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In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover
kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from
sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted
into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The
proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages.
The most important one is that it avoids the use of classical rectification mechanisms as it is based on what
we call geometric rectification. We show that this geometric rectification results from applying appropriate
but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an
analytically solvable example consisting of a wire suspended over permanent charges where we find the condition
for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including
the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how
quantum effects can be used to boost the performance of the proposed device.
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I. INTRODUCTION

The current efforts to reduce devices’ dimensions toward
the nanoscale cannot be fully reached without innovative
solutions to their power supply. For many applications such
as biomedical, deployable sensor networks, or autonomous
nanomachines, replacement of exhausted batteries is not an
option and wireless devices are desirable or even required
[1-5]. In this context, vibrational energy harvesting is at-
tracting considerable attention as vibrations are pervasively
available in different environments [1-10]. A severe limitation
of most of the proposed vibrational energy harvesters is their
narrow bandwidth of operation at acceptable performance.
Indeed, this has driven an active area of research in recent years
[4,6—10]. The problem is rendered even more complicated for
true nanoscale energy harvesters, i.e., when the dimensions
of the whole device lay in the nanoscale. There, quantum-
mechanical effects may become important. Moreover, very low
output voltages are expected, which would prevent the use of
conventional electric rectifiers.

Nanogenerators made of piezoelectric nanorods have been
proposed for nanoscale energy harvesting some time ago
[11,12]. When nanorods are subjected to an external force a
deformation occurs and this causes an electrical field inside the
structure. On the other hand, under the appropriate conditions,
a Schottky contact can be formed between the counterelectrode
and the tip of the nanorod. Both effects can be used, through a
proper design of the device, to generate direct currents. It has
been proven that these devices can successfully produce elec-
tric power from different sources of vibrations [11]. However,
even in this case, there is a minimum amplitude of the motion
of the nanorods needed to produce an efficient rectification.
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In this work, we study a mechanism that can convert
kinetic energy into electrical work at the nanoscale, which
is potentially useful for vibrational energy harvesting. The
proposed mechanism precludes the use of electric rectifiers
of any kind. Moreover, it does not require a tuning of the
resonances of the system to the main contributions of the
vibrational spectrum of the environment, as is the case for
most vibrational energy harvesters. Our proposal is based on
the long-time behavior of quantum pumping [13-22] induced
by damped vibrational modes. The idea is that mechanical
excitations, such as sound waves traveling through the system
or similar phenomena, triggers the movement of a device
that hits a conductor. The kinetic energy of the impact is
then transformed directly into an electric current through
vibrational-induced quantum pumping. The whole process has
a nonvanishing direct current component at long times which
depends on the geometry of the trajectories in the phase space
of the system’s normal modes.

This work is organized as follows. In Sec. II we first discuss
in more detail the type of processes treated here and then
derive the general theory used to describe them. In Secs. III
and IV we derive for particular (but quite general) cases
explicit expressions for the factors needed to evaluate the
total charge pumped per hitting event. In Sec. V we discuss
the effect of coupling the proposed devices to a capacitor
and derive some limit expressions for the efficiency and the
steady-state voltage of operation. In Sec. VI we analyze a
simple example that shows how quantum effects can be used
to improve the harvester characteristics. Finally, in Sec. VII we
summarize the main conclusions.

II. GENERAL THEORY

Before starting with the theory, let us first clarify the type
of processes we are dealing with. Our goal is the same as that
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FIG. 1. (a),(b) Schemes of the type of systems proposed. An
external mechanical force stemming from the environment triggers
the movement of a bistable tip (a) or shakes the whole nanodevice
(b). As aresult of that, a tip hits the system, in this case, a conductive
wire suspended over permanent charges. This starts the oscillation
of the wire, which in turn pumps electrons between the reservoirs.
(c) Typical trajectory in the phase space of the normal modes of the
wire, represented by ¢; and g;. The initial time and the long-time
behavior are marked by f, and ?., respectively. The geometry of
the trajectories determine the total pumped charge at r — oo. (d) A
typical plot of the pumped charge Q(¢) as a function of time ¢, in
arbitrary units.

of macroscopic vibrational energy harvesting but taken to the
nanoscale. One wants to extract useful electrical power from
ambient residual energies arising from different mechanical
excitations. Those mechanical excitations can emerge in prin-
ciple from several spontaneous sources such as those produced
by biological activities (e.g., walking) or industrial activities
(e.g., vibrations stemming from some machinery), but also
from sources purposely generated by an external agent as a
way of feeding a nanomachine wirelessly.

