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Abstract: The removal of nonnative species can lead to re-invasion by nonnative species, especially
in communities with multiple co-occurring invaders. Biotic and abiotic conditions shape community
structure, reducing the predictability of nonnative management. We evaluated plant community
recovery after the removal of nonnative pines with an emphasis on the effect of environmental
conditions on the nonnative species response. We compared clearcuts (where pine plantations were
removed), pine plantations, and native communities along a precipitation gradient in Patagonia.
Nonnative richness and cover were higher in clearcuts compared to native communities along
nearly the entire precipitation gradient, with the exception of the harshest sites. Compared to native
communities, invasion resistance was lower in clearcuts in the wetter sites. Native richness and cover
were lower in clearcuts relative to native communities along the gradient. Species composition in
clearcuts diverged in similarity from native communities towards the wetter sites. Plantations showed
an extremely lower richness and cover compared to both clearcuts and native communities. Our study
highlights that clearcutting is an ineffective strategy to manage nonnatives aimed at restoring native
communities and elucidates the importance of environmental context in management approaches.
Taken together, our findings reinforce the important consideration of both the biotic and abiotic
context of nonnative management.

Keywords: Argentina; invasive species; management; environmental gradient; Pinaceae;
restoration; silviculture

1. Introduction

The management of nonnative species is a current challenge for ecological restoration [1–3],
whose major goal is recovering the characteristics of an ecosystem that were prevalent before invasion,
such as increasing biodiversity and restoring ecological functions [4]. The outcome of nonnative
species management is highly unpredictable and the recovery of community structure and ecosystem
functioning are hardly ever achieved or even evaluated [2,5]. An increasingly reported problem
is that after the removal of a dominant nonnative species, other nonnative species invade the area,
a process called secondary invasions [2,6,7]. Yet, most studies addressing the management of nonnative
species focus on the management of a single-invader, without considering their community context [2].
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The fact that many ecosystems are invaded by multiple co-occurring nonnative species, and that many
factors can modulate nonnative species establishment, both contribute towards the unpredictability
of nonnative species management [6]. Thus, a better understanding of the conditions that promote
nonnative species invasion after the removal of a dominant nonnative can help predict management
outcomes, as well as improve the allocation of management efforts [8].

Under certain conditions, the removal of nonnative species has led to successful outcomes [9,10].
However, it is not clear yet which conditions favored successful or unsuccessful restoration
outcomes. Abiotic conditions can shape the variability in relative abundances and overall plant
species composition in post-removal areas, which increases the unpredictability of nonnative species
management [6]. Particularly, harsh environmental conditions (i.e., sites with extreme resource
limitations where the occurrence of abiotic conditions that create rapid plant mortality is common,
such as frost, extreme heat, and drought) may act as a strong filter for nonnative species. In fact,
it has been found that harsh environments have a lower number of invaders than favorable
environments [11–15]. For example, Sorte et al. [16] found that drought favored native over nonnative
species. Secondary invasions in harsh sites will likely depend on nonnative species adapted to harsh
conditions being present and able to respond rapidly under poor growing conditions [6,17]. Therefore,
secondary invasions should take place less often under harsh environmental conditions than in more
benign conditions.

Biotic conditions may also shape the community response in different ways to environmental
conditions. For instance, the diversity-invasibility hypothesis posits that more diverse communities
exhibit greater resistance to invasions than less diverse communities [18,19]. More diverse communities
have fewer unexploited resources reducing invasions via resource competition [20]. Further, resource
competition may be stronger in more benign environments, consequently promoting biotic resistance [21].
Similarly, interactions among nonnative species can influence secondary invasions [7,22]. Competition
among nonnative species can determine that the removal of a dominant nonnative releases other
sub-dominant nonnatives from competition, thus favoring secondary invasions [7,22]. Additionally,
an indirect positive interaction among nonnatives can drive the accumulation of nonnative species in
the community, an interaction mediated by the reduction of native species abundance [22]. This positive
interaction promotes secondary invasions after the removal of dominant nonnative species [6]. In this
context, there is a need to develop general principles regarding invader interactions across varying
environmental conditions so that secondary invasions can be anticipated and managers can allocate
efforts toward pre- or post- removal actions [6].

Nonnative Pinaceae species (hereafter pines) have been planted in several regions of the southern
hemisphere (e.g., New Zealand, Australia, South Africa, and South America) for forestry purposes
and have subsequently invaded native habitats [23]. Both pine plantations and invasions produce
a wide spectrum of changes in native ecosystems [23]. For example, pines have changed vegetation
structure and fuel loads in Patagonian treeless ecosystems, which increase the intensity and frequency
of fires [24]. As a consequence, changes in fire regimes reduce the recovery of nonnative species
and promote further nonnative invasions [25,26]. Additionally, below-ground impacts may be more
difficult to reverse, giving rise to both biotic and abiotic soil legacy effects (e.g., changes in soil nutrients,
soil biota, or soil seed bank) that can drive changes in subsequent plant community structure and
ecosystem processes [27,28].

