studied by considering the function

h(x) = −
1
x
log

C(k, t)
C0(k)

, x ≡ t/τ0(k), (169)

in the interval x ∈ [0, 1], that is for times shorter than the characteristic relaxation time. If the correlation is a pure
exponential, h(x) will tend to one in the limit x → 0, but if the correlation is flat in this limit it will approach zero:

lim
x→0

h(x) =

{
1, VM,
0, ISM. (170)

This simple result is very useful to distinguish between the two types of behavior, especiallywhen the correlation is obtained
from experimental or simulation data, with discrete sampling in time that makes it very difficult to obtain clean numerical
estimates of the derivative.

The result (170) may seem strange in view of the fact that a model with non-inertial dynamics (the VM in this case) can
be viewed as the over-damped limit of model with inertial dynamics (here the ISM). As one takes this limit, for any finite
values of η and χ the equation will be second order, and thus the correlation must be flat by the argument of Appendix G
(as it can also be checked directly in (F.9)). So how does the correlation acquire a finite derivative? The answer is that the
over-damped limit implies a rescaling of time as well, since otherwise a short period of inertial dynamics is always present.
So what happens is that the flat region spans shorter and shorter times until it becomes much shorter than the relaxation
time, and unobservable in the time scale required to observe the decay (in an experiment, below the experimental time
resolution). This is discussed in detail for the case of a single harmonic oscillator in Appendix H.

The three qualitative differences between inertial and non-inertial dynamics recorded by C(k, t) can be used to detect
inertial effects in simulation data of the full VM and ISM models and in experimental field data. The detailed analytic
results (164) and (165) are of course limited to the highly ordered phasewhere the spin-wave approximation is valid, but the
qualitative observationswe havemade remain essentially valid, aswill be seen below. However, to analyze the experimental
and numerical data, and in absence of known analytic expressions, we need to formulate a different way to quantify these
differences. This what we consider next.

4.4. Dynamic scaling of space–time correlations

When analyzing experimentally obtained time correlations to establish whether there are significant inertial effects in
the dynamics, one would naively proceed to compute C(k, t) from the trajectories using (152) and investigate the three
qualitative indicators mentioned above (pure decay vs. oscillations, dominating time scale at short times behaving as k−1

vs k−2, finite vs. vanishing initial time derivative). However, these features will not hold strictly as stated in experimental
systems. This is in part due to the approximations involved in deriving them, but these should not be too dangerous if the
system is highly ordered. More important are the effects of the system’s finite size and of the finite available experimental
times.

Although oscillations should still be present in a finite inertial system, trying to distinguish between them and a pure
decay may be difficult if the experimental time is limited to one oscillation. Although this could in principle be cured by
looking at higher values of k, in practice one is limited by the requirement that 1/L < k ≪ 1/a, so in the case of relatively
small flocks the range of k is very limited. This also hampers efforts to study the behavior of the relaxation time, hoping to
find τ ∼ k−2 in the non-inertial case vs τ ∼ const in the inertial case (read somehow from the envelope of oscillations).
An additional difficulty is the fact that the finite size will change the behavior of τ at small k in both cases. Only the third
indicator (the initial derivative) can be reasonably hoped to be observed as stated.

A way to obtain useful results on the face of these limitations has been proposed in Ref. [29], and is ultimately rooted in
dynamical scaling [54]. In a nutshell, dynamical scaling consists in assuming that when the correlation length is large, the
time correlation can be written (in the thermodynamic limit) as

C(k, t) = C0(k)g
(

t
τ0(k, ξ )

; kξ
)

, (171)

where the characteristic time scale τ0 is a homogeneous function of k,

τ0(k, ξ ) = k−zΓ (kξ ), (172)

where z is an a priori unknown exponent called dynamical critical exponent [54].
The dynamic scaling hypothesis Eq. (171) thus assumes that the parameters controlling the order present in the system

(such as temperature, noise, or interaction strength) affect the shape of C(k, t) at fixed k only through the correlation length,
ξ . In addition, changing the observation length scale k can change the shape of the relaxation (the function g above), but
only through the adimensional quantity kξ . Finally the time scale τ0 is ruled by kξ but must also be homogeneous in k.

The general method to test dynamic scaling and determine z is to compute the correlation length, ξ , and then to fix
the wave number k such that the product kξ is constant; in this way, thanks to (171) and (172), the quotient C(k, t)/C0(k)
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becomes purely a function of the scaling variable kz t , so that correlation functions at different values of the control parameter
(but with kξ kept constant) all collapse on the same master curve for an appropriate value of the dynamic critical exponent
z. The shape of this master correlation only depends on the nature of the system (overdamped vs inertial) and on the value
of the product kξ [54].

We have not yet defined the time scale τ0(k, ξ ). The scaling should not depend on the details of how τ0 is defined, as
long as it represents the characteristic time dominating for large ξ . To obtain a time scale from the simulated correlation
functions quoted below we have followed [54], who define a characteristic k-dependent frequency ω0(k) = 1/τ0(k) by the
requirement that half of spectral contribution to the static correlation results from the interval [−ω0, ω0]. That is, the static
correlation C0(k) = C(k, t = 0) contains dynamic contributions at all frequencies,

∫
∞

−∞
C(k, ω) dω/2π ; the characteristic

frequency is defined by∫ ω0

−ω0

C(k, ω)
dω
2π

=
1
2
C0(k). (173)

Expressing C(k, ω) in terms of C(k, t), the time scale can be defined directly in the time domain as∫
∞

−∞

dt
t

C(k, t)
C0(k)

sin (t/τ0) =
π

2
. (174)

The general scaling that we have just discussed has been applied with an important modification in [29] to the study of
the ordered phase of a continuous system, i.e. of flocks. As we have mentioned, in the ordered phase of an infinite system
with spontaneously broken continuous symmetry, the correlation length for fluctuations of the order parameter is infinite
(Goldstone theorem [62]); hence, ξ = ∞ cannot be used in (171), because it does not reflect the changes of the control
parameters. The quantity that enters in (171) in this case is Josephson’s correlation length [63,54], which diverges at the
critical point, but is otherwise finite across the ordered phase. The scaling relation should thus in principle be used near the
critical region, where Josephson’s length is large; this is the approach used in [64] to study continuous systems below but
close to Tc . In [29], instead, Eq. (171) is applied in the highly ordered (Φ ∼ 0.9) region of finite systems of size L; in this case,
we are far from the critical point, and indeed the Josephson’s correlation length is too small to be used within dynamical
scaling. However, we have hypothesized in [29] that one can still apply dynamic scaling by using the standard correlation
length, ξ , because, owing to the scale-free nature of the ordered phase (Goldstone mechanism), one has ξ ∼ L, which is
finite. Hence, in [29] the dynamical scaling hypothesis (171) and (172) have been reformulated for a system with broken
continuous symmetry in its deeply ordered phase as

C(k, t) = C0(k) g
(

t
τ0(k, L)

; kL
)

, (175)

and

τ0(k, L) = k−zΓ (kL) . (176)

The dynamic scaling method employed in [29] consists then in determining the exponent z by attempting to scale the
correlations of systems of different sizes holding kL ∼ 1 fixed; if we do this, Eqs. (175) and (176) give

C(k, t)
C0(k)

= f (kz t) , (177)

hence all correlation functions must collapse on the same master curve when plotted against the scaling variable kz t , with
k = 1/L. The method discussed above has been tested in simulations of the ISM and VM models at low temperature [29]. It
is found that the presence of inertia indeed changes the dynamical exponent from z ≈ 2 in the overdamped case (VM), to
z ≈ 1 in the underdamped case (ISM) (Fig. 18). The relaxation time is also found to scale as in (176), with the same exponents
(Fig. 19). Hence, the dynamic scaling analysis of the deeply ordered phase is fully confirmed by numerical simulations in two
different models. The different value of the exponent z is therefore in the ordered phase a very effective tool to distinguish
systemswhere the inertia is relevant from systemswhere it is not. In general, though, namely in systems that are not deeply
ordered, we must be careful.

