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Mitochondr ia lmatr ix :ametabol ica l ly 
differentiated space

The mitochondrial matrix is a metabolically differentiated 
intracellular space concerning superoxide (O2

-), nitric oxide (NO) and 
peroxynitrite (ONOO- ) metabolism because of the impermeability 
of the mitochondrial inner membrane to O2

-, H+ and ONOO- and the 
specific presence of relatively high concentrations of Mn-superoxide 
dismutase (Mn-SOD), about 3-10 µM.1 Superoxide anion (O2

-) is 
formed through the auto oxidation of ubisemiquinone2 at Complex 
III and of the flavin semiquinone of NADH dehydrogenises.3 In 
the mitochondrial matrix, O2

- is consumed through two diffusion-
controlled reactions (Figure 1): the disproportionate reaction catalyzed 
by Mn‑SOD (k=2.3×109 M-1  s-1)4,5 that produces O2 and hydrogen 
peroxide (H2O2);

6‒9 and the reaction with nitric oxide (NO) to yield 
peroxynitrite (ONOO-; k=1.9×1010 M-1 s-1).10 Thus, from the kinetic 
point of view, these reactions compete for O2

- degradation.

As a result of O2
- disproportionation, isolated respiring 

mitochondria produce H2O2 at rates that depend on the redox state 
of the components of the respiratory chain and, consequently, on 
the mitochondrial metabolic state.6,11 The rates of H2O2 production 
of mitochondria isolated from mammalian organs are in the range 
of 0.4-0.9 nmol H2O2×min-1×mg protein-1 in state 4 and 0.05-0.15 
nmol H2O2×min-1×mg protein-1 in state 3,1,7,11 being H2O2 generation 
in state 4 about 4-16 times higher than in state 3.1,9 Hydrogen 
peroxide in the mitochondrial cristae space originates largely from 
mitochondrial Complex III, whereas mitochondrial Complex I 
contribute to mitochondrial matrix H2O2.

12 In the aristae subspace, 
“redox nanodomains” have been described which are induced by and 
control calcium signaling at the endoplasmic reticulum-mitochondrial 

interface.13 Hydrogen peroxide transients sensitize calcium ion release 
to maintain calcium oscillation. In this scenario, H2O2 is considered 
the major redox metabolite operative in redox sensing, signaling and 
redox regulation.14 While 1-10 nM H2O2 are considered physiological 
concentrations that play a role in redox signaling pathways under 
normal conditions, higher H2O2 concentrations lead to adaptive 
responses and supra physiological concentrations (>100nM) lead to 
damage of biomolecules.14

Figure 1 Mitochondrial O2
- is consumed by two competitive diffusion-

controlled reactions: the dismutation reaction catalyzed by SOD and the free 
radical termination reaction with NO. NO and O2

- steady-state concentrations 
and SOD concentration in the mitochondrial matrix are shown between 
brackets.
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Abstract

In biological systems, ONOO- production depends on production rates of NO and O2
-, 

and on the reactions of these two free radicals with other biological components, which 
limit the local concentrations of NO and O2

-. In mitochondria, O2
- is generated through 

the auto oxidation of semiquinones at Complexes I and III, and it may suffer the SOD-
catalyzed dismutation reaction to produce H2O2 or react with NO in a classical termination 
reaction between free radicals. These diffusion-controlled reactions kinetically compete for 
O2

- degradation. Results from our laboratory have shown that even in physiopathological 
situations in which NO production is reduced, such as the mitochondrial dysfunction 
associated to stunned heart, mitochondrial ONOO- production rate may be slightly 
increased if the steady-state concentration of O2

- is augmented. The enhancement in O2
- 

concentration leads to an increase in its degradation by reaction with NO, decreasing NO 
bioavailability and increasing ONOO- production rate. Therefore, mitochondrial ONOO- 
generation is mainly driven by O2

- rather than by NO steady-state concentrations. In this 
scenario, the switch from NO-signaling pathways to oxidative damage takes place. The 
modification of crucial biomolecules by nitration or oxidation can lead to the bioenergetics 
failure that underlies physiopathological conditions such as neurodegenerative diseases, 
ischemia-reperfusion, Diabetes, endotoxic shock and aging.

