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ASSOCIATED SYMMETRIC PAIR AND MULTIPLICITIES OF

ADMISSIBLE RESTRICTION OF DISCRETE SERIES

JORGE A. VARGAS

Abstract. Let (G,H) be a symmetric pair for a real semisimple Lie group G and
(G,H0) its associated pair. For each irreducible square integrable representation π of
G so that its restriction to H is admissible, we find an irreducible square integrable
representation π0 of H0 which allows to compute the Harish-Chandra parameter of
each irreducible H−subrepresentation of π as well as its multiplicity. The computation
is based on the spectral analysis of the restriction of π0 to a maximal compact subgroup
of H0.

Introduction

Branching laws, that is, to write as explicit as possible the decomposition of a given
representation in terms of irreducible objets is of importance in several branches of math-
ematics as well as physics and chemistry. A particular case is to consider an irreducible
unitary representation π of a group G and a closed subgroup H of G and we wish to
find the irreducible H−subrepresentatios and the weakly contained irreducible factors,
as well as their respective multiplicities. To solve this problem involves among other
branches of mathematics, algebraic geometry, differential geometry and hard analysis
as we can learn from examples and theorems presented in [13], references therein and
further work of T. Kobayashi, N. Wallach as well as other researchers. In the book [9], or
in [10], [12], [19] as well as in the work of other authors [6], we learn that sometimes the
problem of writing the branching law for π is translated into the problem of computing
branching law for another pair of groups L ⊂ H0 and certain irreducible representation
of H0. From this point of view, in [17], [21], [6] is analyzed the restriction of a family of
Zuckerman modules for a real reductive Lie group G and H the connected component
of the fix point group of an involution of G. Henceforth, G denotes a connected simple
matrix Lie group. We fix a maximal compact subgroup K of G and a maximal torus T in
K. Harish-Chandra showed that G admits square integrable irreducible representations
if and only if T is a Cartan subgroup of G. For this note, we always assume T is a Cartan
subgroup of G. Under these hypothesis, Harish-Chandra showed that the set of equiva-
lence classes of irreducible square integrable representations is parameterized by a lattice
in it⋆

R
. In order to state our results we need to explicit this parametrization and set up

some notation. As usual, the Lie algebra of a Lie group is denoted by the corresponding
lower case German letter followed by the subindex R. The complexification of the Lie
algebra of a Lie group is denoted by the corresponding German letter without any sub-
script. V ⋆ denotes the dual space to a vector space V. Let θ be the Cartan involution
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which corresponds to the subgroup K, the associated Cartan decomposition is denoted
by g = k + p. Let Φ(g, t) denote the root system attached to the Cartan subalgebra t.
Hence, Φ(g, t) = Φc ∪ Φn = Φc(g, t) ∪ Φn(g, t) splits up as the union the set of compact
roots and the set of noncompact roots. From now on, we fix a system of positive roots
∆ for Φc. For this note, either the highest weight or the infinitesimal character of an
irreducible representation of K is dominant with respect to ∆. The Killing form gives
rise to an inner product (.., ..) in it⋆

R
. As usual, let ρ = ρG denote half of the sum of the

roots for some system of positive roots for Φ(g, h). A Harish-Chandra parameter for G
is λ ∈ it⋆

R
such that (λ, α) 6= 0, for every α ∈ Φ(g, t), and so that eλ+ρ is a character of

T. To each Harish-Chandra parameter, Harish-Chandra associates a unique irreducible
square integrable representation πG

λ of G. Moreover, he showed the map λ → πG
λ is a

bijection from the set of Harish-Chandra parameters dominant with respect to ∆ onto
the set of equivalence classes of irreducible square integrable representations for G.

Each Harish-Chandra parameter λ gives rise to a system of positive roots

Ψλ = ΨG,λ = {α ∈ Φ(g, t) : (λ, α) > 0}.

From now on, we assume that Harish-Chandra parameter for G are dominant with
respect to ∆. Whence, ∆ ⊂ Ψλ.