The substitution of L for ξ in the dynamical scaling hypothesis can only be done in the deeply ordered phase of a system
with broken continuous symmetry, where ξ ∼ L. In the renormalization group jargon, in this way we are studying the
properties of the T = 0 fixed point, and not those of the T = Tc critical fixed point; to study this latter case, namely the critical
dynamics of a system, one must employ the scaling hypothesis (171) either slightly above Tc with the standard correlation
length, ξ , or slightly below Tc with Josephson’s length. A similar caveat holds for the determination of the dynamical critical
exponent z. The exponent z is in general highly non-trivial, and its value is not easily read from the dispersion relation,
because the factors involved in the dispersion relation get renormalized near the T = Tc critical point. For example, given the
linear dispersion relationω(k) = c k, onewould naively guess z = 1, but this is only true if c remains constant. However, near
the critical point c is renormalized, and depends on the control parameters through the correlation length, so that c ∼ 1/ξα .
The dispersion relation then becomes ω ∼ ξ−αk = k1+α(kξ )−α , and it follows that z = 1 + α [54]. Hence, in general, we
cannot read the dynamical critical exponent directly from the dispersion relation, and we must use the full dynamic scaling
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Fig. 18. Numerical simulations of the VM (panels a and b) and ISM (panels c and d) models in d = 3. Left panels: correlation function Ĉ(k, t) = C(k, t)/C0(k)
as a function of time with kL fixed. Right panels: scaling plots showing collapse of correlations at different sizes and wavenumbers. zVicsek = 2.13,
zISM = 1.15.
Source: From Ref. [29].

Fig. 19. Time scales of the inertial (ISM) and non-inertial (VM) models.
Source: From Ref. [29].

hypothesis (171) to collapse the correlation functions to obtain z. However, the case of flocks analyzed here and considered in
Ref. [29] is peculiar because in the deeply ordered phase (zero-temperature fixed point) we do not expect a renormalization
of the prefactors of the dispersion relation; in addition here the approximate treatment of Section 4.3 is valid, hence we
know the dispersion relation exactly. The conclusion is that one actually can read z from the dispersion relation (160) only
because we are in the deeply ordered phase, where the coefficients of the dispersion relation do not renormalize. In this case
the exponent z read from the dispersion relation must also work in the dynamic scaling hypothesis, giving a collapse of the
correlation functions. This is why we have found z ≈ 1 for inertial systems (corresponding to the observation of oscillations
with a nearly linear dispersion relation) and z ≈ 2 for overdamped systems.

In general, then, the dynamical critical exponent zT=0 that we determine for flocks in their deeply ordered phase (T = 0
fixed point) can differ from the dynamical critical exponent zT=Tc that holds close to the ordering transition (T = Tc fixed
point). This last exponent may be relevant for disordered systems, as insect swarms [65], but not for flocks. A similar
investigation near the ordering transition is clearly in order, although the value of zT=Tc is much harder to guess for the
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reasons given above (renormalization of the coefficients in the dispersion relation). For this reason, it is also not clearwhether
zT=Tc will be different in the inertial and non-inertial cases. For systems living near the ordering transition the derivative of
the time correlation function for finite k at t = 0 may prove to be a better fingerprint of the presence of inertia than the
dynamical exponent.

4.5. The issue of space–time correlations in flocks: wing-flapping and experimental resolution

The scaling method we have discussed in the previous Section can be applied to experimental data-sets, as velocity
time correlation functions are experimentally accessible from the 3-d trajectories. This has been done explicitly for midge
swarms in [65]. But this is also the kind of data we have for starling flocks, hence the reader may expect us to do this next.
Unfortunately, we will not. As we have seen, the spatio-temporal correlation functions provide important information both
at long and at short times, where short means not unreasonably short, but of the same order or somewhat smaller than the
relaxation time. Similarly, when analyzing correlation functions, space and time are obviously connected, hence medium–
short times correspond to medium–short distances; therefore, while for the purely static correlation functions analyzed
in the first Section we were simply interested in the long-distance behavior (correlation length and how it scales with the
system’s size L), when studying spatio-temporal correlationswe also have to take care of smaller distances. Such short scales,
both in time and in space, are problematic in flocks. Let us briefly explain why.

The first nontrivial issue is wing flapping (WF). Starlings move their wings at about 10hz, hence with a time resolution of
170 frames-per-seconds as in our experiments, wing flapping is clearly captured in the trajectories (see Fig. 1 of [36]). Such
motion creates a zig-zag effect of the trajectories, with consequent large fluctuations of the velocity, that is superimposed to
the main directional adjustment of each bird. Our observations show thatWF is uncorrelated between birds, hence it acts as
a noise that tends to destroy the mean natural correlation between the birds, making problematic the determination of the
correlation function at short scales. What one needs to do is to filter out WF, as we have done in [36] for the determination
of the mutual turning delays of the birds; however, in that case we only had to use the long-time behavior of the filtered
trajectories, while for spatio-temporal correlation we also would use the short-time behavior. Hence, filtering becomes a
sensitive issue, to be performed with care.

Moreover, short space scales are more subject to noise because of segmentation issues (see [66] and in particular [67]),
because of the inevitable noise in the image detail when we focus on details below a few pixels. However, a smooth
determination of the trajectories also for short scales is quite important, if wewant to distinguish bona fideWF from random
noise. Our current trackingmethods can be improved regarding short-scales smoothness, hencewe hopefully will overcome
these issues in the next generation of data analysis. For now, we are afraid the reader must be content with the numerical
simulations of the previous section.

5. Final remarks and outlook

5.1. The need to keep it simple

One could say that computing correlations, which is what we have done all along this work, is quite a basic thing to do
and that it blatantly lacks the complexity and diversity of many other methods. Biology is a rather vast field, and collective
behavior is not its easiest alley, hence the reader could have expected our tools of analysis to be as diverse and complex as
such a multiform field deserves. More specifically, one may object that by restricting ourselves to correlation in extracting
information about the equations ruling the systems, we are limiting too much our possibilities. This may be true, but there
are nevertheless a couple of considerations to make.

First, we hope this work has convinced the reader that, basic as it may be, the conceptual framework of correlation
functions is still capable of developing a rich score of mathematical and physical consequences, whose complexity is
sometimes too much to digest, rather than too little. Yes, correlation is just one concept, and yet it has deep and solid
roots, so that its branches are very diverse and far-reaching. We have seen that correlation is a two-way path that leads
down in themicroscopic direction to themechanisms of inter-individual interaction and the dynamical equations ruling the
system, as well up in the macroscopic direction to group-level information transfer and collective response. Correlation is
therefore a key bridge between scales, which is all the more useful since collective behavior is really a mystery about how
the microscopic scale can change so much the macroscopic one. This up-scaling, by the way, is the very essence of statistical
physics, hence it is unsurprising that the physics of collective behavior has invaded so indiscreetly the foreign field of biology.

