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A B S T R A C T

Assessing yield gap (Yg) is required to identify opportunities for future yield increases. Central Argentina is one
of the most productive soybean regions in the world. In this region, soybean is planted after a winter fallow
period (from now on soybean as single crop) or after the harvest of a winter crop (from now on soybean as
second crop). Information regarding options for obtaining even higher yields is limited. The objectives of this
paper are: i) to estimate Yg of soybean as single or second crop, ii) to identify management and environmental
variables associated with soybean Yg variability, and iii) to assess the spatial distribution of soybean Yg. A
farmers’ survey with∼22,500 field observations from 2003 to 2015 was compiled. Water-limited yield potential
(Ywlim) was estimated as the 95th percentile of actual farmers’ yield (Ya) across years. Yield gap was the
difference between Ywlim and Ya, expressed as a percentage of Ywlim. Factors associated with Yg were eval-
uated using regression trees. Ordinary kriging was used to explore spatial patterns of Yg. Average Ywlim were
5095 and 4337 kg ha−1 for single and second crop, respectively. Average Yg were 28.7 and 33.5% for single and
second crop, respectively. Yield gap showed a wide range of variation. Management accounted for 66 and 91% of
explained variation in Yg for single and second crop, respectively. Gap closing for single crop was associated
with earlier planting and maize as previous crop. Gap closing for second crop was associated with foliar fun-
gicide utilization, P fertilization, and earlier planting. Single crop Yg was spatially auto-correlated, whereas no
auto-correlation was observed for second crop. The spatial structure of single crop was represented by an ex-
ponential model, with 81% of total variation explained by the spatial structure and a maximum range of auto-
correlation of approximately 120 km. This result is consistent with the observed spatial auto-correlation of
variables explaining Yg in single crop. Our approximation allowed the characterization of the magnitude,
possible explaining factors, and spatial dependence of soybean Yg in one of the most productive regions in the
world. Although average gaps are relatively small compared to those in other regions, there are still opportu-
nities for future yield improvements.

1. Introduction

The increase in global crop production will play a crucial role to
satisfy food demand in coming years (Godfray et al., 2010). Attaining
this goal requires increasing yield per unit land area given that new
farming land is currently lacking (Foley et al., 2011). One alternative
for increasing yield is closing yield gaps (Yg) at the farm level. Esti-
mating Yg at farm level requires comparing actual farmers’ yield (Ya) to

some measure of potential yield (or water-limited yield potential in
rainfed cropping systems, Ywlim) (Van Ittersum et al., 2013). Potential
yield can be estimated by crop models, maximum-yield field experi-
ments, or maximum farmers’ yields. These three measures of potential
yield, when compared to Ya, allow the calculation of model-based Yg,
experiment-based Yg, and farmer-based Yg, respectively (Lobell et al.,
2009). Even though model-based Yg analysis is the standard approx-
imation (Van Ittersum et al., 2013; Van Wart et al., 2013a), farmer-
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based analysis has been also widely used for global or regional analysis
of different field crops (i.e. Licker et al., 2010; Egli and Hatfield,
2014a,b; Tanaka et al., 2015; Ernst et al., 2016). Our general objective
was to assess farmer-based Yg for soybean production. According to
Lobell et al. (2009) farmer-based Yg analysis is only appropriate in
intensively managed cropping systems and when analyzing many fields,
in order to increase the chances of attaining at least one field with yield
close to potential. We focused our analysis on ∼22,500 field observa-
tions from a subgroup of farmers with high level of technology adoption
from the Central region of Argentina. The estimation of farmer-based
Yg provides an important measure of opportunities to improve crop
production under current cropping systems technology.