The type of systems considered consists of a hitting device
that only when, for example, a mechanical wave goes through
the device or the whole harvester is shaken, hits in a certain
way a conductor connected to two leads. The motion of the
conductor and its coupling to the electronic degrees of freedom
is what then pumps current between the reservoirs. This process
is depicted in Fig. 1. We will describe the pumping process
quantum mechanically so we are implicitly assuming that the
coherence length of the electrons in the conductor is at least
of the same order as its characteristic size, which is in the

nanoscale [23]. In contrast, the motion of the conductor is
assumed to be classically treatable.

The starting point of our theoretical description is the well-
known formula due to Brouwer and Biittiker et al. [13,14] of
the adiabatic charge pumping, which adapted to our problem

reads
o dn,
F = dt —qi ). 1
o= [ (L5 o

Here, e is the charge of the electron, and Q, is what we call
the asymptotic pumped charge (APC) from the reservoir r,
where “asymptotic” refers to the long-time limit of the pumped
charge Q(t), i.e., lim,_, Q(¢). This differs from the usual
definition for Q,, referring to the charge pumped per cycle
[14]. In our case there is not a cycle but a hitting event which
is unique in principle. The modes of the mechanical part of the
system are labeled g;, and ‘[JIZ is the emissivity, defined in the
low-temperature limit as [24]

dn, 1 0S5,
ro_ 3 —Im|: ﬁS;ﬁ}, 2)
dq,‘ faer 27 aq,‘

where S,p is the element of the scattering matrix S that
connects a conduction channel 8 belonging to some reservoir,
to a conduction channel o belonging to the reservoir r (S is
a transmission amplitude for « and g8 belonging to different
reservoirs or a reflection amplitude otherwise). To obtain a
simple expression, we expand the emissivity up to linear order

ing;,
dn, o
O, ~e / q 'qidt'
lZ dq[ q0 0 !
3)

We assume the system is initially at rest and all excitations
decay at long times to the initial condition, i.e., g;(0) = g;(c0).
Then, we can use integration by parts, which gives

. d dn,
qidf + —
qO/o Z dq; dgi
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This equation is a generalization of Brouwer’s formula [14] for
the multiparametric adiabatic charge pumping. It consists of
the summation of the contributions from every pair of normal
modes i and j to the pumped charge. Each contribution is
the multiplication of two factors, a scattering factor ( f;) and
a geometric factor (f,). We will see that f, is independent
of the speed at which trajectories are traversed and only
depends on their geometry, hence the name. Its dependence
on the geometry can be written as an enclosed area, but
this “enclosed area” is something more complex than that of
conventional adiabatic quantum pumping [14]. As can be seen
in Fig. 1(c), for each pair of parameters g; and g;, there are
infinite enclosed areas whose signs depend on the direction in
which the trajectories are being traveled. The sum of all these
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areas gives the geometric factor for the pair (¢;,q;) which is
not zero in general [25]. It is fair to note here that, as well as
for conventional quantum pumping, the APC is a first-order
effect in an expansion of the emissivity as can be noticed in
Eq. (3). Thus, large pumped currents should not be expected
in general.

An interesting aspect of the kind of pumping treated in
this work is that it does not need an external agent that
continuously moves the parameters in a certain way. Instead,
asymptotic quantum pumping only requires an appropriate
initial condition and a damping mechanism, which should
always be present in any system. One advantage of dispensing
with continuous electrical driving and relying instead on a
mechanical triggering is that the displacement currents that
make experiments with quantum pumping so difficult are
absent here [26]. This may open the door to a new way of
experimentally studying quantum pumping.

