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Polyphenols are bioactives claimed to be responsible for some of the health benefits provided by fruit
and vegetables. It is currently accepted that the bioactivities of polyphenols can be mostly ascribed to
their interactions with proteins and lipids. Such interactions can affect cell oxidant production and cell
signaling, and explain in part the ability of polyphenols to promote health. EC can modulate redox
sensitive signaling by: i) defining the extent of oxidant levels that can modify cell signaling, function, and
fate, e.g. regulating enzymes that generate superoxide, hydrogen peroxide and nitric oxide; or ii) regu-
lating the activation of transcription factors sensible to oxidants. The latter includes the regulation of the
nuclear factor E2-related factor 2 (Nfr2) pathway, which in turn can promote the synthesis of antioxidant
defenses, and of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway, which
mediates the expression of oxidants generating enzymes, as well as proteins not involved in redox re-
actions. In summary, a significant amount of data vindicates the participation of EC in redox regulated
signaling pathways. Progress in the understanding of the molecular mechanisms involved in EC bio-
logical actions will help to define recommendations in terms of which fruit and vegetables are healthier
and the amounts necessary to provide health effects.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human diet is highly based on foods of plant origin. Plants
contain a number of nutrients that animals cannot synthesize and
thus have to incorporate from the diet. Examples of these chemicals
are vitamins such as vitamin A, vitamin E, and in certain mammals,
vitamin C. Extending the list of chemicals providing benefits for
animal biology are those called plant bioactives. The term bioactive,
encompasses many different chemical species that are not essential
nutrients but can target a plethora of animal cell components
(Lupton et al., 2014). Following the observed association between
the consumption of fruits and vegetables and human health (Liu,
2013; Aune et al., 2017; Fulton et al., 2016; Hartley et al., 2013;
Appel et al., 1997), plant bioactives emerge as molecules that
complement the actions of nutrients.

Polyphenols are bioactives claimed to be responsible for some of
the health benefits of fruit and vegetables (Herrera et al., 2009;
Farmacia y Bioquímica, Uni-
es, Argentina.
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Hertog et al., 1993; McCullough et al., 2012; Buijsse et al., 2006;
Curtis et al., 2012; Hooper et al., 2008). For decades, their positive
effects on health were mostly explained considering polyphenol
antioxidant capacity, based on free radical scavenging reactions.
However, it is currently accepted that the bioactivities of poly-
phenols can be mostly ascribed to their interactions with proteins
and lipids. Such interactions can affect cell oxidant production and
cell signaling, and explain the ability of polyphenols to promote
health.

For practical reasons, this review will focus on a single poly-
phenol, the flavonoid (e)-epicatechin (EC) (Fig. 1). EC and EC-
containing foods were used in several clinical trials and have
shown to mostly affect NO metabolism and protect from metabolic
disorders (Dower et al., 2015; Rassaf et al., 2016; Gasper et al., 2014;
Ramirez-Sanchez et al., 2013; Sansone et al., 2017). The effects of EC
(as a parent compound), EC oligomers (procyanidins), and EC me-
tabolites (ECm) will be discussed considering their potential sites of
action. ECm are compounds derived from EC and procyanidins after
ingestion andmetabolism. The information available on galloylated
derivatives of EC, e.g. (e)-epicatechin gallate, (-)-epigallocatechin,
and (-)-epigallocatechin gallate will not be discussed in this paper.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Chemical structure of (-)-epicatechin.
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2. (e)-Epicatechin metabolism in mammals: overview

EC has the C6-C3-C6 flavonoid chemical structure which con-
sists of two aromatic rings (A and B) linked by a three-carbon chain,
forming an oxygenated heterocycle (ring C) (Fig. 1). The absorption,
distribution, metabolism, and excretion (ADME) of EC in mammals
have been extensively described before (Crozier et al., 2010;
Ottaviani et al., 2016; Beekmann et al., 2012; Redan et al., 2017;
Borges et al., 2017; Ottaviani et al., 2015; Barnett et al., 2015;
Rodriguez-Mateos et al., 2015; Actis-Goretta et al., 2012, 2013).
Briefly, in terms of metabolism, once ingested EC can: i) exert ef-
fects at the gastrointestinal tract as the parent compound; ii) be
absorbed and conjugated by phase II enzymes, e.g. to (e)-epi-
catechin-30-O-glucuronide, 30-O-methyl-(e)-epicatechin-5-sulfate
and (e)-epicatechin-30-sulfate; and iii) be metabolized by the
microbiota to conjugated compounds or to smaller molecules (ring
fission products, e.g. g-valerolactone metabolites) that can be
absorbed, enter the circulation and reach distal organs (Ottaviani
et al., 2016; Williamson and Clifford, 2017).

