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ABSTRACT
The analysis of glow curves in thermoluminescence requires finding
a closed expression for the light emitted as a function of the tem-
perature and the parameters characterizing trap and recombination
centers. Since it is not possible to derive a closed expression from the
set of coupled differential equations describing the thermolumines-
cence phenomenon, approximations aremade even for the simplest
models. All of them resort to an approximation known as the quasi-
equilibrium approximation (QE), and to further approximations. In
this article, an algorithm is reported that permit the derivation of a
closed expression for the emitted light for the model known as the
non-interactive multi-trap system (NMTS) model by resorting only
to the QE approximation. It is shown that the integration of the
first order differential equation related to the NMTS model can be
replaced by finding the roots of an analytical expression.
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1. Introduction

Thermoluminescence is a form of luminescence that is exhibited by somematerials, which
after having been irradiated with ionizing radiation, emit light upon heating. Different
experiments have been developed to investigate the physics involved in the emission of
light. The most usual experiment consists of recording the emitted light when a sample
is heated with a constant heating rate, say, T = T0+ β·t, where T stands for the tempera-
ture in Kelvin, t for the time and β for the heating rate. T0 is the temperature at which the
recording of a glow curve starts. The resulting curve is called glow curve.

In order to describe the physics involved in thermoluminescence, several models have
been put forward. The simplest one is that shown in Figure 1. It is known as one trap-one
recombination center (OTOR model).

A way to find the values of the parameters, namely, recombination and retrapping
probabilities, activation energies and frequency factors, consists of fitting a theoretical
expression for the emitted light, say Ith(T,α), to the glow curve Iexp(T) (1). α stands for
the set of parameters. A closed expressions for Ith(T,α) cannot be found from the set of
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Figure 1. OTORmodel. Ah is the recombination probability, h is the concentration of holes in the recom-
bination centers, An is the retrapping probability, N is the concentration of traps, n is the concentration
of trapped electrons, s is the frequency factor, E the activation energy, and k is the Boltzmann constant.
The product s exp(−E/kT) is the escape probability of an electron from a trap.

differential equations describing the carrier traffic among the trap, the conduction band
and the recombination center. Thus approximations have been made in order the get a
closed expression for Ith(T,α). All themodels put forward so far rely on the quasi-equilibrium

approximation (QE). The QE approximation assumes that dncdt
∼= 0 and nc � n. With nc the

concentration of electrons in the conduction band is indicated. If recombination prevails
over retrapping, namely (N − n(T))An � n(T)Ah, then an equation is obtained, called first
order kinetics (FO) (2). The light intensity is given by:

I(T) = n0.
s

β
exp

(−E

kT

)
exp

(
− s

β

∫ T

T0
exp

(
− E

ku

)
du

)
, (1)

n0 stands for the initial concentration of trapped electrons, and T0 for the temperature
at which the recording of the glow curve starts. This kinetics was put forward in 1945 by
Randall and Wilkins (3).

On the contrary, if retrapping prevails over recombination the light intensity is given by:

I(T) = n02s′ exp
(−E

kT

) [
1 + n0s′

β
T

∫ T

T0
exp

(
− E

ku

)
du

]2
. (2)

Garlick and Gibson put forward this kinetics, called second-order (SO) kinetics (4).
Since a closed expression cannot be derived when recombination does not prevail over

retrapping, or retrapping over recombination, May and Partridge put forward a heuristic
expressionwith theaimofdescribingkinetics comprisedbetween first and secondorder (5):

I(T) = n0s′′ exp
(

− E

kT

) [
1 + (b − 1)

s′′

β

∫ T

T0
exp

(
− E

ku

)
du

]−b/(b−1)

. (3)

In this equation s′′ stands for (sAnn
b−1
0 /NAh), and b is a parameter loosely related to the

retrappingprobability.Whenb → 1Equation (3) converges toFOkinetics, andwhenb = 2,