Yield gap analysis can help to identify regions or production systems
where highest priority should be given to successfully increase crop
productivity (van Oort et al., 2017). The possibilities of increasing yield
are highest in situations where Yg is large enough (> 20%) (Lobell
et al., 2009). Bhatia et al. (2008) showed model-based soybean Yg of
54% for farmers in India. Zhang et al. (2016) found model-based Yg of
16% in soybean across years with different levels of water supply in
China. Egli and Hatfield (2014a) found that average soybean farmer-
based Yg ranged from 9 to 24% across three states in the U.S. Midwest
across a 40-yr period. Grassini et al. (2015a) and Rattalino Edreira et al.
(2017) showed that model-based combined with farmer-based Yg es-
timations of soybean producers in U.S. were 32 and 22% under rainfed
conditions, respectively. Sentelhas et al. (2015) found that average
soybean model-based Yg was 13% in rainfed systems of Brazil.
Aramburu Merlos et al. (2015), using Global Yield Gap Atlas approach
(www.yieldgap.org), represented the first attempt to evaluate soybean
Yg in Central Argentina and found an average of 25% model-based Yg
under rainfed conditions. However, information regarding potential
causes (management or environmental factors) of Yg variation and
spatial distribution within Central Argentina are scarce. Yield gap
analysis has recently been expanded to double cropping systems to
identify possibilities of yield improvement or design new farming sys-
tems (Guilpart et al., 2017). However, information regarding environ-
mental causes of Yg of soybean as second crop after the harvest of a
winter crop in Argentina is currently limited (Andrade and Satorre,
2015).

Identifying management and environmental variables associated
with Yg is critical for decision-making regarding Yg closure. Different
techniques can be utilized to this end. Regression trees have been used
to explore explanatory variables of wheat Yg (Ernst et al., 2016).
However, regression tree approach has been successfully utilized to
identify variables associated with yield of different crops. For instance,
they were utilized to explore factors associated to yield variability in
wheat (Lobell et al., 2005), maize (Tittonell et al., 2008), rice (Tanaka
et al., 2015), sugarcane (Ferraro et al., 2009) and soybean (Mourtzinis
et al., 2018; Zheng et al., 2009). This approach has several advantages
for being used to analyze field surveys at regional scale (De’Ath and
Fabricius, 2000). Briefly, regression trees are easy to interpret, variable
selection is unbiased, non-linear relationships between variables can be
unraveled, and there are no distributional assumptions of the response
variable. Additionally, the trees handle both categorical and continuous
variables and allow missing data. Therefore, a regression tree approach
will be utilized to explore management and environmental explaining
factors of soybean Yg across ∼22,500 field observations in Central
Argentina.

Yield gap analysis could be conducted under different spatial scales
(Sadras et al., 2015). Previous studies focused on methodologies to
scale up location-specific Yg estimations to larger spatial areas (van
Bussel et al., 2015; Van Wart et al., 2013a,b). This protocol, based on
determining homogeneous areas with respect to environmental condi-
tions, was used in Yg analysis in Argentina (Aramburu Merlos et al.,
2015). An interesting alternative is to incorporate a geostatistical ap-
proach at more detailed spatial scales (e.g. farms or paddocks) to im-
prove the spatial resolution and accuracy of regional Yg analysis (Lobell

and Ortiz-Monasterio, 2006; Steinbuch et al., 2016). Therefore, we
propose this alternative method to identify spatial patterns in Yg
magnitude through geostatistical techniques. Mapping this variability
can help the development of spatially specific agronomic strategies
aimed at closing Yg for specific areas as was shown for maize in Ban-
gladesh (Schulthess et al., 2013) and Africa (Van Dijk et al., 2012).

There is a clear need to synthesize crop yield, climate, soil and
management data from different areas to identify crop production
limitations (Lobell and Asner, 2003). Yield gap analysis using farmers’
survey constitutes an opportunity to achieve this objective (Beza et al.,
2017). Local studies are needed to understand and dissect the role of
agricultural system characteristics and biophysical conditions in closing
Yg (Rattalino Edreira et al., 2017). In this context, we used field ob-
servations across the main soybean production area of Central Argen-
tina to accomplish the following objectives: i) estimate soybean Yg, ii)
identify environmental and management variables associated with
soybean Yg; and iii) explore spatial distribution of soybean Yg across
Central Argentina.