Removal of nonnative pines (both planted and invasive) is a common management strategy
around the world aimed at passively recovering native ecosystems, yet little is known about its
efficacy [23]. For example, in Patagonia, many pine plantations are harvested for timber but not
replanted owing to current bans on planting nonnative tree species. Moreover, many plantations
are clearcut with the goal of restoration to native communities, especially in forest ecosystems [29].
However, it is well known that passive restoration to pre-existing states can be a challenge [30,31].
Removing nonnative pines can lead to undesired invasions of other nonnative species, halting
the recovery of native ecosystems [30,32], and leaving vast areas with low timber productivity or



Forests 2018, 9, 394 3 of 18

conservation values. Therefore, assessing the effect of nonnative pine removal on plant community
restoration, and understanding conditions that promote nonnative species in areas previously occupied
by pines, is critical to properly managing pine plantations after timber harvest and ultimately restoring
native communities.

The objective of our study was to evaluate plant community recovery after the removal of
nonnative pine plantations and whether the effects of clearcutting varied with environmental
conditions. We hypothesize that the previous presence of pines favors the establishment of nonnative
over native species due to soil legacy effects (e.g., changes in soil nutrients, depletion of soil seed bank,
changes in mycorrhizal communities) [23,30] and disturbance effects (e.g., an increase in resource
availability, mainly light) [33]. We also hypothesize that the strength of these effects changes along
a precipitation gradient, where they are weaker under harsher environments (i.e., drier areas) than in
more benign environments (i.e., wetter areas) [6,14]. Additionally, we expect that steppe native species
will better respond to clearcut conditions than forest native species, as light conditions in clearcuts are
more similar to those of steppes than forests. Overall, we predict that secondary invasions should be
higher and native community recovery lower in clearcuts in more benign sites. Since pine plantations
are the prior state of clearcuts, we also evaluated nonnative species invasions and the similarity of
plantations in comparison with clearcuts and native communities. These comparisons allow us to
control for the effect of initial conditions (plantation understory) on clearcut community structure and
to evaluate the impact of this land-use change on native communities, respectively.

2. Materials and Methods

2.1. Study Region

We conducted this study in Northwestern Patagonia, Argentina. This region is characterized
by a steep west–east natural precipitation gradient caused by the rain shadow effect of the Andes,
which acts as a barrier to the moist air coming from the Pacific Ocean [34]. Rainfall is concentrated
between April and September and decreases from ca. 3000 to 500 mm per year over 100 km [35,36].
In this study, mean annual precipitation decreased from 1270 mm per year in the most mesic sites
to 630 mm in the driest sites. Precipitation data for each site was obtained from Fetch Climate
Web [37]. Mean annual temperature is 7.9 ◦C, with maximum temperatures occurring during January
and February [35]. Vegetation shifts as mean annual precipitation decreases. Along this gradient,
the wettest sites are temperate forests, dominated by Nothofagus spp. that are first replaced by
Austrocedrus chilensis forest and matorral vegetation type in the forest-steppe ecotone, and finally by
semi-arid grasslands or shrublands in the dry steppe ecosystem [38].

Three distinct physiognomic units occur from west to east: forests, shrublands, and steppes [34].
In the western area of the region, the Patagonian-Andean forest dominates; a vegetation unit
dominated by deciduous, evergreen, and mixed forests [39]. The deciduous forest is mainly
dominated by N. pumilio and N. Antarctica, which are restricted to the wettest and highest elevations
of the gradient [39]. N. Antarctica also dominates stumpy forests in the driest and eastern part
of the gradient [40]. Between 37.8◦ and 47◦ S, there are also forests of N. dombeyi, N. obliqua and
A. chilensis [39], which are the most represented in the region spanned by our study sites. In the
northern portion of this region, A. araucana appears as a subdominant species in these forests.
The following trees and shrubs are also common: Lomatia hirsuta, Maytenus boaria, Schinus patagonicus,
Azara microphylla, Aristotelia chilensis, Chusquea culeou, and Berberis sp. [39]. In the extra-Andean
portion, shrubs increase and grasses decrease as mean annual precipitation decreases [34]. In this
ecotone, we find the grained steppe that enters into the eastern sector of the deciduous forests,
shaping a mosaic of both vegetation types. The vegetation cover is relatively high (64%) and it
is dominated by Festuca pallescens and accompanied by Rytidosperma pictum, Lathyrus magellanicus,
and some shrubs such as Senecio sericeonites and Azorella prolifera [39]. In the driest portion of
the gradient, the typical vegetation is the grained-shrubby steppe where the typical vegetation is
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dominated by Pappostipa speciosa, Pappostipa humilis, Poa ligularis, and Poa lanuginosa, as well as by the
shrubs Adesmia volckmannii and Berberis microphylla. This vegetation type has many variants according
to the subdominant species [39].

In this region, many nonnatives have been introduced since European occupation. For example,
several tree species from the Pinaceae family are spreading in the southern hemisphere, including
Argentina [23]. In this region, Pinus contorta and Pseudotsuga menziesii are the main invaders of the
native communities. Although conifers are naturally represented in these communities by two native
trees (A. chilensis and A. araucana), there is no native species from the Pinaceae family in this region
(e.g., all pines are nonnative). Besides pines, there is a high richness of nonnative species in the
region [41,42]. Some species are only casual but others are highly invasive, such as Rosa rubiginosa and
Cytisus scoparius [43,44].

