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ABSTRACT: Despite the fact that many publications have dealt with asphaltene onset pressure (AOP) lines during the last 2 or
3 decades, no explicit method for tracing these and other related boundaries from equation of state (EoS) models has been
proposed in the literature. In this work, a new integral algorithmic strategy for the construction of complete phase envelope
diagrams based on an EoS is presented. The method of Michelsen for tracing two-phase boundaries is used, while for three-phase
saturation lines, an equivalent method was designed, including a second set of K factors and a phase fraction as extra independent
variables. The double-saturation point is defined, and its importance is highlighted, from both phase behavior and algorithmic
perspectives. Specific issues as recognition of unstable segments, such as false bubble curves, are also discussed. Three different
fluids from the literature are taken as case studies to illustrate the application of the proposed strategy and discuss different types
of behavior. In particular, an unexpected second three-phase region was predicted at higher temperatures in two of the three
cases studied. This could serve as inspiration for new experimental studies, to see whether the existence of such a region can be
confirmed for some reservoir fluids, or it could be just an artificial behavior predicted by the models. In summary, computer
codes based on the proposed strategy might become a useful tool for researchers or professionals dealing with asphaltene phase
behavior in reservoir fluids.

1. INTRODUCTION

Regardless of their cubic or statistical association fluid theory
(SAFT) nature, equations of state (EoS) have been used to
model asphaltene phase behavior in reservoir fluids for at least 2
decades already. The importance of the upper and lower
asphaltene onset pressures (AOPs) is widely recognized in the
literature, where many studies of either experimental or
modeling character are available, with different approaches.
See for example Chapter 12 in the book by Pedersen and
Christensen1 and the recent works by Arya et al.2,3 for
introductory reviews.
In terms of algorithms or calculation methods, details are

rarely provided in publications. However, on the basis of the
experience of the author and communications with colleagues,
most studies normally resorted, inefficiently, to a series of two-
and multi-phase flashes. Moreover, that could be one of the
reasons why some modeling simplifications are often used, for
example, that only asphaltenes are allowed to partition between
the liquid phases and no other component can enter the
asphaltenic phase, considered to be made of pure asphal-
tenes.4,5 Surprisingly, no explicit method for tracing different
phase boundaries, such as AOP lines and the intermediate
three-phase bubble line, is found in the literature (the reader
not familiar with these curves might find it useful to have a look
at Figures 2 and 6). Neither can we find previous publications
devoted to studying the different possible behaviors, i.e., how
these and other related segments can arrange in the complete
phase envelope of a specific asphaltenic reservoir fluid, as
predicted by a model.

In this work, a new integral algorithmic strategy for the
construction of complete phase envelopes based on an EoS will
be proposed and implemented. As usual in the literature, the
asphaltenic phase is formally treated as a dense liquid, and all
compounds are allowed to enter all phases; i.e., there are no
compositional simplifications or restrictions. Every curve is
treated as the boundary of either a two- or three-phase region
in the pressure−temperature diagram for a specific fluid. In
other words, every point along these lines determines the T−P
conditions where an incipient phase appears or disappears. An
important and interesting reference, to which the present work
could be considered equivalent or similar in certain aspects, is
the one by Lindeloff and Michelsen for hydrocarbon−water
mixtures.6 Despite some similarities in the general objectives
and in the ways to formulate and solve the calculations, the
main differences come naturally from the different phase
behaviors and related diagrams involved in each case. Besides
that, the general strategy proposed here for constructing the
complete phase envelope of a fluid, to be discussed in section
2.2, is different, with the advantage of saving the stability tests,
which can imply important computation times.

1.1. Double-Saturation Points and Their Role in
Complete Phase Envelope Diagrams. First of all, it is
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important to realize that, from a phase behavior or calculation
point of view, upper AOP lines are two-phase boundaries, just
like typical bubble or dew lines but involving liquid−liquid (L−
L) separation, while special bubble lines for these systems (in
the presence of two liquid phases) and lower AOP lines are
both three-phase boundaries.
Before discussing a general strategy for constructing

complete phase envelopes containing both two- and three-
phase boundaries, such as these different lines of interest for
asphaltenic systems, it is convenient to pay attention to a
special point, which is characteristic of these types of phase
behavior. This point, marking the ends of different two-phase
boundaries and the beginning of a three-phase region, has been
referred to by Michelsen as intersections between phase
boundaries or a three-phase point with two incipient phases
(see for example Chapter 12, section 4 in the book by
Michelsen and Møllerup7). In this work, to be more explicit
and concise, this type of point will be referred to as a double-
saturation point, because it indicates conditions at which two
different new incipient phases may start to form and separate at
the same time from a homogeneous saturated fluid.
The following sections are dedicated first to describe the

method for tracing three-phase boundaries and then to discuss
the general strategy to identify the double-saturation points
and, depending upon them, organize the calculation of the
different lines that will be present in each specific case.