Second, when we leave the well-defined arena of correlations, we certainly gain in the number of tools of analysis and in
terms of things to observe experimentally and to calculate mathematically, but we do so at such a level that some caution is
in order. As we have seen, despite the obvious crucial differences between statistical mechanics and biology, when we use
correlations we still enjoy the conceptual overtones of a well-established theoretical framework, a sort of intellectual map
that is effective at least at signaling ourworst blunders. For example, we do not need to knowmuch about a system to expect
that the correlationmust decay to zero for sufficiently large distance and/or time. Similarly, we have a lot of venerable theory
telling us what should be the connection between correlation length, susceptibility and fluctuations. It is clearly not the case
that all this theory (which is statistical mechanics) must hold no matter what; but at least, when we do find something
anomalous, we know anomalous respect to what; we have a frame of reference. When we use other, more sophisticated



A. Cavagna et al. / Physics Reports 728 (2018) 1–62 49

and exotic means, we usually have no background reference theory to gauge our results, no zeroth order result, no trivial
expectation. This is absolute freedom and in such a context every result is likely to be new and exciting. But, of course, it
may be harder to assess its relevance and some times even its bona fide validity.

Collective behavior in biological systems is an utterly complex field, inwhich one studies systems as diverse as bird flocks,
fish schools, insect swarms and cell colonies. Our opinion is that, in face of such complexity of the phenomenon and novelty
of the field, it may be wise to limit the complexity and novelty of the theoretical framework of analysis, lest the data analysis
explodes in our face. This is why, within the approach to collective behavior developed in this work, the tendency to ‘keep
it simple’ is so strong.

5.2. Beyond flocks

It goeswithout saying that there is a large variety of biological systems displaying collective behavior beyond flocks.What
about them? the reader may ask. Will I need to read a different review for each one of those? That would be exhausting, if
not positively depressing. Our own group has been gathering data not only on bird flocks, but also, more recently, on midge
swarms, which are very different from flocks: swarms are not polarized, hence do not enjoy the simplifications of the spin
wave approximation we have heavily used in this work; moreover, the lack of polarization means that rotational symmetry
is not spontaneously broken, so one does not expect long-range correlation of the directions of motion on the basis of a
Goldstone argument (see Section 2.2). This lack of order in swarms may push some observer as far as to guess that no
collective behavior is present, and that the swarm is simply the result of independent insects trying to keep their positions
near some environmental landmark. In other words, in absence of group-level order, it seems hard to assess or even define
the existence of collective behavior.

However, despite these differences, we have now quite solid evidence that collective behavior is present in swarms
as much as in flocks, since the collective correlation functions, both static and dynamic, are very strong [11,12]. Our own
understanding of natural swarms is not as mature as that of bird flocks (which is whywe limited the present work to flocks),
and yet we believe we can draw a first general conclusion: the behavior of both flocks and swarms, in terms of correlation
functions, is quite similar, suggesting that strong (connected) correlation, rather than strong order, is the true landmark
of collective behavior. In both cases the inter-individual interaction is based on an imitation mechanism, not unlike that
described by the Vicsekmodel; different level of noise and different values of the control parameters determine the fact that
flocks live in the ordered phase, while swarms in the disordered one, but in both cases correlations are large.

Other groups have calculated correlations in different biological systems,most notably in neural assemblies [68], bacterial
clusters [69,70], cell colonies [71], and proteins [72]. In all this wildly diverse cases correlations of the fluctuations turned out
to be strong, as in flocks and swarms. This fact is so remarkable to suggest that it cannot be simply chance and that biological
systems are poised at criticality for some fundamental reason. This is a vast and highly controversial topic of discussion that
we cannot examine here; the interested reader can find a very good account in [73]. Irrespective of the issue of criticality,
we can remark that the method of analysis based on correlation functions is simple and general enough to be adapted to
very different systems (though with care), hence providing a common conceptual framework to discuss collective behavior
at the most general level.

5.3. Correlation: What is it good for?

The question may seem a provocation, after such a long ode to correlation. But our point here is: what is the biological
purpose, if any, of strong correlations in a group? We have followed in this work a strict mechanistic philosophy, typical of
the physicist’s approach: do not ask why, stick to how. However, at least in the outlook section we can briefly indulge and
ponder on the biological function (again: if any) of the strong correlations that seem to be so common in biological systems
displaying collective behavior. First, one must be aware of the fact that in certain cases strong correlations may be simply
the result of math; as we have seen, a flock is a system that breaks a continuous symmetry (rotation), hence on the basis of
Goldstone’s theorem one expects scale-free correlations of the directions of motion. Correlation here appears not because
of a biological bonus, but due to an accident of global ordering; hence, it has no ‘function’. On the other hand, we have also
seen that long range correlations also hold for the speed, and this is not a consequence of Goldstone’s theorem or of any
other piece of known math. Similarly, in midge swarms strong correlations of the directions cannot be due to a symmetry
breaking mechanism, because no symmetry is broken in swarms (they are disordered ‘paramagnets’ as one would call them
in a magnetic context), hence the origin of long range spatial correlation is not merely mathematical. Similar cases occur in
other systems. Hence, in all these cases our question is valid: what is the biological purpose (if any) of strong correlations
within a group?

In the case of flocks, the answer seems rather simple: as we have seen all along this work, a scale-free correlation
function is a necessary condition (not sufficient, though) to transfer information across the group without the need of
encoding/decoding, independently of the group’s size. We have seen how this is crucial when a flock changes collectively
direction of motion, but it is equally crucial when the group undergoes a sudden change of speed: in absence of scale-free
correlation the information to change some collective property does not reach the whole group, putting its cohesion at risk.
Hence, strong correlation seems functional to having an effective information transfer, which is probably a good thing at the
biological level.
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However, it is not easy to generalize the link between correlation and information transfer, because in many systems it
is not clear what kind of information would be transferred. Consider again swarms: correlations of the directions of motion
are large, but why would the swarm propagate a change of direction when there is no net direction of motion of the group?
In other systems the situation is even trickier as there is no clear spatial structure, hence propagation of information in its
classic sense is hard to define. For example, in neural assemblies, where each neuron is connected to each other, one cannot
even define a correlation length, hence connecting it to information transfer becomes problematic.

In all cases when correlation is strong, even though it is not clearly connected to spatial information transfer, it is the
physicist’s second nature to guess that correlation is relevant because a strongly correlated system responds strongly to
external perturbations. In otherwords, as physicists, whenwe discuss correlations, susceptibility and fluctuationswe always
have in the back of our mind the fluctuation–dissipation theorem. This seems to make sense: a biological system is strongly
correlated so that it can respond, or react, more effectively to environmental perturbations (a big deal in biology). The
problem is that, intuitive as this scenario may be, it should be proved more convincingly than by invoking a statistical
mechanics principle. In fact, onemay verywell argue in the opposite direction: if a highly correlated systems is (according to
the physicist) also a highly susceptible one, it is far from ideal with respect to its biological stability. The capacity of a system
to maintain such stability is called homeostasis, which is also quite a big deal in biology.