2.2. Study Design

To evaluate if the effect of clearcutting on secondary plant invasion and community structure
varied with environmental conditions, we surveyed 16 sites (Table S1) along a precipitation gradient in
the 2016–2017 growing season. The mean distance between sites was ~20 km. At each site, we selected
three land-use types: (1) Clearcut: communities assembled after pine plantation removal. Clearcuts
were considered to be different from others when previous pine species were different or when
clearcuts had different ages. Clearcut age varied from two to eight years. It is well known that time
since clearcutting is an important factor determining native vegetation recovery, and this could produce
a bias in our results if there was a correlation between clearcut age and precipitation. We evaluated
this and we did not find a correlation between the age of the clearcut and precipitation (r = −0.013,
p-value = 0.96). Therefore, we did not find evidence of a possible bias in our results regarding clearcut
age co-varying with precipitation; (2) Plantation: pine plantations that represented the situation
previous to clearcut. All pine plantations surveyed were at a mature stage as our purpose was to
represent the ecosystem state previous to clearcuts; (3) Native communities: areas dominated by
native vegetation, with low levels of anthropogenic disturbance that represent a reference community.
Within each land-use type, we randomly placed three observational plots (4 m2 each) to assess plant
community structure. In each plot, we recorded plant species composition and abundance (i.e., percent
aerial cover per species) (Table S2). Species were classified by origin as native or nonnative following
Zuloaga et al. [36].

2.3. Data Analyses

We evaluated the interactive effect of land-use type and precipitation on different descriptors of
community structure: (1) native and nonnative species richness; (2) native and nonnative species cover;
(3) proportion of nonnative species; (4) proportion of nonnative cover; and (5) Shannon diversity index
based on species-specific foliar cover.

We tested the interactive effect of land-use type and precipitation by fitting a set of Bayesian
hierarchical linear models. We modeled each community structure descriptor separately, and all
models included land-use type and precipitation as predictors. To capture the hierarchical structure in
the data (where plots were nested into sites), we set the land-use type variable as a categorical plot-level
predictor and the precipitation variable as a continuous site-level predictor. While these models varied
in their probability distributions, all of them were represented using similar deterministic functions
that can be summarized as follows:

Plot-level model:

Response variable[j] = αN[j] + αC[j] * clearcut[i] + αP[j] * plantation[i] (1)

Site-level model:
αN[j] = β0N + β1N * precipitation[j] (1.1)



Forests 2018, 9, 394 5 of 18

αC[j] = β0C + β1C * precipitation[j] (1.2)

αP[j] = β0P + β1P * precipitation[j] (1.3)

In Equation (1), αN represents the effect of native communities at each j precipitation level,
whereas αC and αP are the analogous effect (i.e., effect size) of clearcut and plantation communities,
respectively, compared to native communities (our reference community). As the model was fitted
at two levels, parameters at the plot-level were allowed to vary with precipitation. Thus, β1N, β1C,
and β1P are the slopes of the site-level linear regression models (Equations (1.1)–(1.3)) for the native,
clearcut, and plantation land-use type, respectively, and represent the rate at which the effect of
land-use type changed with precipitation.

To describe variability around the above deterministic pattern, we used different probability
distributions depending on the nature of the response variable (i.e., on the values that it can theoretically
take). To model the species richness (count data), we assumed that the response variable drew a Poisson
distribution [45,46]. The Poisson parameter (λ) was modeled as a linear function of community type
and precipitation by means of a log link function (Code S1). To model species cover, we assumed that
the response variable drew a Gaussian distribution, and modeled the parameter µ as a linear function
of the same predictors (Code S2). To evaluate whether or not the richness and cover changed with
species origin, we included this variable in the above models (Code S1 and S2). To model the nonnative
richness and cover proportion (varying from 0 to 1), we assumed a Binomial distribution for the
response variable [45,46]. We modeled the Binomial parameter ρ as a linear function of the predictors
using a logit link function (Code S3 and S4). Finally, to model the Shannon diversity index, we assumed
that the response variable drew a Gaussian distribution, where the parameter µ was a linear function
of land-use and precipitation (Code S5). The response variables with continuous positive values
(i.e., Shannon Index and cover) were modeled using Gaussian distributions as preliminary models
employing log-normal distributions failed to converge. All these models were implemented in JAGS
via the R package ‘jagsUI’. We ran three chains with 10,000 iterations each discarding the first 5000
as burn-in.

