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We study the existence and stability of isoperimetric surfaces in a family of rotating black holes
in new massive gravity. We show that the stability of such surfaces is determined by the sign of the
hair parameter. We use the isoperimetric surfaces to find a geometric inequality between the area
and the angular momentum of the black hole, conjecturing geometric inequalities for more general
black holes.
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I. INTRODUCTION

Since its proposition in 2009 by Bergshoeff, Hohm, and
Townsend [1], new massive gravity (NMG) has received a
great deal of attention, particularly due to its properties in
the context of the AdS/CFT correspondence conjecture
and because a variety of exact solutions have been found
(see for example [2–4]). The theory describes gravity in a
vacuum (2þ 1) spacetime with a massive graviton. The
action in this fourth-order derivative theory is given by

S ¼ 1

16πG

Z
d3x

ffiffiffi
g

p �
R − 2λ −

1

m2
K
�
; ð1Þ

where K ¼ RμνRμν − 3
8
R2, while m is a mass parameter.

NMG admits solutions of constant curvature and possesses
a unique maximally symmetric solution of constant curva-
ture Λ ¼ 2λ when λ ¼ m2. Static and stationary solutions
have been found for this last case [4]. In the case of a
negative cosmological constant, the static solution found
describes an asymptotically AdS black hole with a gravi-
tational hair parameter.
In this paper, we focus on the rotating solution also found

in [4] that is also asymptotically AdS. It has a hair parameter
and the rotational parameter satisfies jaj < l, where the
parameter l is related with the cosmological constant as
Λ ¼ −1=l2. The extreme rotating case of this NMG black
hole can be included after making a change in the hair

parameter as suggested in [5]. The extreme case is obtained
when jaj ¼ l. We are interested in the search of geometric
inequalities such as the one presented in [6] for the Kerr
black hole. We do this by finding the isoperimetric surfaces
and analyzing their stability. This method has been applied
to Reissner-Nordström in [7]. Geometric inequalities are an
important method to obtain physically relevant properties
of metric theories, as they relate quantities of physical
interest and tell us what type of phenomena is allowed
within the theory. For a recent review of geometric inequal-
ities in the context of general relativity, please refer
to [8].
The paper is organized as follows. In Sec. II, the family

of rotating black holes in NMG is presented. Then the
isoperimetric surfaces are found and the stability condition
determined in Sec. III. The stable and unstable cases are
determined in Sec. IV. In Sec. V, we explore the geometric
inequalities of area, mass and angular momentum for the
NMG rotating black hole and conjecture inequalities for
the general case. Finally, the conclusions are presented in
Sec. VI.

II. THE NMG ROTATING BLACK HOLE

As said, NMG is a theory that describes gravity in a
vacuum (2þ 1) spacetime with a massive graviton [1]. A
family of asymptotically AdS rotating black hole solutions
have been found in [4] and it contains a gravitational
hair parameter b0. The rotational parameter a is bounded
by −l < a < l, where the parameter l is related with the
cosmological constant in the usual way, Λ ¼ −1=l2.
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The solutions in the form presented in [4] do not include
the extremely rotating case jaj ¼ l, which we call, from
now on, the extreme case. In order to include it, it is
necessary to redefine the hair parameter as suggested
in [5]. The new parameter is b ≔ b0ξ−1, where ξ is defined
below. The family of rotating black hole solutions that
includes the extreme case is given by the metric