III. GEOMETRIC FACTOR FOR DAMPED
HARMONIC SYSTEMS

A. Impulsive initial conditions

Let us assume the classical g; modes correspond to the
normal modes of a system initially at rest that suffered an
impulsive initial condition. For the moment, let us also assume
that temperature is zero. Then, we can write

gi(t) = a; sin(w;wot)e V" (6)

where ¢ is the time, w; is the resonant frequency of the normal
mode i in units of a reference frequency wg, and y; is the
damping factor, also in units of wy. Note that this equation
makes explicit the meaning of the long-time limit of Q,, r >
max [1/(y;wp)]. The value of the a; coefficients depend on
the initial velocities of each normal mode, a; = ¢;(0)/(w; wy),
which, in turn, depends on the details of how the tip hits the
system. Integrating the geometric factor f, with g; given by
Eq. (6) yields

(@aj)wo;[(0f — )+ (v2 —v])]

[+ 72 + (0} + )] — dofe?

Je)) =

(N

Note that f, is independent of wg, which gives the time scale
of the whole process. Thus, f, only depends on the geometry
of the trajectories, given by the pairs (¢;,a;), (y;,y;), and
(wi,wj). From Eq. (7), itis clear that completely random initial
conditions, which would correspond to random values of @¢; and
aj, would make the average value of f, zero. This highlights
the obvious fact that it is not possible to extract energy from
thermal fluctuations (if the whole system is described by
a unique temperature). However, if the tip is moved by an
external source (see the discussion at the beginning of Sec. II),
its shape is kept constant between hitting events, and it hits
the device at the same position, all the ratios a; /a; will be the
same and only the absolute values of the a; coefficients will
change. If this is the case, then the APC can only change its
magnitude but not its sign between hitting events. Figure 1
shows schemes of two possible setups of the system. There,
a tip hits a conducting wire randomly in time but always at
the same place and from the same direction. Different shapes
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FIG. 2. Geometric factor f,, in units of (a;a;), as a function of
the ratio between the frequencies of two normal modes, w;/w;, and
for different damping factors, y; = y; = y.

of the tip or multiple tips can also be used to control which
normal modes of the wire will be excited.

In Eq. (7) one can check that decreasing the damping factors
increases the total pumped charge. However, there is an upper

limit to the APC, given by
(a;a;) I+ (U)

2
Sl ()

where + corresponds to w; 2 ;. Figure 2 shows the depen-
dence of f, on the damping factors and the frequency ratios
between modes. We can see that the closer the frequencies of
two modes, the larger their contribution to the pumped charge.
Then, considering two consecutive modes, which will give the
largest contribution, the higher their frequency the better.

Up to this point we have only considered the zero-
temperature case for the geometric factor, which implies g; (¢ =
0) = 0 and the absence of stochastic forces in the trajectories.
To address the effect of the temperature we will consider a more
realistic situation where the dynamics of g; (¢) is determined by
a Langevin-like equation

2
0

lim q[q'jdt ==+ -1, ®)
y—>0Jo

Gi = — (o} +v7)ai — 2vidi + & ©
Here, &; accounts for the stochastic forces. These forces have
zero mean (&) =0 and are assumed local in time with a
correlation function given by (&;(¢)&;(¢')) = D;8(¢t — t’), where
D; is chosen such as to fulfill the fluctuation-dissipation
theorem, D; = 2K T'y;. At zero temperature and for impulsive
initial conditions one recovers Eq. (6). We are assuming that the
hitting device is an object large enough so that its dynamics
is not affected by thermal noise. Therefore, only when, for
example, some mechanical wave goes through the system or
the whole harvester is shaken, the hitting device is triggered.
We also assume that the impact is fast compared with the
time scales of the vibrational modes coupled to the electronic
degrees of freedom. Then, the only role of the hitting device is
to provide the impulsive initial condition. For that reason, its
dynamics will not be considered explicitly.

