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Antibiotic resistance has turned into a global public health issue. Enterococci are
intrinsically resistant to many antimicrobials groups. These bacteria colonize dairy and
meat products and integrate the autochthonous microbiota of mammal’s gastrointestinal
tract. Over the last decades, detection of vanA genotype in Enterococcus faecium
from animals and from food of animal origin has been reported. Vancomycin-resistant
E. faecium has become a prevalent nosocomial pathogen. Hospitalized patients are
frequently treated with broad-spectrum antimicrobials and this leads to an increase
in the presence of VanA or VanB vancomycin-resistant enterococci in patients’
gastrointestinal tract and the risk of invasive infections. In humans, E. faecium is the
main reservoir of VanA and VanB phenotypes. Acquisition of high-level aminoglycoside
resistance is a significant therapeutic problem for patients with severe infections
because it negates the synergistic effect between aminoglycosides and a cell-wall-
active agent. The aac(6′)-Ie-aph (2′′)-Ia gene is widely spread in E. faecalis and has been
detected in strains of human origin and in the food of animal origin. Enzyme AAC(6′)-
Ie-APH(2′′)-Ia confers resistance to available aminoglycosides, except to streptomycin.
Due to the fast dissemination of this genetic determinant, the impact of its horizontal
transferability among enterococcal species from different origin has been considered.
The extensive use of antibiotics in food-producing animals contributes to an increase in
drug-resistant animal bacteria that can be transmitted to humans. Innovation is needed
for the development of new antibacterial drugs and for the design of combination
therapies with conventional antibiotics. Nowadays, semi-purified bacteriocins and
probiotics are becoming an attractive alternative to the antibiotic in animal production.
Therefore, a better understanding of a complex and relevant issue for Public Health such
as high-level vancomycin and gentamicin resistance in enterococci and their impact is
needed. Hence, it is necessary to consider the spread of vanA E. faecium and high-level
gentamicin resistant E. faecalis strains of different origin in the environment, and also
highlight the potential horizontal transferability of these resistance determinants to other
bacteria.
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INTRODUCTION

Enterococci are resistant to diverse physicochemical conditions
and are widespread in nature. They are capable of growing and
surviving under harsh environmental conditions and have been
found in soil, plants, birds, and insects (Butler, 2006; Ghosh and
Zurek, 2015).

In the intestinal tract of humans and other animals, the genus
Enterococcus can be found among their flora. The microbiological
and ecological factors that contribute with intestinal colonization
are unknown, even though up to 108 CFU/g of enterococci
have been found in human feces. In addition, strains from this
genus have been isolated from fermented and dairy products.
Moreover, some enterococcal strains have been regarded as food
biopreservants and probiotics, although their safety remains
questioned (Beibei et al., 2015).

Traditionally, enterococci have not been considered as
community-acquired pathogens. Usually, these bacteria do not
cause infectious diseases in healthy people, except for occasional
urinary tract infections; however, Enterococcus faecium as well
as E. faecalis, are prevalent producers of health-care associated
opportunistic infections (Woodford and Livermore, 2009). The
genomic plasticity of enterococci has contributed with their
adaptation to the hospital environment. Their relevance as
nosocomial-infections’ agents is bolstered by their natural
resistance to multiple antimicrobials and an outstanding ability
for acquiring and transferring genetic resistance determinants
(Werner et al., 2013).

Enterococci express natural (intrinsic) resistance
to antibiotics, e.g., clindamycin and trimethoprim-
sulfamethoxazole. In addition, enterococci show a naturally
low-level resistance to gentamicin. Minimum inhibitory
concentration (MIC) values to gentamicin range from 6 to
48 µg/mL (Chow, 2000).

Antimicrobials consumption constitutes an important risk
factor for colonization with multi-drug resistant enterococci
because of the suppression of the competitive indigenous
microbiota in the gastrointestinal tract. The increased number
of gut enterococci, due to the decrease of competitive gut
indigenous flora, frequently precedes bloodstream infections
(Ubeda et al., 2010; Reyes et al., 2017).

