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Isoperimetric surfaces and area-angular momentum inequality in a rotating
black hole in new massive gravity
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We study the existence and stability of isoperimetric surfaces in a family of rotating black holes
in new massive gravity. We show that the stability of such surfaces is determined by the sign of the
hair parameter. We use the isoperimetric surfaces to find a geometric inequality between the area
and the angular momentum of the black hole, conjecturing geometric inequalities for more general

black holes.
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I. INTRODUCTION

Since its proposition in 2009 by Bergshoeff, Hohm, and
Townsend [1], new massive gravity (NMG) has received a
great deal of attention, particularly due to its properties in
the context of the AdS/CFT correspondence conjecture
and because a variety of exact solutions have been found
(see for example [2—4]). The theory describes gravity in a
vacuum (2 + 1) spacetime with a massive graviton. The
action in this fourth-order derivative theory is given by

1

1

S = 16:C d3x\/§{R—2ﬂ—WK], (1)
where K = R,,R* —3R?, while m is a mass parameter.
NMG admits solutions of constant curvature and possesses
a unique maximally symmetric solution of constant curva-
ture A = 2 when A = m?. Static and stationary solutions
have been found for this last case [4]. In the case of a
negative cosmological constant, the static solution found
describes an asymptotically AdS black hole with a gravi-
tational hair parameter.

In this paper, we focus on the rotating solution also found
in [4] that is also asymptotically AdS. It has a hair parameter
and the rotational parameter satisfies |a| < [, where the
parameter [ is related with the cosmological constant as
A = —1/I2. The extreme rotating case of this NMG black
hole can be included after making a change in the hair
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parameter as suggested in [5]. The extreme case is obtained
when |a| = . We are interested in the search of geometric
inequalities such as the one presented in [6] for the Kerr
black hole. We do this by finding the isoperimetric surfaces
and analyzing their stability. This method has been applied
to Reissner-Nordstrom in [7]. Geometric inequalities are an
important method to obtain physically relevant properties
of metric theories, as they relate quantities of physical
interest and tell us what type of phenomena is allowed
within the theory. For a recent review of geometric inequal-
ities in the context of general relativity, please refer
to [8].

The paper is organized as follows. In Sec. II, the family
of rotating black holes in NMG is presented. Then the
isoperimetric surfaces are found and the stability condition
determined in Sec. III. The stable and unstable cases are
determined in Sec. IV. In Sec. V, we explore the geometric
inequalities of area, mass and angular momentum for the
NMG rotating black hole and conjecture inequalities for
the general case. Finally, the conclusions are presented in
Sec. VL.

II. THE NMG ROTATING BLACK HOLE

As said, NMG is a theory that describes gravity in a
vacuum (2 + 1) spacetime with a massive graviton [1]. A
family of asymptotically AdS rotating black hole solutions
have been found in [4] and it contains a gravitational
hair parameter . The rotational parameter a is bounded
by —I < a < I, where the parameter [ is related with the
cosmological constant in the usual way, A = —1/.

© 2018 American Physical Society
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The solutions in the form presented in [4] do not include
the extremely rotating case |a| = /, which we call, from
now on, the extreme case. In order to include it, it is
necessary to redefine the hair parameter as suggested
in [5]. The new parameter is b := b1, where & is defined
below. The family of rotating black hole solutions that
includes the extreme case is given by the metric

d 2
ds? = —NFdP + ?r 4 2(dp+ NPdr)?, (2)

with
N {lJer;(l—rf)r, o)
Nt — _i(ﬂ_ba), (4)
F:i_j[‘l’_j+§(1 +§)o+12—é2(1 —5)2—;45], (5)
o= [rz_gzzu—5)—%(1—5)2]1/2, (©)
go1-4 ™

where y =4GM, the angular momentum is given by
J = Ma, M is the mass measured with respect to the zero
mass black hole and b is the hair parameter. The rotational
parameter a satisfies —/ < a </, and the extreme case is
obtained when |a| = L.

Before continuing, from (6) we see that ¢ can be taken
with either sign. If we allow it to be negative, then we
notice that making the change b — —b and ¢ — —o takes
the metric functions to themselves, that is N — N,
N? - N?, F — F. Therefore, this change does not present
new metrics, and we take only ¢ as positive in this paper,
which is also the right choice for the BTZ case (i.e., b = 0).