© 2018 Valdez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.
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In addition, nitric oxide (NO) is produced through the reaction 
catalyzed by mitochondrial nitric oxide synthase (mtNOS), an 
isoenzyme of the NOS family located in the mitochondrial inner 
membrane that requires NADPH, L-arginine, O2 and Ca2+ for its 
enzymatic activity.15‒20 Mitochondrial NOS is a highly regulated 
enzyme.21 Several reports have shown that mtNOS is regulated 
by the O2 partial pressure in the inspired air,22‒25 the sympathetic 
autonomic system,26 the thyroid hormones,27 insulin28 and angiotensin 
II.29 As well as H2O2 generation, mtNOS activity is modified by 
mitochondrial metabolic state:19,30,31 during the transition from resting 
to active respiration, NO release decreases about 40-45%. Nitric 
oxide production depends on mitochondrial membrane potential 
(Δψ), being this dependence more important at physiological Δψ 
range (150-180mV).30,31 In addition, mtNOS expression and activity 
are positively regulated in inflammatory processes32,33 and positively 
or negatively modulated by pharmacological situations,34 such as 
haloperidol,35 chlorpromazine36 and enalapril treatments.37 Moreover, 
changes in mtNOS activity and expression have been associated 
to the role of NO as signaling molecule involved in mitochondrial 
biogenesis,38,39 understood as de novo formation of mitochondria 
during the cellular life cycle. In turn, the product of mtNOS activity, 
i.e. NO, is an effective modulator of mitochondrial function40 through 
the inhibition that it exerts over Complex IV 41‒43 and Complex III44,45 
activities. Mitochondrial NO is produced at rates of 1.0-1.5 nmol 
NO×min-1×mg protein-1 and kept at a steady-state level of about 10-9-
10-8 M in the mitochondrial matrix.30

 When O2
- and NO are synthesized simultaneously and in close 

proximity, they will combine spontaneously to form ONOO-. This 
diffusion-limited reaction is a key element in deciding the roles of NO 
in physiology and pathology.46‒48 Peroxynitrite is a strong oxidant49 
that can directly react with biomolecules by one or two-electron 
oxidations.50 Peroxynitrite oxidizes the sulfhydryl group of cysteine 
and glutathione (GSH),51 the sulfur atom of methionine,52 ascorbate,53 
and the Purina and pyramiding bases of DNA.54 However, the reaction 
rate constants are relatively slow for these second-order reactions, 
ranging from 103 to 106 M-1s-1.44 Peroxynitrite is also able to start 
the lipoperoxidation process in biomembranes and liposome’s55 and 
in isolated LDL.56 In addition, ONOO- can promote protein tyrosine 
and tryptophan nitration, and lipid nitration that serve as important 
biological markers in vivo.57,47 Tyrosine nitration affects protein 
structure and function, resulting in changes in the catalytic activity of 
enzymes, altered cytoskeletal organization, and impaired cell signal 
transduction and is thus increasingly considered as a central aspect 
of peroxynitrite-mediated cytotoxicity.58,59 Nevertheless, ONOO- is 
normally reduced by the mitochondrial reluctant NADH, ubiquinol 
(UQH2) and GSH and kept at intramitochondrial steady-state level 
of about 5-10nM.59 When the steady-state concentration of ONOO- 
is enhanced at about 20-50nM, tyrosine nitration, protein oxidation 
and damage to Fe-S centers might take place. Therefore, the switch 
from signaling pathways of NO to oxidative damage takes place. 
Peroxynitrite production rate enhancement has been found in a 
series of clinical conditions such as Parkinson’s disease,60 ischemia-
reperfusion61 diabetes,62 endotoxicshock,32 and aging.63 In these 
physiopathological situations, partial inactivation and dysfunction of 
Complex I (NADH: ubiquinone oxidoreductase) was also observed.64 
Because of the fact that mitochondrial Complex I is the major entry 
point for feeding the respiratory chain with the reducing equivalents 
and that it is one of the H+ pumps that generates the mitochondrial 