ds2 ¼ −NFdt2 þ dr2

F
þ r2ðdϕþ NϕdtÞ2; ð2Þ

with

N ¼
�
1þ bl2

4σ
ð1 − ξÞ

�
2

; ð3Þ

Nϕ ¼ −
a
2r2

ðμ − bσÞ; ð4Þ

F ¼ σ2

r2

�
σ2

l2
þ b

2
ð1þ ξÞσ þ b2l2

16
ð1 − ξÞ2 − μξ

�
; ð5Þ

σ ¼
�
r2 −

μ

2
l2ð1 − ξÞ − b2l4

16
ð1 − ξÞ2

�
1=2

; ð6Þ

ξ2 ¼ 1 −
a2

l2
; ð7Þ

where μ ¼ 4GM, the angular momentum is given by
J ¼ Ma, M is the mass measured with respect to the zero
mass black hole and b is the hair parameter. The rotational
parameter a satisfies −l ≤ a ≤ l, and the extreme case is
obtained when jaj ¼ l.
Before continuing, from (6) we see that σ can be taken

with either sign. If we allow it to be negative, then we
notice that making the change b → −b and σ → −σ takes
the metric functions to themselves, that is N → N,
Nϕ → Nϕ, F → F. Therefore, this change does not present
new metrics, and we take only σ as positive in this paper,
which is also the right choice for the BTZ case (i.e., b ¼ 0).
These solutions possess one or more event horizons.

If b ≤ 0, the coordinate of the outermost horizon, rþ, is
given by

rþ ¼ lffiffiffi
8

p ð1þ ξÞ12½ðb2l2 þ 4μÞ12 − blξ
1
2�; ð8Þ

and the parameters need to satisfy

μ ≥ μ0 ≔ −
b2l2

4
: ð9Þ

The condition (9) is presented in [5]. On the other hand, if
b > 0, the expression of the outermost horizon depends on
the value of the mass,

rþ ¼ lffiffiffi
8

p ð1þ ξÞ12½ðb2l2 þ 4μÞ12 − blξ
1
2� if μ ≥ μþ; ð10Þ

and

rþ ¼ l
4
ð1−ξÞ12½8μþb2l2ð1−ξÞ�12 if μþ ≥ μ≥ μ−; ð11Þ

where

μþ ≔
b2l2

16

ð1 − ξÞ2
ξ

and μ− ≔ −
b2l2

8
ð1 − ξÞ: ð12Þ

In general, there is a curvature singularity, always hidden by
the event horizon. Also, for b ≤ 0, the extreme limit jaj ¼ l
corresponds to a cylindrical end, produced by the over-
lapping of the inner Cauchy horizon and the event horizon,
similar to what happens for the extreme Kerr. For details of
this analysis, see Ref. [9].
Our focus is extremality of the black holes with respect

to the angular momentum parameter. Another criteria for
black hole extremality is the vanishing of its surface gravity,
which means vanishing temperature and corresponds with
the coincidence of the event horizon with an inner Cauchy
horizon, and therefore with the existence of a cylindrical
end. For b ≤ 0, both criteria coincide; i.e., the surface
gravity of the black hole is

κ ¼ ξ

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l2 þ 4μ

2ð1þ ξÞ

s
: ð13Þ

Also, we see that, for these black holes, the same
kind of extremality can be achieved taking μ ¼ μ0, which
also corresponds to a cylindrical end [9] and in [5] is
considered a stronger extremality than that due to rotation,
as it is the only way to have vanishing entropy. None
of this happens for b > 0, as in that case the surface gravity
of the black hole does not vanish for any value of the
parameters, agreeing with the absence of solutions with a
cylindrical end, and consequently there are no solutions of
vanishing black hole temperature. Therefore, for b > 0, the
only criteria for extremality is with respect to the rotation
parameter.
For the presented family of rotating solutions, we are

interested in the search of geometric inequalities as the ones
presented in [6] for the Kerr black hole.

III. ISOPERIMETRIC SURFACES
AND STABILITY CONDITION

A hypersurface in a manifold is isoperimetric if its area is
an extremewith respect to nearby hypersurfaces that enclose
the same volume. This implies that a hypersurface is
isoperimetric if and only if its mean extrinsic curvature is
constant [10].We are looking for isoperimetric surfaces in the
slices of constant t of the spacetime.We denote these slices as
Σt0 where t0 is a constant. As the metric in Σt0 inherits the
axial symmetry, then the hypersurfaces of constant r are
necessarily isoperimetric. We denote these circles by Σt0;r0,
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with r0 the coordinate radius of the isoperimetric surface in
Σt0 .