2. Materials and methods

2.1. Study area and farmers’ survey description

The study area is part of Central Argentina, and soybean is the main
crop in this area. Soybean can be planted after a fall/winter fallow
period (April–September) with the previous crop being another summer
crop (e.g. soybean or maize) that grew during the previous warm
growing season (September–April). Therefore, soybean is planted after
a fall/winter fallow period which begins after previous summer crop
harvest. Usual planting dates range from October to mid-December.
This soybean crop is referred as “single crop”. Alternatively, soybean
can be planted after a winter grain crop is harvested or after a cold-
season grass crop is dried with herbicide or used directly as animal feed.
The most common winter grain crop in this region is wheat (Triticum
aestivum L.), while the cold-season grass crop can also be wheat (ter-
minated before full maturity) or rye-grass (Lolium multiflorum). Winter
crops for grain are usually harvested in late November to December,
while grass crops are dried/fed earlier. Soybeans are therefore planted
from early December to mid-January. This soybean crop is referred as
“second crop”.

The study area has a monsoonal climate with rainfall concentrated
in the summer season (December-February) (Hall et al., 1992). There is
substantial interannual rainfall variability associated with the El Niño
Southern Oscillation phenomenon (Podestá et al., 1999). Soils are
predominantly Mollisolls (USDA, 1975) having no major physical or
chemical limitations.

Farmers’ surveys under analysis were provided by farmers’members
of Southern Santa Fe Region of Argentine Association of Regional
Consortiums for Agricultural Experimentation (AACREA). Soybean
yield and management data were compiled from 2003 to 2015. Post-
2003 data were entirely based on no-till conditions and herbicide-re-
sistant GMO soybean production. The widespread and rapid adoption of
a no-till management strategy and Roundup Ready® soybean germ-
plasm (Monsanto Company, St. Louis, MO) represent major changes in
production technology (Satorre, 2011). The timeframe analyzed en-
sured that approximately the same overall technology was used to
avoid abrupt productive leaps across years, while also allowed the
construction of a sufficient large climatic data set. Each observational
unit corresponded to a specific field in a particular year. All fields were
managed with available farmer technology under no-till and rainfed
conditions. Separate farmers’ surveys were maintained for single
(n= 15,522) and second soybean crops (n= 7,112).

Management variables extracted from farmers’ surveys were: pre-
vious crop, sowing date, row spacing, plant population, maturity group,
nutrient rate applied by fertilization, and fungicide and insecticide use
(Table 1). Each observation was georeferenced using the closest
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location and characterized according to environmental variables. En-
vironmental variables considered were soil type according to the Soil
Taxonomy criterion (USDA, 1975), topographic elevation, water table
presence, monthly accumulated rainfall and radiation, and monthly
mean temperature. Regarding the climatic variables, the inclusion of
more variables could have added too much complexity to the inter-
pretation of the results. Also, we chose climate variables that are most
commonly available from standard weather stations, easily available to
growers, and relevant to crop yield determination. For example, max-
imum and minimum air temperature could have been also included in
the analysis. However, these variables can be considered redundant due
to show a high degree of collinearity. In this sense, we summarized their
effects using mean air temperature. Soil type and water table presence
were obtained from farmers’ surveys. Climatic variables were estimated
according to the geographic location of each observation using public

data (Grassini et al., 2015b). Monthly accumulated rainfall and radia-
tion, and monthly mean temperature were derived from nearby public
weather stations of National Institute of Agricultural Technology of
Argentina (http://inta.gob.ar) (Aramburu Merlos et al., 2015; Verón
et al., 2015). In cases of missing radiation records, they were derived
from the Prediction of Worldwide Energy Resource dataset from the
National Aeronautics and Space Administration (http://power.larc.
nasa.gov). Recent papers showed a good agreement between satellite
and measured radiation data (Aramburu Merlos et al., 2015; Bai et al.,
2010; White et al., 2011). For soybean as single crop, all climatic
variables were estimated for the period of October to March. For soy-
beans as second crop, rainfall was estimated for the period of October to
March, and radiation and temperature were estimated for December to
March. Ranges of climatic variables are shown in Table 2.

Table 1
Characterization of soybean crop (as single or second crop) of Central Argentina according to management variables. Management data corresponds to farmer
members of Southern Santa Fe Region of Argentine Association of Regional Consortiums for Agricultural Experimentation (AACREA).