Procyanidins, especially those larger than dimers, are not
absorbed but can be metabolized in the intestine by themicrobiota.
In addition, EC, ECm and procyanidins can change microbiota
profiles (Oteiza et al., 2018). In summary, the early interactions of
EC at the gastrointestinal tract are mostly related to the parent
compound; while in other tissues most effects are mainly ascribed
to ECm, which bioactivity may or may not be different from that of
EC.

3. Oxidants, antioxidants, and (e)-epicatechin

After the discovery of superoxide dismutase in the late sixties
(McCord and Fridovich, 1969) and the subsequent findings of a
relationship between oxygen radical production and disease, the
relevance of molecules able of trap radicals, defined as antioxidants,
grew steadily as potential agents for preventing or cure diseases.
The “free radical field” evolved and now it is accepted that most of
the oxidant/antioxidant reactions in cells define changes in redox
signaling that ultimately trigger regulatory events (Fraga, 2007;
Sies, 2017; Azzi, 2017). Only when the oxidant production is out
of control, it can lead to irreversible cell damage. The changes in
redox signaling involves reactions leading to phosphorylations and
dephosphorylations, sulfide oxidation, and NADPH oxidation,
among many others. This is different from the previous concept
that oxidative stress (imbalance between oxidants and antioxi-
dants) irreversibly damages cell components, and that protection
by free radical trapping (direct) antioxidants, would be of benefit to
preserve cell survival/function. Thus, cell oxidant production,
depending on qualitative and quantitative conditions, can generate
either reversible changes in cell functions (redox signaling), or
irreversible cell damage (Sies, 2017).

Considering its chemical characteristics, EC, as many other plant
phenolics, is able to trap oxygen-derived free radicals in
thermodynamically-favored reactions (Fraga, 2007; Galleano et al.,
2010b; Fraga et al., 2010). However, given the limited bioavailability
and extensive metabolism in most organs and tissues (Rein et al.,
2000; Wang et al., 2000; Holt et al., 2002), the direct antioxidant
actions of EC and ECm are limited to tissues exposed to high
amounts of EC, e.g. the gastrointestinal tract after EC ingestion
(Galleano et al., 2010b). In this manner, both oxidants present in
foods, and oxidants produced by intestinal epithelial cells, could be
scavenged by EC, reducing the uptake of oxidized toxins and/or
mitigating the oxidative damage/dysfunction of mucosal cells
(Oteiza et al., 2018).

On the other hand, the presence of hydroxyl groups and double
bonds in the EC molecule would allow interactions with proteins
and lipids, mostly structural lipids forming membranes. These in-
teractions can define the oxidant/antioxidant status of the cell and
the activation of redox signaling (Fraga and Oteiza, 2011; Fraga,
2007; Fraga et al., 2010).

4. Redox cell signaling: overview

Regulation of redox cell signaling can be understood considering
two different situations; i) the presence of high oxidant levels that
can modify cell signaling, structure and function; or ii) stimuli that
commit cells to generate oxidants both as a regulatory event and/or
as a damaging (oxidizing) event (Winterbourn, 2015; Winterbourn
and Hampton, 2008). Under certain conditions, cells can increase
oxidant production, usually generating superoxide, which leads to
lipid and sulfhydryl oxidation, and related redox events. This can
trigger responses related or unrelated to free radical reactions. One
example is the activation by oxidants of transcription nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) leading to a
higher production of cytokines. On the other hand, many non-
redox regulatory events, e.g. angiotensin II or insulin binding to
their respective receptors, prompt the production of oxidants via
NADPH-oxidase (NOX) activation (Nguyen Dinh Cat et al., 2013;
Besse-Patin and Estall, 2014). While this is a regulatory mecha-
nism, if out of control it can lead to cell damage.

In addition, the regulation of redox signaling can occur through:
i) generic effects, e.g. alterations of membrane physical properties,
which can in turn affect the activity of signaling proteins, or the
regulation of oxidant production that secondarily modulates a
number of redox sensitive responses; and/or ii) specific in-
teractions, with particular components of a signaling cascade, e.g.
receptors, transcription factors, and enzymes, that lead to the
regulation of the pathway.

The following sections will focus on different mechanisms by
which EC and ECm can protect biological systems from alterations
in redox signaling. Evidence will be presented showing that EC and
ECm can either reduce oxidant production or inhibit non-oxidative
pathways leading to oxidant production through generic or specific
mechanisms.