Antimicrobials can be used in animal husbandry with
therapeutic, prophylactic/metaphylactic and growth promotion
purposes. Despite the use of antibiotics as growth promoters
has been forbidden in many countries, worldwide, foods
supplemented with antimicrobials are freely acquired in
several countries with no veterinarian control, including
in Argentina. This leads to bacterial exposure to sub-
therapeutic concentrations of antibiotics and, hence, it may
promote the expression of antibiotic resistance (Andersson
and Hughes, 2014). Antimicrobials employed for human
therapies and also used in animal production (in decreasing
order) are tetracyclines, penicillins, macrolides, sulfonamides,
aminoglycosides, lincosamides, and cephalosporins (Love
et al., 2011; Kuehn, 2014). Specifically, ceftiofur, sulfamides
and tetracyclines are used for prevention and treatment of
pneumonia in pigs; gentamicin and neomycin are employed

for the therapy of bacterial diarrhea (Dewey et al., 1999; EFSA,
2011).

The addition of antibiotics for growth promotion in animal
feed became a common practice without rigorous testing. The
mechanism of action in growth promotion induced by antibiotics
appears to be related to the reduction of pathogenic bacteria
in the intestines. The concentration of antimicrobials used
for growth promotion has often been lower than that used
for therapy and prophylaxis. These sub-therapeutic doses of
antibiotics often create an auspicious condition for selecting
antibiotic resistant bacteria (Van Immerseel et al., 2004; Dibner
and Richards, 2005). Previously, McDonald et al. (2001) reported
antimicrobial resistant enterococci in food produced with
animals fed with antibiotics in sub-therapeutic doses.

Extensive use of antimicrobials in animal husbandry has
exerted a considerable pressure for the genesis of antimicrobial-
resistant bacteria in the environment, such as vancomycin-
resistant enterococci (López et al., 2009; Ruzauskas et al., 2009;
Marshall and Levy, 2011; Nieto-Arribas et al., 2011; Ribeiro et al.,
2011; Sánchez Valenzuela et al., 2013).

Furthermore, enterococci, due to their characteristics of
gastrointestinal colonization, environmental persistence, natural
and acquired resistance to different antimicrobials and their
availability to transfer genes horizontally, can be used as
biomarkers of antimicrobial resistance in intensive husbandry.

TRANSFERABLE GENETIC
DETERMINANTS OF ANTIMICROBIAL
RESISTANCE

Intensive breeding of animals, especially poultry, pigs and cattle,
facilitates the selection, spread and resistance determinants
transfer of resistant bacteria. Increased antimicrobials resistance
in colonizing bacteria from animals and food of this origin was
documented (Normanno et al., 2007).

The extended and permanent use of antimicrobials for
therapy purposes and growth promotion purposes in husbandry
contributed with drug-resistant bacteria selection in humans.
When antimicrobials are used in low doses and in prolonged
cycles, a selective pressure is exerted that favors the propagation
of drug-resistant bacteria (Fey et al., 2000; Graveland et al.,
2010).

As a result, antimicrobial-resistant enterococci, as well as
other resistant gut bacteria, can be spread in the environment
by fecal residues. These bacteria can rapidly transfer their
resistance to other strains through genetic determinants carried
by mobile elements. Resistant enterococci are able to persist in
the animal intestine, contaminate the environment and food of
animal origin, and transfer determinants to human gut’s isolates
(Tasho and Cho, 2017). Moreover, community people can be
exposed to antimicrobial resistant enterococci through direct
contact.

Use of antimicrobials can enhance gene transfer between
bacteria (Malhotra-Kumar et al., 2007). Gene conjugative transfer
is frequent in the human gut, as well as in nature. Enterococci
acquire antibiotic resistance genes, e.g., for high-level gentamicin
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resistance and glycopeptides resistance determinants (Willems
et al., 2011; Sparo et al., 2012).

Further, enterococci can horizontally transfer resistance genes
to relevant bacteria in clinical settings, such as Escherichia
coli, Staphylococcus aureus, and Listeria spp. (Verraes et al.,
2013).

Generally, severe infections caused by enterococci are treated
with a cell-wall active agent-aminoglycoside (mostly gentamicin)
combination. The emergence of β-lactam and glycopeptide
resistance and high-level resistance to gentamicin in enterococci
has led to the employment of alternative antimicrobials (Arias
et al., 2010; Bartash and Nori, 2017).

Figure 1 shows a presumable bidirectional transfer of
resistance determinants and/or resistant enterococci between
different niches such as human and animal. This transfer
can occur through direct contact, foodborne contamination,
as well as in health-care settings and the environment
(community).