RADIATION EFFECTS & DEFECTS IN SOLIDS 3

to SO kinetics. This kinetics is known as the general order (GO) kinetics, and it is nowadays
the most employed kinetics for analyzing glow curves. This kinetics may fail to yield the
correct parameters (6, 7). For this reason, recently a closed expression for the light inten-
sity has been derived from the system of coupled differential equations describing the
OTOR model in terms of the two real branches of the transcendental Lambert function
(8). The closed expression is obtained by resorting to the QE approximation. An expres-
sion for the light intensity has been derived for a more general model described in the
next section, known as non-interactive multi-trap system (NMTS), also in terms of the Lam-
bert function (9). A further assumption, reported below, was made in addition to the QE
approximation. Which branch of the Lambert function should be considered depends on
the ratio R = An/Ah. Since R is unknown the analysis of a glow curve becomes difficult. For
this reason, we report a new expression for the light intensity, which overcomes this diffi-
culty. Furthermore, the new expression resort only to the QE approximation, and not to an
additional approximation as the expression reported in reference (9).

2. The non-interactive multi-trap system

A model, known as the interactive multi-trap system (IMTS), is depicted in Figure 2. It is
based on the band model of crystals, and localized levels in the band gap. This model
includes a thermally disconnected trap, namely, a center that can capture electrons, but
cannot release electrons for the temperature interval the glow curve is recorded. In fact,
the glow curve will change frommeasurement to measurement, except that the thermally
disconnected trap is fully occupied. When the thermally disconnected trap is fully occu-
pied, the model is known as the NMTS. The concentration of thermally disconnected traps
is indicated with M. The rest of the parameters shown in Figure 2 have the same meaning
as those shown in Figure 1.

The equations describing the carrier traffic are:

dn(t)
dt

= −n(t) · s · exp
(

− E

kT(t)

)
+ An · [N − n(t)] · nc(t), (4)

Figure 2. Sketch of the IMTS model.
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dh(t)
dt

= −Ah · nc(t) · h(t), (5)

h(t) = n(t) + nc(t) + M, (6)

I(t) = −dh(t)
dt

, (7)

In the equations, nc stands for the concentration of electrons in the conduction band.
Equation (7) is the thermoluminescent light, and Equation (6) represents charge conser-
vation. If a probe is heated with a constant heating rate β , namely, T(t) = T0 + βt, then
Equations (4–7) read:

dn(T)

dT
= −n(T) · s

β
· exp

(
− E

kT

)
+ An

β
· [N − n(T)] · nc(T), (8)

dh(T)

dT
= −Ah

β
· nc(T) · h(T), (9)

h(T) = n(T) + nc(T) + M, (10)

I(T) = −β
dh(T)

dT
, (11)

T0 stands for the temperature at which the recording of a glow curve starts.
As aforementioned, from the set of coupled differential equations, it is not possible to

derive a close expression for Ith(T,α). Resorting to the QE approximation in reference (1) it
is shown that the derivative of the trapped electrons with respect to the temperature is
given by:

dn
dT

= −
n(T) · s

β
exp(−E/kT)h(T)Ah

(N − n(T))An + h(T)Ah
, (12)

Since ncn(T). Because of the QE approximation h(T) = n(T) + M. Thus

dh(T)

dT
= dn(T)

dT

becauseM is constant in the NMTS model. Since I(T) = −dh(t)
dt = −β

dh(T)

dT we have:

I(T) =
n(T). s

β
exp

(− E
kT

)
(n(T) + M)

(N − n(T))R + n(T) + M
, (13)

R, as before, stands for An/Ah.
In order to obtain an analytical expression for the light intensity equation 12 should be

integrated.
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3. Expression for the emitted light in terms of the Lambert function

If recombination does not prevail on retrapping, or retrapping on recombination, A. M.
Sadek et al. derived an equation for Ith(T,α) by assuming that the expression

φ(T) = n(T)

h(T)
, (14)

can be replaced by an effective value φeff independent of the temperature (9). This is
a strong assumption if M(T) > > n(T). Because of the QE approximation h(T) = n(T) +
M. Thus φ(T) = n(T)

n(T)+M . If M ≈ 0 the approximation holds (φ(T) ≈ 1 for all T), but if

M(T) > > n(T), then φ(T) ≈ n(T)
M . Thus φ(T) = n(T)/(n(T) + M). If M ≈ 0 the approxima-

tion holds (φ(T) ≈ 1for all T), but if M(T) > > n(T), then φ(T) ≈ n(T)/M. Thus φ(T) will
change between n0/M for T = T0 and ≈ 0 for the highest temperature the glow curve
was recorded.