5. (e)-Epicatechin and the production of superoxide and
hydrogen peroxide

Superoxide and hydrogen peroxide are products of the partial
reduction of oxygen, and their biological production is mainly the
result of enzymatic reactions by oxidoreductases. Among these
enzymes, NADPH oxidases (NOX) appear as the most sensitive to be
activated and the ones able to respond to different stimuli gener-
ating amounts of oxidants that can reach levels toxic for cells (Sies,
2017). Additionally, several members of the mitochondrial respi-
ratory chain are sources of superoxide. However, the tight regula-
tion of mitochondria respiration, and the difficult access of many
stimuli to mitochondria, would make such source quantitatively
less important when cells are challenged.

Additionally, more than thirty enzymes are putative sources of
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superoxide and hydrogen peroxide, being the physiologically most
important xanthine oxidase and cytochrome P450 oxidases (Sies,
2017; Go et al., 2015). The associations between EC and ECm with
these sources of superoxide and hydrogen peroxide will be dis-
cussed in the following sections.
5.1. NADPH-oxidases

NOXs catalyze the transfer of electrons from NADPH to oxygen
to produce superoxide (Brandes et al., 2014; Schr€oder et al., 2017).
Originally described as enzymes mediating neutrophil bactericidal
actions, today it is accepted that NOXs are ubiquitous in most an-
imal cells, and are activated upon the interaction of an ample and
heterogeneous number of stimuli with their target receptors. The
most important NOX isoforms which modulation was associated
with EC consumption are NOX2, NOX1, and NOX4. For this reason,
these, but not other isoforms, e.g. NOX3, NOX5, Duox1 and Duox2,
will be discussed in this review.

NOX2 is inactive under non-stimulated (basal) conditions. To be
active it needs to be assembled into a multimer composed by a
transmembrane catalytic subunit (gp91phox), a membrane stabi-
lizer subunit (p22phox), and several cytosolic subunits, i.e.
p47phox, p40phox, and p60phox. The phosphorylation of p47phox
triggers the recruitment of other cytosolic subunits and their
translocation to the membrane. NOX1 is also a multimeric enzyme,
homologue to NOX2, constituted by a transmembrane catalytic
subunit (NOX1), the stabilizer subunit p22phox, and several cyto-
solic subunits, i.e. NOXO1 (that has a role similar to p47phox), and
NOXA1 (Schr€oder et al., 2017). Both, NOX2 and NOX1 produce and
release superoxide. By contrast, NOX4 is a constitutive dimeric
enzyme that releases hydrogen peroxide. NOX4 is formed by a
transmembrane catalytic subunit (NOX4) and a stabilizer subunit
(p22phox), and its activity has been detected in intracellular
membranes including mitochondria (Schr€oder et al., 2017;
Nisimoto et al., 2014; Block et al., 2009).

Table 1 summarizes studies done in rodents supplemented with
EC and subjected to different stress conditions, in which modula-
tion of NOX activity and/or expression were studied. In conditions
of hypertension, endotoxemia and diet-induced obesity, the
administration of EC decreased the associated NOX activation.
These effects were observed in different tissues and organs, and
Table 1
Effects of EC on superoxide production and NOX subunit expression in experimental mo

Experimental model (rodent) EC treatment Tissue EC effects

Superoxide-pro

Hypertension (rats)
DOCA-salt 10mg/kg/d; 4w Aorta Y

L-NAME ~300mg/kg/d; 4d Aorta Y

Heart Y

L-NAME 10mg/kg/d; 5w Aorta Y

Fructose-fed 20mg/kg/d; 8w Aorta Y

Heart Y

Kidney Y

Liver nd
Fat nd

Endotoxemia (rats)
LPS 80mg/kg/d; 4d Kidney Y

Obesity (mice)
High fat diet 20mg/kg/d; 15w Liver Y

Fat nd
Ileum Y

In these experimental models, increases in superoxide production and/or NOX subunit ex
EC was administered orally and amounts are expressed per kg of body weight, being EC a
which EC was administered prior to the stimulus. Symbols (Y and ¼ ) indicate relative
parameter not determined; DOCA, deoxycorticosterone acetate; L-NAME, N(G)-nitro-L-a
occurred through the modulation by EC of NOX activity and/or
expression of different NOX subunits. In most cases, the expression
of p47phox was pivotal, and in many the expression of NOX4.
Importantly, in all these studies EC treatments reduced superoxide
production, and risk factors associated with the corresponding
experimental model, i.e. high blood pressure, proteinuria, increased
fat deposition, and development of insulin resistance (see refer-
ences in Table 1).