High-Level Vancomycin Resistant
Enterococci
In enterococci, vancomycin resistance is associated with different
van genotypes each corresponding with a typical Van phenotype.
These genes are chromosomal or extrachromosomal encoded
in transposons and/or plasmids. In human E. faecalis and
E. faecium, VanA and VanB (inducible resistance) are the
most relevant types. vanA gene cluster is most often found
on conjugative or non-conjugative plasmids (Cetinkaya et al.,
2000; Top et al., 2008). VanA is encoded by Tn1546, or
closely related transposons. vanA gene is linked with high-
level resistance to vancomycin and teicoplanin, while variable-
level resistance to vancomycin is associated with a VanB
phenotype. The vanB operon is found among large conjugative
plasmids or in the chromosome (Cetinkaya et al., 2000). The
most frequent vanB subtype, vanB2, is encoded by conjugative
transposons Tn1549-/Tn5382-like. It is interesting to note
that Tn1549-vanB has also been detected in anaerobes that
inhabit the human gut (Dahl et al., 2000; Launay et al.,
2006).

VanA is the most prevalent glycopeptide resistance phenotype
in Enterococcus linked with human infections, mainly expressed
by E. faecium (Freitas et al., 2016). Lester et al. (2006) have
proven, in volunteers, the existence of genetic transfer in the
human intestine between ingested chicken vanA-E. faecium
and non-resistant to vancomycin human E. faecium. It is
important to highlight that this research has been performed
in a human gut model with its complexity and its diverse
microbiota.

Furthermore, there is a global concern regarding plasmid-
mediated vanA transfer from E. faecalis to methicillin-resistant
S. aureus and their co-colonization, with the likelihood of
VanA-S. aureus isolation (Flannagan et al., 2003; Weigel et al.,
2003).

In the last decades, vanA-E. faecium were recovered from
animals and food of this origin. Initially, the European
Union stated that there was a link between Veterinarian

use of a glycopeptide (avoparcin) and the emergence of
vancomycin resistance (Werner et al., 2008). After avoparcin’s
ban, glycopeptide-resistance did not disappear. López et al.
(2009) reported high-level vancomycin resistant enterococci
(4%) from samples of animal origin 10 years after avoparcin
was forbidden. Continuous presence of vancomycin-resistant
enterococci in farms and in food of animal origin suggests
that is possible the co-transfer of resistance genes located in
the same conjugative plasmid, such as vanA and ermB, which
encodes for macrolides resistance, widely used in Veterinary
medicine. Also, the presence of ABC-type transporter genes
and the toxin-antitoxin system may favor the persistence
of vancomycin resistance determinants (Aarestrup, 2000). In
addition, deficient hygiene conditions in animal husbandry,
should not be underestimated (Garcia-Migura et al., 2007).
In the same period, a different situation was observed in the
United States, since food of animal origin glycopeptide-resistant
E. faecium were not detected but, nevertheless, they emerged in
health-care settings, turning into a pathogen almost as prevalent
as E. faecalis had been so far (Coque et al., 1996; Ramsey and
Zilberberg, 2009). However, in Michigan, United States, vanA-
E.faecium was detected in farm animals where avoparcin was
not used; which supports the existence of alternative ways for
spreading of van genes, their transfer or carrying isolates from
humans to animals (Johnsen et al., 2011; Gordoncillo et al.,
2013).

In Argentina, vanA-E. faecium from artisanal food of animal
origin was reported by Delpech et al. (2012). Previously,
it was observed that animal-origin vancomycin-resistant
E. faecium of animal origin were ingested in meats, proving
the risk of resistant bacteria colonization when meat products
carrying resistant bacteria were consumed (Heuer et al.,
2006).

In Argentina, since the late 1990′s vancomycin-resistant
E. faecium infections have been reported. In several Argentinean
hospitals, the prevalence of clonal complex (CC) 17 carrying
the vanA gene was detected. Most of these enterococci also
expressed high-level aminoglycoside resistance (Corso et al.,
2007).

Recently, during a year-period (2013), genetic relatedness
(PFGE studies) between vanA enterococci from humans,
food and the hospital environment in the District of Tandil
(Argentina) was investigated. vanA-E. faecium (n: 13) were
recovered from human, food and hospital environment samples.
vanA enterococci were distributed among seven clonal types;
esp gene was detected in clinical strains. However, the clonal
relationship between vanA-E. faecium of clinical and food
origin was not found. The clonal relationship was observed
among isolates from the hospital environment and from patients
(Pourcel et al., 2017).