∆µH+ needed for the subsequent ATP synthesis, changes in Complex 
I activity lead to impairment of mitochondrial capacity to produce 
ATP and to cellular bioenergetics imbalance which underlies the 
above cited pathologies. Moreover, the increase in O2

- production by 
modified Complex I intensify the enhancement in ONOO- generation, 
leading to a positive feedback toward oxidative damage. Figure 2 
outlines the metabolism of reactive oxygen and nitrogen species, in 
the mitochondrial matrix.

Figure 2 Metabolism of reactive oxygen and nitrogen species in mitochondrial 
matrix. The NO produced by mtNOS can readily interact with Complexes III 
and IV. O2

- is formed at Complexes I and III and undergoes a very fast reaction 
with NO to form ONOO- or it is catabolized by Mn-SOD to form H2O2. NO 
and H2O2 are considered mitochondrion-cytosol signaling molecules.

Kinetic control of ONOO- production in 
mitochondria

Mitochondrial ONOO- generation depends on NO and O2
- 

production rates and on the reactions of these two free radicals with 
other biological components, which limit the local concentrations of 
NO and O2

-. Results from our laboratory have shown that even in 
physiopathological situations in which NO production is reduced, 
mitochondrial ONOO- production rate may be slightly increased 
if the steady-state concentration of O2

- is augmented, with the 
consequent oxidation of biomolecules or modification of proteins by 
nitration.61,65 We have observed that in myocardial stunning61,65 and in 
streptozotocin (STZ)-induced diabetes,62,39 the cardiac mitochondrial 
dysfunction implied the reduction in state 3 O2 consumption sustained 
by glutamate-malate, the decrease in mitochondrial Complex I-III 
activity, and the enhancement in H2O2 production rate (Table 1), among 
others. However, while in the mitochondrial dysfunction produced as 
a consequence of hyperglycemia, an increase in NO production rate 
(23%) and in mtNOS expression (132%)39 were observed together 
with a reduction (50%) in Mn-SOD activity, in the mitochondrial 
impairment that accompanied the initial phase of stunned heart (15 min 
of ischemia and 30 min of reperfusion), a reduction in NO production 
rate (28%), without changes in mtNOS expression and SOD activity61 
were detected, as expected for an acute stress model. Strikingly, an 
increase in tyrosine nitration (about 60-80%) of heart mitochondrial 
proteins was observed in both experimental models (Table 1).
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Table 1 Reactive species production rates and steady-state concentrations in heart mitochondria in physiopathological situations

  Myocardial stunning# STZ-induced diabetes##

  Control (0/0) I/R (15/30) Control Diabetes

H2O2 production 0.18±0.02 0.32±0.04* 0.40±0.19 0.91±0.08****

(nmol ×min-1×mg protein -1)

Mn-SOD activity 53±5 56±3 143±22 71±8*

(U×mg protein-1)

Active [Mn-SOD]### 7.4±0.7 7.9±0.4 17±3 8.5±0.9

(µM enzyme)

NO production 0.90±0.05 0.65±0.05** 0.93±0.07 1.14±0.06*

(nmol ×min-1×mg protein -1)

[ΝΟ] ss (10−9 Μ) 9.1 6.6 9.4 12

[Ο2] ss (10−11 Μ ) 4.8 8.1 4.7 21

ONOO- production (nM×s-1) 8.4 10.1 8.4 46

Tyr nitration (%) 100 178* 100 158***
#Experimental model of myocardial stunning: isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 30 min).
##Experimental model of type I Diabetes: rats were sacrificed after 28 days of Streptozotocin injection (STZ, 60 mg×kg-1, ip.) and heart mitochondrial function 
was studied.
###The concentration of Mn-SOD (µM enzyme) in the mitochondrial matrix was calculated as (µM active center)/4, because mammalian Mn-SOD is a 
homotetramer with a manganese ion per subunit. The concentration of Mn-SOD active centers was calculated taking into account the value of Mn-SOD activity, 
the amount of commercial SOD that inhibits 50% ferricytochrome c reduction by each SOD unit (1 U SOD corresponds to 4 pmol SOD), the sample protein 
concentration (0.3–1.0 mg mitochondrial protein ml−1), and a volume of 7.2 µl mitochondrial matrix×mg protein−1. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.005 significantly different respect to control (Myocardial stunning: one-way analysis of variance followed by Bonferroni 
multiple comparisons test; Diabetes, Student’s t-test).