To evaluate shifts in species’ composition among land-use types, we performed Non-Metrical
Multidimensional Scaling (NMDS). The ordination reduced the dimensionality of the distance matrix,
and provided a first step for visualizing community dissimilarities [47]. We carried out a meta-NMDS
from the R ‘vegan’ package [48] that generated an ordination of the Bray-Curtis distance matrix.
Bray-Curtis distances represent how dissimilar two communities are, not only taking into account
species composition (the list of species), but also the cover per species [47]. Bray Curtis distances
were obtained with the ‘vegan’ package from a matrix in which the abundances per species registered
at each of the three plots surveyed at each land-use type at each site were averaged. Additionally,
we performed a permutational analysis of variance with the adonis function implemented in the ‘vegan’
package [48]. This non-parametric test allowed us to evaluate the interactive effect of precipitation
and land-use type on the dissimilarity among communities. Finally, to evaluate if more invaded
communities such as clearcuts tended to have less species turnover along the precipitation gradient,
we estimated the Simpson beta-diversity index (BSIM) for each land-use type along the gradient.
If species invading clearcuts were the same along the precipitation gradient, we would expect that
nonnative species composition would be less variable than total species composition along the gradient.
For each land-use type, we estimated BSIM for total species composition and BSIM for nonnative species
composition. Beta diversity indexes were estimated from the R package ‘betapart’ [49]. All analyses
were conducted in R 3.4.3 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria) [50].

3. Results

At the regional scale, we recorded 130 plant species (85 natives and 45 nonnatives) across all
land-use types. We found 92 species (68 native and 24 nonnative species) in native communities,
83 species (46 native and 37 nonnative species) in clearcuts, and 31 species (19 native and 12 nonnative
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species) in pine plantations. The modeled native richness was lower in clearcut and plantation
communities compared to the native communities at all precipitation levels (Figure S1B,C). In contrast,
our model showed that the effect of clearcutting and plantation on nonnative richness depended on
the precipitation level (Figures 1D–F and S1E,F). Yet the modelling of the proportion of nonnative
richness resulted in higher values in clearcuts and plantations than in native communities throughout
the precipitation gradient (Figures 1G–I and S1H,I). In comparison with clearcuts, plantations harbored
the lowest species richness, regardless of plant species’ origin (Figure 1B,C,E,F).

Forests 2018, 9, x FOR PEER REVIEW  6 of 18 

 

nonnative richness resulted in higher values in clearcuts and plantations than in native communities 
throughout the precipitation gradient (Figures 1G–I and S1H,I). In comparison with clearcuts, 
plantations harbored the lowest species richness, regardless of plant species’ origin (Figure 1B,C,E,F). 

 
Figure 1. Estimates of native richness (A–C), nonnative richness (D–F), and proportion of nonnative 
richness (G–I) along the precipitation gradient for each land-use type (native, clearcut, and 
plantation), resulting from the hierarchical linear model. The black curve represents the mean 
estimate of the model that regressed richness/proportion with origin (only for richness), land-use 
type, and precipitation. Gray lines correspond to 1000 simulations from the posterior distributions of 
the estimated parameters. 

According to our models, species richness and proportion of nonnative species depended on the 
precipitation level in all land-use types, as reflected by the non-zero slopes in Figure 2. While native 
richness did not vary significantly with precipitation, nonnative richness increased as precipitation 
increased in native communities (Figures 1A,D and 2A). This resulted in a lower proportion of 
nonnative richness in more benign (wetter) sites compared to harsher (drier) sites (Figures 1G and 
2B), as our model showed. In clearcut communities, both native and nonnative species increased 
towards more benign sites (Figures 1B,E and 2A). Modeled nonnative richness was, on average, ~3-
fold higher in more benign sites (higher precipitation) than in harsher sites (lower precipitation) in 
this land-use type. Thus, the modeled nonnative richness was higher in clearcuts compared to native 
communities along nearly the entire precipitation gradient, with the exception of the drier sites 
(Figures 1D,E and S1E). However, the proportion of nonnative species in clearcuts did not change 
with precipitation (slope close to zero) although the slope was marginally different compared to 
native communities (Figures 1H and 2B). Our model indicated that, compared to native communities, 

Figure 1. Estimates of native richness (A–C), nonnative richness (D–F), and proportion of nonnative
richness (G–I) along the precipitation gradient for each land-use type (native, clearcut, and plantation),
resulting from the hierarchical linear model. The black curve represents the mean estimate of the model
that regressed richness/proportion with origin (only for richness), land-use type, and precipitation.
Gray lines correspond to 1000 simulations from the posterior distributions of the estimated parameters.

According to our models, species richness and proportion of nonnative species depended on the
precipitation level in all land-use types, as reflected by the non-zero slopes in Figure 2. While native
richness did not vary significantly with precipitation, nonnative richness increased as precipitation
increased in native communities (Figures 1A,D and 2A). This resulted in a lower proportion of
nonnative richness in more benign (wetter) sites compared to harsher (drier) sites (Figures 1G and 2B),
as our model showed. In clearcut communities, both native and nonnative species increased towards
more benign sites (Figures 1B,E and 2A). Modeled nonnative richness was, on average, ~3-fold
higher in more benign sites (higher precipitation) than in harsher sites (lower precipitation) in this
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land-use type. Thus, the modeled nonnative richness was higher in clearcuts compared to native
communities along nearly the entire precipitation gradient, with the exception of the drier sites
(Figures 1D,E and S1E). However, the proportion of nonnative species in clearcuts did not change
with precipitation (slope close to zero) although the slope was marginally different compared to
native communities (Figures 1H and 2B). Our model indicated that, compared to native communities,
plantations had fewer nonnative species in harsher sites but the difference in native and nonnative
richness was diluted in more benign sites (Figures 1D,F and S1F).
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Figure 2. Modeled rate of change of native and nonnative richness (A), and proportion of nonnative
species (B) along the precipitation gradient. Points represent the mean estimated slope of the
linear model that regressed richness/proportion with origin (only for richness), land-use type,
and precipitation. Vertical lines are 95% confidence intervals (95 CI) of the posterior distribution. Slopes
in control communities represent the rate of change of species richness/proportion with precipitation.
Responses were considered different between native and nonnative species and among land-use types
when 95 CI did not overlap with each other or with zero, respectively. Slopes in clearcut and plantation
communities are relative to native communities (i.e., effect size). A positive slope indicates that species
richness/proportion increased at a higher rate than in native communities, while a negative slope
means that species richness/proportion decreased at a lower rate than native communities.