We numerically solved Eq. (9) for two modes with w, =
2w; and y; = y» = 0.1w;. The geometric factor, Eq. (5), was
numerically evaluated using a final time equal to 10/y;. The
initial position and velocity of the modes were chosen from a
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FIG. 3. Effect of the temperature on f,. KT is the Boltzmann
constant times the temperature. E\;, is the kinetic energy added by the
impulsive initial condition. The line marked as “analytic” corresponds
to Eq. (7) (KT = 0). The error bars shown as “numeric” are centered
atthe average value of f, obtained numerically for finite temperatures.
The width of the error bars corresponds to 20//+/N where o is the
standard deviation of the set of trajectories at the same temperature
and N is the number of trajectories run (N = 100). f, is in units of
(aja;). See text for details.

thermal ensemble and then at # = 0 a quantity equal to /2 Eyi,
was added to the initial velocities, where Ey;, = c}f /2=0.5
in arbitrary units (g; is in units of a; and ¢; is in units of a;wy).
Figure 3 shows the average value of the geometric factor (and
its error) obtained from the simulations as a function of the
temperature. As can be seen, the only role of temperature is
to broaden the distribution functions of f, around the values
predicted by Eq. (7).

B. Displacive initial conditions

In this section we analyze acomplementary case to that stud-
ied in the previous section. In the displacive initial conditions,
the velocities of all normal modes are zero at the beginning of
the free movement but not the positions. A physical situation
corresponding to this case may be, for example, a tip that first
pushes a conductor and then, when moving back, pulls the
conductor with it, due to the van der Waals forces. At some
point, the restoring forces overcome the van der Waals forces
and the conductor is released, marking the beginning of its
free motion. This situation is depicted in Fig. 4. Note that here
the “collisional” time can be large compared with the system’s
dynamics. The equation of motion for the normal mode ¢; can
be written in this case as

'V _‘y V¥
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—tini ¢ 0

FIG. 4. Scheme of the type of processes that can give rise to
displacive initial conditions. Due to some external excitation a tip
first pushes a conductive wire and then it retreats but pulling the wire
with it in the process as a consequence of van der Waals forces. The
movement of the conductive wire during the process depicted and
its subsequent free movement, after the interaction finished, pump
current between two reservoirs. In the plot, z(¢) represents the position
of the tip with respect to the wire.

where z(¢) is a coordinate that describes the tip’s movement,
a; is the weight of the z coordinate on the normal mode g¢;,
and —#;,; marks the beginning of the interaction between the
tip and the conductor. We will describe the tip’s movement by
the minimal expression

(Zmax - Zmin) (Zmax + Zmin)

> . (1D

where Zmax and zgn are the maximum and minimum values
of z(¢), respectively (while the tip is still in contact with the
conductor). From Eq. (11) itis clear that z,,x = z(0) and go; =
a; Zmax- The value of w, is calculated so that z(—#;,;)) = 0, i.e.,

w, = <271 — arccos [Mib/lmr (12)
(Zmin — Zmax)

The integration of the geometric factor is now split into two
parts:

[ee) 0 00
fe =/ qiq;dt =f qiq;dt +/ qiq;dt.  (13)
_ 0

z(t) =

cos (w,t) +

Lini Tini

The first integral is easy to evaluate—it gives gg,;qo; /2—while

o Jaiz(o) for—ty; <t <0 . .
qi(t) = {qol.e—iyiwot cos (wiwpt) for 0 < 1 < oo, (10) the second one is more cumbersome. The final result is
|
f [1 vitvi + vl + v + o] + [ + v + 2)) — of |07 + wq 14
g = 40iq0j | 5 — 2 .
2 (i + )2+ ]| + 20 + v — o) +y) + o)) + o)

The dependence of f, with y and the ratio w; /w; is similar to that of impulsive initial conditions (see Fig. 5). The limit of small

y is now

Yy —>00

1= ()"

lim f, = q0iq0j§

s)

=T
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FIG. 5. Same as Fig. 2 but for displacive initial conditions. f, is
in units of (go;qo;)-

As in Sec. I[II B we implicitly assumed KT = 0 in Egs. (10)
and (14). However, the effect of the temperature is the same as
before. It only broadens the distribution function of f, around
the value predicted by the zero-temperature formulas. This
can be seen in Fig. 6 where we performed the same type of
calculation as that described in the previous section [see the
text around Eq. (9)].