These solutions possess one or more event horizons.
If b <0, the coordinate of the outermost horizon, r., is
given by

1

r— % (1+ DL + 4y — b1, (8)

and the parameters need to satisfy

b2
> = —_—— 9
p 2 po 1 ©)
The condition (9) is presented in [5]. On the other hand, if
b > 0, the expression of the outermost horizon depends on
the value of the mass,

l 1 1 1 .
r+:ﬁ(1+§)i[(b212+4ﬂ)5—b1§5} if u>p, (10)

and

[ . -
r+21(1—5)5[8ﬂ+bzlz(1—f)}f ifp, >p>p_, (11)

where

b*1% (1 = &)? b2
/4+’=F( ;) and M—‘=—T(1—§)- (12)

In general, there is a curvature singularity, always hidden by
the event horizon. Also, for b < 0, the extreme limit |a| = [
corresponds to a cylindrical end, produced by the over-
lapping of the inner Cauchy horizon and the event horizon,
similar to what happens for the extreme Kerr. For details of
this analysis, see Ref. [9].

Our focus is extremality of the black holes with respect
to the angular momentum parameter. Another criteria for
black hole extremality is the vanishing of its surface gravity,
which means vanishing temperature and corresponds with
the coincidence of the event horizon with an inner Cauchy
horizon, and therefore with the existence of a cylindrical
end. For b <0, both criteria coincide; i.e., the surface
gravity of the black hole is

272
D e s ) (13)
I\ 2(1+¢)
Also, we see that, for these black holes, the same
kind of extremality can be achieved taking u = y, which
also corresponds to a cylindrical end [9] and in [5] is
considered a stronger extremality than that due to rotation,
as it is the only way to have vanishing entropy. None
of this happens for b > 0, as in that case the surface gravity
of the black hole does not vanish for any value of the
parameters, agreeing with the absence of solutions with a
cylindrical end, and consequently there are no solutions of
vanishing black hole temperature. Therefore, for b > 0, the
only criteria for extremality is with respect to the rotation
parameter.
For the presented family of rotating solutions, we are
interested in the search of geometric inequalities as the ones
presented in [6] for the Kerr black hole.

II1. ISOPERIMETRIC SURFACES
AND STABILITY CONDITION

A hypersurface in a manifold is isoperimetric if its area is
an extreme with respect to nearby hypersurfaces that enclose
the same volume. This implies that a hypersurface is
isoperimetric if and only if its mean extrinsic curvature is
constant [ 10]. We are looking for isoperimetric surfaces in the
slices of constant 7 of the spacetime. We denote these slices as
%, where 1, is a constant. As the metric in X, inherits the
axial symmetry, then the hypersurfaces of constant r are
necessarily isoperimetric. We denote these circles by %, .
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with 7, the coordinate radius of the isoperimetric surface in
Zto.l The extrinsic curvature of a hypersurface is given by

Xab = hacvcnb’ (14)

where h,,” is the projector tensor into the hypersurface, V, is
the covariant derivative operator on the manifold and n¢ is the
unit normal vector to the hypersurface (for details please refer
to [14]). The mean curvature is the trace of the extrinsic
curvature, y = y,¢, and for £, , itis

y =Y (15)
o

which does not depend on the coordinate ¢ on X, , and
therefore confirms that £, , is an isoperimetric surface in
%, - It also shows that the horizon is a minimal surface.
An isoperimetric surface is called stable if its area is a
minimum with respect to nearby surfaces that enclose the
same volume. For further discussion on isoperimetric
surfaces in the context of general relativity we refer to
[8,15,16] and for the concept of stability to [10]. It can be
shown that the non-negativity of the second variation of the
area for an isoperimetric surface X, required for it to be
stable, is equivalent to the following condition [10],

G(a) > 0, (16)

where

ﬂ@=/%ww—¥mM”+MﬂWW®,ﬂﬂ
>

and a is any function on X such that

/2 adAs =0, (18)

In (17) R, is the Ricci tensor in the Riemannian manifold,
n® is the normal vector to the surface X, y 45 is the extrinsic