Bacterial conjugation provides an efficient gene transfer
pathway and can be considered as the most relevant mechanism
for the increase of antimicrobial resistance (Hammerum, 2012).
It is possible that bacteria from food can constitute reservoirs of
antimicrobial resistance.

The horizontal gene transfer of vanA-resistance between food
strains and human gut microbiota becomes a possible mechanism
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FIGURE 1 | Bidirectional transfer of resistance determinants and/or resistant enterococci between different niches.

of resistance dissemination when enterococci do not fit in the
hospital settings (Hammerum et al., 2010).

High-Level Gentamicin Resistant
Enterococci
The most prevalent mechanism of high-level aminoglycoside
resistance in clinical bacteria is their enzymatic modification.
Three families of aminoglycoside modifying enzymes have been
recognized: phosphotransferases (APH), acetyltransferases
(AAC), and nucleotidyltransferases (ANT). Genes for
aminoglycoside modifying enzymes are often plasmidic,
with bacteria-bacteria aminoglycoside resistance dissemination
(Bassenden et al., 2016).

The following risk factors for the acquisition of infections
with high-level gentamicin resistant enterococci have been
identified: previous long-term antimicrobial treatment, number
of prescribed antimicrobials, previous surgeries, peri-operative
antimicrobial prophylaxis, hospitalization term/antimicrobial
treatment, urinary catheterization and renal failure. Infections
caused by E. faecalis with HLGR constitute a severe risk for
patients with invasive conditions and long-term hospitalization
(Miranda et al., 2001; Wendelbo et al., 2003; Ceci et al., 2015).

The most ubiquitous HLGR gene among human and food
enterococci is aac (6′)-Ie-aph (2′′)-Ia that encodes AAC(6′)-
APH(2′′)-Ia, with acetyltransferase and phosphotransferase
activities. Enterococci with this enzyme express resistance to

most of the available aminoglycosides (MIC > 2,000 µg/mL),
except for streptomycin (Leclercq et al., 1992). Generally,
aac(6′)-Ie-aph(2′′)-Ia gene is flanked by inverted repeats of
IS256, composing transposon Tn5281 in E. faecalis as part of a
conjugative plasmid (Rosvoll et al., 2012).

Other monofunctional genes encoding aminoglycoside-
modifying enzymes have been described, such as class APH
(2′′)-subclass I phosphotransferases, chromosomal [e.g., aph(2′′)-
Ib y aph(2′′)-Id] and plasmidic [e.g., aph(2′′)-Ic] genes. These
resistance determinants were originally found on Enterococcus
species different than E. faecalis and encode enzymes which
confer resistance to gentamicin and amikacin. aph(2′′)-Ic gene
is associated with MIC for gentamicin ranging between 128 to
512 µg/mL. Nevertheless, aph(2′′)-Id gene, initially described in
human E. casseliflavus, is linked to HLGR. This gene has been
detected in clinical vancomycin-resistant E. faecalis (Ramirez
and Tolmasky, 2010; Economou et al., 2017).

From 2000 to 2002, in Denmark, the proportion of high-level
gentamicin resistant E. faecalis isolates increased from 2 to 6%
in the pig population. Simultaneously, an emergence of HLGR
E. faecalis isolates among patients with infective endocarditis
was detected in the North Denmark Region (DANMAP, 2002).
Afterward, Larsen et al. (2010) demonstrated that all of these
isolates (human and pig origin) belonged to the same clonal
group, suggesting that pigs were a reservoir for high-level
gentamicin resistant E. faecalis associated with enterococcal
infections.
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Sparo et al. (2012) proved the spread of enterococci with
HLGR from animals to humans through the food chain, and also
that enterococci isolated from food of animal origin and humans
carried the same aminoglycosides resistant genes, as reported,
also, by other authors (Hammerum et al., 2007).

Resistance to ampicillin and vancomycin is infrequent,
although E. faecalis have been shown to acquire HLGR (Kuch
et al., 2012). Recently, over a 1 year period, the presence of
cytolysin and HLGR in E. faecalis from human (hospital), animal
(chicken feces from a farm) and food (minced meat from shops)
origin were studied. Clinical samples were obtained from patients
with invasive infections in Hospital Ramón Santamarina from
Tandil City, Buenos Aires Province (Argentina). In all enterococci
with HLGR, aac (6′) -Ie-aph (2′′)-Ia gene was amplified. aac
(6′)-Ie-aph (2′′)-Ia and cylA were detected in human, food and
animal E. faecalis, proving its environmental spread (Sparo et al.,
2013).