Variable Type Units Explored range

Single crop Second crop

Previous crop Qualitative maize, soybean, sorghum, sunflower, peanut, summer grass. wheat, barley, rape, pea, oats, chickpea, winter grass.
Sowing date Quantitative date October 1st–January 1st November 1st–January 1st
Row spacing Quantitative m 0.17–0.70 0.17–0.52
Plant population Quantitative pl m−2 17–76 14–100
Maturity group Qualitative 000 to X II–VIII II–VIII
Rates of N applied Quantitative kg ha−1 0–32 0–32
Rates of P applied Quantitative kg ha−1 0–59 0–70
Rates of S applied Quantitative kg ha−1 0–33 0–33
Rates of Zn applied Quantitative kg ha−1 0–38 0–38
Rates of Ca applied Quantitative kg ha−1 0–30 0–30
Use of fungicide Qualitative Yes/No
Use of insecticide Qualitative Yes/No

Table 2
Location and environment characterization of the study area within Central Argentina. Location, soil type and water table presence data were provided by farmers’
members of Southern Santa Fe Region of Argentine Association of Regional Consortiums for Agricultural Experimentation (AACREA). Climatic data was estimated
using national public statistics. For more details about climatic variables estimation please see Material and methods.

Variable Type Units Explored range

Latitude Quantitative Degrees −33.4 to −27.7
Longitude Quantitative Degrees −65.3 to −62.8
Soil typea Qualitative Soil taxonomy classification Argialbolls, Hapludolls, Natralbolls, Alfisolls.
Water table presence Qualitative Yes/No

Accumulated rainfall Quantitative mm
October 2–334
November 0–294
December 3–406
January 8–312
February 0–390
March 0–524

Accumulated radiationb Quantitative MJm−2

October 396–766
November 512–838
December 582–882
January 376–872
February 324–923
March 350–665

Mean air Temperatureb Quantitative °C
October 13–26
November 18–29
December 20–32
January 21–33
February 18–33
March 11–30

a Soil type is according to Soil Taxonomy Classification (USDA, 1975).
b Estimations for second crop were from the December – March period.
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2.2. Actual yield, water-limited yield potential, and yield gap estimation

Actual farmers’ yield corresponds to soybean seed yield (kg ha−1) of
each field for a given year and location expressed at 13.5% moisture.
Water-limited yield potential was estimated by fitting a quantile linear
regression for the 95th percentile to Ya across years (Egli and Hatfield,
2014a,b). Using this estimation method, rather than selecting the 95th
percentile of highest yielding field, is required to de-trend observed
yield data from the expected yield increase observed during the ana-
lyzed period (de Felipe et al., 2016). The linear model was fitted using
the quantreg package in the R environment (Koenker, 2013). We were
interested in quantify Yg magnitude of each type of soybean crop.
Therefore, separately for soybeans as single and second crop, Yg was
calculated as the difference between Ywlim and Ya, expressed as the
percentage of Ywlim.

2.3. Management and environmental variables explaining soybean Yg
variability

Regression tree analysis was performed to explore possible man-
agement/environmental associations with Yg. Regression trees were
constructed using JMP software (version 13.1.0, SAS Institute Inc.,
Chicago, IL, USA). Briefly, regression trees explain variation of a de-
pendent variable (i.e. Yg) by repeatedly splitting the data into more
homogeneous groups, using combinations of explanatory variables (e.g.
sowing date and soil type, among others). The algorithm defines a
threshold value of the explanatory variable that splits data into groups
showing homogeneity within them. Each optimal split should maximize
the LogWorth statistic. This is a measurement of statistical significance
defined as −log10 (p-value). Five hundred observations were estab-
lished as the minimum population of each terminal node.