1 The extrinsic curvature of a hypersurface is given by

χab ¼ hac∇cnb; ð14Þ

where hab is the projector tensor into the hypersurface,∇a is
the covariant derivative operator on themanifold andna is the
unit normal vector to the hypersurface (for details please refer
to [14]). The mean curvature is the trace of the extrinsic
curvature, χ ¼ χa

a, and for Σt0;r0 it is

χ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Fðr0Þ

p
r0

; ð15Þ

which does not depend on the coordinate ϕ on Σt0;r0 and
therefore confirms that Σt0;r0 is an isoperimetric surface in
Σt0 . It also shows that the horizon is a minimal surface.
An isoperimetric surface is called stable if its area is a

minimum with respect to nearby surfaces that enclose the
same volume. For further discussion on isoperimetric
surfaces in the context of general relativity we refer to
[8,15,16] and for the concept of stability to [10]. It can be
shown that the non-negativity of the second variation of the
area for an isoperimetric surface Σ, required for it to be
stable, is equivalent to the following condition [10],

GðαÞ ≥ 0; ð16Þ

where

GðαÞ ¼
Z
Σ
½−αΔΣα − α2ðχABχAB þ RabnanbÞ�dAΣ; ð17Þ

and α is any function on Σ such that

Z
Σ
αdAΣ ¼ 0: ð18Þ

In (17) Rab is the Ricci tensor in the Riemannian manifold,
na is the normal vector to the surface Σ, χAB is the extrinsic

curvature of the surface Σ, ΔΣ is the Laplace operator on Σ
and dAΣ is the volume element in Σ.
Evaluating GðαÞ for our case,

GðαÞ¼
Z
Σt0 ;r0

�
−αΔΣt0 ;r0

α−α2
�
Fðr0Þ
r20

−
1

2r
∂F
∂r ðr0Þ

��
dAΣt0 ;r0

¼ 1

r0

Z
2π

0

�
−α∂2

ϕα−α2
�
Fðr0Þ−

r0
2

∂F
∂r ðr0Þ

��
dϕ:

ð19Þ

We recall now that if Δ0 is the Laplace operator on the unit
sphere, the eigenvalues λk of the operator −Δ0 are given by
λk ¼ kðkþ n − 1Þ where k ¼ 0; 1;… and n is the dimen-
sion of the n-spheres [17]. Then in this case the first
nonvanishing eigenvalue of the operator −∂2

ϕ is λ1 ¼ 1,
which implies thatZ

2π

0

−α∂2
ϕαdϕ ≥

Z
2π

0

α2dϕ ð20Þ

and therefore, from (19),

GðαÞ ≥ 1

r0

�
1 − Fðr0Þ þ

r0
2

∂F
∂r ðr0Þ

�Z
2π

0

α2dϕ: ð21Þ

Considering the stability condition (16), we have that Σt0;r0
is a stable isoperimetric surface if

Hðr0Þ ≔ 1 − Fðr0Þ þ
r0
2

∂F
∂r ðr0Þ ≥ 0: ð22Þ

In the following, we drop the subscript 0 in r0 and consider
r as a parameter that indicates which isoperimetric surface
we are considering. What is left is to determine the stability
of the isoperimetric surfaces, and this is performed in the
following section, but before we write (22) in two con-
venient forms. From (5) and (6), we have that H can be
written as

H ¼ 1 −
�
1 −

A
σ2

�
F þ σ

l2
ðσ þ BÞ; ð23Þ

where

A ¼ l2

16
ð1 − ξÞ½b2l2ð1 − ξÞ þ 8μ�;

B ¼ bl2

4
ð1þ ξÞ;