In terms of a specific inhibition of enzyme activity, elegant ex-
periments showed that besides EC, specific ECm, i.e. 3ʽ- and 4ʽ-O-
methyl-epicatechin, were effective NOX inhibitors (Steffen et al.,
2007, 2008).

5.2. Oxidant production by mitochondria

Duringmitochondria oxidative phosphorylation to generate ATP
oxygen is reduced to water. However, some redox centers in the
chain, as complexes II and I, may leak electrons to oxygen gener-
ating superoxide or hydrogen peroxide (Boveris and Chance, 1973;
Boveris, 1984; Yin and Cadenas, 2015).

Studies in which isolated mitochondria or submitochondrial
particles were exposed to EC showed that different parameters of
mitochondrial function and oxidant production, e.g. oxygen con-
sumption, NADH oxidation, mitochondria membrane potential, and
in few cases, hydrogen peroxide production, were only marginally
affected (Moini et al., 1999; Dorta et al., 2005; Lagoa et al., 2011). A
significant decrease in hydrogen peroxide productionwas observed
when rat brain and heart mitochondria were exposed to 1 and
10 mM EC, respectively (Lagoa et al., 2011). In general, this type of
studies have the same limitations of most in vitro experiments with
flavonoids, i.e. the use of the parent compound (EC) and not of ECm,
and that assays are done at non physiological high concentrations
of EC (Fraga et al., 2014). It should be also noted that there is no
experimental evidence that EC or ECm can reach mitochondria at
biologically significant amounts, pass through the mitochondria
membranes, and affect the respiratory chain and its components, as
well as other mitochondrial structures.

5.3. Xanthine oxidase and cytochrome P450

Xanthine oxidase and cytochrome P450 are enzymes that
dels of oxidative stress in rodents.

Reference

duction NOX subunits expression

Y p47phox, Y p22phox G�omez-Guzm�an et al., 2012
Y p47phox Litterio et al., 2012
Y p47phox Piotrkowski et al., 2015
Y p22phox* G�omez-Guzm�an et al., 2011
Y p47phox, Y p22phox, YNOX4 Litterio et al., 2015
Y p47phox, Y NOX4 Calabro et al., 2016
Y p47phox,¼ gp91phox Prince et al., 2016
Y p47phox, Y gp91phox, Y NOX4 Bettaieb et al., 2014
Y p47phox, Y gp91phox, Y NOX4 Bettaieb et al., 2014

Y p47phox,¼ gp91phox, YNOX4 Prince et al., 2017

Y p47phox, Y gp91phox*, YNOX4* Bettaieb et al., 2016
.Y p47phox, Y gp91phox*, YNOX4* Bettaieb et al., 2016
Y NOX4 Y NOX1 Cremonini et al., 2018

pression relative to non-treated rodents were observed. In the EC treatment column,
dministered simultaneously with the different stimuli, except for the LPS model, in
changes associated to EC treatments; *a decrease in mRNA was also observed; nd,
rginine methyl ester; LPS, bacterial lipopolysaccharide.
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incorporate oxygen to different substrates generating as byprod-
ucts both, superoxide and hydrogen peroxide (Harrison, 2002;
Cederbaum, 2015). Both enzymes have been claimed as targets of
EC and ECm. However, structure-function studies using purified
enzymes show that EC is not a potent inhibitor of xanthine oxidase
(Beiler and Martin, 1951; Nagao et al., 1999; Cos et al., 1998) or
cytochrome P450 (Muto et al., 2001; Anger et al., 2005; Satoh et al.,
2016; Dong et al., 2016) compared to other flavonoids. There are no
reports on in vivo effects of EC on these enzymes.
6. (e)-Epicatechin and the production of nitric oxide

In mammalian cells, nitric oxide (NO) is a key molecule in cell
signaling and it has been suggested that many EC effects are
mediated through the modulation of NO bioavailability, i.e. NO
production and degradation rates. NO is produced both, enzymat-
ically (Knowles and Moncada, 1994) and non-enzymatically (Rocha
et al., 2012). Enzymatically, NO is produced by NO synthases (NOS)
using L-arginine, NADPH, and oxygen as substrates, and flavin
adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme,
tetrahydrobiopterin, and calmodulin as cofactors. There are several
NO synthases isoforms widely distributed in mammalian organs
and tissues: two constitutive NOS, endothelial (eNOS), and
neuronal (nNOS); and one inducible isoform (iNOS) (Knowles and
Moncada, 1994). NO is consumed through reactions with different
targets. These reactions include coordination with metal centers,
e.g. with the ferrous heme of soluble guanylate cyclase, formation
of S-nitrosothiols, and reaction with superoxide to produce per-
oxynitrite that results in the nitration of different biomolecules
(Heinrich et al., 2013). In addition, this reaction with superoxide
would be also responsible for diminishing NO bioavailability,
especially under conditions of high superoxide production.