IV. SCATTERING FACTOR OF AN OSCILLATING WIRE

To analyze the effect of the scattering factor f; we need
to resort to particular examples. Let us examine the case of
a conductive wire suspended over an electret material [27]
as shown in panels (a) and (b) of Fig. 1. For simplicity, we
assume a small capacitive coupling between the electrons of
the wire and the permanent charges. The potential U sensed
by the electrons traversing the wire can now be taken as
U(x) = Upz(x), where z, the separation between the wire and
the electret material, depends on the position x along the
wire. Then, the electronic Hamiltonian, written in terms of
the transverse normal modes of the wire, reads

2nwix

)
A= % +Uo Y ai(®)sin ( )@(x>®<L —x),

(16)
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FIG. 6. Same as Fig. 3 but for displacive initial conditions. K T is

in units of the initial potential energy Ein = (w? + ¥?)q3./2 and f,
is in units of (go;qo;)-

where p and m, are the momentum and mass of the electron, ®
is the Heaviside step function, L is the length of the wire, g; is
the amplitude of the ith normal mode of the wire (considered
in this approximation as a classical variable), and wj is in this
case an integer between 1 and oo. Note that, for simplicity,
we excluded the electron’s spin of the analysis. To solve our
problem, we start by first noticing that our Hamiltonian is of
the form H = p*>/(2m,) + Y, U,,. If we define S and S, as
the scattering matrices associated with the Hamiltonians A
and I:Iqi, respectively, where ﬁq, = p?/2m,) + U, ., then by
using the Fisher and Lee formula [28], one finds

9S _ aS‘]i

| = % 17
0g; 9g; (n

90 40
where gy = q;(tp) =0 (see Appendix A). I:Iq, is the same
Hamiltonian as that presented in Refs. [29,30] for the Thouless
motor. As shown there, one can obtain analytically the scatter-
ing matrix of the problem by linearizing the Hamiltonian for
momenta close to iik; = £hinw; /L (see Appendix B). Using
this result, we obtain the derivative of the scattering matrix of
the original problem, Eq. (16),

98| _ Wl sinc(AE;)e'2Eig (18)

99 |4, 2hvp

where AE; = (ﬁ)(s — ZZka), 0, is the “z” Pauli matrix, vg
is the Fermi velocity, and ¢ is the Fermi energy. The scattering
factor f; is obtained by assuming the momentum of the electron
is close to both /ik; = *himw; /L and fik; = £hmw; /L. Then,
one can apply Eq. (18) to the derivatives with respect to g; and
q,. This results in

- e (UL \’ . .
fs(,j,6) = —| == | sinc(AE;)sinc(AE;)
7w \2hvr
x sin(AE; — AEj). (19)

As can be noticed, the scattering factor f;(i, j,&) depends on the
Fermi energy and the pair of modes i and j under consideration.
Taking its maximum value for each pair of (i, j) modes, one
can check that pairs of modes with the closest frequencies,
w; = w; + 1 for j > i, give the maximum contribution to the
APC, Eq. (5). One can also check that, among those pairs with
w;j = w; + 1, the ones with the lowest frequencies, smallest
w;, give the largest contribution to APC. This is the opposite
of the behavior of f, discussed in the previous section.

The above result was confirmed by numerical calcula-
tions based on a tight-binding model. Important deviation
were observed only for the smallest (w;)’s, where Eq. (19)
overestimates the maximum value of f;(¢) (see Fig. 7).
The tight-binding model [30,31] used in the figure con-
sisted of a linear chain of 400 sites with site energy E, =
Uo) q,-(t)sin(@), where L =400, Uy = 0.1, and ¢; is
given by Eq. (6). Only first-neighbors couplings were consid-
ered with a coupling constant ¢, = 1, thus setting the energy
scale. Leads were attached to sites n = 1 and n = 400 with a
coupling constant equal to 7. The self-energy of the leads was
taken as

e+1in
2

) 2
o £ 2
X(e) = nlinol+ — = sgn(e) < > -2, (20
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FIG. 7. Comparison of the scattering factor f;, in arbitrary units,
evaluated using Eq. (19) and numerically. ¢ is the Fermi energy in
units of 7., the coupling constant of the tight-binding chain. See text
for details.

where ¢ is the Fermi energy. The numerical value of f;
was obtained from the numerical derivative of the scattering
matrix around gy. The scattering matrices were calculated from
the retarded Green’s functions as shown in Appendix A and
Refs. [28,30-32].