"The main reason for choosing the slices of constant ¢ to look
for isoperimetric surfaces is that they respect the axial symmetry
of the spacetime; that is, %, inherits the axial symmetry. We
could have chosen a different slicing respecting this symmetry,
but we expect similar results, since the horizon is a minimal
surface. If we drop the axial symmetry by choosing a different
slicing, then it is not clear whether we would have been able to
recover the isoperimetric profile, as results concerning isoperi-
metric surfaces without symmetry are sparse. Given that ¥, is
axially symmetric, the isoperimetric surfaces are known to be of
three types, namely, circles of constant r, unduloids, and nodoids.
Furthermore, checking conditions on the Gauf} curvature for the
case at hand, it can be seen that for b < 0 the only isoperimetric
surfaces are circles of constant r. For the complete classification
and results, please refer to [11-13]

curvature of the surface X, Ay is the Laplace operator on X
and dAsy is the volume element in X.
Evaluating G(a) for our case,

F(ry) 10F
— —_ — 2 -
G(a)—[: { aby, a—a < po 2r8r(r0)>}dAz’0-’0

1 2
:r—o | {—a@éa—az (F(ro)—EE(ro))]d(ﬁ.

(19)

We recall now that if A is the Laplace operator on the unit
sphere, the eigenvalues 4, of the operator —A are given by
A = k(k+n—1) where k =0,1,... and n is the dimen-
sion of the n-spheres [17]. Then in this case the first

nonvanishing eigenvalue of the operator —85) is 4y =1,

which implies that

27 27
/0 —aaéadgbZ/O a*de (20)

and therefore, from (19),

G(a) > 1 (1 — F(ry) + %%(W) AZ” a?dgp. (21)

Considering the stability condition (16), we have that %,
is a stable isoperimetric surface if

ran

H(ro) = 1= F(ro) +EE(VO) > 0. (22)

In the following, we drop the subscript 0 in ry and consider
r as a parameter that indicates which isoperimetric surface
we are considering. What is left is to determine the stability
of the isoperimetric surfaces, and this is performed in the
following section, but before we write (22) in two con-
venient forms. From (5) and (6), we have that H can be
written as

where
l2
A== P(1-&) +84),
b’
B=—"-(1+9),
2
€= IZE(lﬂF + 4u), (24)
2 o 2
oc=Vr—A, FZWK""‘B) - €l (25)
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H can also be written as

1+¢€

H=—23>
452

h, (26)

with £ a third degree polynomial in o,

4 b’
h=—bo* +—— |1 T —epr|e
o—|—1+§{+ﬂ+ 16( 5)]0

—mmf)wwa—@+wp

+— . ( +f§) [B*2(1 — &) + 8]

[1—u5+ﬁ<1— 2| 1)
and

H>0&h>0. (28)

IV. STABILITY OF THE
ISOPERIMETRIC SURFACES

A. Stability for the BTZ black hole

If b = 0, then the BTZ black hole with mass y presented
in [18] is obtained. The stability condition (22) is H,_q > 0
with

22

[
Hh:0:1+ﬂ—ﬁ(1—fz) (29)

For this black hole, > 0, so the stability condition is

1= (30)

where r, is the critical radial position for the isoperimetric
surfaces. On the other hand, from (8), the outer horizon is

K .
ry=4L/5 1+ (31)

therefore, r, > r. and all axially symmetric isoperimetric
surfaces in BTZ in the domain of outer communication are
stable.

B. Stability in the asymptotic region and at the horizon

As an intermediate step, we want to see if the isoperi-
metric surfaces are stable in the asymptotic region, r — oo,
and close to the horizon. For the asymptotic region, we see
that o behaves as r, and therefore the leading order of the
function 4 is

h— —br, (32)

r—o0

which gives that, asymptotically,

h>0 ifb<0 and h<O0 ifb>0. (33)
So, in the asymptotic region, the isoperimetric surfaces are
stable if b < 0 and unstable if b > 0.

At the horizon, we have

A
H+—1—<1——2>F+ T, +B), (34
oL l

where a subscript + indicates that the function is evaluated
at r_. Given that F_ =0, if 6 # 0, we have

H+:1+%Wa+B) (35)

There are two situations where ¢, > 0, namely if » < 0, or
if b >0 and p > u, (for the explicit expressions for o
corresponding to the different ranges of y please refer to
[9]). In both cases, also o, + B > 0, which from (35)
implies H, > 0. The remaining situation, b > 0 and
U_ <u <py, has 6, =0 and (35) cannot be used, as
(34) is formally singular. Instead, we use (27) and (28), and
evaluating /., we have

212

2

1-8\an
b= (155 e -g 481

Every factor in this expression is positive and then 4, > 0.
We conclude that in all cases the horizon is a stable
isoperimetric surface. Also, given that all the involved
functions are continuous, then there is always a neighbor-
hood of r, where the isoperimetric surfaces are stable. It
seems that the black hole stabilizes the isoperimetric
surfaces in its neighborhood.