2.4. Yield gap spatial pattern analysis

The spatial pattern of Yg for single and second crop was assessed for
those locations having at least five years of Yg estimates. This subset-
ting constrained the spatial analysis to a sub-region with highest density
of data. Location geographical coordinates were projected to planar
coordinates using UTM zone H20. A random field approach for a con-
tinuous variable in a continuous R2 space was adopted to describe the
spatial patterns of Yg (Goovaerts, 1997). The spatial trend of Yg at large
scale across space was explored by fitting smooth non-parametrical
regressions between the Yg and both planar spatial coordinates and
topographic elevation of each site. Distributional and random field as-
sumptions (stationarity and continuity) of Yg were also explored. The
auto-correlation of Yg (residual in case a significant trend is detected)
was assessed by building a direct omnidirectional variogram. The var-
iogram was explored at a maximum extent of 220 km (i.e. less than one
third of the diagonal of the bounding box of sampled area), and a
spatial resolution of 14 km that guarantee at least 30 paired observa-
tions for each lag-distance class. The sample semi-variance at each lag-
distance was estimated according to the robust method proposed by
Cressie and Hawkins (1980) (Eq. (1)).
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where γ(h) represents the semi-variance calculated for a specific spatial
lag-distance class h, and Z represents the random variable at different
locations. In this case, the estimated Yg at sites Xi and Xj, Nh is the
number of all pairs of sites separated by distance class h, and Ch is a
correction factor for bias in the Z variable calculated as Eq. (2).
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For each soybean crop, different models (i.e. exponential, spherical

and Gaussian) were fitted by the weighted least squares method and
selected according to the residual sum of squares after obtaining the
two empirical omnidirectional direct variograms. Then, using the re-
gionalized spatial model (trend+ auto-correlation) characterizing the
particular spatial structure of each crop, we used ordinary kriging in-
terpolation to predict Yg in a new grid finer than the original (∼2/3
finer than the spatial resolution employed in the original sampling). To
build the predicted map of Yg for each soybean crop, we focused on the
same sub-region with high density of data to avoid zones without near
data. To manipulate spatial objects, the sp (Bivand et al., 2013) and
rgdal packages (Bivand et al., 2016) were used in the R environment. To
calculate the empirical semivariograms, fit the models, and apply the
interpolation techniques, the gstat R package was used (Pebesma,
2004).

3. Results

3.1. Actual yield, water-limited yield potential, and yield gap

Average Ya of soybean single crop was 3635 kg ha−1, and ranged
from 1625 to 5156 kg ha−1 (Table 3). Average Ya of second crop was
2941 kg ha−1, ranging from 1141 to 4430 kg ha−1 (Table 3).

Water-limited yield potential differed between soybean as single
and second crop. Single crop Ywlim ranged from 4816 to 5306 kg ha−1

(Table 3), with a linear increase of 54 kg ha−1 yr−1 for the period under
analysis (p < 0.001, data not shown). Second crop Ywlim ranged from
4007 to 4611 kg ha−1 across years, showing a linear increase of
67 kg ha−1 yr−1 (p < 0.001, data not shown) (Table 3).

Average soybean Yg was 28.7 and 33.5% for single and second crop,
respectively (Table 3). Yield gaps ranged from 0 to 68% and from 0 to
78%, respectively (Table 3).

3.2. Management and environmental variables explaining soybean yield gap
variability

3.2.1. Soybean as single crop
The final regression tree for soybean as single crop explained 25.8%

of the total variation in observed Yg (Supplementary Table 1; Fig. 1).
Management variables accounted for 66% of the explained variation
while environmental-location variables accounted for the remaining
34% (Table 4). There were 20 terminal nodes, with average Yg at
terminal nodes ranging from 11 to 52% (Fig. 1).

Sowing date was the primary splitting node (p < 0.001; Fig. 1) and
explained approximately 50% of explainable Yg variation (Table 4).
Average Yg was 25.6% and 42.5% for sowing dates previous and after
the 25th of November, respectively. Previous crop explained 6.2% of
explainable Yg variation in single crop soybean (Table 4); Yg was 8.1%
lower in fields having maize as previous crop compared to other crops
(p < 0.001; Fig. 1). Phosphorus and Zn fertilization also decreased Yg

Table 3
Summary statistics related to soybean actual farmers’ yield, water-limited yield
potential and yield gap from soybean crops (as single or second crop) of Central
Argentina during 2003–2015.