The light intensity for R < 1 is given by:

I(t) = N · R · φeff

β(1 − φeff · R)2 · s exp(−E/kT)

W0[exp(z1)] + W[exp(z1)]2
, (15)

z1 = 1
ε

+ ln(ε) + φeff · s
1 − φeff · R

∫ T

T0
exp

(
− E

k · u
)
du, (16)

ε = h0 · (1 − φeff · R)
N · R , (17)

W0(exp(z)) is the principal branch of the Lambert-W function. and for R > 1

I(t) = N · R · φeff

β(1 − φeff · R)2 · s exp(−E/kT)

W0[−1, exp(−z2)] + W[−1, exp(z2)]2
, (18)

z2 = 1
|ε| + ln(|ε|) + φeff · s

1 − φeff · R
∫ T

T0
exp

(
− E

k · u
)
du, (19)

W0(−1,− exp(z)) is the second branch of the Lambert-W function.
Since the parameter R is unknown, an initial step is required in order to determinewhich

one of the two expressions shall be used. This makes the calculations cumbersome.
In the next section, an algorithm is reported, which allows the integration of

Equation (12) without resorting to approximations, such as that of a ϕeff , and has an unique
expression for the emitted light whatever the value of R.

4. New algorithm

The fraction of the occupation of a trap, indicated with x(T), is given by

x(T) = n(T)

N
(20)

Then Equation (12) becomes:

dx(T)

dT
= − s/β exp(−E/kT)x(T) · (x(T) + M′)

(1 − x(T))R + x(T) + M′ , (21)
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M′ = M

N
.

Since the right side of Equation (21) is always negative, x(T) is a steady decreasing function
of temperature. This result will be employed below.

Equation (21) can be written:

[(1 − x(T))R + x(T) + M′]
x(T) · (x(T) + M′)

dx = − s

β
exp

(
− E

kT

)
dT . (22)

Integration of Equation (22) gives:

(
R

M′ + 1
)
ln

(
x(T)

x0

)
− R

M′ (1 + M′) ln
(
x(T) + M′

x0 + M′

)
= − s

β

∫ T

T0
exp

(
− E

k · T ′

)
dT ′. (23)

The parameter f (T) is defined as f (T) = x(T)
x0 . f (T) varies between 1 and 0 as the temperature

increases. x0 = x(TR), and TR is the room temperature.
Then Equation (23) turns into

(
R

M′ + 1
)
ln(f (T)) − R

M′ (1 + M′) ln
(
x0 · f (T) + M′

x0 + M′

)
+ s

β

∫ T

T0
exp

(
− E

k · u
)
du = 0.

(24)
We define the following functions:

G(f , x0, R,M) =
(

R

M′ + 1
)
ln(f ) − R

M′ (1 + M′) ln
(
x0 · f + M′

x0 + M′

)
, (25)

and

U(T , s,β , E) = −s

β

∫ T

T0
exp

(
− E

k · u
)
du. (26)

Thus, Equation (24) can be written:

G(f , x0, R,M′) = U(T , s,β , E). (27)

The equation G(f , x0, R,M) takes the value 0 for f = 1, and −∞ for f = 0. Therefore
G(f , x0, R,M) varies between 0 and −∞ as f varies from 1 to 0. Since U(T , s,β , E) is always
negative, there is always a solution for Equation (27), and it is unique.

Figure 3 shows the function G(f,x0,R,M′) for the following values of the parame-
ters: x0 = 0.01, M′ = 100, An = 4× 10−7 cm3/s, N = 1010 1/cm3, and R = 4 (An = 1×
10−7 cm3/s).

For instance, the value of the functionU(T ; 10121/s,1 K 1/s,1 eV) for T = 397 K is−3. Thus
taking G(f,0.01,4,100) = −3 it results follows that f = 0.053.

The value of f for a given set of parameters can be computed for any temperature by
resorting to a root finder, as shown in the next section.
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Figure 3. G(f,0.01,4,100) versus f. For T = 397 K the value of U(397 K, 1012 1/s, 1 K/s, 1 eV) = −3 is
shown in the figure along with the corresponding value of f = 0.053.