In patients presenting risk factors, a high-level intestinal
colonization of E. faecalis can become a frequent precursor
of human invasive infections by bacterial translocation. This
event is favored by the enhanced employment of broad-spectrum
antimicrobials that exert significant pressure over the intestinal
microbiota, hence, resulting in a likely emergency of multi-
resistant enterococci. The human gut is a considerable reservoir
for microorganisms potentially capable of transfer resistance to
conventional antimicrobials. Moreover, the fact that bacteria
isolated from food of animal origin can behave as a resistance
reservoir needs to be taken into consideration. In vitro studies
performed to prove genetic exchange between enterococcal
strains from humans and food of animal origin, are not
conclusive (Sparo et al., 2012). Therefore, in vivo models for
assessing genetic transfer are needed. Research carried out in
animal models with their own microbiota it will not be able
to reproduce the conditions of the human intestine. The use
of human colon microbiota in germ-free mice is proposed as a
model for reproducing the interaction between food strains and
human gastrointestinal microbiota (Hirayama, 1999). Recently,
HLGR determinants transfer from food to human bacteria
was proven in an animal model. Immunocompetent BALB-
C mice, colonized with human feces from an infant with
no previous antimicrobial treatment, were used. This study
showed evidence of the likelihood of high-level gentamicin
resistance horizontal transfer from food to human E. faecalis.
Therefore, a gene transfer model in non-sterile mice colonized
with human gastrointestinal microbiota was standardized (Sparo
et al., 2012).

It is needed to highlight that the rate of HLGR in vancomycin-
resistant enterococci is higher than in vancomycin-susceptible
enterococci strains. Mihajlović Ukropina et al. (2011) studied
the frequency of antimicrobial resistance in enterococci isolated
from blood cultures. HLGR was detected in vancomycin-resistant
strains (87.6%) as well as in vancomycin-susceptible strains
(9.9%). Hence, according to this study, HLGR in E. faecium is
higher than in E. faecalis.

In an Argentinean study, E. faecalis strains with HLRG (aac
(6′)-Ie-aph (2′′)-Ia gene) and without glycopeptide resistance
were recovered from human and food samples of animal origin.

PFGE patterns showed four clonal types, and also that there
was a clonal relationship between E. faecalis with HLGR isolated
from food and those isolated from humans (Pourcel et al.,
2017).

Clonal Complexes of High-Level
Vancomycin and Gentamicin Resistant
Enterococci
Worldwide, MLST E. faecium data established that the majority
of the clinical strains belong to the CC17, most of which are
resistant to ciprofloxacin and ampicillin, and contain virulence
genes. When new algorithms such as the Bayesian analysis
of population structure (BAPS) were applied, it showed that
CC17 consists of two large groups with different evolutionary
origin: BAPS 2-1, containing sequence-type (ST) 78 and BAPS3-
3 (ST17 and ST18). Most of the drug-resistant clinical isolates
of hospital origin belong to both groups. The majority of
community-origin isolates were grouped in the BAPS 2-1
group, genetically and evolutionarily different from hospital
isolates and those of hospital origin are evolutionarily closer
to those of farm animals. A similar trend was detected among
vancomycin-resistant E. faecium, investigated in broiler flocks
15 years after the avoparcin ban, diversity was observed
as well since they clustered in three BAPS populations
(Willems et al., 2012; Bortolaia et al., 2015; Raven et al.,
2016).

Several authors have highlighted the predominance of clonal
lineages −17, −18 and −78 in human clinical isolates of
E. faecium. It could be assumed that they have adapted to the
intestinal environment and integrate their microbiota (Baquero
and Coque, 2011; Faith et al., 2015; Tedim et al., 2015, 2017).

Nowadays, comparison of available genome sequences
allowed to support the existence of two clades for E. faecium;
one of the animal strains and hospital-associated enterococci
(clade A) and another one of community strains (clade B),
which includes human commensal isolates. Clade A has been
subdivided into A1, including most of the clinical isolates
(lineages ST17, ST18, and ST78) and A2, containing mainly
strains of animal origin. It has also been shown that the genome
of the strains included in the clade A1 has a larger size than
those ones of strains belonging to A2, which seems to support
the recent emergence of this clade and the importance of
its recombination (Galloway-Peña et al., 2012; Tedim et al.,
2015).