2. METHODOLOGY

2.1. Calculation Method for Three-Phase Boundaries. As

suggested by Michelsen and Møllerup,7 the principles used for

calculating phase boundaries for a two-phase region are extended here

to the calculation of three-phase boundaries by introducing as new

variables an additional set of K factors and a phase fraction β for the

phase split between the two phases, which are present at both sides of

the boundary. The notation will be established for the case of a three-

phase bubble line, but the method and the corresponding code can be

easily adapted for a line where the incipient phase is a liquid, e.g., the

lower AOP line.
The three phases that need to be considered are a vapor, a

hydrocarbon liquid, and an asphaltene-rich phase. They are denoted as

V, L, and L2, with molar fractions yi, xi, and wi, respectively. The L

phase is chosen as the reference phase for defining the two sets of K

factors, which results in

=K y x/i i i (1)

for the standard vapor−liquid separation and

=K w x/i
s

i i (2)

for the liquid−liquid separation, with a fraction β for phase L2.
With N being the number of components, the resulting system has

2N + 3 independent variables and 2N + 2 equations. After completion

with the specification equation, we have the following vectors of

variables X and equations F to be solved:
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Note that, on the basis of material balances and eqs 1 and 2, each new
set of Ki, Ki

s, and β values can be translated into the corresponding sets
of mole fractions through the following equations:

β β= − +x z K/(1 )i i i
s (4)

=y K xi i i (5)

=w K xi i
s

i (6)

For a computational implementation, eqs 4−6 also need to be taken
into account when writing the elements of the Jacobian, i.e., the
derivatives of each F in eq 3 with respect to each X. Note for example
that, except for the last specification equation, all F functions will have
non-zero derivatives with respect to β.

After convergence of a first point by a full Newton’s method, the
Jacobian is used to calculate the vector of sensitivities of the solution,
which, in turn, will provide excellent initialization for a subsequent
point. In this way, the construction of the three-phase boundary can
proceed smoothly. Details for the implementation of these numerical
strategies for tracing highly nonlinear hyperlines, often known as
continuation methods, have been given by Michelsen7,8 for the case of
multicomponent two-phase boundaries. Additional and complemen-
tary explanations have been provided for example by Cismondi et al.
for the cases of azeotropic lines and isobaric or isothermal diagrams in
azeotropic binary systems.9

What is crucial for the application of these methods in general and
specially for the three-phase boundaries considered in this work is the
availability of good initial estimates for a first point. An ideal starting
point would be a double-saturation point, from each of which two
different three-phase boundary lines, with different incipient phases,
will depart. The algorithmic strategy for detecting these double-
saturation points and organizing the calculation of complete phase
envelopes in different behaviors is discussed in the next section.

2.2. Methodology: General Algorithmic Strategy. A natural
strategy, following Michelsen’s typical approaches,7,6 could start with
the calculation of a two-phase boundary, testing each point for
stability. When this line becomes unstable, that is an indication that a
double-saturation point has been just passed. An alternative strategy,
instead, can start from calculating different two-phase boundaries but
saving the stability analysis and then detecting intersections between
the different boundaries. Each intersection means a double-saturation
point, from which the unstable portion of each line can be discarded
afterward. The design of an alternative strategy like this, in a way
analogous to the strategies proposed by Cismondi and Michelsen in
the construction of different phase diagrams for binary systems,9−12

requires an a priori analysis and, at least preliminary, classification of
the different behaviors that can be found.