5. Computing f bymeans of a root finder

For the parameters employed for computing Figure 3 Equation (27) becomes:

G(f , 0.01, 4, 100) = 1.04 ln(f ) − 4.04 ln
(
0.01f + 100

100.01

)
= −1012

∫ T

300
exp

(
− 1eV
k · T ′

)
dT ′.

For agiven temperatureT the right-hand sidewill give anumber. For instance, forT = 400 K
the result is 3.853. Thus we have:

1.04 ln(f ) − 4.04 ln
(
0.01f + 100

100.01

)
+ 3.853 = 0.

The value of f can be found by finding the root of the equation above. One of themost effi-
cient algorithms is the Brent algorithm (10). This algorithm requires indicating the interval
where the root lies. Since the values of f lies between 0 and 1, this interval should be cho-
sen. The Brent’s method relies mainly on the bisection method. This algorithm repeatedly
bisects an interval and then selects a subinterval in which a root lies for further process-
ing. It is a very simple and robust method, but it is also relatively slow. Thus, the Brent’s
algorithm tries to use the potentially fast converging secant method or inverse quadratic
interpolation if possible, but it falls back to the more robust bisection method if necessary.

Resorting to the algorithm described above f (T) can be computed for a given set of
parameters E, s, R, M and x0: T is given a value, and f (T)is the root of Equation (24). If the
left side of Equation (24) is indicated with F(f,R,M′,s,E,x0,T), formally f (T) can be written as:

f (T) = root[F(f , R,M′, s, E, x0, T), f , 0, 1]. (28)

Equation (28) should be interpreted as follows: F(f,R,M’,s,E,x0,T) is the function, the root of
which should be found for f in the interval 0–1 after T is given a value.



8 E. CASELLI ET AL.

6. Expression for the light intensity

From Equations (13), (20) and (21) the following expression for the light intensity can be
derived:

I(T) = s/β exp(E/kT)x0f (T) · (x0f (T) + M′)
(1 − x0f (T))R + x0f (T) + M′ . (29)

This equation, along equation with Equation (28), permits computing the theoretical glow
curve. The next step consists in finding out the set of parameters such as the theoretical
glow curve coincides with the experimental one. This is usually done by employing the
Levenberg–Marquardt algorithm (1).

7. Comparison of both algorithms

In terms of the Lambert function, for R > 1 the concentration of holes in the recombination
center is given according to reference (9) by:

h(T) = −h0
ε · W(−1,− exp(z2)

, (30)

ε is given by Equation (17), and z2 by Equation (19).
Thus, the concentration of trapped electrons is:

n(T) = −h0
ε · W(−1,− exp(z2))

− M. (31)

For the algorithm put forward in this article n(T) is given by:

n(T) = f (T) · x0 · N. (32)

The set of couple differential Equations (4–6) was solved for the following set of param-
eters: s = 1012 1/s, E = 1 eV, Am = 4·1012 cm3/s, An = 1012 cm3/s, N = 1012 1/cm3 and
M = 1012 1/cm3.

Figure 4. n(T)/N computed from the set of differential equations (open square), Equation (31) (solid
circle), and Equation (32) (solid line).
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According to the set of parameters φeff varies between 0.5 and 0.
Figure 4 shows n(T) computed from the set of Equations (4–6), and Equations (31)

and (32). φeff was taken to be 0.5 because it yields the best fit of n(T)/N computed with
Equation (31) to that obtained from the set of differential equations.

As expected, the curve resulting from Equation (32) coincides with the concentration of
trapped electrons computed from the set of differential equations, while the concentration
of trapped electrons given by Equation (31) differs from the true value as from 460 K.

8. Fitting procedure

In order to find theparameters characterizing traps and recombination centers the first step
consists in choosing an expression for the light intensity (Equations 1, 2, 3 or 29). Once an
expression has been chosen the following function is constructed:

S(α) =
L∑

m=1

(Iexp(Tm) − Itheor(Tm,α))2,

where Iexp(T) stands for the experimental glow curve measured at L temperatures Tm
(m = 1,2,.., L), Itheor(T,α) for the theoretical expression for the light intensity andα for the set
of parameters characterizing the chosen kinetics. For example, if expression (29) is chosen
for the light intensity, α stands for the set of parameters E, s, R,M’ and x0.