As usual, the question should be settled by experiments, and this is our true outlook. We believe that the next generation
of experiments in collective behavior should focus on the perturbation–response relationship, with the aim to validate or
reject the hypothesis that more correlated systems respond ‘better’ to perturbations (and where a careful, experimentally
checkable, definition of ‘better’ should be provided). A critical issue in this context is how to choose the pair of conjugated
variables upon which building this analysis. In physics, every observable A that we measure has its own conjugated variable
b that we can manipulate to obtain a change of A (classic pairs are volume and pressure, magnetization and magnetic field,
energy and temperature, and so on). In a perturbation–response experiment we know that we have tomeasure the extent of
change of A, given some (possibly small) change of b. This ratio should be connected, both statically and dynamically, to the
correlation function of A. Doing this within a biological group is far from trivial, simply because in general we do not have
a Hamiltonian formalism dictating us the conjugated pairs. Hence, to compare the correlation of the orientations in a flock
with a perturbation experiment, what variable should we be controlling? What is the field conjugated to the velocity in a
natural way? Similarly in swarms and other systems: we observe the large correlation, but we do not know a priori what is
the right perturbation–response pair to compare with. This is problematic, but also quite exciting, as it suggests that there
may be more in store to discover than simply a connection between correlation and response, as perhaps we will be able
to define for collective behavior in biological systems a full set of ‘canonically’ conjugated variables as we do in statistical
mechanics. The next decade or so will tell whether or not this is just wishful thinking.
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Appendix A. Two possible definitions of the velocity field

The definition of correlation function given in Eq. (6) describes an average of pair correlation performed at fixed mutual
distance. Looking at properties in terms of their dependence on distance rather than on individual identities is necessary
when dealing with systems that evolve off-lattice, and this is what is usually done in the study of liquids. From the point of
view of the theory of fluids it is thus natural to ask how our correlation function is related to the correlation of the velocity
field.

There are at least two different ways to define the velocity field. Consider a system where particles or organisms move
in space, with V indicating the system’s volume and N the global number of individuals. To define a field we can average vi
over all particles within a small volume δw around the position r:

v(r) =
1
δn

∑
i∈δw

vi −−−→
δw→0

v(r) =

∑
i viδ(ri − r)∑
k δ(rk − r)

, (A.1)

where δn is the number of particles in the volume δw. One could also choose to average over the volume δw:

v(S)(r) =
1
ρ0

1
δw

∑
i∈δw

vi −−−→
δw→0

v(S)(r) =
1
ρ0

∑
i

viδ(ri − r), (A.2)

where we divided by the average density ρ0 = N/V to obtain a field with the dimensions of a velocity.
The definition v(S)(r) is simpler, and it is standard when constructing local fields from single-particle observables [13].

However it has the disadvantage that it entangles density and velocity fluctuations: in the case where all the vi are equal,
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v(S)(r) will be higher in regions of higher density, while v(r) would have the same value throughout. The local velocity of
a tracer particle is given by v(r) and not by v(S)(r). Although using v(r) results in slightly more complex expressions for
the correlation functions, as we show below, it is the definition we will adopt in the rest of the discussions outside this
subsection, because the ability to disentangle (at least partially) density and velocity fluctuations is crucial to interpret the
correlation functions.5

The two fields lead to two different measures in Euclidean space. Since the sum of the velocities is an important quantity
(it is proportional to the order parameter), we want to define an integration measure µ(r) in such a way that the integral
over space of the continuous field is equal to the sum over all sites of the discrete variables:∫

dµ(r)v(r) ≡

∑
i

vi. (A.3)

This requirement, combined with Eqs. (A.1) and (A.2) immediately gives

dµ(r) = ρ(r) dr, (A.4)

dµ(S)(r) = ρ0 dr, (A.5)

where

ρ(r) =

∑
i

δ(r − ri) (A.6)

is the local number density [13]. Space averages over the fields thus require in both cases a normalization factor 1/N:

V =
1
N

∫
dµ(r) v(r) =

1
N

∑
i

vi =
1
N

∫
dµ(S)(r) v(S)(r). (A.7)

Having defined the local fields and the corresponding integration measures, we can proceed to define space correlation
functions. We introduce the fluctuation of the fields,

δv(r) = v(r) − V, (A.8)

δv(S)(r) = v(S)(r) −
ρ(r)
ρ0

V , (A.9)

where, in Eq. (A.9), we subtract (ρ(r)/ρ0)V to measure fluctuations due to velocity (rather than density) deviations. Then
we consider fluctuations of the field at two points r0 and r1 in space and look at the mutual correlation between such field
fluctuations. If we assume translational invariance then the correlation only depends on the distance vector r = r1 − r0 and
we can therefore perform a space average over r0, i.e.

C(r) =
1
N

∫
dµ(r0) δv(r0) · δv(r0 + r), (A.10)

C (S)(r) =
1
N

∫
dµ(S)(r0) δv(S)(r0) · δv(S)(r0 + r). (A.11)

These two correlations lead to slightly different expressions. Using the definitions of the fields and the corresponding
measures, we get

C(r) =

∑
ij δvi · δvjδ(r − rij)∑

kl δ(r − rkl)
, (A.12)

C (S)(r) =
1

Nρ0

∑
ij

δvi · δvjδ(r − rij) (A.13)

where rij = ri − rj. If the system is isotropic the correlation only depends on r = |r| and the correlations becomes

C(r) =

∑
ij δvi · δvjδ(r − rij)∑

kl δ(r − rkl)
, (A.14)

C (S)(r) =
1

Nρ0

1
4πr2

∑
ij

δvi · δvjδ(r − rij). (A.15)

Thus the correlation that we introduced in Eq. (6) is equivalent to the correlation function obtained using the field (A.1).
As we already noticed, this definition separates the contribution of the particle velocities from the trivial contributions of

5 Coupling between density and velocity is a characteristic of active matter systems. In some systems like the metric Vicsek model, a small region of
higher density has a stronger effective interaction that leads to higher local ordering. In this sense, both definitions of the field will be coupled to density
fluctuations, but v(S)(r) picks up also trivial contributions such as randomdensity fluctuations in a system of non-interacting particleswith uniform velocity.
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particle density. We therefore expect this correlation function to be less influenced by the presence of density fluctuations.
This can also be seen by noting that

C (S)(r) = g(r)C(r), (A.16)

where g(r) = (1/Nρ0)
∑

ijδ(r − rij)/(4πr2) is the radial distribution function6 measuring the average number of particle
pairs at mutual distance r . In a completely homogeneous system g(r) = 1 and the two definitions are equivalent. However
in general g(r) ̸= 1 (i.e. in the presence of non-trivial density correlations) and the two definitions differ.

We also notice that the correlation (A.15) is reasonably defined only in the bulk andmight be subject to spurious boundary
effects. Indeed, it basically estimates the number of particles at distance r from a given particle as 4πρ0r2dr , so that – even
disregarding density fluctuations – this estimate is wrong if r is of the order of the linear size of the system. On the contrary,
definition (A.14), by counting explicitly the number of pairs at distance r , is less sensitive to this boundary bias.

Summarizing, we expect the two correlations defined in this section to be rather similar on scales where the system
does not exhibit strong density correlations and far from the boundaries. Since ourmain purpose is to capture the amount of
directional correlations in real natural groups –where the system is necessarily finite and boundary effects can be important
– andwewant to decouple asmuch as possible from the density fluctuations, we adopt the definition of correlation function
given in Eq. (6) and Eq. (A.14).

One interesting feature of defining the correlations in terms of velocity fields is that we can very naturally derive the
correlation function in Fourier space. Let us focus now on the v(r) fields, the most relevant for active systems. The Fourier
transform of the field is

v(k) =

∫
dµ(r) e−ik·rv(r) =

∑
i

vie−ik·ri . (A.17)

We then define the Fourier-space correlation by

C(k) =
1
N

δv(k) · δv(−k) =
1
N

∑
ij

δvi · δvjeik·(ri−rj), (A.18)

which in the isotropic case is written, after averaging over the polar angles of k,

C(k) =
1
N

N∑
i,j

∫
+1

−1
d(cos θ )eikrij cos(θ ) δvi · δvj

=
1
N

N∑
i,j

sin krij
krij

δvi · δvj. (A.19)

The correlations (A.18) and (A.19) are equivalent to (35) and (36) of the main text, but were here derived starting from
the velocity fields. As noticed in the main text, the relationship between C(k) and C(r) is

C(k) = ρ0

∫
dr g(r) e−ik·rC(r). (A.20)

Within the present derivation, it is now clear that the factor g(r) has its origin in the integration measure dµ(r) in the
definition of the Fourier transform (A.17).