95pth 75pth Median 25pth 5pth Average

Actual farmers’ yield (kg ha−1)
Single crop 5156 4421 3786 2979 1625 3635
Second crop 4430 3692 3010 2262 1141 2941

Water-limited yield potential (kg ha−1)
Single crop 5306 5252 5089 4980 4816 5095
Second crop 4611 4544 4343 4141 4007 4337

Yield gap (%)
Single crop 68.0 41.4 25.7 13.4 0.0 28.7
Second crop 78.0 48.5 30.6 15.6 0.0 33.5

G. Di Mauro et al. European Journal of Agronomy 99 (2018) 186–194

189



compared to cases with no fertilization (p < 0.001; Fig. 1). Maturity
group and fungicide application accounted for 5.8% of explainable Yg
variation in single crop soybean (Table 4). Maturity groups II–IV
showed lower Yg than V–VIII (27.5 and 36.4% respectively; p < 0.001;
Fig. 1). However, early maturity groups showed Yg decreases associated
with fungicide application (p < 0.001; Fig. 1).

Among environmental variables, soil type was the most important
factor both in early and late planting date (p < 0.001; Fig. 1), ex-
plaining 17.4% of explainable Yg variation (Table 4). Rainfall and air
temperature accounted for 16.3% of explainable Yg variation for the
single crop soybean (Table 4). Generally, Yg decrease was observed
under environments with better water supply and cooler temperatures
(p < 0.001; Fig. 1).

3.2.2. Soybean as second crop
The final regression tree for second crop soybeans explained 30.7%

of the total variation in observed Yg (Supplementary Table 1; Fig. 2). Of
the explained variation, environmental variables had lower importance
than management variables in explaining Yg variation for the second
crop soybean (Table 4). There were 10 terminal nodes, with average Yg
at terminal nodes ranging from 14 to 62% (Fig. 2).

Fungicide application was the primary splitting node. Average Yg
was 27.9 and 50.1% for applied vs. not applied fungicide cases, re-
spectively (p < 0.001; Fig. 2). In cases that fungicides were not ap-
plied, P fertilization had a significant role in reducing Yg from 61.9 to
39.3% for non-fertilized and fertilized cases, respectively (p < 0.001;
Fig. 2). Fields having fungicide application showed Yg variation asso-
ciated with sowing date and previous crop (p < 0.001). Low Yg was
observed when soybean was sown prior to December 7th and after the
harvest of a winter crop (e.g. wheat and barley for grain) compared to a
winter grass for pasture or as cover crop (p < 0.001; Fig. 2). Accu-
mulated rainfall during December accounted for 4.9% of explainable Yg
variation in second crop (Table 4). Yield gap reductions were associated
with increases in December rainfall greater than 138mm (p < 0.001;
Fig. 2).

3.3. Yield gap spatial analysis across Central Argentina

In both types of soybean crops, we were unable to detect any sig-
nificant spatial trend for the mean Yg across latitude, longitude, and/or
topographic elevation in the studied region. The sampled variogram
indicates a strong spatial Yg auto-correlation for the single soybean
crop (Fig. 3A). However, there was no spatial auto-correlation in the Yg
of the second crop (Fig. 3B). The spatial structure of single crop soybean
was well represented by an exponential model with 81% of total var-
iation explained by the spatial structure (nugget= 34.48 and
sill = 181.63) and a maximum range of auto-correlation of ∼120 km
(Fig. 3A). The error for the fitted model was very low (RSS < 0.001).
The spatial variation of Yg for the single crop soybean was predicted
using ordinary kriging since there were no significant models for mean
response (trend). The predicted map indicates zones with low Yg
(< 20%) and well-defined zones with large Yg (> 40%; Fig. 4A). In

Fig. 1. Regression tree model for single crop soybean yield gap (Yg) in Central Argentina. Yield gap is expressed as percentage of water-limited yield potential. ***
p < 0.001. p-values were estimated using the LogWorth statistic. Terminal nodes are represented as gray boxes.

Table 4
Relative soybean yield gap variability (%) explained by management/en-
vironmental variables using regression trees. Relative variability is referred to
the total variability explained by the model for each crop. Overall, regression
trees explained 25.8 and 30.7% of total variation in yield gaps for soybeans as
single and second crop, respectively.