Unlike E. faecium, E. faecalis lack a clear structure in clades.
Some clones are more frequent in hospitalized patients or in the
community. Specifically, CC2 and CC9 both present high-level
vancomycin resistance and have been described as highly risky
due to their adaptation to the hospital environment and global
dissemination (Freitas et al., 2009; Kuch et al., 2012; Guzman
Prieto et al., 2016).

E. faecalis CC2, a high-risk CC, is frequently found
among health-care associated isolates and represents hospital
complexes linked with high-level aminoglycoside resistance
(Weng et al., 2013). In addition, E. faecalis CC87, similar to
CC2, expresses multi-drug resistance and can be associated with
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invasive infections (Ruiz-Garbajosa et al., 2006; Tedim et al.,
2015).

IMPACT IN HUMAN INFECTIONS AND
THERAPEUTIC OPTIONS FOR
RESISTANT ENTEROCOCCI

Among bloodstream infection (BSI) associated with the
healthcare environment, Enterococci is the third most common
one. Although vancomycin-resistant enterococci have been
clinically relevant pathogens for years, the majority of clinical
data is retrospective (Wisplinghoff et al., 2004). Nowadays,
vancomycin-resistant enterococci are the cause of one-third of
all health care associated infections in the United States and one
fifth in some European countries (Hidron et al., 2008; European
Centre for Disease Prevention and Control [ECDC], 2010).
Furthermore, mortality rates in patients with BSIs produced
by vancomycin-resistant enterococci range between 20 and
46% (Han et al., 2009; McKinnell et al., 2011; Twilla et al.,
2012).

Treatment of vancomycin-resistant enterococci’s BSI is
particularly challenging. The therapeutic options include
linezolid, daptomycin, quinupristin-dalfopristin, tigecycline,
and lipoglycopeptides, such as telavancin, dalbavancin and
oritavancin.

Due to limited clinical available data of lipoglycopeptides
together with resistance issues in VanA enterococci, the role
in systemic vancomycin-resistant enterococci infections for
telavancin and dalbavancin is irrelevant. Oritavancin (the
lipoglycopeptide with the broadest antibacterial coverage) has
shown bactericidal activity against VanA and VanB vancomycin-
resistant enterococci. This drug was approved for the treatment of
acute bacterial skin infections and is currently undergoing clinical
trials for the treatment of bacteremia (Zhanel et al., 2010; Messina
et al., 2015).

In Europe, Teicoplanin can be used for VanB phenotype
infections (Svetitsky et al., 2009).

Tigecycline has not been approved for the treatment
of bacteremia because it does not achieve high serum
concentrations. This tetracycline can be considered as one
of the first-line treatments for polymicrobial intra-abdominal
infections associated with vancomycin-resistant enterococci due
to its high penetration into the peritoneal space (Arias et al.,
2010).

Quinupristin-dalfopristin, effective only against E. faecium,
has a high molecular weight, which renders it unable to cross the
blood-brain barrier. This, added to the facts that it has frequent
side effects and that it easily interacts with other drugs, limits its
clinical use (Rubinstein et al., 1999).

Since approval, linezolid has been widely employed for
vancomycin-resistant enterococci infections. The clinical success
rate can vary based on the infection site and generally range
between 50 and 80%. Lower success rates are generally seen in
patients with bacteremia and infections without known focus
(Birmingham et al., 2003; Kraft et al., 2012; Da Silva et al., 2014;
Patel et al., 2016).

Linezolid has shown utility for treating infections
by vancomycin-resistant enterococci non-susceptible to
daptomycin. Surveillance analysis carried out in 2012 showed
99.5% susceptibility for linezolid against enterococci in the
United States health systems (Mendes et al., 2014). Prolonged
use of linezolid has been associated with resistance emergency
(Pogue et al., 2007; McGregor et al., 2012).

Tedizolid is a next-generation parenteral and oral
oxazolidinone with a broad spectrum bacteriostatic activity
against resistant Gram-positive bacteria including VanA and
VanB enterococci. It has been approved for the treatment of
acute bacterial skin and soft tissues infections, and, currently,
clinical trials for bacteremia and pneumonia treatment are being
undergone (Rybak et al., 2014).