C ¼ l2

4
ξðb2l2 þ 4μÞ; ð24Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − A

p
; F ¼ σ2

l2r2
½ðσ þ BÞ2 − C�: ð25Þ

1The main reason for choosing the slices of constant t to look
for isoperimetric surfaces is that they respect the axial symmetry
of the spacetime; that is, Σt0 inherits the axial symmetry. We
could have chosen a different slicing respecting this symmetry,
but we expect similar results, since the horizon is a minimal
surface. If we drop the axial symmetry by choosing a different
slicing, then it is not clear whether we would have been able to
recover the isoperimetric profile, as results concerning isoperi-
metric surfaces without symmetry are sparse. Given that Σt0 is
axially symmetric, the isoperimetric surfaces are known to be of
three types, namely, circles of constant r, unduloids, and nodoids.
Furthermore, checking conditions on the Gauß curvature for the
case at hand, it can be seen that for b < 0 the only isoperimetric
surfaces are circles of constant r. For the complete classification
and results, please refer to [11–13]

ISOPERIMETRIC SURFACES AND AREA-ANGULAR … PHYS. REV. D 97, 064043 (2018)

064043-3



H can also be written as

H ¼ 1þ ξ

4r2
h; ð26Þ

with h a third degree polynomial in σ,

h ¼ −bσ3 þ 4

1þ ξ

�
1þ μþ b2l2

16
ð1 − ξÞ2

�
σ2

þ 3

16
bl2ð1 − ξÞ½b2l2ð1 − ξÞ þ 8μ�σ

þ l2

4

�
1 − ξ

1þ ξ

�
½b2l2ð1 − ξÞ þ 8μ�

×

�
1 − μξþ b2l2

16
ð1 − ξÞ2

�
; ð27Þ

and

H ≥ 0 ⇔ h ≥ 0: ð28Þ

IV. STABILITY OF THE
ISOPERIMETRIC SURFACES

A. Stability for the BTZ black hole

If b ¼ 0, then the BTZ black hole with mass μ presented
in [18] is obtained. The stability condition (22) isHb¼0 ≥ 0
with

Hb¼0 ¼ 1þ μ −
μ2l2

2r2
ð1 − ξ2Þ: ð29Þ

For this black hole, μ ≥ 0, so the stability condition is

r ≥ rc ≔ lμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

2ð1þ μÞ

s
; ð30Þ

where rc is the critical radial position for the isoperimetric
surfaces. On the other hand, from (8), the outer horizon is

rþ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2
ð1þ ξÞ

r
; ð31Þ

therefore, rþ > rc and all axially symmetric isoperimetric
surfaces in BTZ in the domain of outer communication are
stable.

B. Stability in the asymptotic region and at the horizon

As an intermediate step, we want to see if the isoperi-
metric surfaces are stable in the asymptotic region, r → ∞,
and close to the horizon. For the asymptotic region, we see
that σ behaves as r, and therefore the leading order of the
function h is

h →
r→∞

− br3; ð32Þ

which gives that, asymptotically,

h > 0 if b < 0 and h < 0 if b > 0: ð33Þ

So, in the asymptotic region, the isoperimetric surfaces are
stable if b < 0 and unstable if b > 0.
At the horizon, we have

Hþ ¼ 1 −
�
1 −

A
σ2þ

�
Fþ þ σþ

l2
ðσþ þ BÞ; ð34Þ

where a subscript þ indicates that the function is evaluated
at rþ. Given that Fþ ¼ 0, if σþ ≠ 0, we have

Hþ ¼ 1þ σþ
l2

ðσþ þ BÞ: ð35Þ

There are two situations where σþ > 0, namely if b < 0, or
if b > 0 and μ ≥ μþ (for the explicit expressions for σþ
corresponding to the different ranges of μ please refer to
[9]). In both cases, also σþ þ B > 0, which from (35)
implies Hþ > 0. The remaining situation, b > 0 and
μ− < μ < μþ, has σþ ¼ 0 and (35) cannot be used, as
(34) is formally singular. Instead, we use (27) and (28), and
evaluating hþ, we have

hþ ¼ l2

4

�
1−ξ

1þξ

�
½b2l2ð1−ξÞþ8μ�

�
1−μξþb2l2

16
ð1−ξÞ2

�
:

ð36Þ

Every factor in this expression is positive and then hþ > 0.
We conclude that in all cases the horizon is a stable
isoperimetric surface. Also, given that all the involved
functions are continuous, then there is always a neighbor-
hood of rþ where the isoperimetric surfaces are stable. It
seems that the black hole stabilizes the isoperimetric
surfaces in its neighborhood.

C. Stability for b < 0

Due to the fact that for b > 0 the isoperimetric surfaces
in the asymptotic region are unstable, we focus on the case
b < 0, which also is the one that possess the cylindrical
limit. To prove that all isoperimetric surfaces for b < 0 are
stable we perform the following steps. First, we consider
the function h for the particular case of minimal mass,
μ ¼ μ0. By taking its derivative with respect to σ and
analyzing its roots, we show that it is an increasing function
of σ, and this together with the stability near the horizon of
the previous section shows that all isoperimetric surfaces
for μ0 are stable. Then we consider the general case μ ≥ μ0,
but this time we show that h is an increasing function of μ,
and knowing from the previous step that for μ0 the function
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is positive, it yields that all isoperimetric surfaces are stable
for all allowed values of the parameters.
So we consider b < 0 and μ ¼ μ0. Then,

hμ¼μ0 ¼ −bσ3 þ 4

1þ ξ

�
1 −

b2l2

16
ð1þ ξÞð3 − ξÞ

�
σ2 ð37Þ

−
3

16
b3l4ð1−ξ2Þσ−b2l4

4
ð1−ξÞ

�
1þb2l2

16
ð1þξÞ2

�
: ð38Þ

We know that for big enough σ, this is an increasing
function. The derivative with respect to σ is

∂σhμ¼μ0 ¼ −3bσ2 þ 8

1þ ξ

�
1 −

b2l2

16
ð1þ ξÞð3 − ξÞ

�
σ

−
3

16
b3l4ð1 − ξ2Þ; ð39Þ

and therefore the change from decreasing to increasing is at

σc ¼
−16þ b2l2ð1þ ξÞð3 − ξÞ þ 16

ffiffiffiffiffiffi
Δ1

p
12ð−bÞð1þ ξÞ ; ð40Þ

where

Δ1 ¼ 1 −
b2l2

8
ð1þ ξÞð3 − ξÞ − b4l4

128
ξð1þ ξÞ2ð3 − 5ξÞ:

ð41Þ

It can be checked that

σþðμ0Þ ¼ −
bl2

4
ð1þ ξÞ > σc; ð42Þ

and as hμ¼μ0ðσþÞ > 0, then hμ¼μ0 > 0 for σ ≥ σþ.
Now we consider μ ≥ μ0. The derivative of h with

respect to μ is

∂μh ¼ 4

1þ ξ
σ2 þ 3

2
bl2ð1 − ξÞσ

þ l2

8

1 − ξ

1þ ξ
½16 − 32μξþ b2l2ð1 − ξÞð1 − 3ξÞ�: ð43Þ

The biggest root is

σc ¼
l
16

½−3blð1 − ξ2Þ þ
ffiffiffiffiffiffi
Δ2

p
�; ð44Þ

where

Δ2¼ð1−ξÞ½−128þ256μξþb2l2ð1−ξÞð1þ42ξþ9ξ2Þ�:
ð45Þ

We can check directly that σþ > σc, and therefore h is an
increasing function of μ for σ ≥ σþ. This completes the

proof that, for b < 0, all isoperimetric surfaces outside the
horizon are stable.