The specific strategy proposed and implemented in this work
involves the following stages: (1) calculation of the two-phase
envelope starting from a dew point at low pressure, (2) calculation
of a second two-phase envelope section, starting from (a) low T
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bubble point (if the first line diverged to high P) or (b) high P L−L
saturation point (if the first line ended at low T as a bubble line), (3)
detect double-saturation points as intersections between two-phase
boundary segments and discard unstable portions of the two-phase
boundaries previously generated, and (4) calculate the two three-phase
boundaries, departing from each double-saturation point.
The numerical initialization for the first point along each three-

phase boundary is based on the approximate coordinates of the
double-saturation point, which were, in turn, estimated by a linear
interpolation between the closest two-phase boundary calculated
points, after an intersection was detected (step 3). The specification
for the first point is β = 0 (which defines a double-saturation point),
and convergence required 2 Newton steps for each of these
calculations performed in this work.
In the case that no intersection is detected in step 3, it means that

the whole inner two-phase boundary is unstable and has to be
discarded. Then, the starting points for two different three-phase
boundaries, corresponding to the (three-phase) bubble line and the
lower AOP line, need to be found independently. For the first one, an
initial three-phase bubble point can be detected at some specified low
temperature as follows. The pressure of the converged false bubble
point, calculated as a simple saturation point, will normally serve as an
excellent initialization if complemented with reasonable separation
factors between the two liquid phases. Our recommendation for the
initialization of such separation factors is the following:

φ
φ

=
̂

̂
Ki

S i

i

F

Asp
(7)

where the superscripts F and Asp stand for the feed or original fluid
(the liquid in the false bubble point) and a pure asphaltene phase,
respectively.
Then, to find a lower AOP, where the incipient phase is the

asphaltene-rich phase, the search is based on finding T−P conditions
where the fugacity of the pure asphaltene pseudo-compound equals its
fugacity in a standard vapor−liquid flash at the same conditions. This
will provide good initial estimates for the calculation of the first lower
AOP point. The search can start at a fixed low temperature, e.g., that of
the first calculated three-phase bubble point and half the pressure. If
the fugacity is lower in the pure form, then the pressure is reduced. If
this persists at 1 bar, then pressure is fixed and a higher temperature at
which the equality indicated above is fulfilled can be reached for
example by the secant method.
The stop criteria for terminating the computation of each three-

phase boundary line can be based on a variety of situations. First, the
classic conditions of the temperature going below (or the pressure
exceeding) a preset value, e.g., 150 K or 2000 bar, or when the number
of iterations exceeds another high preset value, which means numerical
problems preventing convergence. Specifically for three-phase
boundaries, another reasonable condition for termination is β < 0,
which implies the disappearance of a phase. This can occur when, after
describing a closed path, the line returns to the original double-
saturation point and the continuation of mathematical solutions leads
to cross it, jumping to the other side of the line. This other side of the
three-phase boundary line will be associated with negative flashes,13

i.e., distribution of phases fulfilling the isofugacity condition but not
the material balance for the global composition being considered.

3. RESULTS AND DISCUSSION
For illustration of the proposed methodology, three different
fluids leading to three different types of complete diagrams

were selected from the literature. References and some basic
details are given in Table 1.
It has to be stressed that no modeling decisions were taken in

this work. In other words, we used the same models and
characterizations of the fluids as indicated by the authors in the
original modeling works, to reproduce their results and go
beyond, to unveil the complete predicted diagrams. These
complete diagrams, presented in this section, include regions
and double-saturation points that were not shown previously by
the corresponding authors. In case 1, the work by Gonzalez et
al.4 had a different focus, and not even a segment of an AOP
line was presented in that publication. Nevertheless and despite
the simplification made by the authors considering the
asphaltene-rich phase to be composed of pure asphaltenes,
the diagram presented here is consistent with the occurrence of
upper and lower AOPs at 373 K, as reported for this fluid by
Burke et al.14

The upper part of Figure 1 presents, for case 1, what results
after steps 1 and 2 of the general strategy discussed in the
previous section. These are two different continuous sets of
solutions to classic two-phase boundary calculations: one
started from the bubble side and the other from the dew
side, including not only the stable but also the unstable portions
of these boundaries. The lower part shows the result of the
complete procedure, i.e., the complete and stable phase
envelope diagram predicted by the model, including the
different one-, two-, and three-phase regions. According to
the complete diagram shown in Figure 1, the upper and lower
AOP curves meet at a double-saturation point, together with
the three-phase bubble curve, around 445 K and 225 bar. A
restricted portion of the same diagram is presented with more
detail in Figure 2, including a rather typical range of conditions
at which the precipitation of asphaltenes is studied. In addition,
the boundaries known as upper and lower AOP as well as the
phases present in each region are explicitly identified.
Coming back to Figure 1, note that there is also a second