To follow, we fix a nontrivial involutive automorphism σ of G. After we replace σ
by some conjugate we may and will assume σ commutes with θ. Thus, σθ is another
involution of G which commutes with θ. We write

h := {X ∈ g : σ(X) = X}, q := {X ∈ g : σ(X) = −X}, h0 = {X ∈ g : σθ(X) = X}

and H (resp. H0) the identity connected component of the set of fix points of σ (resp.
σθ) in G. Then (G,H) is a symmetric pair as well as (G,H0), the later pair is called the
associated pair to the former pair. Certainly, H,H0 are closed reductive subgroups of G
and the following decompositions hold:

g = h⊕ q, h = h ∩ k+ h ∩ p, q = q ∩ k+ q ∩ p, h0 = h ∩ k+ p ∩ q.

We notice thatH andH0 share the maximal compact subgroup L := H∩K = H0∩K.We
may and will assume T is invariant under the involution σ, hence U := T ∩H is maximal
torus of L. Since c.f. (0.2) we dealt with irreducible square integrable representations of
G with an admissible restriction to H, without lost of generality we may assume

U is a Cartan subgroup of H

and hence U is a compact Cartan subgroup of H0. We verify Ψλ is invariant under the
involution σ. Therefore, there exists a vector in iuR which is regular and dominant for
Ψλ, in turn, this vector determines system of positive roots

∆0, ΨH,λ,ΨH0,λ for respectively Φ(l, u),Φ(h, u),Φ(h0, u)

such that for α ∈ Ψλ, α restricted to u takes on positive values in the Weyl chamber for
∆0. Whenever, U = T we have ∆0 ⊂ ∆,ΨH,λ = Φ(h, t) ∩Ψλ,ΨH0,λ = Φ(h0, t) ∩Ψλ.

(0.1) For this note, Harish-Chandra parameters for H as well as for H0 and L are
dominant with respect to ∆0.

(0.2) To continue, we assume πG
λ restricted to H is an admissible representation.

This hypothesis yields there exits a family of irreducible square integrable representa-
tions, πH

µ , ofH, for which the set of corresponding Harish-Chandra parameters is denoted
by

SpecH(π
G
λ ) = {µ ∈ iu⋆

R
: πH

µ →֒ resH(π
G
λ )},
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together with a sequence of positive integers mH(λ, µ), µ ∈ SpecH(π
G
λ ), so that

resH(π
G
λ ) =

∑

µ∈SpecH(πG
λ )

mH(λ, µ) πH
µ

Equality in the previous formula means unitary equivalence. On the right hand side,
sum, means the Hilbert sum of the family of representations of H pointed out. For a
proof c.f. [14].
(0.2a) In [6], [18] it is shown that every element of SpecH(π

G
λ ) is dominant with respect

to ΨH,λ. Moreover, since we are dealing with square integrable representations, we have
that πG

λ has an admissible restriction to H if and only if πG
λ is an admissible representa-

tion of H0. This follows from [4].

To each system of positive roots Ψλ, in [4], we have attached a connected normal
subgroup K1 := Z1(Ψλ)K1(Ψλ) of K and we have shown:

(0.3) πG
λ restricted to H is admissible if and only if Z1(Ψλ)K1(Ψλ) is a subgroup of L.

In section 1 we list the 5-tuples (G,H,H0,Ψλ, Z1(Ψλ)K1(Ψλ)) so that G is simple and
πG
λ has an admissible restriction to H. In the course of the note we list the systems

ΨH,λ,ΨH0,λ.

(0.4) Let k2 = k2(Ψλ) denote the complementary ideal to k1. Thus, we have a decompo-
sition, as a direct sum of ideals,

k = k1 + k2, t = t1 + t2, t⋆ = t⋆1 + t⋆2.