The fitting proceeds by choosing a set of guess parameters α, and employing the Leven-
berg–Marquardt algorithm, as explained indetail in reference (2), section6.3. This algorithm
is iterative, namely, starting with a set of guess values the algorithm computes a new set
which decreases S(α). The process is repeated until a minimum is reached. When a mini-
mum is reached, the FOMshouldbe calculated. If it is lower than 5% the fitting is considered
acceptable. If the FOM is higher than 5%, a new set of guess parameters should be chosen.

9. Analysis of glow curves with the new algorithm

Recently Sadek et al. reported that for R > 1 and x0 = 1 (saturated trap) the General
Order kinetics (GO) fails (11). A similar result is reported by M. Karmakar et al. (12).
They investigated the suitability of two methods known as the modified peak shape
method (MPS) and the Kirsh method by considering numerically computed thermolumi-
nescence peaks. For the NMTS model they found that for a saturated trap and An > Ah,
and for R = 100, both methods yield quite inaccurate activation energies. For E = 1 eV,
s = 1012 1/s, N = 1010 1/cm3,M = 1012 1/cm3, An = 10−7 cm3 1/s and Ah = 10−9 cm3 1/s
the computed activation energies with the MPS method and Kirsh method are 0.515
and 0.543 eV respectively (see Table 2, line 5 of reference (12)). We analyzed the peak
with Equation (28) and found the following values: E = 1.0 eV, s = 1.1× 1012 1/s, R = 100,
x0 = 1 andM = 1× 1012 1/cm3. These values agree quite well with the input values of the
differential equations. The FOM is 2%.

Figure 5 shows the glow curve along with both the fitted curve and the residual,
and Figure 6 the electron concentration in the trap and conduction band. As can be
seen, the quasi-equilibrium holds. Since this is the only approximation made in deriving
Equation (28), the NMTS model yields reliable parameters.
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Figure 5. Computed glow curve for the following parameters: E = 1 eV, s = 1012 1/s,N = 1010 1/cm3,
M = 1012 1/cm3, An = 10−7 cm3 1/s, and Ah = 10−9 cm3 1/s (open circle), fitted curve (solid line), and
residual (dash line). The FOM is 2%.

Figure 6. Normalized concentration n/n0 of electrons in the trap (solid line), and normalized concen-
tration nc/n0 of electrons in the conduction band (dash line). Since nc is negligible against n the figure
shows (n/n0).103.

We have analyzed the computed glow curve shown in Figure 5 with both versions of
the GO kinetics, namely, the original and most used version (13) and the version due to
Rasheedy (14). The parameters are shown in Table 1.

The results show that the old version yields parameters that differ from those employed
for generating the glow curves, while the version due to Rasheedy gives parameters close
to the true ones. The fact that the GO kinetics due to Rasheedy yields better results than the
original version has been reported previously (6).
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Table 1. Parameter values obtained after fitting the computed glow curve shown in Figure 5 by
resorting to the original GOK model (13) and to the version due to Rasheedy (14).

E (eV) S (1/s) b FOM (%)

Original version 0.85 7.5× 109 1.5 3.1
Rasheedy 0.94 1.3× 1011 1.2 4.2

(a) (b)

Figure 7. (a) computed glow curve (solid line), and glow curve obtained by fitting (dash line).
FOM = 6%. (b) normalized concentration of electrons in the trap (solid line) and in the conduction band
(dash line).

The difference between both versions of the GO kinetics and the NMTSmodel is that the
latter provides physically meaningful parameters, such as R andM, while both GO kinetics
give the b parameter, which has no physical significance.

When the QE approximation does not hold, the parameters resulting by employing
Equation (29) are not accurate.

The glow curve for the following parameters was computed: E = 1.04 eV, s = 1× 1012

1/s,N0 = 1010 1/cm3, n0 = 108 1/cm3, An = 4× 10−9 cm3/s, Ah = 1× 10−9 cm3/s (R = 4)
and M = 0. The parameters obtained by fitting Equation (29) to the glow curve are:
E = 0.90 eV, s = 1.7× 1011 1/s, n0 = 9.6× 107 1/cm3 and R = 14.8. The computed energy
differs from the true one by 14%, and the value of R is about 3.7 times larger than the cor-
rect one. The computed glow curve and that obtained by fitting Equation (29) are shown in
Figure 7(a). Figure 7(b) shows the normalized concentration of electrons in the trap and in
the conduction band. It is clear from the figure that the QE approximation does not hold.