The modeled native plant cover was lower in clearcuts and plantations in comparison to
native communities along the precipitation gradient (Figures 3A–C and S2B,C). Instead, our model
showed that nonnative cover increased with precipitation (Figure A1A), following a similar pattern
as nonnative richness. In the harsher sites, nonnative cover in clearcuts was similar to native
communities, but in clearcuts, it tended to increase towards more benign sites (Figures 3D,E and S2E).
Proportion of nonnative cover decreased as sites became wetter in native and clearcut communities
(Figures 3G,H and A1B). In plantations, the modeled native and nonnative cover was close to zero
along the precipitation gradient, but nonnative cover increased as sites became more benign compared
to native communities (Figures 3C,F and S2F).
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Figure 3. Estimates of native cover (A–C), nonnative cover (D–F), and proportion of nonnative cover
(G–I) along a precipitation gradient for each land-use type (native, clearcut, and plantation), resulting
from the hierarchical linear model. The black curve represents the mean estimate of the model that
regressed cover/proportion with origin (only for cover), land-use type, and precipitation. Gray lines
correspond to 1000 simulations from the posterior distributions of the estimated parameters.

Clearcut and native communities were significantly different in terms of species composition and
species’ relative abundance (F = 3.06, p-value = 0.001; Figure 4). The stress value obtained from the
NMDS was 0.15, suggesting that the ordination was a good representation of the observed distances in
the reduced dimensions. The differences among clearcuts and native communities were high (Bray
Curtis distances higher than 0.5 in all cases) along the precipitation gradient. As the adonis test
shows, the differences in community structure among land-use types varied with level of precipitation
(F = 1.74, p-value = 0.001). Pairwise comparisons indicated greater differences between clearcuts and
native communities in the more benign sites relative to the harsher sites (F = 1.83, p-value = 0.006),
as suggested by NMDS (Figure 4). Additionally, the diversity of clearcuts increased with precipitation
(Figures 5 and A2); clearcuts were less diverse than native communities in the drier sites and became
more diverse in the wetter sites (Figures 5 and S3B). Likewise, the dissimilarity among plantations and
native communities was also affected by the precipitation gradient (F = 1.80, p-value = 0.01). Finally,
species turnover along the precipitation gradient (i.e., Simpson beta-diversity index (BSIM)) was high
for overall species composition (BSIM-control = 0.876, BSIM-clearcut = 0.851, BSIM-plantation = 0.713) and for
nonnative species composition (BSIM-control = 0.871, BSIM-clearcut = 0.814, BSIM-plantation = 0.692). In all
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land-use types, the identity of overall species composition and nonnative species alike varied along
the gradient [40].Forests 2018, 9, x FOR PEER REVIEW  9 of 18 
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Figure 4. Non-metric multidimensional scaling (NMDS) ordination plot of communities in
two-dimensional scales. Each point represents the ordination score of a community, and the distance
between any two points represents the difference between those two communities according to
Bray Curtis distances. Communities that are closer together are more similar in composition,
while communities that are farther apart are less similar. Ellipses represent 95% confidence intervals
around the centroid of each land-use type. Colors indicate different land-use types: green for native
communities, blue for clearcut communities, and red for plantation communities. Arrows point to
the sites with higher precipitation. Point size indicates the mean annual precipitation of each site,
where the larger the size of the point, the wetter the site.
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Figure 5. Estimates of the Shannon diversity index along the precipitation gradient for each land-use
type: native (A), clearcut (B), and plantation (C), resulting from the hierarchical linear model. The black
curve represents the mean estimates of the model that regressed Shannon with land-use type and
precipitation. Gray lines correspond to 1000 simulations from the posterior distributions of the
estimated parameters.