double-saturation point, located around 780 K and 125 bar,
from where a second, high-temperature three-phase region
starts. This opens a question about whether this second three-
phase region, with specific boundaries associated, actually exists
for real fluids. The discussion might be of very low practical
relevance for typical upstream applications, and in view of the
thermal degradation that the fluid may suffer in the temperature
range involved, one may think that it does not deserve
attention, not even from a purely scientific point of view.
However, there have been some interesting experimental
findings reported in the literature that we should considered
here. Cartlidge et al. investigated the phase behavior of
Athabasca bitumen vacuum bottoms (ABVB) + n-dodecane +
hydrogen mixtures at temperatures and pressures ranging up to
725 K and 7 MPa using an X-ray view cell.20 The preliminary
phase diagram that they presented in Figure 1 for a specific
mixture suggests a LLV region extending up to around 750 K.
In a later work, also by the group of Shaw,21 the effects of both
reversible phase behavior and irreversible thermolysis con-

Table 1. Selected Fluids for Illustration of the Methodology Developed

case 1 case 2 case 3

experimental Burke et al.14 Jamaluddin et al.15 Jamaluddin et al.16 fluid A
characterized Gonzalez et al.4 Pedersen and Christensen1 Pedersen and Christensen1

pseudo-compounds 8 16 15
EoS PR7817 SRK18 PR7619
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ditions on the rejection of the inorganic fractions of ABVB were
studied at high temperatures up to 380 °C. One of the different

interesting findings was that, even when thermal degradation
occurs, the phase behavior of the system is not much affected.21

Therefore, it might well be that, in the case that it actually
occurs for some real asphaltenic fluids, a three-phase behavior,
such as the one predicted for the high-temperature region in
Figure 1, could be detected experimentally. Moreover, Table 3
in the work by Cartlidge et al. presented a list of technologies
for heavy oil upgrading, operating at high temperatures, which,
in some cases, may reach values above 800 K.20 Then, the LLV
regions under discussion might be something not only
interesting in terms of phase behavior, as far as we know not
previously reported in the literature, but also important to
consider for a proper design or optimization of high-
temperature technologies, such as those for heavy oil
upgrading.
The complete phase envelope diagram for case 2 is presented

in Figure 3. Note here that the behavior is qualitatively very
similar to the behavior observed for case 1, again with two
different double-saturation points, but now closer to each other.
The high-temperature region where an asphaltene-rich phase

Figure 1. Calculated two-phase boundaries, including unstable
segments (upper part) and complete phase envelope obtained with
the proposed algorithmic strategy (lower part), for case 1 defined in
Table 1. The black dot is a calculated critical point along one of the
three-phase boundaries.

Figure 2. Detailed zoom of the lower part of Figure 1, in the range of
practical interest for case 1, indicating the lines of AOPs and the
different regions with one, two, and three stable phases.

Figure 3. Calculated two-phase boundaries, including unstable
segments (upper part) and complete phase envelope obtained with
the proposed algorithmic strategy (lower part), for case 2 defined in
Table 1. Black dots are calculated critical points along one of the three-
phase boundaries. Empty circles indicate experimental upper AOPs
and bubble points reported by Jamaluddin et al.15
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separates again could have more practical importance in this
case, starting at around 540 K based on the predicted diagram.
This can provide good motivation or incentive for new
experimental studies devoted to confirm the existence of such
a second three-phase region at high temperatures. It does not
mean that we should trust quantitatively the high-temperature
predictions presented for these fluids, because they are based
on simple characterizations and parameters obtained by fitting
limited data in the lower temperature range. However, at least
qualitatively, predictions suggest the possibility of existence of
such high-temperature three-phase regions for these or other
similar fluids. In that sense, the construction of complete
complex phase envelopes, such as the envelopes presented in
this work, when the modeling is based on fitting some available
data, could be useful to orientate further experimental studies at
higher temperature ranges.
Returning to Figure 3, note also that, despite the similarities,