It has been reported that in endothelial cell cultures, EC activates
eNOS by increasing both, the phosphorylation of its activation sites
(Ser-615, Ser-633, Ser-1177), and the dephosphorylation of Thr-495
(Ramirez-Sanchez et al., 2010). Increased eNOS phosphorylation in
Ser-1177 was also observed in aorta from animals supplemented
with EC (G�omez-Guzm�an et al., 2011, 2012). The activation of nNOS
in Ser-1417 was observed in femoris muscle of mice treated with EC
(Nogueira et al., 2011).

Vascular effects of EC have been associated to restoration of NO
bioavailability which favors vasorelaxation, and consequently, a
reduction of blood pressure (Karim et al., 2000; Schroeter et al.,
2006; Schewe et al., 2008; Fraga et al., 2011; Galleano et al., 2010,
2013). The actions of EC on NO bioavailability can be due to the
activation of NOS, leading to a higher NO production, and/or to a
decrease in NO reaction with superoxide. The latter occurs as a
consequence of EC-mediated diminution of NOX-derived super-
oxide production (section 5.1). Optimization of NO levels by EC
seems to be operative not only in the vasculature but in other or-
gans/tissues, as heart and kidney (Piotrkowski et al., 2015; Calabr�o
et al., 2016; Prince et al., 2016).

Contrary to the effects of EC on eNOS (and nNOS), EC does not
favor the production of NO by iNOS preventing or attenuating the
expression of this isoenzyme after different inflammatory stimuli
(Kim et al., 2004; Kluknavsky et al., 2016; Prince et al., 2016, 2017).
These effects were associated to the attenuation of NF-kB activation
in the context of the anti-inflammatory actions of EC (Bettaieb et al.,
2014). Through this downregulation of iNOS, ECwouldmodulate an
uncontrolled immune response.

Regarding non-enzymatic reduction of nitrite to NO that is
favored at low pH, it has been demonstrated that EC facilitates NO
formation in the stomach lumen which can potentially cause
muscle relaxation in the stomach wall (Rocha et al., 2009).
7. (e)-Epicatechin and the regulation of cell signaling

Cells sense extracellular and intracellular stimuli, which trigger
different pathways involved in cell functions and fate. Membranes
and subcellular structures are major sensing sites for these signals.
In this section, it will be revised how different cell components can
receive, translate, and terminate molecular events involved in
redox signaling and the influence of EC.

7.1. Cell membrane

The modulation of cell signaling by EC and ECm initiated at the
membrane surface underlies the responses of cells to exogenous
stimuli (Verstraeten et al., 2005, 2015; Oteiza et al., 2005; Fraga and
Oteiza, 2011). These membrane actions can occur through different
mechanisms: i) physical and chemical interactions that result in
changes in membrane physical properties, which can lead to the
activation/inactivation of receptors and other signaling molecules
associated to the membrane; ii) the regulation of the structure and/
or function of specialized domains in membranes, e.g. lipid rafts;
and/or iii) a direct interaction with proteins or lipids present in cell
membranes that are involved in signaling.

In terms of physical interactions of EC and related phenolic
compounds with membranes, it was described that their capacity
of maintaining lipid order in liposomes exposed to detergents was
determined by the hydrophilicity of the phenolic, the overall
number of hydroxyl groups, and the number of EC units forming
procyanidins (Erlejman et al., 2004). The chemical-induced changes
in lipids led to changes in liposome susceptibility to oxidation,
which were prevented by EC and procyanidins (Verstraeten et al.,
2003). An important aspect of membrane physiology is the regu-
lation of calcium homeostasis that is a major player in cell signaling.
At nanomolar concentrations, EC, dimeric and trimeric procyani-
dins regulated calcium fluxes at the cell membrane preventing the
unwanted activation of NOX, protein kinase C, and NFAT (nuclear
factor of activated T cells) in Jurkat cells (Verstraeten et al., 2008).
Given the very limited possibility of procyanidins to enter cells, all
these effects would be physiologically relevant at the gastrointes-
tinal tract, and of less or no relevance in other cells/tissues.