Taking into account the experimental values of H2O2 and NO 
production rates in both physiopathological situations and the Mn-
SOD concentration in the mitochondrial matrix calculated from Mn-
SOD activity, the steady-state concentrations of O2

- and NO and the 
ONOO- production rate were estimated (Table 1) . 

Superoxide anion production rate was calculated from the 
experimental H2O2 production values and considering the 2:1 
stoichiometry of the disproportionation reaction of O2

- to H2O2,

- d [O2
-]/dt = 2 d[H2O2]/dt

In the steady-state, the production rate is equal to the consumption 
rate of a chemical species. In the case of O2

-,

- d[O2
-]/dt = d[O2

-]/dt

Superoxide is consumed by the reaction with NO (reaction I) and 
the disproportionation reaction (reaction II) catalyzed by SOD:

 1

2

k -O  NO  ONOO
−

+ →

2

2 2 2 2

+ k2 O 2 H H O O           − + → +
Mitochondrial NO is produced by mtNOS and released into the 

mitochondrial matrix where NO reacts with O2
- (reaction I), ubiquinol 

(UQH2) (reaction III) and cytochrome oxidase (cyt aa3-e
3+) (reaction 

IV):
-

1

2

-k
O NO ONOO    + →

+
3

2

 k
NO  UQH   UQH  H   NO 

• −

+ → + +

3
4

33

2 k
NO  cyt  aa Fe   cyt  aa Fe   NO

−++

+ − → − +

Thus, NO production rate was expressed as:

d[NO]/dt =-d[NO]/dt = k1 [NO] [O2
-]+k3 [NO] [UQH2]+k4 [NO] [cyt 

aa3-Fe2+]

Superoxide and NO steady-state concentrations ([O2
-]ss and 

[NO]ss) were calculated from the equations 1 and 2, respectively, 
by mathematical iteration, and using the following rate constants: 
k1=1.9×1010 M-1 s-1;10 k2=2.3×109 M-1 s-1;4 k3=1.5×104 M-1 s-1;67 

k4=4.0×107 M-1s-1.68

[O2
-]ss=2d[H2O2]/dt /(k1[NO]+k2[Mn-SOD])		   (Eq. 1)

[NO]ss=d[NO]/dt/(k1[O2
-]+k3[UQH2]+k4[cyt aa3-Fe2+])	  (Eq. 2)

Nitric oxide diffusion to and from cytosol was not included in Eq. 
2. Ubiquinol and cytochrome aa3 contents were taken as 277µM and 
5.6µM, respectively, considering a mitochondrial matrix volume of 
7.0µl×mg protein-1. 66,69

Once the O2
- and NO steady-state concentrations were calculated, 

the ONOO- production rate was estimated from Eq. 3, taking into 
account the second-order rate constant k1: 

		  d[ONOO-]/dt=k1[O2
-] [NO]	  (Eq. 3)

In the physiological conditions assessed (Table 1, control data), 
the mitochondrial O2

- steady-state concentrations calculated were 
about of 0.05nM, because of its short half-life (50-100 µs) and 
its degradation by the reaction catalyzed by Mn-SOD. In these 
experimental situations, NO steady-state concentrations have resulted 
∼9 nM, more than 100-fold higher than O2

- concentration. Therefore, 
the second-order reaction rate between O2

- and NO to produce 
ONOO- is converted in a pseudo-first order reaction respect to O2