Finally, these definitions can be easily extended to the space–time correlation functions. In this case, we are interested
in comparing fluctuations at different positions and times. We therefore generalize (A.10) and (A.18) to

C(r, t) =

⟨
1
N

∫
dµ(r0) δv(r0, t0) · δv(r0 + r, t0 + t)

⟩
t0

=

⟨
N∑
i,j

δvi(t0) · δvi(t0 + t)δ
[
r + ri(t0) − rj(t0 + t)

]∑
k,l δ [r + rk(t0) − rl(t0 + t)]

⟩
t0

,

(A.21)

and

C(k, t) =
1
N

⟨δv(k, t0) · δv(−k, t0 + t)⟩t0

=
1
N

⟨
N∑
i,j

δvi(t0) · δvj(t0 + t)e−ik·[ri(t0)−rj(t0+t)]

⟩
t0

,

(A.22)

6 More precisely, in the literature the radial distribution function gR(r) is often defined as the contribution to the two point correlation function at r ̸= 0,
i.e. g(r) = gR(r) + δ(r)/(4πρ0r2), see [13].
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where all spatial coordinates are expressed in the flock’s reference frame. Again, we obtain the same expressions (148)
and (151) of the main text, but starting from the velocity fields and their Fourier transforms.

Appendix B. The spin-wave expansion

When considering systems in their polarized phase, such as bird flocks or fish schools, which can have average
polarization as high as Φ ∼ 0.9 [10], there is a well-defined mean velocity and individual orientations deviate weakly
from this mean. When this happens it is possible to simplify the mathematical description of the system by expanding all
non-linear quantities at the leading order in these weak fluctuations. This is called spin-wave expansion and wewill describe
it next.

We can assume that the mean velocity points along the unit vector nx = (1, 0, 0). Each velocity vi can be decomposed
into a longitudinal component, let us call it vx

i , along the direction of motion nx and a transverse component, which is a
(d − 1)-dimensional vector πi perpendicular to nx,

vi = vx
i nx + πi. (B.1)

The transverse components πi have the physical dimension of a velocity and by construction they satisfy∑
i

πi = 0. (B.2)

The spin-wave expansion is most useful when considering cases where the individual speed is fixed, or can be
approximated as fixed, |vi| = v0. Then the longitudinal component can be written as a function of the transverse one,

vx
i =

√
v2
0 − π2

i , (B.3)

and when the polarization is large all velocities will be mainly along the mean direction of motion, implying π2
i ≪ v2

0 . This
is the spin-wave approximation, which yields,

vx
i ≈ v0

(
1 −

1
2
π2
i /v2

0

)
, (B.4)

and

vi ≈ nx v0

(
1 −

1
2
π2
i /v2

0

)
+ πi. (B.5)

It is sometimes convenient to write the transverse components πi, in terms of dimensionless angles expressing the
departure of each vi from the mean direction of motion,

π
y
i = v0 sinϕz

i ∼ v0 ϕz
i , (B.6)

π z
i = v0 sinϕ

y
i ∼ v0 ϕ

y
i . (B.7)

To understand these relations, recall that to create a y component of the velocity one needs to rotate vi around the z axis,
and vice-versa. These transverse angles ϕz

i and ϕ
y
i are the key degrees of freedom in a polarized system and they are called

phases. They simply represent the (small) angular deviations of each individual vi with respect to the mean velocity of the
group.

From relations (B.5)–(B.7) we can work out an expression of the scalar polarization in terms of the phases,

Φ =

⏐⏐⏐⏐⏐ 1N ∑
i

vi
v0

⏐⏐⏐⏐⏐ = 1 −
(d − 1)
2N

∑
i

ϕ2
i , (B.8)

from which we see that the limit of large polarization, Φ ∼ 1, is equivalent to the limit of small phases, ϕ2
i ≪ 1. In d = 3

we get

Φ = 1 −
1
N

∑
i

ϕ2
i . (B.9)

Finally, in this approximation we can express the velocity fluctuations (4) using (B.6) and (B.7); we obtain,

δvi = v0 (0, ϕz
i , ϕ

y
i ) , (B.10)

up to linear order in the phases. This equation embodies the fact that in a polarized system the fluctuations are strongly
dominated by their transverse components.
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Appendix C. Linear response

In thermodynamics one defines linear susceptibilities, quantities that measure, to a first approximation, how some
thermodynamic state variable changes under a variation of some control variable. For example, the magnetization m will
change under an applied magnetic field h, and one defines the linear magnetic susceptibility as χm = ∂m/∂h|h=0. Linear
response theory generalizes this idea to space- and time-dependent variations of the quantity of interest.

Consider a field φ(x, t) that under certain circumstances assumes a stationary value φ0(x). Let us now change these
circumstances in a way that can be modeled by a scalar field h(x, t) (which we can assume different from zero only for
t ≥ 0 to fix a time origin). The impulse response function, or simply response function, is defined as

R(x, t; x′, t ′) =
δφ(x, t)
δh(x′, t ′)

⏐⏐⏐⏐
h=0

, (C.1)

where δ(. . .)/δ(. . .) denotes the functional derivative
δφ(x, t)
δh(x′, t ′)

≡ lim
ϵ→0

φ[h(x, t) + ϵδ(x − x′)δ(t − t ′)] − φ[h(x, t)]
ϵ

. (C.2)

From definition (C.1) we can write

φ(x, t) − φ0(x) =

∫
dx′ dt ′ R(x, t; x′, t ′)h(x′, t ′) + · · · , (C.3)

where the ellipsis stands for terms of second or higher order in h(x, t).
Since we have assumed that φ(x, t) is stationary when h(x, t) is zero, it is mostly safe to assume that the time variations

of φ(x, t) after h is turned on are due to the effect of h. It follows that if h is turned on at a different time, the variations of
φ will be identical but shifted in time by the same amount. This is equivalent to assuming that the response function is a
function only of the time difference,

R(x, t; x′, t ′) = R(x, x′, t − t ′). (C.4)

In addition, we will assume causality, i.e. that the applied field does not affect the value of φ at times before being applied.
This corresponds mathematically to the condition R(x, x′, t < 0) = 0, so that the effective upper limit of the time integral
in (C.3) is t .

If the perturbing field is a step function, h(x, t) = ĥ(x)Θ(t), then the linear response is

φ(x, t) − φ0(x) =

∫
dx′

∫ t

0
dt ′ R(x, x′, t − t ′)ĥ(x′), (C.5)

In this case the evolution of φ is described by the dynamic susceptibility or integrated response,

χ (x, x′, t) =
δφ(x, t)
δĥ(x′)

⏐⏐⏐⏐
ĥ=0

=

∫ t

0
R(x, x′, t ′) dt ′. (C.6)

The static (thermodynamic) susceptibility is then the limit of the integrated response,

χ (x, x′) = lim
t→∞

χ (x, x′, t). (C.7)

All of the above definitions are quite general, and their usefulness depends only on whether the applied field in the
situation under study is strong enough to produce significant nonlinear effects. The next and last result, known as the
static fluctuation–dissipation theorem holds strictly for equilibrium systems, i.e. when φ(x, t) is a quantity averaged over
microscopic degrees of freedomweightedwith Boltzmann’s factor. If h(x, t) is a field that couples linearly to some observable
φ(x, t), it is easy to show [15] that when equilibrium has been attained and φ is stationary,

χ (x, x′) = β⟨φ(x)φ(x′)⟩ − ⟨φ(x)⟩⟨φ(x′)⟩ ≡ βC(x, x′) , (C.8)

where C is the connected correlation function.