Variable Single crop Second crop
% explained variation % explained variation

Sowing date 49.6 14.0
Previous crop 6.2 6.9
Fertilization 3.9 18.2
Maturity group 3.5 0.0
Use of fungicide 2.3 51.8

∑ Management 65.5 90.9

Rainfall 12.4 4.9
Temperature 3.9 0.0
Longitude 0.8 4.2
Soil type 17.4 0.0

∑ Environment – Location 34.5 9.1

G. Di Mauro et al. European Journal of Agronomy 99 (2018) 186–194

190



addition, due to the high density of points within the predicted area, the
estimated standard error by ordinary kriging was very low near the
observed points (< 7%), and it was also relatively low even in areas
with lower observed points density (12–14%; Fig. 4B).

4. Discussion

Our approximation using field observations enabled a realistic and
parsimonious characterization of the magnitude, possible determinants,
and spatial dependence of soybean Yg in one of the most productive
regions in the world. Soybean Yg was close to 30% of Ywlim but ranged
from 0 to 68% and from 0 to 78% for soybean as single or second crop,
respectively. The Yg magnitude estimated using our farmers’ survey and
approximation was similar to other reports for the region. Using a crop
modeling approach, Aramburu Merlos et al. (2015) estimated soybean
Yg close to 25% for this region. Our estimate of 33.5% Yg for second
crop soybeans did not differ from the previously reported in this region
for this type of soybean crop (Andrade and Satorre, 2015). The relative
importance of management and environmental factors determining Yg
were different when comparing single vs. second crop soybeans. This
difference probably accounts for the contrasting spatial distribution of

Yg between single and second crops in Central Argentina. Our study
expands on previous knowledge identifying environmental conditions
and, more importantly, agronomic management variables associated
with soybean Yg variation. This information is critical for farmer’s de-
cision-making to reduce Yg.

Optimizing agronomic management could reduce Yg for both single
and second crops. However, the relative importance of agronomic
management variables in explaining variation in Yg was lower for
single compared to second crops, at 66.5% vs. 90.8% of explained
variation, respectively. Earlier planting date was associated with re-
duced Yg in single crop soybeans. This relationship was also described
in previous analyses in the United States (Grassini et al., 2015a;
Rattalino Edreira et al., 2017) and Brazil (Zanon et al., 2016). Previous
crop was the second most important management factor responsible for
variation in Yg for single crop soybeans; fields including maize as
previous crop showed reduced Yg. This result reinforces the importance
of maize rotation for soybean productivity as reported in previous
studies (Marburger et al., 2016; Mourtzinis et al., 2017; Seifert et al.,
2017). For soybeans as second crop, fungicide application was the most
important management factor associated with Yg variation. Therefore,
a yield-protective action became relevant due to effects on Ya (Bluck

Fig. 2. Regression tree model for second crop soybean yield gap (Yg) in Central Argentina. Yield gap is expressed as percentage of water-limited yield potential. ***
p < 0.001; ** p < 0.01. p-values were estimated using the LogWorth statistic. Terminal nodes are represented as gray boxes.

Fig. 3. Sample omnidirectional and direct var-
iograms of yield gaps for soybeans as single (A)
or as second (B) crop to describe the local
spatial auto-correlation. Gamma was estimated
by the robust method proposed by Cressie-
Hawkings. In panel “A”, the continuous line
represents the fitted exponential model
(nugget= 34.48, sill = 181.62 and
range= 120 km; RSS= 0.00008).
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et al., 2015; Villamil et al., 2012). Phosphorus fertilization was asso-
ciated with reduced Yg in fields where fungicides were not applied. This
trend was consistent with Ya increases observed in studies conducted in
Argentina (Calviño and Sadras, 1999) and the U.S. (Grassini et al.,
2015a) in association with fertilization management.