Changes among land uses and along the gradient on the community descriptors were accompanied
by changes in species dominance. Overall, clearcuts had greater relative cover of annual and perennial
herbs and lower relative cover of shrubs and trees than native communities (Table A1). In clearcuts,
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the native tree Aristotelia chilensis and the non-natives Holcus lanatus (annual herb), Pseudotsuga menziesii
(tree), Cirsium vulgare (annual/biannual herb), Pinus ponderosa, and Rumex acetosella had the highest
cover values (Table S2). In contrast, in native communities, the most abundant species were the
native perennial herb Chusquea culeou, the native trees Nothofagus antarctica, Schinus patagonicus,
and Maytenus boaria, and the native shrubs Berberis microphylla and Colletia hystrix (Table S2). Plantations
showed lower total cover of both native and nonnative species but higher relative cover of trees than
clearcuts and native communities (Table A1). The most abundant species in plantations were the
non-native tree Pseudotsuga menziesii, and the rest of the species were notably less abundant than in the
other community types (Table S2). Furthermore, we found a high level of turnover where few nonnative
species occurred in more than half the sites (Table S2).

4. Discussion

Our results support the hypothesis that clearcut communities are more invaded by nonnative
species than native communities. Proportion of nonnative richness and cover were higher in clearcut
communities along the entire precipitation gradient. These results are similar to other cases previously
reported where the removal of mature nonnative pines led to secondary invasions [10,30,32,51],
but see [52]. However, Pauchard and Alaback [53] did not find high levels of invasions after
pine clearcutting in the native range of the pine species. Disturbance generated by the removal
of nonnative pines may increase resource availability and favor nonnative species, as suggested by the
fluctuating resource hypotheses [54]. This occurs either by reducing resource uptake [33,54,55] or by
increasing resource supply through residual biomass of the harvested trees [30,56]. However, these
effects are more likely to occur immediately after clearcutting [56], which suggests that long-lasting
legacy effects of pines may influence secondary invasions. In fact, pines produce below-ground
impacts that can indirectly affect post-removal above-ground communities [57]. For instance, pines
can reduce soil nutrient pools [58], decomposition rates [59], and soil pH [60,61]. Pines can also
affect soil biota and native mutualisms [31,62,63]. Thus, ecological legacies of pines can indirectly
promote the performance of nonnatives while hindering native species. For example, in New Zealand,
the nonnative Pinus contorta altered biogeochemical cycles and increased ectomycorrhizal inoculum,
which consequently generated a no-analog assemblage of species dominated by nonnative grasses and
herbs after pine removal [30].

Native and nonnative species richness in clearcuts was higher at sites with the highest amount of
precipitation. This suggests that native-rich communities tended to have more nonnative species than
native-poor communities in clearcuts [12,13]. One possible explanation is that in drier sites, there would
be fewer nonnative species adapted to the harsher conditions to be able to rapidly establish [6,14].
This would likely be due to introduction biases that altered nonnative species pools; nonnative species
adapted to harsher conditions may be underrepresented in the nonnative species pool compared to
nonnative species adapted to high-resource levels [64]. Instead, in the wettest sites, more benign
conditions would not filter out the stress-tolerant species. Therefore, clearcut communities would
have higher native and nonnative species richness and abundance [12]. The opposite occurred in
the native communities where nonnative species richness decreased in wetter sites. This led us to
hypothesize that under benign conditions, biotic resistance in native communities is higher than in
clearcuts. In undisturbed conditions, an increase in biotic resistance in native communities may explain
the lower nonnative cover and richness. Biotic resistance in native communities may be mediated
by an increase in native cover. Previous studies have discussed the role of native species enhancing
resistance to invasion owing to negative interactions among native and nonnative species [18–20].
Overall, young clearcuts showed greater nonnative invasions (had lower resistance to invasion) in
more benign sites compared to native communities.

Regardless of secondary invasion, the success of passive restoration depends on the capacity
of native species to (1) survive underneath pines and grow after removal or (2) recolonize the site
from the soil seed bank or seed rain [9]. Here, we found that plantations had a negative effect on
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native richness and cover along the gradient, as has been previously reported in Patagonia [65,66].
This suggests that plantations are not harboring native species in either the harsh or in the more benign
environments and that it is unlikely that they determine native community composition in clearcuts.
However, under more benign environmental conditions than evaluated in our study, plantations can
provide habitats for native species [67,68] and may accelerate passive restoration. For example, in more
benign environments (1855 mm of mean annual precipitation) in New Zealand, Brockerhoff et al. [69]
found a similar understory cover of native species in plantations and in the native forests. Seed banks
allow new species that do not occur in the understory vegetation to occur after the removal of pines.
Although our study did not directly address the role of seed banks influencing species composition,
evidence suggests that soil seed banks are mainly dominated by nonnative species in pine-invaded
communities around the world [10,70] and in other disturbed communities in Patagonia [71]. However,
the importance of seed banks determining native vegetation dynamics in Patagonian communities is
low [72,73] and variable along the precipitation gradient [73].