-, 
being O2

- concentration the driving factor to generate ONOO- in a 
given time. Consequently, under normal mitochondrial conditions, 
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ONOO- production and concentration are relatively low. Moreover, 
taking into account that the rate constant of the ONOO- formation 
reaction is approximately 8 times higher than the rate constant of the 
O2

- dismutation reaction, physiological concentrations of SOD (in µM 
range) can effectively compete with NO concentration (nM) for O2

- 

consumption (Figure 1). It is known that in physiological situations, 
only about 15-20% of the O2

- generated in mitochondria is catabolized 
through its reaction with NO; but this pathway consumes about 80% 
of mitochondrial NO. On the other hand, Table I shows that although 
the mitochondrial NO steady-state concentration is reduced (28%) 
in the stunned heart, the ONOO- generation is slightly increased 
(20%), mainly because of an increase (70%) in O2

- steady-state 
concentration, leading to an increase (∼80%) in nitration of tyrosine 
residues of mitochondrial proteins. Therefore, mitochondrial ONOO- 
generation is mainly driven by O2

- steady-state concentration rather 
than by NO steady-state concentration. In pathological situations in 
which the O2

- steady-state concentration is increased and Mn‑SOD 
expression is not modified, as it is the case in the stunned heart, the 
metabolic pathway of O2

- degradation through its reaction with NO is 
exacerbated, leading to an enhancement in ONOO- generation (Figure 
3). In addition, in experimental diabetes, an increase in the NO 
steady-state (28%) was observed together with a large increment in 
O2

- steady-state concentration (3.5 fold), this latter as a consequent of 
not only the enhancement of O2

- production but also the reduction in 

SOD active concentration. This physiopathological situation caused 
a 5-fold increase in ONOO- production rate in heart mitochondria 
from diabetic in comparison with control animals. Accordingly, 
when O2

- formation is stimulated more than two-fold the rate of NO 
synthesis and Mn-SOD concentration is reduced, NO is quantitatively 
converted to ONOO- acquiring fundamental importance the ONOO--
derived chemical reactions (Figure 3). The conversion from reversible 
inhibition of cellular respiration by NO to pathological inhibition of 
mitochondrial function by the NO-derived ONOO- has been observed 
in many physiopathological conditions, and it seems to be controlled 
by O2

- steady-state concentration rather than by NO concentration. 
Mitochondrial dysfunction accompanied by ONOO- generation 
increase is a hallmark of heart hypoxia-reperfusion injury,60 sepsis,32 
diabetes,61 among others. Moreover, these results agree with the 
modulation of the NO bioavailability in the vascular endothelium, 
another interesting microenvironment. In this case, an increased 
O2

- production by NADPH oxidase (NOX 1 and NOS 2 isoforms) 
compromises the NO bioavailability, this latter fact associated.70 In a 
high-blood pressure experimental model, it has been observed that the 
flavanol(-)-epicatechin regulates NO bioavailability not only through 
the modulation of NOS activity but also by regulating O2

- production 
and NOX expression, suggesting that the reaction between O2

- and 
NO is a key pathway in the endothelium-dependent vasorelaxation 
process.70

Figure 3 schematic representations showing the changes in the steady-state concentrations of reactive oxygen and nitrogen species, in two physio pathological 
situations in which heart mitochondrial dysfunction has been observed. Mitochondrial NO production decreased in the myocardial stunning while NO 
generation increased in STZ-induced diabetes. However, mitochondrial ONOO- production was increased in both physio pathological situations due to the 
enhancement in the O2

- steady-state concentration.

Conclusion
To conclude, in physiopathological conditions, ONOO- generation 

is mainly driven by O2
- steady-state concentration. The enhancement 

in O2
- concentration increases its degradation by reaction with NO, 

declining NO bioavailability and increasing ONOO- concentration. 
This way, the switch from NO-signaling pathways to oxidative 
damage takes place, with protein tyrosine nitration, protein oxidation 

and damage to Fe-S centers. Among them, changes in Complex I 
structure and function can exacerbate ONOO- generation-secondary 
to O2

- production rate enhancement-producing to a positive feedback 
toward oxidative distress, bioenergetics failure and the subsequent 
cell death.
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