C. Stability for b < 0

Due to the fact that for b > 0 the isoperimetric surfaces
in the asymptotic region are unstable, we focus on the case
b < 0, which also is the one that possess the cylindrical
limit. To prove that all isoperimetric surfaces for b < 0 are
stable we perform the following steps. First, we consider
the function A for the particular case of minimal mass,
u = po. By taking its derivative with respect to ¢ and
analyzing its roots, we show that it is an increasing function
of o, and this together with the stability near the horizon of
the previous section shows that all isoperimetric surfaces
for p are stable. Then we consider the general case u > u,),
but this time we show that 4 is an increasing function of y,
and knowing from the previous step that for y the function

064043-4
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is positive, it yields that all isoperimetric surfaces are stable
for all allowed values of the parameters.
So we consider b < 0 and u = . Then,

, 4 212 )
ey, = —bo iz == (1+8B-9|e° (37)
3 214 b2
—EMﬂa—éw—jru—aP+jgu+@ﬂ. (38)

We know that for big enough o, this is an increasing
function. The derivative with respect to o is

d,h ——y>%w3171—£ﬁu+fﬂ3—@
olump = TE00 T g 16 ’
3

- B -8),

T (39)

and therefore the change from decreasing to increasing is at

=16+ PP+ (B -¢) + 16V/A]

% = (b1 +2) U0
where
B b2? bt 5
A =1 —T(l +&)(3-9) —Fgf(l +£)*(3 = 5%).
(41)
It can be checked that
bl>
o) = =2 (148 > o (#2)

and as h,_, (6.) >0, then h,_, >0 forc >o0,.
Now we consider p > uy. The derivative of h with
respect to u is

4
o’ +§blz(1 -&)o

Oh =13 T
I8 6 ey 21— £)(1 - 38)). (43)
§1+¢ g '

The biggest root is

[

o=l -8+ VAL (44)

where

Ay = (1—&)[~1284256p& + b22(1— &) (1 +42E+9£2)).
(45)

We can check directly that 6, > o, and therefore £ is an
increasing function of u for ¢ > ¢,. This completes the

proof that, for b < 0, all isoperimetric surfaces outside the
horizon are stable.

V. GEOMETRIC INEQUALITIES

We have shown that the surfaces %, , are stable
isoperimetric surfaces for b < 0. We now use these surfaces
in the search of geometric inequalities.

From the induced metric on we have that its area is
simply

NN

A = 27zry. (46)
Then, the area of the horizon is A, = 2zr, and for b <0,
it takes the explicit form

A =TS (14 P+ 4 = bIE)

Given that r, is the outermost horizon, then ry > r, and
therefore A > A, . Also A, is an increasing function of &,
and we have

(47)

nl 1
— 22 i
AL 2 A, _ﬁ(b I+ 4p),

with equality only in the extreme case.
For the angular momentum, we have J = 4% with |a| < I.
Now it is convenient to separate the analysis according to
the sign of p. Let us start considering g >0, then

M= 4TG |‘]e |’ and

(48)

el 2 |J]. (49)
where J is the angular momentum of a spacetime where the
other parameters are the same as in the extreme case.
Putting it all together, we have

xl 16G 5
A>A, >A, =— Nﬂ+——h>
2= (w1,

wl 16G 5
> Mﬂ+———J>;
(e Py
therefore, for any isoperimetric surfaces in a spacetime with

b<0and u >0,

rl 16G 3
Az—-wﬂ+——1>,
= (e + 20

and the equality is only achieved at the horizon in the
extreme case. So, a black hole with a given area cannot be
rotating at any angular momentum because it has a
maximal value depending on the hair parameter and the
cosmological constant. For the BTZ black hole, from (51),
we have that

(50)

(51)
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Ay > m\/3GIIT]. (52)

On the other hand, for ug < u <0,

zl 1 zl 1
A>A > A, =—(D*P +4p): = — (b*1> — 4|u|),
(53)
and given that || =*C|J,], so
16G
A, = <b212 ——|J |> (54)
V2

Here again, with the other parameters unchanged,
el 2 |1, s0

7l 16G 3
A, < — (PP ——=|7 > (55)
V2 ( |

We see that, in this case, the horizon area for the extreme
black hole is not bounded below by the angular momentum,
and then the areas of the isoperimetric surfaces are not
bounded by the angular momentum. In particular, for the
extreme case with p = p, which has A, =0, it has a
nonvanishing angular momentum given by |J,| = %.