To compare the maximum contribution that each pair of
modes may have to the APC, we rewrite Eq. (5) as

- e UZL?
0@ =7 2m

> (@iap)N; j(e), @1

i<j

where N; j(e) = fi(i,j,e) f,(i,j) with f,(i,j) and fi(i,],€)
given by Eqgs. (7) and (19), respectively, but without the
prefactors ( § lfﬁLz_ )and (a;a ). Note we are assuming impulsive
initial conditions for the calculation of f,. The quantity N; ;(¢)
is independent of the initial conditions, given by the value of
the pairs (g;,a;), butit still depends on €. Thus, we define Ni,m]f”‘
as the maximum value of N; ;(e) allowed by a variation of €.
Figure 8 shows the value N/, in arbitrary units, for
different pairs of modes i and j. For simplicity in the figure
we assumed vy = /2¢/m,.. We used L = 100 nm, although
normalized figures are indistinguishable with respect to a
variation of L or m,. In the figure, we can see that the lowest
frequency modes give the largest contribution to Q. This may
have important consequences for the design of the proposed
device as it can help to optimize the hitting mechanism.

V. COUPLING TO A CAPACITOR

We have shown that it is possible to harvest mechanical
energy from the environment by using geometric rectification.
However, this energy has to be stored into a voltage bias, and
now the problem is to understand the back action of it on the
pumping process. Let us assume our system is connected in
series with a capacitor with capacitance C and let us simplify
the analysis by considering only small voltages. Then, the total
charge accumulated in the capacitor Q‘ROtal produces a voltage
bias V according to V = Q;"ta' /C, where V = V; — Vi with
L and R labeling the left and right leads, respectively. The
voltage bias induces, in turn, an additional force F;, given by

N (ao) NN |
0.001 0.01 0.1 1

20

4 8 w; 12 16 20
FIG. 8. Maximum relative contribution that each pair of modes
o; and w; may have to the APC. N;/* is the maximum value of N; ;(¢)
[see Eq. (21)] obtained by varying ¢. Impulsive initial conditions were
assumed for the geometric factor in the limit y — 0.

[29,30]

Fo= (S A ey, @)
dgi dgi ) 2

and this force will affect the dynamics of the entire system.
In principle, this force could change the equilibrium positions
and the normal modes of the system between hitting events
or, even worse, while the system is relaxing. This is because V
varies with time. The variation of V with time is a consequence
of the charge accumulation driven by charge pumping, Eq. (5),
and the charge leakage due to the bias current /%%, The bias
current can be described by 1% = %TLR V where T,, is the
transmittance, and the factor 2 takes into account the spin
multiplicity. A full treatment of the problem then requires the
solution of an additional coupled equation,

12°T,,V
V(I)Z—/ ldﬂ

,  hC

t

1 /d d
S (T - )gar, @3)
0 57 2C\dq;  dg

where the time 7 can be large enough as to include several
“hitting” events of the type described by Eq. (5). To gain
some understanding of the role of current-induced forces
without resorting to numerical simulations, we will make
additional assumptions. First, the hitting events are random
but sufficiently far apart such that they do not interfere with
each other. Second, after waiting enough time such that a
large number of hitting events have occurred, a steady state
is reached where the variation of V(¢) is small compared
with its mean value (V). The latter is a good approximation
when the average pumped charge during a hitting event and
the total charge leaked between events are both negligible
compared with the total charge accumulated in the capacitor.
This condition can be written as (2e2TLR) /(hvC) < 1 where
v is the frequency of events that lead to APC. Considering the
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above, we can clear the mean voltage from Eq. (23) giving
h{(Q,)v
22T,

where (Q,) is the mean value of APC. Using Eq. (24) and
expanding the emissivity up to linear order in ¢; [similarly to
what we did in Eq. (3)], we obtain a simple expression for the
current-induced forces,
) (V)
e—"
q0 2