Our results also contribute to unraveling the main environmental
factors determining Yg. Soil type was the main factor associated with
soybean single crop Yg. Reduced Yg was observed in fields with fa-
vorable soil types like Argiudolls and Hapludolls soils (USDA, 1975)
compared to fields having other soil types. Similar results were ob-
served in Yg analysis conducted in irrigated maize systems of the U.S.,
where reduced Yg was associated with favorable soil types (Farmaha
et al., 2015). Despite this general trend, previous studies indicate that
soil properties can affect crop Ya and thus Yg magnitude. For example,
Bacigaluppo et al. (2011) showed that organic matter content and sa-
turated hydraulic conductivity affect Ya in Argiudoll soils of Central
Argentina. Therefore, soil properties recorded in situ could contribute to
the fine-tuning of predictive models quantifying Yg in single crop
soybean. For these systems, a cooler November was also associated with
reduced Yg on the most productive soil types and when having the
earliest planting dates in the season. This might be associated with fa-
vorable conditions during crop development. As expected under rainfed
systems, rainfall was associated with reduced Yg for both single and
second crops. In contrast, more rainfall in March was associated with
increased Yg in single crop soybean. This month coincides with harvest
maturity of soybeans in single crop. Therefore, Yg increases might be
attributed to harvest diseases due to water excess in harvest season
(Penalba et al., 2009).

Local spatial auto-correlation was remarkably different between
both soybeans as single and second crop. There was a significant spatial
correlation structure explaining approximately 80% of Yg variation at
distances no farther than 120 km for single crop soybeans, while there
was no significant spatial auto-correlation for second crop. The main
putative environmental reason for this zonal or local patchiness in Yg is
local edaphic conditions. Using soil data available for this region
(Cruzate et al., 2012), soil type showed a spatial range of variation si-
milar to that observed for Yg in the single crop soybean. The lack of
spatial auto-correlation for soybean as second crop has two potential
explanations suggested from the data. First, the number of fields sam-
pled was lesser compared to that for the single crop. Although the
spatial sampling coverage was very similar between both soybean
crops, the number of second crop fields sampled was notably lower than

that for single crop. In fact, the bounding box or spatial surveyed area
was practically the same in both crops. Second, the absence of auto-
correlation structure in second crop could be related to higher relative
importance of management vs. environmental variables associated with
Yg variation. Agronomic management does not usually follow a defined
spatial pattern, while environmental variables do follow a more defined
spatial pattern.

5. Conclusions

Our results showed soybean Yg close to 30% of Ywlim. However,
soybean Yg ranged from 0 to 68% and from 0 to 78% for soybean as
single or second crop, respectively. There were differences in factors
associated to Yg variability between single and second crop types.
Single crop Yg variability was associated with both environmental and
management variables. In contrast, management variables ex-
plained> 90% of Yg variability for the second crop. Therefore, dif-
ferent productive strategies emerge for closing Yg for these two soybean
production alternatives. Local spatial auto-correlation was remarkably
different between both crops, with a significant spatial correlation
structure explaining ∼80% of Yg variation at distances no farther than
120 km for the single crop. In contrast, no spatial correlation was found
for soybean as second crop. Our approximation using ∼22,500 field
observations allowed us to characterize the magnitude, possible ex-
plaining factors, and spatial dependence of soybean Yg in one of the
most productive regions in the world. Although average Yg are rela-
tively small compared to other regions, there are still opportunities for
future yield improvements.

Our results can be extrapolated to other rainfed soybean production
regions with the appropriate considerations. Particularly, three aspects
of our research justify its applicability to other regions and contexts: (i)
opportunities of yield improvement found in this paper can be adopted
for other rainfed soybean production regions and/or farming systems
with comparable technology adoption; (ii) interaction between man-
agement and environment explored in our research may help to gen-
erate new hypotheses regarding potential causes of soybean Yg in other
production regions; and (iii) our approach of utilizing data from, and
analyzing at the level of, farmers’ fields proves to be a valid method that
can be utilized to explore Yg in other crops and that can also be con-
trasted to the most common method of crop modeling Yg assessment
thus far.

Fig. 4. Interpolated map of yield gap (expressed
as percentage of water-limited yield potential)
for single crop soybean by ordinary kriging (A)
and its associated standard prediction error (B)
in the highest-productivity soybean region in
Central Argentina. Different codes represent the
Argentinean provinces, BA: Buenos Aires; CO:
Córdoba; SF: Santa Fe and LP: La Pampa.
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