In [5,19], it is proposed that the mass and angular
momentum should be measured with respect to the extreme
case with y = p. Accordingly, we redefine the mass and
the angular momentum as follows,

1
=M — My =—(b* + 4u), 56
M 0= Tes (PP 4). (56)
J:=J—-Jy=Ma—-Mya = Ma, (57)
where M, = £&, and J, = Ma. It can be noticed that J =

J and M =M in the BTZ case. These new parameters
satisfy

M >0, |T| < M. (58)

Then the area of the extreme black hole can be expressed as

A, = nlv/8GM. (59)

The angular momentum satisfies |7,| > |J| with |J,| =
MU, and fixing the other parameters, we finally have

A > 7\/8GI|J]. (60)

It is indeed surprising that the definition of M and 7,
which was motivated in [5,19] by black hole entropy
considerations, is the right definition of mass and angular
momentum regarding geometric inequalities.

To summarize, and as a conjecture for dynamical black
hole solutions of NMG, we have the following inequalities:

M >0, (61)
|T| < Ml, (62)

A > 1\/8GI|T]. (63)

To complete the analysis, we consider the case b > 0.
Here, for y < u,, we have that the horizon area is a
decreasing function of £, which means that the minimum of
the area is obtained for the minimum value of the angular
momentum. Also, for 4 < 0, the minimum angular momen-
tum does not correspond to the static case (i.e., £ =1,
J=0)butto &{=1+ bzlz’ and the area of the horizon is

zero (for details see [9]). This situation can be remedied by
redefining again the mass and angular momentum as

1
M=M-M_= = (u=p), (64)
j::J—J_:Ma—M_a:Ma, (65)
and they satisfy
M >0, -MI<J < MlL. (66)

To simplify the notation, we define the mass parameter
16G
b*I?
The area of the horizon for the corresponding mass and
angular momentum is

U=

M. (67)

0<v<uy, (68)

- . (70)

We need to consider two ranges of the mass parameter. For
0 < v < v,, the minimum of the area of the horizon with
respect to the angular momentum once the mass and other
parameters are fixed is obtained for £ = 1, that is, for the
static case, where

V. ~5.64. (71)

For v > v,., the minimum area is obtained for the angular
momentum parameter satisfying

(1+28)\/1+ 26 + 22
28 '

14284282+

(72)
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Therefore, the minimum of the area is never obtained in the
extremely rotating case, and hence an inequality in the
spirit of (60) can not be obtained. This can be expected
from the solution not having a cylindrical end, which
makes the extreme case a not typical extreme case, and
from the isoperimetric surfaces in the constant # slices not
being all stable.

VI. CONCLUSIONS

We have analyzed the existence and stability of iso-
perimetric surfaces in the ¢ = constant slices of the black
hole solutions of NMG. We concluded that the determining
factor deciding the stability of the isoperimetric surfaces
is the sign of the hair parameter b being stable for b <0
and unstable for b > 0. Also, for either sign of the hair
parameter, the isoperimetric surfaces are stable close to the
horizon, which seems to indicate that the horizon performs
a stabilizing function.

It needs to be pointed out that, previous to the work [9],
particular attention to the case b > 0 was not paid. The

conclusions of the present work support what was seen in
[9]—that the behavior of the solutions is radically different
for b > 0.

We have found geometric inequalities among the
physical parameters of the solution. It is important to state
that the particular selection of the physical parameters
is crucial at this step, and that it is surprising that a
choice based on the analysis of thermodynamical
properties ([5,19]) is the one suited to the geometric
inequalities.

To continue the analysis, that is, to prove that the
geometric inequalities conjectured hold for more general
solutions of NMG, the constraint equations in the theory
need to be analyzed. In that setting, it would be particularly
interesting to see how the hair parameter appears and how it
is related to other stability properties.
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