Daptomycin has been successful for multidrug-resistant
enterococci and vancomycin-resistant enterococci infections’
treatment. Multiple analyses of the Cubicin Outcomes and
Registry Experience (CORE) have shown a higher clinical success
rate when used as first-line therapy for vancomycin-resistant
enterococci bacteremia, 87–93% (Sakoulas et al., 2007; Mohr
et al., 2009).

β-lactam antibiotics have been evaluated, in vitro, combined
with daptomycin against vancomycin-resistant enterococci,
including ampicillin, ceftaroline, ceftobiprole, and ceftriaxone,
all of which produced synergistic effects even when β–lactam
resistance was detected (Sakoulas et al., 2012, 2014; Hall Snyder
et al., 2014; Werth et al., 2015).

For infectious endocarditis due to ampicillin susceptible
and HLGR E. faecalis, ampicillin with ceftriaxone should be
considered as an alternative treatment option, since it showed
a similar efficacy to the observed ones for ampicillin with
gentamicin, in susceptible strains, but with less nephrotoxicity.
The saturation of several penicillin-binding proteins is the main
reason why this combination presents a desirable bactericidal
synergy (Mainardi et al., 1995; Murray, 2000; Fernández-Hidalgo
et al., 2013; Economou et al., 2017).

Alternatives/Complementary
Therapeutic Options
Available evidence about infection control and prevention
measures (ICP) to reduce vancomycin-resistant enterococci
spread in adult hospitalized patients is insufficient. A systematic
review published in 2014 (that included 9 studies with 30,949
participants) emphasized the importance of the implementation
of hand hygiene program. A decrease of 47% in the vancomycin-
resistant enterococci acquisition rate was observed when
this measure is applied. Further studies with appropriate
methodological design are urgently needed to define if ICP
measures have an impact in reducing the acquisition of
vancomycin-resistant enterococci among hospitalized patients
(De Angelis et al., 2014).

A proposal for controlling antimicrobial resistance
dissemination is to reduce antimicrobials employment in
animal husbandry and promoting research of novel therapeutic
alternatives. Probiotics are “living microorganisms which when
administered in adequate amount confer a health benefit on
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the host” (Food and Agriculture Organization/World Health
Organzation [FAO/WHO], 2001). These strains improve
intestinal microbial balance, provide protection against gut
pathogens and modulate the immune system. Probiotics are
supplemented into animal feed (cattle, ducks, broilers, and
chickens) and have beneficial effects on the food producing
animals by enhancing weight gain, increasing egg/milk
production, lowering the incidence of disease and mortality
rates (Crittenden et al., 2005). Use of probiotics against
pathogenic bacteria showed to be effective for reducing
food-borne illnesses in consumers, in view of the absence
of antibiotics in sub-therapeutic doses (Van Coillie et al.,
2007).

A different approach is the use of microbial cell extracts that
reduce the risks of bacterial translocation and infection (Sparo
et al., 2014; Lemme-Dumit et al., 2018).

Bacteriocins are ribosomally synthesized peptides, with
bacteriostatic/bactericidal activity, produced by various
bacteria (Gálvez et al., 2007). The use of Gram-positive
bacteriocins alone or in combination with antibiotics
was proposed as a novel strategy to develop in human
and veterinary medicines in order to help conventional
antimicrobials against many multi-drug resistant pathogens.
These combinations allow decreasing the MIC for achieving
a bactericidal effect and, also, reduce undesirable side-
effects of antibiotics (Lebel et al., 2013; Naghmouchi et al.,
2013; Delpech et al., 2017). Randomized controlled trials
are needed for obtaining scientific evidence about the

usefulness of these novel compounds against pathogenic
enterococci.

CONCLUSION

Worldwide, enterococcal infections are among the most
prevalent within those of nosocomial origin. Antimicrobial
multi-resistant enterococci and their drug-resistant determinants
spread by direct animal-human contact and/or through animal
origin food. As mentioned above, the evidence is based on
traditional microbiology and molecular tools, such as PFGE
and MLST. Therefore, future studies combining phylogeographic
methods with whole genomic sequence will provide reliable
information for inferring bacteria movement between host
populations.

Nowadays more countries are developing antibiotic-limiting
policies, and thus arises a need of searching for an alternative or
substitute for these drugs for sustainable food production, such
as probiotics and bacteriocins.
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