The interaction of EC with lipid rafts can result in the modula-
tion of signals that are initiated in these membrane domains
(Verstraeten et al., 2015). We have studied the capacity of hex-
americ procyanidins composed of six units of EC (Hex) to modulate
signals that are initiated at lipid rafts in intestinal cells. We
observed that Hex: i) inhibited NF-kB activation initiated by TNFa
(Erlejman et al., 2008); and ii) modulated the activation of NF-kB
and other pro-oncogenic signals (ERK1/2, p38 and Akt) triggered by
deoxycholic acid (Da Silva et al., 2012) (Erlejman et al., 2006).
Importantly, Hex interacted with cholesterol in lipid raftelike li-
posomes and Caco-2 cell lipid rafts (Verstraeten et al., 2013). These
interactions of procyanidins with lipid rafts can explain in part Hex
capacity to modulate redox sensitive signals and promote apoptosis
of colorectal cancer cells (Choy et al., 2016; Da Silva et al., 2012).

7.2. Plasma membrane receptors

EC intake has been empirically associated to the regulation of
several membrane receptors, mostly without proof of direct in-
teractions with the receptors. Only few reports have investigated in
detail such interactions. EC and EC bound to dextran (that blocks EC
internalization) triggers similar effects in human endothelial cells
suggesting a mechanismmediated by a plasmamembrane receptor
(Moreno-Ulloa et al., 2014). The same research group proposed a G-
protein-coupled estrogen receptor (GPER) as a target for EC based
on in silico binding studies and experiments in endothelial cells
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using GPER agonists, selective blockers, and siRNA (Moreno-Ulloa
et al., 2015). In a different set of studies, a role for specific seroto-
ninergic and opioid receptors was proposed to be involved in the
action of EC on anti-nociception in rats (Qui~nonez-Bastidas et al.,
2013, 2017). The d-opiod receptor appears to be specifically
involved in the cardiac protection by EC in mice (Panneerselvam
et al., 2010, 2013).

7.3. Mitochondria

Extending the associations between EC and mitochondria pro-
duction of oxidants (section 5.2.), the actions of EC and ECm on
mitochondria are relevant to the involvement of these organelles
controlling energetic aspects and mitochondria participation in cell
signaling.

Studies in rodents have analyzed the effects of EC oral admin-
istration on several aspects of mitochondrial physiology. Results
can be summarized as follows: i) EC administration protects
mitochondria from the damage associated to deleterious conditions
including ischemia-reperfusion (Yamazaki et al., 2014; Ortiz-Vilchis
et al., 2014), cisplatin nephropathy (Tanabe et al., 2012), and
isoproterenol-induced myocardial infarction (Stanely Mainzen
Prince, 2013); and ii) EC administration increases biogenesis that
results in increased respiratory capacity and enhances exercise
tolerance (Nogueira et al., 2011; Lee et al., 2015, 2016; Hüttemann
et al., 2012; Hüttemann et al., 2013). One explanation of those
protective effects was drawn from a study in high fat-fed rats in
which eNOS activation is a key event in the action of EC on mito-
chondria (Ramírez-S�anchez et al., 2016). This interpretation was
backed by data obtained in cultures of coronary artery endothelial
cells (Moreno-Ulloa et al., 2013; Ramírez-S�anchez et al., 2016). To
note, EC administration (100mg/d as dark chocolate and a cocoa
beverage for 3 months) to subjects with type-2 diabetes mellitus
and heart failure led to modifications in mitochondria-associated
parameters in skeletal muscle biopsies. This study showed that
EC promotes increased expression of markers of mitochondria
function (complexes I and V) and structure (proteins porin and
mitofilin). In addition, mitochondria volume and cristae abun-
dance, measured by electron microscopy, and some mitochondria
biogenesis markers were increased respect to pretreatment values
(Taub et al., 2012).

7.4. Endoplasmic reticulum

Beyond having enzymes that generate superoxide and hydrogen
peroxide, the endoplasmic reticulum (ER) can participate in redox
signaling via the unfolded protein response (UPR) system which
controls for the adequate folding of proteins (Walter and Ron,
2011). The UPR is constituted by three branches: the PKR-like ER-
regulated kinase (PERK), the inositol requiring protein 1a (IRE1a),
and the activating transcription factor 6 (ATF6). Among other
conditions, excess nutrient availability, e.g. high carbohydrate or
high fat consumption, can cause ER stress. In rodents, chronic
consumption of diets rich in fructose or fat causes ER stress in liver
and adipose tissue (Bettaieb et al., 2014). Supplementation with EC
attenuates the activation of the IRE1a branch in adipose tissue and
of IRE1a and PERK branches in the liver of high fructose-fed rats.
Consistently, supplementationwith EC also mitigates the activation
of the PERK and IRE1a pathways, but not that of ATF6, in mice fed a
high fat diet (Bettaieb et al., 2016). In both, high fructose-fed rats
and high fat diet-fed mice, ER stress occurred in parallel with
oxidative stress, which was also attenuated by EC supplementation.