Appendix D. Green’s function method

Let Dx,t be a differential operator involving partial derivatives of time and position. The (partial) differential equation

Dx,tφ(x, t) = f (x, t), (D.1)

considered in a region x ∈ R ⊂ Rd, t ∈ [t ′, ∞) may be expected to have a unique solution only after specifying in addition
certain initial and boundary conditions [74,75]. The Green’s function, or fundamental solution, G(x, t; x′, t ′) associated
with (D.1) is the solution to

Dx,tG(x, t; x′, t ′) = δ(x − x′)δ(t − t ′), lim
t→t ′+

G(x, t; x′, t ′) = 1, (D.2)
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and subject to homogeneous boundary conditions of the same kind as (D.1). The Green’s function is identical to the
linear response defined in Appendix C: if φf (x, t) is the solution for a given f , then applying Dx,t to the linear response
R(x, t; x′, t ′) = δφ(x, t)/δf (x′, t ′),

Dx,tR(x, t; x′, t ′) =
δDx,tφ(x, t)
δf (x′, t ′)

=
δf (x, t)
δf (x′, t ′)

= δ(x − x′)δ(t − t ′), (D.3)

i.e. R is a solution of the equation that defines the Green’s function.
If Dx,t is linear, then the superposition principle applies and the Green’s function, in addition to being the linear response,

can be used to write the solution of (D.1) for a general right-hand side as a convolution,

φ(x, t) =

∫
dx′

∫
∞

0
dt ′ G(x, t; x′, t ′)f (x′, t ′) + uh(x, t) (D.4)

where uh(x, t) is a solution of the homogeneous equation (i.e. with f (x, t) = 0), as can be checked by applying Dx,t to the
formal solution.

We are interested in cases where Dx,t has the form

Dx,t = χ
∂2

∂t2
+ η

∂

∂t
− Lx, (D.5)

with Lx a linear, Hermitian, negative definite operator (i.e. a restoring force). This implies, in whole space at least, that Lx
involves only even derivatives and ensures the x −→ −x symmetry. We can write a formal expression of the Green’s
function in this case by expanding it in the base of eigenfunctions of −Lx,

− Lxun(x) = λnun(x), (D.6)

with λn ≥ 0 (i.e. Lx negative). In this base we write the Green’s function as (we can put t ′ = 0)

G(x, t; x′) =

∑
n

Gn(t; x′)un(x), Gn(t; x′) = (un,G) (D.7)

where (un,G) is the inner product. Doing the inner product of un with (D.2) and using the fact that Lx is Hermitian, we obtain
an ordinary differential equation for Gn(t; x′):

χ G̈n + ηĠn + λnGn = u∗

n(x
′)δ(t), Gn(t → 0−) = 0. (D.8)

It is convenient for what follows to solve this using the Fourier–Laplace transform of Gn(t),

Gn(ω) =

∫
∞

0
dt eiωGn(t), Gn(t) =

∫
∞

−∞

dω
2π

e−iωtGn(ω). (D.9)

Introducing this in (D.8) one readily obtains

Gn(ω; x′) =
u∗
n(x′)

−χω2 − iηω + λn
. (D.10)

From this we find Gn(t; x′) by integration in the complex plane. We can close the path with a semi-circle of infinite radius.
Due to the exponential factor, we must choose the path that encloses Imω < 0 (Imω > 0) half plane when t > 0 (t < 0).
The poles of Gn(ω) are located at

ω± = −iγ ± ωn, γ ≡
η

2χ
, ωn ≡

√
λn

χ
− γ 2. (D.11)

If λn/χ ≥ γ 2 thenωn is real and both poles have negative imaginary part. Ifωn is imaginary, it is clear that Imω− is negative,
while Imω+ is negative provided λn > 0. Thus λn > 0, as we have assumed, means that both poles are always in the
lower half-plane: this ensures causality of the response function, because for t < 0 the integration path includes the upper
half-plane and all expansion coefficients vanish. So for t ≥ 0 we have

Gn(t; x′) =

∫
∞

−∞

dω
2π

e−iωtu∗
n(x′)

−χ (ω − ω+)(ω − ω−)
= −i[Res(ω+) + Res(ω−)] (D.12)

=
iu∗

n(x′)
χ (ω+ − ω−)

[
e−iω+t

− e−iω−t] (D.13)

= u∗

n(x
′) e−γ t sinωnt

χωn
. (D.14)

When ωn is imaginary, it may be more convenient to define Γn = iωn and write instead

Gn(t; x′) =
u∗
n(x′)

2χΓn

[
e−(γ−Γn)t − e−(γ+Γn)t

]
. (D.15)
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Finally the Green’s function expansion in eigenvalues of Lx reads

G(x, t; x′, t ′) =

∑
n

un(x)u∗

n(x
′) e−γ t sinωn(t − t ′)

χωn
. (D.16)

If the region of interest is the whole space, the linear equation can be solved by Fourier transform, which is equivalent to
saying that the eigenfunctions are uk(x) = eik·x, with k ∈ Rd, and (D.16) reads

G(x, t; x′, t ′) =
1

(2π )d

∫
∞

−∞

dk eik·(x−x′) e−γ t sinωk(t − t ′)
χωk

, (D.17)

where the factor (2π )d appears because the plane waves are not normalized. This formula shows that G(x, t; x′, t ′) is a
function of the difference x − x′, a manifestation of space translation invariance (resulting from the translation invariance
of operator Lx plus the absence of borders). Let us finally write explicitly the Fourier transform of G(x, t) for later reference:
it is equivalent to (D.10) with x′

= 0,

G(k, ω) =
1

−χω2 − iηω + λk
. (D.18)

Appendix E. Dispersion relation

The dispersion relation is a functional relationship ω(k) between frequency and wavelength stating which plane waves
can propagate in the medium described by a given differential equation. This relation, as we shall show, is a direct
consequence of the pole structure of the Green’s function in Fourier space. Consider

χ
∂2φ

∂t2
+ η

∂φ

∂t
− Lxφ(x, t) = f (x, t), (E.1)

i.e. (D.1) with Dx,t given by (D.5). The dispersion relation is obtained by finding the poles, i.e. solving

G−1(k, ω) = −χω2
− iηω + λk = 0. (E.2)

To see why plane waves must obey the dispersion relation, we write the solution as the inverse transform of the product of
G(k, ω) and the Fourier transform of the source f (x, t):

φ(x, t) =
1

(2π )d+1

∫
dk dω eik·x−iωtG(k, ω)f (k, ω). (E.3)

Unless f (x, t) is exponentially divergent in time, f (k, ω) will not have poles in Imω < 0, so that the integral over ω can be
done in the complex plane exactly as in Appendix D, and the only relevant poles are those of G(k, ω). One obtains

φ(x, t) =
1

(2π )d

∫
dk

eik·x

iχ

[
e−iω+(k)t

ω+(k) − ω−(k)
f
(
k, ω+(k)

)
+

e−iω−(k)t

ω−(k) − ω+(k)
f
(
k, ω−(k)

)]
=

1
(2π )d

∫
dk

eik·x

iχωk
e−γ t [e−iωkt f (k, −iγ + ωk) − eiωkt f (k, −iγ − ωk)

]
, (E.4)

where, we remind, ωk =
√

λk/χ − γ 2 (see Eq. (D.11)). This expression makes it clear that the solution is a superposition
of (over)damped plane waves obeying the dispersion relation and with amplitudes given by the Fourier components of the
source.