The wide of a peak depends on both the retrapping factor R (the higher the retrapping,
thewider thepeak), and the concentrationof electronnc in the conductionband (thehigher
nc the wider the peak). Since Equation (29) was derived under the assumption that nc is
negligible against the concentration n of electrons in the trap, the widening of the peak
employing Equation (29) is reflected in the retrapping factor R = 14.8, which is larger than
the correct one (R = 4).

Glow curves generated with different retrapping factors R, lower and higher than
1, have been analyzed, and the results coincide with those employed for computing
the glow curves as long as the QE equilibrium approximation holds. As illustration
Figure 8 shows the glow curve computed for Ah = 4× 10−7 cm3/s, An = 10−7 cm3 /s,
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Figure 8. Computed glow curve for R = 0.25 (open circle) and fitted glow curve (solid line).
FOM = 1.9%.

Figure 9. Computed glow curve for R = 4 (open circle) and fitted glow curve (solid line). FOM = 2.1%.

N = 1010 1/cm3, n0 = 108 1/cm3 and M = 0 (R = 0.25), and Figure 9 for Ah = 1× 10−7

cm3 /s, An = 4× 10−7 cm/s, N = 1010 1/cm3, n0 = 108 1/cm3 and M = 0 (R = 4). In both
cases, the QE approximation holds, a requirement for the validity of Equation (29).

Since the GO model fails for R ≈ 100, for the parameters E = 1.00 eV, s = 1× 1012 1/s,
N0 = 1010 1/cm3, n0 = 108 1/cm3, An = 4× 10−9 cm3/s, Ah = 1× 10−7 cm3/s (R = 100)
and M = 1012 1/cm3 the glow curve was computed and fitted with Equation (29). All the
parameters resulting from the fitting coincidewith those employed for generating theglow
curve (the FOM is 3%). It is worth mentioning that the QE approximation holds.

As to the possibility of applying the new algorithm derived for the NMTS model with
the QE approximation we investigated whether a criterion, which has been put forward
for assessing whether the QE holds when the GO kinetics is employed (6), is also valid for
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Figure 10. Computed glow curves for different heating rates (open circle) and fitted glow curves (solid
line).

Equation (29). Glow curves should be recorded with three different heating rates, say 1, 3
and 5 K/s and the set of parameters for each heating rate computed. If the computed sets of
parameters for each heating rate coincide, or differ little, except the frequency factor, which
might change an order of magnitude, the QE approximation holds, and the computed
parameters are reliable. The rationale behind the criterion is that an increase in the heat-
ing rate will produce and increase in the concentration nc of electrons in the conduction
band. If nc is negligible for the three heating rates the QE approximation holds.

As an example, glow curves were computed for E = 1 eV, s = 1012 1/s, Ah = 4× 10−7

cm3/s, An = 10−7 cm3/s, N = 1010 1/cm3, n0 = 108 1/cm3, M = 1012 1/cm3 (M’ = 100),
and three heating rates, say 1, 3 and 5 K/s. Figure 10 shows the three glow curves, and the
fitted curves. The concentration of electrons in the conduction band is negligible against
the concentration of trapped electrons for the three heating rates. The resulting param-
eters coincide for the three heating rates: E = 0.96 eV, s = 3× 1012 1/s, x0 = 0.01, R = 4
andM’ = 100. The FOM’s for the three heating rates are lower than 1.6%.

10. Summary

A closed equation for the emitted light was derived for the NMTS model by resorting only
to the QE approximation, which can be computed with a root finder. It offers the following
advantages when compared to Equations (15) and (18): (1) no approximation ismade, such
as that done for deriving Equations (15) and (18) (ϕeff ), and (2) since the value of R is not
known in advance (it is a parameter that should be found by the fitting of the theoretical
expression for the light intensity to the experimental glow curve), the use of Equation (15)
and (18) is difficult. On the contrary, Equation (28) is valid whatever the value of R.
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Finally a criterion is given to assess the reliability of the computedparameters foundwith
the NMTS model.
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