there is one clear qualitative difference between the diagrams
obtained for cases 1 and 2: the high-temperature and high-
pressure three-phase region closes itself (around 130 bar and
740 K) in case 2, while it continues toward very low pressures
in case 1 without closing. Of particular interest, at least in terms
of phase behavior understanding, is the fact that the closed
three-phase boundary in case 2 contains all three possible types
of boundaries, each one characterized by a different incipient
phase, with two critical points setting the limits or transitions
between them. To fix ideas and provide some basic guidance
for the interpretation of this complex predicted region, let us
take the path across this closed three-phase boundary,
considering the implications of each point that we find on
the way. Starting at the double-saturation point at 546.6 K and
232.9 bar, it implies a saturated oil phase with a first bubble
appearing simultaneously with a first drop of an asphaltenic
phase. As we move to higher temperatures along the black
dashed line, the quantity or fraction of the asphaltenic phase
increases, while vapor continues to be the incipient phase. As
we continue in the same direction, the composition and
properties of such a vapor phase become closer and closer to
the oil phase, until they become indistinguishable at the first
critical point, located at 652.4 K and 201.8 bar. Once the critical
point is crossed, the incipient phase is the oil, and most of the
system is in the state of a dense vapor phase, except for a
certain quantity of the asphaltenic phase as before. Note that
we had to change the label of the phase present in a larger
quantity from oil to vapor, but its properties change
continuously and independently of names, just as happens
across a standard critical point on a simple and classic two-
phase envelope. As we continue along the red dotted line, the
incipient oil phase will differentiate more and more from the
vapor phase and, on the contrary, will approach the
characteristics of the aphaltenic phase, until they are the same
when the second critical point is reached at 738.9 K and 135.3
bar. Once on the blue dashed line, the incipient phase will be
the aphaltenic phase, while the saturated system distributes
itself between an oil phase and a vapor phase. As we continue
and return to the starting point, the oil phase fraction increases,
with lower and lower contents of asphaltenes, while the vapor
phase fraction decreases progressively until disappearing at the
double-saturation point. All of these changes can also be
followed and confirmed in Figure 4, which presents the
evolution of methane and asphaltene mole fractions in the three
phases along these boundaries versus pressure.

Finally, the diagram obtained for case 3 is shown in Figures 5
and 6. Contrary to the previous cases, not even a single double-
saturation point appears. In other words, the different
boundaries do not touch or intersect each other. This new
behavior can be seen as related to the behavior observed for
case 1 but now with the two previously separated regions
having merged into a single continuous three-phase region.
Furthermore, the transition from the behavior observed for case
1 to the behavior observed for case 3 would imply a special
point where the two double-saturation points, observed for case
1, merge into one. In other words and from a different
perspective, the three curves present in case 3 would touch each
other tangentially at such a singular point. Although a deeper
analysis of transitions like that is beyond the scope of the
present work, it is interesting to realize how the different
behaviors encountered can be related and how one of them
could be probably transformed into another by changes of
either composition or parameter values.
A final comment will be dedicated to bubble lines. It should

be clear, to everyone working with this type of systems, that, in

Figure 4. Methane and asphaltene mole fractions along the calculated
closed three-phase boundary in the higher temperature region of
Figure 3 for case 2. The same information is presented in both log and
linear scales for mole fractions, to better appreciate the different
curves.

Energy & Fuels Article

DOI: 10.1021/acs.energyfuels.7b02790
Energy Fuels XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acs.energyfuels.7b02790


the presence of a segregated asphaltenic phase, a bubble point is
part of a three-phase boundary. Nevertheless, sometimes
bubble lines are calculated using standard procedures for two-
phase boundaries, which are rigorously unstable in these fluids,
with asphaltenes or other substances forming a second liquid
phase before the appearance of the vapor phase. Most
publications do not clarify this and do not provide details
regarding the calculation methods used either. In many cases,
the difference between the three-phase bubble line and the
unstable two-phase bubble line can be quite low in the
pressure−temperature diagram, sometimes negligible. This can
be observed for cases 2 and 3 in Figure 7, which present both

curves for each of the cases illustrated and discussed in this
work. Note, however, that the difference can be important for
case 1, reaching values of around 5 bar in the intermediate
range, including ambient temperatures.

4. CONCLUSION
An integral strategy for the automated construction of complete
envelopes containing two- and three-phase boundaries was
developed and successfully implemented for different asphal-
tene case studies.
Although cubic EoS were used for these cases, following the

original modeling and characterization by other authors, it is
important to remark that the proposed methods are equally
applicable to any type of EoS, e.g., SAFT as well.
From the cases analyzed, it becomes clear that different types

of behavior can be encountered when the complete phase
diagram is considered for a given reservoir fluid. For example,
dependent upon the case, the upper and lower AOP curves may
or may not converge, together with the three-phase bubble
curve, to a double-saturation point. A classification of the
different possible behaviors and a better understanding of the
transitions between them would definitely require further work
in that direction.
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