A more convenient expression for φ(x, t) can be written, which is manifestly real for real f (x, t) and that shows the
different behavior of damped and overdamped waves. ωk will be real (pure imaginary) in a region Rr (Ri). Assuming λk is
an even function of k (as must be the case when Lx has only even derivatives), both regions must be symmetric with respect
to the origin (i.e. k ∈ Rr if and only if −k ∈ Rr , and similarly for Ri). Since f (k, t) is real, the following conditions hold:

f ∗(k, ω+) = f (−k, ω−), k ∈ Rr , (E.5)
f ∗(k, ω+) = f (−k, ω+), k ∈ Ri, (E.6)
f ∗(k, ω−) = f (−k, ω−), k ∈ Ri. (E.7)

Using these conditions, the solution can be transformed as follows: For k ∈ Rr , take the second term in (E.4) and change
the integration variable from k to −k. Then it is seen that the second term is the complex conjugate of the first term, the
difference of the two yielding a pure imaginary quantity which becomes real after dividing by iχ . For k ∈ Ri, divide the
integral in the two symmetric parts around the origin and change k to −k in one of them (say the negative part). Then
combining the integrals again results in the sum of an expression with its complex conjugate, resulting in a real quantity,
while the denominator is now real because ωk is imaginary. Defining iΓk = ωk and f (k, ω) = f ′(k, ω) + if ′′(k, ω), the final
result is

φ(x, t) =
1

(2π )d

∫
Rr

dk
2e−γ t

χωk

[
f ′′(k, ωk − iγ ) cos(k · x − ωkt)+
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f ′(k, ωk − iγ ) sin(k · x − ωkt)
]
+

1
(2π )d

∫
R+

i

dk
2e−(γ+Γk)t

χΓk

[
f ′(k, −iΓk − iγ ) cos(k · x)

f ′′(k, −iΓk − iγ ) sin(k · x)
]
−

1
(2π )d

∫
R+

i

dk
2e−(γ−Γk)t

χΓk

[
f ′(k, iΓk − iγ ) cos(k · x)

f ′′(k, iΓk − iγ ) sin(k · x)
]
. (E.8)

Appendix F. Computation of C (r, t) in ordered phase of VM and ISM

To obtain the time correlation of the field ϕ(x, t) ruled by Eq. (157) or (158) one first writes the field explicitly in terms of
the external (random) force, then computes the correlation ⟨ϕ(x, t)ϕ(0, 0) by averaging over the realizations of the random
force. The averaging is actually simple because in practice only the second moment of the force is needed.

Since the equations are linear in ϕ(x, t), they can be solved by finding the Green’s function, which can be done expanding
in eigenfunctions (Appendix D). Eqs. (157) and (158) are of the form (D.5) with Lx = Jnca2∇2

x . The eigenfunctions of −Lx are
plane waves, and the corresponding eigenvalues are λk = Jnca2k2. The Fourier–Laplace transform of the Green’s function is
obtained by plugging the eigenvalues into (D.18):

G(k, ω) =

{(
−iηω + Jnca2k2

)−1
, VM(

−χω2
− iηω + Jnca2k2

)−1
. ISM

(F.1)

Now the Green’s function can be used to write the full time evolution of the field. It is convenient to place the initial
conditions at t = −∞; then the system loses memory of them and then fields depend only on the random force,

ϕ(x, t) =

∫
∞

−∞

dt ′
∫
dx′ G(x − x′, t − t ′)ζ (x′, t ′), (F.2)

where the Green’s function appropriate for each model must be used. Now the formal solution (F.2) can be used in (159) to
obtain

C(x, t) =

∫
∞

−∞

dt1 dt2

∫
dx1 dx2 G(x − x1, t − t1)G(0 − x2, 0 − t2) ⟨ζ (x1, t1)ζ (x2, t2)⟩ ,

= 2ηTa3
∫

∞

−∞

dt1

∫
dx1 G(x − x1, t − t1)G(−x1, −t1),

(F.3)

where the average could be performed immediately since the correlation of the random force is known (it is delta-correlated
in space and time). To deal with the convolution it is convenient then to introduce the Fourier transform and write finally

C(k, t)
∫

∞

−∞

dω
2π

e−iωtC(k, ω), (F.4)

C(k, ω) = 2ηTa3G(k, ω)G(−k, −ω). (F.5)

Formulae (F.4) and (F.5) are the expressions that allow us to analyze the qualitative features of C(k, t). The shape of the
correlation depends crucially on the pole structure of the Green’s function in Fourier space G(k, ω). A general property of
the case when the eigenvalues λk are positive is that G(k, ω) has poles only for Imω < 0, which ensures that the response is
causal (see Appendix D). Additionally, in the present case, the eigenvalues are quadratic in k, which causes G(k, ω) to be even
in k, as is obvious from (F.1). Then from (F.5) we see that the poles of the correlation C(k, ω) are symmetric for Imω < 0 and
Imω > 0. This implies that C(k, t) is even in time, because the integral in (F.4) can be solved by integrating in the complex
ω-plane using a path that encloses the negative imaginary semi-plane if t > 0, or the positive imaginary semi-plane if t < 0.
But since the poles are symmetric, the result will be identical in both cases (at fixed k of course).

Towork out C(k, t) one needs explicitly the poles of C(k, ω), so we rewrite G(k, ω and C(k, ω) in away thatmakes evident
the location of the poles and the value of the residue. Recalling the definitions of the convenience constants (163) and (162),
we have, for the Vicsek case,

G(k, ω) =
1

−iη(ω + iτ−1
0 )

, VM, (F.6)

C(k, ω) =
2Ta3

η

1
ω2 + τ−2

0

, VM, (F.7)
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and for the ISM,

G(k, ω) =
1

−χ (ω − ω+)(ω − ω−)
, ISM, (F.8)

C(k, ω) =
2a3ηT

χ2

1
(ω2 − ω2

+)(ω2 − ω2
−)

, ISM. (F.9)

From (F.7) and (F.9) we can finally compute C(k, t) by integrating over ω in the complex plane as done in Appendix D for
the Green’s function (see comments after Eq. (D.10)). The symmetric placement of the poles means that the result involves
half of the poles of C(k, ω) (one for Vicsek, two for ISM), since the integration contour selects only half of the imaginary
plane. For instance, for the VM and t > 0 the integration path encloses the lower semi-plane, and the relevant pole is
ωp = −iτ−1

0 . The integral is then computed as (the first minus sign arises because the residue theorem uses a path that runs
counterclockwise which takes the real ω axis from ∞ to −∞):

C(k, t) = −
2Ta3

η

∮
dω
2π

e−iωt 1
ω2 + τ 2

0
= −

2Ta3

2πη
2π iRes|−iτ0 = −

2Ta3

η
ie−t/τ0

1
−2iτ−1

0

. (F.10)

This gives (164). For the ISM the same procedure, now involving two poles (ω+ and ω− for t > 0) yields (165) after some
algebra.