V. GEOMETRIC INEQUALITIES

We have shown that the surfaces Σt0;r0 are stable
isoperimetric surfaces for b ≤ 0. We now use these surfaces
in the search of geometric inequalities.
From the induced metric on Σt0;r0 , we have that its area is

simply

A ¼ 2πr0: ð46Þ

Then, the area of the horizon is Aþ ¼ 2πrþ, and for b ≤ 0,
it takes the explicit form

Aþ ¼ πlffiffiffi
2

p ð1þ ξÞ12½ðb2l2 þ 4μÞ12 − blξ
1
2�: ð47Þ

Given that rþ is the outermost horizon, then r0 ≥ rþ, and
therefore A ≥ Aþ. Also Aþ is an increasing function of ξ,
and we have

Aþ ≥ Ae ¼
πlffiffiffi
2

p ðb2l2 þ 4μÞ12; ð48Þ

with equality only in the extreme case.
For the angular momentum, we have J ¼ μa

4Gwith jaj ≤ l.
Now it is convenient to separate the analysis according to
the sign of μ. Let us start considering μ ≥ 0, then
μ ¼ 4G

l jJej, and

jJej ≥ jJj; ð49Þ

where J is the angular momentum of a spacetime where the
other parameters are the same as in the extreme case.
Putting it all together, we have

A ≥ Aþ ≥ Ae ¼
πlffiffiffi
2

p
�
b2l2 þ 16G

l
jJej

�1
2

≥
πlffiffiffi
2

p
�
b2l2 þ 16G

l
jJj

�1
2

; ð50Þ

therefore, for any isoperimetric surfaces in a spacetime with
b ≤ 0 and μ ≥ 0,

A ≥
πlffiffiffi
2

p
�
b2l2 þ 16G

l
jJj

�1
2

; ð51Þ

and the equality is only achieved at the horizon in the
extreme case. So, a black hole with a given area cannot be
rotating at any angular momentum because it has a
maximal value depending on the hair parameter and the
cosmological constant. For the BTZ black hole, from (51),
we have that
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Ab¼0 ≥ π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8GljJj

p
: ð52Þ

On the other hand, for μ0 ≤ μ < 0,

A ≥ Aþ ≥ Ae ¼
πlffiffiffi
2

p ðb2l2 þ 4μÞ12 ¼ πlffiffiffi
2

p ðb2l2 − 4jμjÞ12;

ð53Þ

and given that jμj ¼ 4G
l jJej, so

Ae ¼
πlffiffiffi
2

p
�
b2l2 −

16G
l

jJej
�1

2

: ð54Þ

Here again, with the other parameters unchanged,
jJej ≥ jJj, so

Ae ≤
πlffiffiffi
2

p
�
b2l2 −

16G
l

jJj
�1

2

: ð55Þ

We see that, in this case, the horizon area for the extreme
black hole is not bounded below by the angular momentum,
and then the areas of the isoperimetric surfaces are not
bounded by the angular momentum. In particular, for the
extreme case with μ ¼ μ0 which has Ae ¼ 0, it has a
nonvanishing angular momentum given by jJej ¼ b2l3

16G.
In [5,19], it is proposed that the mass and angular

momentum should be measured with respect to the extreme
case with μ ¼ μ0. Accordingly, we redefine the mass and
the angular momentum as follows,

M ≔ M −M0 ¼
1

16G
ðb2l2 þ 4μÞ; ð56Þ

J ≔ J − J0 ¼ Ma −M0a ¼ Ma; ð57Þ

whereM0 ¼ μ0
4G, and J0 ¼ M0a. It can be noticed that J ¼

J and M ¼ M in the BTZ case. These new parameters
satisfy

M ≥ 0; jJ j ≤ Ml: ð58Þ

Then the area of the extreme black hole can be expressed as

Ae ¼ πl
ffiffiffiffiffiffiffiffiffiffiffiffi
8GM

p
: ð59Þ

The angular momentum satisfies jJ ej ≥ jJ j with jJ ej ¼
Ml, and fixing the other parameters, we finally have

A ≥ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8GljJ j

p
: ð60Þ

It is indeed surprising that the definition of M and J ,
which was motivated in [5,19] by black hole entropy
considerations, is the right definition of mass and angular
momentum regarding geometric inequalities.