P dn,
t dgq;
d dn,

d dn
+ ——=| - —
2 (84./ dqi dq; dqi

J

(V) =

(24)

dn,
% dq;

(V)
q0>equ. (25)

490

The first term just redefines the equilibrium position of the “g;”
modes, while the second one couples linearly the modes among
each other and changes their natural frequency of resonance.
However, the whole system is still harmonic. Therefore, the
expression for f,, Eq. (7), remains valid even for finite
voltages.

If we consider a steady-state situation such as that described
in the context of Eq. (24), we can readily obtain the total work
done by the current-induced forces after a hitting event. The
result is simply the energy added to the capacitor [33]

W=/F-dq=/2ﬂq',-dr:—QR<V>. (26)

VI. PERFORMANCE AND QUANTUM EFFECTS

Considering that the energy of the whole process comes
from the initial kinetic energy of the hitting device and the fact
that we are interested in accumulating energy in a capacitor, it
is natural to define the efficiency of the global process as

(ARG o

(Exin)
where (Eyy,) is the average initial kinetic energy. Then,
assuming the validity of Eq. (24), we can write, for impulsive
initial conditions,

hv(Q,)*
ezTLRw(z) Zi (wlzazz)
Note that the efficiency does depend on the absolute temporal
scale of the charge pumping process (proportional to 1/wy),
while neither the APC, Eq. (5), nor the steady-state voltage,
Eq. (24), does.

Several parameters can be tuned to increase 7, but partic-
ularly interesting is the ratio (Q,)/T, . In principle, different
quantum effects can be used to reduce 7, ,. The question is:
Will quantum effects also reduce the pumped charge? One of
the simplest examples to study this is the use of Anderson’s
localization induced by impurities in molecular wires.

To study the effect of an impurity on the ratio Q, /T, ,, we
performed a tight-binding calculation of the APC similar to
that described in the context of Fig. 7. The defect was placed
at site n = 200 for a chain of 400 sites. The site’s energy of
the impurity was E = E, + Ejyp and only modes with w;
equal to 1 and 2 were excited assuming an impulsive initial

(28)

10° ' ' ]
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FIG. 9. Effect of impurities with different energies (Ejn,) on the
ratios |Q,|/T,, and Qi /T, in arbitrary units. € is the Fermi energy.

condition with a; = a,. The geometric factor was evaluated
directly from Eq. (7) and the rest of the parameters of the
tight-binding calculation were the same as those of Fig. 7.
Figure 9 shows the effect of impurities with different energies
on the ratios |Q,|/T,, and Qi /T, ., the latter shown in the
inset. Considering Eqgs. (24) and (28), the figure shows that
quantum-induced localization of the electron’s wave function
can increase up to three orders of magnitude the energy
accumulated in the capacitor and the efficiency of the whole
process. This emphasizes the key role that quantum mechanics
may have on nanoscale vibrational energy harvesting.

VII. CONCLUSIONS

We have studied a previously unreported mechanism that
can turn residual kinetic energy directly into useful electrical
work in the nanoscale by using quantum pumping. As an
application example, we have analyzed a solvable system
consisting of a wire suspended over permanent charges where
we find the conditions for maximizing the asymptotic pumped
charge. We have discussed the effects of coupling general
systems to a capacitor where we include in the analysis
the effect of current-induced forces. We have given explicit
expressions for the steady-state voltage of operation and the
efficiency of the harvesting process in the limit of small but
stationary voltages. Finally, we have shown how quantum
effects can be used to enhance the performance of energy
harvesters several orders of magnitude.