Appendix G. Structure of the correlation function in the complex ω-plane

To interpret the non-exponential form of C(k, t) it is useful to reason in terms of the poles of its Fourier transform C(k, ω)
in the complex ω-plane, as their structure reflects the dispersion relation of the system and thus the underlying equation
of motion [76]. What we will prove here is that exponential relaxation in time derives from a single pole of C(k, ω) on the
positive imaginary semi-plane, while a vanishing first derivative of the temporal correlation implies the existence of two, or
more, poles of C(k, ω) in the positive imaginary semi-plane. From the Fourier relation

C(t) =

∫
+∞

−∞

dω
2π

e−iωtC(ω), (G.1)

we have that the time derivative of the correlation function is given by

Ċ(t) = −

∫
+∞

−∞

dω
2π

e−iωtF (ω), F (ω) = iωC(ω). (G.2)

From the physical condition C(t) = C(−t), and therefore C(ω) = C(−ω), we obtain that the poles of C(ω) must have a
symmetric structure,

C(ω) =
1∏K

i=1(ω − ωi)ni (ω + ωi)ni
, (G.3)

where we admit that some pole may have multiplicity ni larger than one.
The t → 0+ limit of Ċ(t) in (G.2) can be computedwith the residue theoremby integrating F (ω) along the path in Fig. G.20.

Because F (−ω) = −F (ω), we have,

Res (F (ω), +ωi) = Res (F (ω), −ωi) ∀i = 1, . . . , K

so that, after some algebra, we obtain

lim
t→0+

Ċ(t) =
1
2

K∑
i=1

[Res (F (ω), +ωi) + Res (F (ω), −ωi)] . (G.4)

The sum of all the residues of F (ω) coincideswith its residue at infinity, Res (F (ω), ∞), which can be computed as the residue
in z = 0 of the function F̂ (z) = F (1/z)/z2,

Res
(
F̂ (z), 0

)
= lim

ϵ→0

∮
C(ϵ)

dz
z(2

∑
i ni−3)∏

i(z2 − 1/ω2
i )ni

∏
i ω

2ni
i

,

where C(ϵ) is a circle of radius ϵ centered in the origin. The integral above is easily calculated, so that (G.4) becomes,

lim
t→0+

Ċ(t) = Res
(
F̂ (z), 0

)
=

⎧⎪⎪⎨⎪⎪⎩
1 if

∑
i

ni = 1,

0 if
∑

i

ni ≥ 2.

We conclude that a single pole in the positive semi-plane implies a non-zero first derivative of the time correlation function;
more precisely, in this case C(ω) is a Lorentzian, so that C(t) is purely exponential. On the other hand, a vanishing first
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Fig. G.20. The integration path contains all poles of C(ω) with non-positive imaginary part (assuming there are two such poles).

derivative of the time correlation function C(t) for t → 0 is caused by the existence of two, or more, poles of its Fourier
transform C(ω) in the positive imaginary semi-plane.

The structure of these poles reflects the structure of the dispersion polynomial of the theory; in particular, multiple poles
with a non-zero real part are themost distinctive hallmark of propagating spin-waves [54]. In the overdamped, paramagnetic
phase the real part of the spin-wave poles vanishes and the poles move onto the imaginary axis. Yet, their multiple structure
(namely, the fact that they are more than one), remains as a remnant of the spin-wave phase and, as we have seen here, this
remnant shows up as a zero derivative of the time correlation function.Whenwe push a paramagnetic system deeply into its
overdamped phase, i.e. down to the hydrodynamic phase, some of these poles becomes so large (high frequencies) that we
no longer have the experimental resolution to see their effect in the derivative of C(t), and we observe purely exponential
relaxation.

Appendix H. Damped harmonic oscillator as toy model for velocity correlations

To get an intuitive grasp on how a time correlation function that is generated by a dynamics with multiple poles, and
hence flat at t = 0, can crossover to a correlation with finite derivative as the damping is increased, we can study the
over-damped stochastic harmonic oscillator [55]. It is described by

χ ü(t) + ηu̇(t) + κu(t) = ζ (t). (H.1)

This is identical to the space Fourier transform of (158) evaluated at a fixed k2 = κ/Jnca2, so that we can read the time
correlation from (165):

Ĉ(t) ≡
C(t)

C(t = 0)
= e−γ t

[
cos ω̂t +

γ

ω̂
sin ω̂t

]
, (H.2)

with

γ =
η

2χ
, ω2

0 =
κ

χ
, ω̂ =

√
ω2

0 − γ 2. (H.3)

The Green’s function can be obtained in the same way from (160) but is also easily found directly to be

G(ω) =
1

−χω2 − iωη + κ
=

1
−χ (ω − ω+)(ω − ω−)

, ω±
= −iγ ± ω̂ (H.4)

We can distinguish three regimes:

1. Underdamped regime: This is when γ /ω0 < 1 and inertia dominates over viscosity. The two poles of the Green’s
function have a large nonzero real part and a small imaginary part, ω̂ is real and Ĉ(t) displays a clear oscillatory
behavior (Fig. H.21a). This regime is the analogous of the propagating spin-wave phase of ferromagnets [54].

2. Critically damped regime: When γ /ω0 = 1 inertia and viscosity exactly balance each other, the two poles coincide
on the imaginary axis, and Ĉ(t) does not oscillate but retains a clear non-exponential form with a flat correlation for
small times (Fig. H.21b). This is analogous to the critical point between ferromagnetic and paramagnetic phase.
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Fig. H.21. Normalized correlation function for the harmonic oscillator in the under-damped (a), critically damped (b) and over-damped (c) regimes. Panel
(d) shows the function h(x), Eq. (H.6) in the different regimes. For an exponential decay, h(x) → 1 for x → 0, so when the t/τ is less than the experimental
resolution (dotted vertical line), the decay is effectively exponential.

3. Over-damped regime: When γ /ω0 > 1 both poles are imaginary and separated, with one of them approaching the
origin (ω−

∼ iω2
0/2γ ≪ 1 and ω+

∼ 2iγ ) and the time correlation becomes more andmore exponential. This regime
is the analogous of the paramagnetic phase (Fig. H.21c).

Thus upon increasing the damping Ĉ(t) turns from an oscillatory, far-from-exponential behavior in the under-damped
regime to a non-oscillatory, nearly-exponential function behavior in the over-damped regime (Fig. H.21d). Yet it is
straightforward to check from (H.2) that

lim
t→0+

dĈ(t)
dt

= 0 (H.5)

for all η. This is in accordance with the general result that when the Green’s function has more than one pole in the complex
ω-plane, the first derivative of C(t) vanishes at t = 0 (Appendix G). So, how does it happen that the correlation becomes
‘‘more and more exponential’’ in the over-damped regime?

What happens for increasing damping can be understood by following the evolution of the function

h(x) ≡ −
1
x
log Ĉ(x), x ≡ t/τ . (H.6)

Since Ĉ(0) = 1, a zero first derivative for t → 0 implies

lim
x→0

h(x) = 0, (H.7)

while for pure exponential one would have

lim
x→0

h(x) = 1. (H.8)

In practice, then, the crossover from (H.7) to (H.8) happens as displayed in Fig. H.21: although h(x) is always zero at exactly
x = 0, by increasing the damping the value of x = t/τ where h(x) departs from 1 becomes smaller and smaller. Our
experimental apparatuswill always have a finite time resolution (it is unphysical to think to be able to resolve the correlation
for x = t/τ arbitrarily small). Say that this resolution is t/τ = ϵ. This means that beyond a certain damping we are doomed
to observe h(x ∼ ϵ) ∼ 1 within our experimental resolution, and the time correlation becomes therefore purely exponential
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for all practical purposes. On the other hand, in the weakly over-damped regime the departure from the exponential case
is strong: the limit of h(x) form small x is clearly far from 1 even within our experimental resolution x > ϵ. This is the
mechanism underlying the existence of paramagnetic spin-wave remnants: although all the explicit oscillatory phenomena
of spin waves are absent, the strong non-exponential character of the correlation function in the experimentally relevant time
regime t ∼ τ is clear evidence that the original equation of motion admits spin-waves in a certain region of the parameter
space and it is therefore second order in time.
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