As we expected, young clearcut communities converge with native communities in the harshest
sites. We hypothesized that the current high-light environment of the clearcuts favors the dominant
native shade-intolerant species found in the harsher sites (steppe) and hinders native shade-tolerant
species commonly found in the more benign sites (forest). Patterns of diversity suggest that the increase
in native and nonnative richness in clearcut communities is driven by an increase in species abundance.
Thus, the differences among clearcuts and native communities along the gradient could likely be
explained by the higher proportion of nonnatives found in clearcuts across the gradient. Moreover,
clearcuts presented a higher relative cover of annual herbs and lower relative cover of shrubs and trees
in comparison with native communities, especially in the more benign sites. As native communities
are mainly dominated by shrubs and trees, native species in clearcuts are notably different from those
from native communities, especially in the wettest sites. We also found high species turnover along
the gradient. Nonnative species in the harsher sites may not be a subgroup of those established in
the more benign sites. Overall, one possibility is that clearcuts would need more time for passive
restoration to succeed, particularly if the stage dominated by annual herbs is transient or facilitates the
establishment of longer-live species typical of native communities. A more pessimistic scenario is that
clearcut trajectories diverge from native communities, leading to alternative states, which can occur
when plantations are burned [26]. Additionally, differences among plantation and native communities
can be due to the extremely low diversity and understory cover found in plantations.

If the goal is to restore native communities following invasion, clearcut practices may not be
an ideal technique to manage pines in Patagonia. Alternative practices, such as selective logging
or techniques that leave dead pines standing (e.g., through girdling or herbicide application), may
alleviate abiotic conditions (e.g., light, moisture) and promote native species compared to nonnative
species if native propagules are not limiting [51,53,69]. Moreover, the management of current
plantations (e.g., opening canopy) may increase understory biodiversity and accelerate clearcut
restoration [65]. Additionally, management timing can influence restoration outcomes [23,66]. It has
been found that the removal of pines allowed the regeneration of native communities in early stages
of invasion. However, larger legacy effects appeared in later stages of invasion, hindering passive
restoration [9,10,30]. In a more pessimistic scenario, return to the original native community may
require additional interventions such as the re-introduction of locally extinct native species and
their mutualists, or the modification of habitat conditions to make them more suitable for native
species establishment [31]. It is important to note that secondary invasions may also generate
economic problems by hindering the growth of desired species. For example, in its native range,
Pseudotsuga menziesii (a species of interest for forestry worldwide) was negatively affected by the
previous presence of the invasive nitrogen fixer Cytisus scoparius [74], a common nonnative species in
clearcut communities in our study area.

Our work provides empirical evidence that furthers our understanding of the response of native
and nonnative species composition to management under different environmental conditions. Thus,
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it may contribute to improve management approaches towards nonnative species and help the
development of a theoretical framework for biological invasions [2]. Our results highlight the need
to consider environmental context in the management of nonnative species. In harsh environments,
a lower number of nonnative species respond positively to the removal of a primary invader compared
to more benign environments, which also may have lower population and individual growth rates,
as suggested by lower nonnative cover. Therefore, managers may have more time to manage or control
the secondary invaders in harsher sites in comparison to more benign ones [2,6]. However, to achieve
conclusive results, further studies should increase the sampling effort and time elapsed since nonnative
removal, as well as conduct experimental studies that address the mechanisms underlying secondary
invasions’ patterns. Beyond that, based on our findings, it is not likely that clearcut communities that
are already invaded by multiple nonnative species will recover and resemble native communities
through passive restoration.

5. Conclusions

Removal of nonnative pines drives the secondary invasion of multiple nonnative species, altering
plant species composition relative to those of native community assemblages. However, nonnative
species richness and cover were higher in more benign (wetter) sites and clearcut communities were
more similar to native communities in the harshest (drier) sites. The results of our work highlight the
inefficacy of clearcutting to manage nonnative pines and restore native communities, especially in the
wettest sites. Our conclusions also draw attention to the importance of the environmental context of
management and reinforce recent arguments [2,6] that account for the biotic and abiotic context of
nonnative species management as crucial.
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Figure A1. Modeled rate of change of native and nonnative cover (A), and proportion of nonnative 
cover (B) along the precipitation gradient. Points represent the mean estimated slope of the 
hierarchical linear model that regressed cover/proportion with origin (only for cover), land-use type, 
and precipitation. Vertical lines are 95% confidence intervals (95 CI) of the posterior distribution. 
Responses were considered different between native and nonnative species and among land-use 
types when 95 CI did not overlap with each other or with zero, respectively. Slopes in clearcut and 
plantation communities are relative to native communities (i.e., effect size). A positive slope means 
that cover/proportion increased at a higher rate than in native communities, while a negative slope 
means that cover/proportion decreased at a lower rate than native communities. 

 
Figure A2. Estimated rate of change of the Shannon diversity index along the precipitation gradient. 
Points represent the mean estimate of the slope of the hierarchical linear model that regressed 
Shannon with land-use type and precipitation. Vertical lines are credible intervals of 95% (95 CI) of 
the posterior distribution. Responses were considered to be different when 95 CI did not overlap with 
zero. For clearcut and plantation communities, the slopes represent the changes in the effect size of 
the treatment (i.e., relative to native communities) with precipitation. A positive slope means that 
Shannon diversity increased at a higher rate than in native communities, while a negative slope means 
that Shannon diversity decreased at a lower rate than native communities. 