We believe this work opens up many possibilities for
the study of asymptotic quantum pumping and its potential
applications. Although further work is required, the proposal
seems amenable to harvesting very low kinetic energy as it
avoids the use of electrical rectifiers and then seems promising
for powering nanoscale devices. In this context, it would be
important to test the ideas proposed in more concrete examples,
such as carbon nanotubes or graphene sheets under realistic
conditions. One key aspect that requires a deeper study is the
sensitivity of the sign of the pumped current to potential defects
in the fabrication of the device. This can cause problems for
parallel energy harvesting as the sign of the pumped current
is not controlled externally but depends on the design of the
device.
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Our proposal only requires appropriate initial conditions
triggered mechanically and, because of that, displacement
currents should be absent. This makes asymptotic quantum
pumping attractive as an alternative way of experimentally
studying quantum pumping. Although it was not the original
idea, it would also be interesting to study asymptotic quantum
pumping as a thermal machine. For example, one can assume
that the tip is excited by thermal noise and there is a temper-
ature difference between the tip and the rest of the system.
Appropriate working conditions should be found in this case,
but the idea seems appealing.
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APPENDIX A: DERIVATION OF EQ. (17)

The elements of the scattering matrix of a problem can be
evaluated from the Green’s function of the system by using the
Fisher and Lee formula [28,30-32] which can be written as
[34]

S=1-2iwGFw. (A1)
Here, G® is the retarded Green’s function
GR = lirg [(e+inl —H —X]7", (A2)
n—0+

where H is the Hamiltonian of the system without the leads,
¥ is the self-energy due to the leads, and ¢ is the energy of the
electrons. The matrix W comes from

r,=wm,w, (A3)

where I, is the projection operator onto the channel « of some
reservoir r and I', is the contributions, due to the channel «, to
the imaginary part of the self-energy X, i.e., I' = Im(X) and
r=>,T,I[35].

The derivative of S with respect to a coordinate g;, that does
not affect the couplings to the leads, can be written as
S oH
— = 2iWIGFR—G*Ww.
9gi g,
Now, due to the particular choice of H, H,,, and go (g0 =
0) it is clear that Z—f_ = Mo and H(q0) = H,(q0), which

ag;
immediately implies Eq. (17).

(A4)

APPENDIX B: DERIVATION OF EQ. (18)

To find the scattering matrix of the Hamiltonian I:Iq,, we
start by linearizing it for momenta close to /ik; = +hmw;/L
where 7 is the Planck constant divided by 2w. The resulting
Hamiltonian, given in terms of the counterpropagating linear
channels and measuring momenta and energies from %k; and
Fzzki2 /(2m,), respectively, can be written as

X Uyq;(t
H, = VFpo;+ g

0,0(x)O(L — x), (B1)

where o; denotes the Pauli matrices in the space of the
counterpropagating channels, v is the Fermi velocity, and we
do not include the electron spin for simplicity. The transfer
matrix M of a one-dimensional problem can be defined by its
effect on the in- and outgoing waves (i and o, respectively) as
(ir,0r)T = M(oy,ip)T, where L and R stand for left and right
leads here [not to be confused with the length of the system
in Eq. (B1)]. Then, neglecting the reflections at the boundary
of the system (small Up) [30] and assuming the wave function
inside of it is of the form ¢'* one can write the transfer matrix
as M =~ e''* which combined with Eq. (B1) yields

L Upgi(t
Mqi:exp<hl—|:88i— O‘é()a}}az). (B2)

Vfp

This equation can be rewritten as

M, = &% = [ cos Ay + iGesinAg, (B3)

where A = (L/hvy)y/(86:)* — (Uogi /2)%, 6 it = [—i(Uogi /2)
0, + 88101/ (8e)* — (Uogqi/2)?, and 8&; = (¢ — 'Zsz"z). The
relation between M and S can be obtained from their defi-
nitions [ (ig,0r)" = M(op,ir)" and (o1,0r)T = S(iL,ig)"].
The result is

_ sin Az (Upgi /2) 1

M1/ (8&i)*—(Uogi /2)? M
S, = R _ s | (BY
My, M1 A/ (8> —(Uogi /2)*
where

My = cosAy —i(8e;/v/(8&:)? — (Upgi/2)?)sinrr. (BS)

Taking the derivative of Eq. (B4) for ¢; = 0 and considering
Eq. (17), gives Eq. (18).
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