Different mechanisms are proposed to be involved in the
crosstalk between the ER and oxidative stress. The PERK/ATF4/
CCAAT/enhancer binding protein homologous protein (CHOP)-
mediated induction of ER oxidase ERO1a, leads to the opening of
calcium channels in the ER which causes the CaMKII-mediated
activation of NOX2 (Li et al., 2010). While EC supplementation did
not prevent high fat diet-mediated ERO1a upregulation, it miti-
gated the upregulation of NOX2 and NOX4 and consequent oxida-
tive stress in adipose tissue (Cremonini et al., 2016). Inhibition of
oxidant production by EC, could stop the cycle of oxidative stress,
ER stress, NF-kB activation, and inflammation (Nakajima and
Kitamura, 2013), and explain the modulation of the UPR by EC.
Nevertheless, further research is necessary to understand why EC
exert selective inhibition of PERK and IRE1a UPR branches, but does
not affect the ATF-6 branch. Other mechanism of ER/oxidative
stress crosstalk is through the regulation of the transcription factor
Nrf2 by PERK (Cullinan et al., 2003). Nrf2 phosphorylation by PERK
leads to dissociation of Nrf2/Keap1 and subsequent transport of
Nrf2 to the nucleus. EC affects Nrf2 activation (see section 8.1), thus,
the modulation of PERK could be another level of regulation of
redox signaling by EC at the ER level.

Overall, from the current evidence, it is possible to propose
some associations between EC consumption and ER stress, but it is
still potential to establish causality or to identify the target/s of EC
actions and its cross talk with the production of oxidants by the ER.

8. (e)-Epicatechin and activation of redox sensitive
transcription factors

It is well established that cells have an efficient system to
transduce signals associated to the activation of transcription fac-
tors and many of them can be affected by nutrients and bioactives.
In terms of redox sensitive transcription factors, Nrf2, and NF-kB,
are those for which the effects of EC and ECm appear to have the
most significant physiological importance.

8.1. Nrf2

Nrf2 is a transcription factor considered as a master regulator of
antioxidant responses and xenobiotic metabolism. Nrf2 is activated
by a variety of stimuli, including increases of endogenous sub-
stances, oxidants, radiation, environmental chemicals, and food
xenobiotic as dietary polyphenols, (Huang et al., 2015; Houghton
et al., 2016; Siow and Mann, 2010). As a result of Nrf2 activation,
there is an increase in the expression of a group of antioxidant and
phase II detoxifying enzymes, mediated by the specific enhancer
ARE (antioxidant response element) (Rushmore and Pickett, 1990;
Nguyen et al., 2003). Examples of these enzymes are glutathione
S-transferases, heme oxygenase-1, quinone oxidoreductases, UDP-
glucuronosyl transferase, epoxide hydrase, g-glutamylcysteine
synthetase, and peroxiredoxin 1 (Rushmore and Pickett, 1990;
Nguyen et al., 2003; de Vries et al., 2008).

Mechanisms involved in Nrf2 activation by bioactives are mul-
tiple (Huang et al., 2015), and have been studied for some flavo-
noids, such as genistein and (-)-epigallocatechin gallate (EGCG), but
not for EC. However, some observational studies, essentially
focused on the brain, have shown that EC could activate Nrf2. This
opens the possibility that EC and/or ECm could directly activate
Nrf2 given the electrophilic characteristics of EC quinone formed as
product of EC oxidation with free radicals (Forman et al., 2014).
Cultures of primary cortical cells treated with EC showed the acti-
vation of Nrf2 in astrocytes, but not in neurons. Astrocytes treated
with EC showed increased glutathione levels, consistent with an
up-regulation of g-glutamylcysteine synthetase expression (Bahia
et al., 2008). EC administration in vivo showed protective effects
in the brain of mice subjected to middle cerebral artery occlusion,
in young as well as in old animals (Shah et al., 2010; Leonardo et al.,
2015), in focal ischemia (Leonardo et al., 2013), intracerebral



Fig. 2. (-)-Epicatechin in the regulation of redox signaling. Signs between parenthesis indicate activation (þ), or inhibition (-). TF ¼ transcription factors.