  

Figure A1. Modeled rate of change of native and nonnative cover (A), and proportion of nonnative
cover (B) along the precipitation gradient. Points represent the mean estimated slope of the
hierarchical linear model that regressed cover/proportion with origin (only for cover), land-use
type, and precipitation. Vertical lines are 95% confidence intervals (95 CI) of the posterior distribution.
Responses were considered different between native and nonnative species and among land-use
types when 95 CI did not overlap with each other or with zero, respectively. Slopes in clearcut and
plantation communities are relative to native communities (i.e., effect size). A positive slope means
that cover/proportion increased at a higher rate than in native communities, while a negative slope
means that cover/proportion decreased at a lower rate than native communities.
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Figure A2. Estimated rate of change of the Shannon diversity index along the precipitation gradient.
Points represent the mean estimate of the slope of the hierarchical linear model that regressed Shannon
with land-use type and precipitation. Vertical lines are credible intervals of 95% (95 CI) of the posterior
distribution. Responses were considered to be different when 95 CI did not overlap with zero.
For clearcut and plantation communities, the slopes represent the changes in the effect size of the
treatment (i.e., relative to native communities) with precipitation. A positive slope means that Shannon
diversity increased at a higher rate than in native communities, while a negative slope means that
Shannon diversity decreased at a lower rate than native communities.
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Table A1. Mean total cover (%) and mean cover (%) according to life forms (perennial herbs, annual
herbs, shrubs, and trees) for each land-use type at each site.

Sites Land-Use
Type Precipitation Total

Cover
Perennial

Herbs
Annual
Herbs Shrubs Trees

AA 2 Native 619 79.1 25.9 0.0 53.2 0.0
AA 2 Plantation 619 1.3 0.3 0.0 0.0 1.0
AA 2 Clearcut 619 15.5 0.9 0.2 1.7 12.8
AA 1 Native 648 70.4 0.0 0.0 10.8 59.7
AA 1 Plantation 648 3.2 1.2 0.0 2.0 0.0
AA 1 Clearcut 648 0.5 0.5 0.0 0.0 0.0
MC Native 805 117.4 30.5 15.6 25.5 45.8
MC Plantation 805 0.3 0.0 0.0 0.0 0.3
MC Clearcut 805 31.8 20.8 9.1 1.7 0.3
SJ 2 Native 824 65.3 10.4 3.6 28.5 22.8
SJ 2 Plantation 824 0.0 0.0 0.0 0.0 0.0
SJ 2 Clearcut 824 59.4 28.8 0.3 0.0 30.4
SJ 3 Native 827 33.5 5.5 3.1 20.7 4.3
SJ 3 Plantation 827 1.0 0.0 0.0 0.0 1.0
SJ 3 Clearcut 827 52.8 42.5 8.7 0.0 1.7
SJ 1 Native 846 108.3 24.2 37.4 31.3 15.4
SJ 1 Plantation 846 2.0 0.0 0.0 0.7 1.3
SJ 1 Clearcut 846 27.6 16.1 1.1 0.0 10.4

CON 1 Native 863 67.3 10.8 10.0 5.8 40.7
CON 1 Plantation 863 3.0 0.0 0.0 0.3 2.7
CON 1 Clearcut 863 62.3 10.3 48.1 0.5 3.5
CON 2 Native 876 66.5 10.1 1.1 50.4 4.8
CON 2 Plantation 876 2.2 1.4 0.0 0.0 0.9
CON 2 Clearcut 876 52.6 19.0 16.8 2.1 14.8
AMU 1 Native 973 106.3 27.8 0.3 24.3 53.8
AMU 1 Plantation 973 45.7 2.4 0.9 0.1 42.3
AMU 1 Clearcut 973 20.7 2.5 17.8 0.0 0.4
AMU 3 Native 983 96.3 11.3 3.6 18.0 63.4
AMU 3 Plantation 983 0.0 0.0 0.0 0.0 0.0
AMU 3 Clearcut 983 108.1 8.9 41.3 1.7 56.2
AMU 2 Native 995 97.6 7.6 0.6 25.5 63.9
AMU 2 Plantation 995 14.9 0.0 0.0 0.0 14.9
AMU 2 Clearcut 995 94.8 0.9 44.1 3.1 46.7

PM Native 1181 20.6 0.0 0.0 6.0 14.4
PM Plantation 1181 0.3 0.0 0.0 0.0 0.3
PM Clearcut 1181 68.2 32.3 17.7 18.2 0.0
VM Native 1216 38.2 23.3 0.3 8.3 6.4
VM Plantation 1216 9.0 0.1 0.0 0.0 9.0
VM Clearcut 1216 65.8 15.5 9.6 3.6 37.2
QQ3 Native 1262 111.3 76.8 0.0 0.0 34.5
QQ3 Plantation 1262 3.7 3.4 0.0 0.2 0.1
QQ3 Clearcut 1262 88.3 17.5 1.1 2.1 67.6
CF Native 1265 56.5 1.0 0.0 1.9 53.5
CF Plantation 1265 21.5 2.6 0.4 11.7 6.8
CF Clearcut 1265 48.4 17.8 20.4 9.0 1.2

QQ2 Native 1274 59.5 54.6 0.0 0.0 4.9
QQ2 Plantation 1274 0.0 0.0 0.0 0.0 0.0
QQ2 Clearcut 1274 99.0 47.3 47.3 3.8 0.6
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