To summarize, and as a conjecture for dynamical black
hole solutions of NMG, we have the following inequalities:

M ≥ 0; ð61Þ
jJ j ≤ Ml; ð62Þ

A ≥ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8GljJ j

p
: ð63Þ

To complete the analysis, we consider the case b > 0.
Here, for μ < μþ, we have that the horizon area is a
decreasing function of ξ, which means that the minimum of
the area is obtained for the minimum value of the angular
momentum. Also, for μ < 0, the minimum angular momen-
tum does not correspond to the static case (i.e., ξ ¼ 1,
J ¼ 0) but to ξ ¼ 1þ 8μ

b2l2, and the area of the horizon is
zero (for details see [9]). This situation can be remedied by
redefining again the mass and angular momentum as

M ≔ M −M− ¼ 1

4G
ðμ − μ−Þ; ð64Þ

J ≔ J − J− ¼ Ma −M−a ¼ Ma; ð65Þ
and they satisfy

M ≥ 0; −Ml ≤ J ≤ Ml: ð66Þ
To simplify the notation, we define the mass parameter

ν ≔
16G
b2l2

M: ð67Þ

The area of the horizon for the corresponding mass and
angular momentum is

Aþ ¼ πl2bffiffiffi
2

p ð1 − ξÞ12ν1
2; 0 < ν < νþ; ð68Þ

Aþ ¼ πl2bffiffiffi
2

p ð1þξÞ12
��

νþ1þξ

2

�1
2

−ξ
1
2

�
; νþ ≤ ν; ð69Þ

with

νþ ¼ 1 − ξ2

4ξ
: ð70Þ

We need to consider two ranges of the mass parameter. For
0 < ν < νc, the minimum of the area of the horizon with
respect to the angular momentum once the mass and other
parameters are fixed is obtained for ξ ¼ 1, that is, for the
static case, where

νc ≈ 5.64: ð71Þ
For ν ≥ νc, the minimum area is obtained for the angular
momentum parameter satisfying

ν ¼ 1þ 2ξþ 2ξ2 þ ð1þ 2ξÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξþ 2ξ2

p
2ξ

: ð72Þ
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Therefore, the minimum of the area is never obtained in the
extremely rotating case, and hence an inequality in the
spirit of (60) can not be obtained. This can be expected
from the solution not having a cylindrical end, which
makes the extreme case a not typical extreme case, and
from the isoperimetric surfaces in the constant t slices not
being all stable.

VI. CONCLUSIONS

We have analyzed the existence and stability of iso-
perimetric surfaces in the t ¼ constant slices of the black
hole solutions of NMG. We concluded that the determining
factor deciding the stability of the isoperimetric surfaces
is the sign of the hair parameter b being stable for b ≤ 0
and unstable for b > 0. Also, for either sign of the hair
parameter, the isoperimetric surfaces are stable close to the
horizon, which seems to indicate that the horizon performs
a stabilizing function.
It needs to be pointed out that, previous to the work [9],

particular attention to the case b > 0 was not paid. The

conclusions of the present work support what was seen in
[9]—that the behavior of the solutions is radically different
for b > 0.
We have found geometric inequalities among the

physical parameters of the solution. It is important to state
that the particular selection of the physical parameters
is crucial at this step, and that it is surprising that a
choice based on the analysis of thermodynamical
properties ([5,19]) is the one suited to the geometric
inequalities.
To continue the analysis, that is, to prove that the

geometric inequalities conjectured hold for more general
solutions of NMG, the constraint equations in the theory
need to be analyzed. In that setting, it would be particularly
interesting to see how the hair parameter appears and how it
is related to other stability properties.
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