C.G. Fraga et al. / Molecular Aspects of Medicine 61 (2018) 31e4036
hemorrhage (Cheng et al., 2014) and traumatic brain injury (Cheng
et al., 2016). These actions were associated to Nrf2 activation and/or
increased expression of Nrf2-dependent proteins. EC was not
effective when the experiments were reproduced in knockout an-
imals for Nrf2 or in knockout animals for hemoxygenase-1.

A few studies using other cells or organs showed Nrf2 activation
associated with EC treatment, including HepG2 cells (Granado-
Serrano et al., 2010) and aorta isolated from DOCA-salt hyperten-
sive rats (Gomez Guzman, 2012).

8.2. NF-kB

Extensive research has shown that EC modulates the expres-
sion of numerous NF-kB-regulated genes involved in inflamma-
tion, metabolic diseases, and carcinogenesis, in different cell
types and in vivo rodent models of disease (Fraga and Oteiza,
2011). The regulation of the redox sensitive NF-kB pathway can
be associated to: i) the modulation of cell oxidant/antioxidant
status; ii) the inhibition of receptor-mediated NF-kB activation;
and iii) the inhibition of specific steps in the NF-kB activation
cascade.

Besides being a redox sensitive transcription factor, NF-kB spe-
cifically regulates the expression of oxidant-generating enzymes,
i.e. NOX1 and NOX4 (Manea et al., 2010). This can generate a self-
feeding cycle of NF-kB activation and increased oxidant produc-
tion, which can be disrupted by EC. In this regard, EC inhibits NF-kB
activation in association with the reduction of oxidant production
in liver, brain and ileum frommice/rats fed high fat or high fructose
diets (Bettaieb et al., 2014; Cremonini et al., 2018). In addition, this
action of EC on both NF-kB and NOX activation, was observed in
intestinal cells challenged with oxysterols (Guina et al., 2015) or
TNFa (Cremonini et al., 2018). In these inflammatory models, the
inactivation of the NF-kB and decreased oxidant production led to a
reduction of inflammation (Guina et al., 2015) and prevention of
Caco-2monolayer permeabilization (Cremonini et al., 2018). On the
other hand, the modulation of TLR-4 expression (Prince et al., 2017)
via redox-independent pathways can also define the actions of EC
on NF-kB activation.

Finally, in terms of EC affecting specific steps in NF-kB activation,
we have demonstrated that EC and its B2 dimer can inhibit NF-kB
activation pathway at multiple levels in Jurkat T (Mackenzie et al.,
2004) and in Hodgkin's lymphoma (Mackenzie et al., 2008) cells.
Functional evidence supported by a putative molecular model
suggests that B2 could interact with NF-kB proteins and prevent the
binding of NF-kB to the DNA kB sites (Mackenzie et al., 2009). The
relevance of phenolic conformation agree with the finding that
rotationally constrained variants of caffeic acid have less ability to
inhibit NF-kB-DNA binding than the parent molecule (Natarajan
et al., 1996). In the case of EC dimers, stacked rings B and A of di-
mers B1 and B2 lie very close to the positions occupied by the two
guanine rings in the NF-kB DNA consensus sequence. In addition,
the oxygen atoms of B1 and B2 are favorably placed to give rise to a
similar hydrogen-bonding pattern to that observed in the complex
with DNA. Differences between the spatial disposition of A and B
dimers series can determine the differential inhibitory effects of
these dimers on NF-kB binding to its DNA consensus sequence. This
is one example on how specific polyphenol-protein interactions,
can be driven by the structural and conformational characteristics
of polyphenols.
9. Conclusions

EC participates in the modulation of cell signaling through its
participation in redox reactions and redox sensitive pathways
(Fig. 2). Once ingested, EC either as the monomeric parent molecule
or forming procyanidins, will have bioactivities restricted to the
gastrointestinal tract. In other organs and tissues, EC bioactivities
will be mostly mediated by ECm. Integrating current knowledge, it
is possible to conclude that both superoxide and NO, and conse-
quently NOXs and NOSs, are relevant targets involved in EC bio-
logical effects. Additionally, EC affects redox sensitive transcription
factors, especially Nrf2 and NF-kB.

Further research is necessary focusing on the mechanisms
responsible for the phenomenological associations between EC
and the reduction of pathologies and health optimization. Only
with a full understanding of the molecular mechanisms medi-
ating the effects of plant bioactives on health, it will be possible
to define which fruit and vegetables, and in which amounts they
should be part of an optimal diet or pharmacological supple-
mentation. Finally, such mechanistic understanding is also
important given that the biological effects observed for EC could
be extrapolated to other flavonoids, polyphenols, and other plant
bioactives.
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