as we well as the product of normal subgroups K = K1K2. Owing to (0.3), K1 is a
subgroup of L hence we have the decomposition L = K1(L∩K2) and the decomposition
u = t1 + (l ∩ t2). For a reductive Lie algebra s we write s = zs + sss where zs denotes
the center and sss denotes the semisimple factor. For some examples, the decomposition
K = K1K2, T = T1T2 and the corresponding decomposition for u are not completely
compatible with the decompositions h = zh + hss, l = zl + lss = zh + (zl ∩ hss) + lss, zl =
zh + zl ∩ hss. However, this is not a drawback for the statements to follow, we dealt with
this matter in (1.6). For λ ∈ t⋆, we write λ = λ1 + λ2 = (λ1, λ2), with λi ∈ t⋆i , i = 1, 2.
For γ ∈ u⋆, we write γ = γ1 + γ2 = (γ1, γ2) with γ1 ∈ t⋆1, γ2 ∈ (l ∩ t2)

⋆. Because of
our hypothesis on λ, it follows that λ2 is Harish-Chandra parameter for K2, (c.f. 1.46),
hence, there exists an representation πK2

λ2
of infinitesimal character λ2. The branching

law for the restriction of πK2

λ2
to L ∩K2 is

resL∩K2(π
K2
λ2

) =
∑

ν2∈SpecL∩K2
(π

K2
λ2

)

mK2,L∩K2(λ2, ν2) π
L∩K2
ν2 .

For an irreducible square integrable representation πH0
µ of H0. The assumption, L is a

maximal compact subgroup of H0, gives rise to the decomposition

resL(π
H0
µ ) =

∑

ν∈SpecL(π
H0
µ )

mH0,L(µ, ν) πL
ν

Here, as before, πL
ν denotes de irreducible representation of L of infinitesimal character

ν dominant with respect to ∆0, and SpecL(π
H0
µ ) denotes the set of Harish-Chandra

parameters of irreducible representations of L that occurs in resL(π
H0
µ ). In section 1 we

study when for ν2 ∈ SpecL∩K2(π
K2

λ2
) the pair (λ1, ν2) is a Harish-Chandra parameter
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for H0. We first show (λ1, ν2) is regular and dominant for ΨH0,λ. However, e
(λ1,ν2)+ρH0

may not be a character of U. This is not a problem because twice a Harish-Chandra
parameter always lifts to a character. Thus, e(λ1,ν2)+ρH0 is a character of a two-fold
cover of U. Hence, as usual, we replace G by a two fold cover and then we have that
(λ1, ν2) is a Harish-Chandra parameter. This assumption has as a consequence, that any
Harish-Chandra parameters for H which occurs in resH(π

G
λ ) is also a Harish-Chandra

parameters for L. Now, we may state the first result of this note.

Theorem 1. Assume πG
λ has an admissible restriction to H. Then, we have

mH(λ, µ) =
∑

ν2∈SpecL∩K2
(π

K2
ξ2

)

mH0,L((λ1, ν2), µ) m
K2,L∩K2(λ2, ν2)

for each µ ∈ SpecH(π
G
λ ).

The lowest K−type πK
ξ of πG

λ , [22], decomposes as the outer tensor product of irre-
ducible representations

πK
ξ = πK1

ξ1
⊠ πK2

ξ2

It is known, [6], it may happens that πK2
ξ2

is the trivial representation of K2. Under
this hypothesis, Bent Orsted and Birgit Speh in [17], [21] conjectured that for a conve-
nient Harish-Chandra parameter λ′ for H0, the set of Harish-Chandra parameters of the
L−types of resL(π

H0
λ′ ) is equal to the set of Harish-Chandra parameters of resH(π

G
λ ) and

that the multiplicity functionsmH(λ, ?), mH0,L(λ′, ?) are equal. Actually, their conjecture
is stated for a family of Zuckerman modules Aq(λ) which includes the family of square

integrable representations so that πK2
ξ2

is the trivial representation. As a consequence of
Theorem 1 we have that their conjecture is true. In fact,

Theorem 2. Assume πG
λ is an admissible representation of H as well as that the lowest

K−type of πG
λ is an irreducible representation of K1. Then,

SpecH(π
G
λ ) = SpecL(π

H0

(λ1,ρL∩K2
)), mH(λ, µ) = mH0,L((λ1, ρL∩K2), µ)

for every µ ∈ SpecL(π
H0

λ ).

One consequence of Theorem 2 and Lemma 2.12 in [20] is.

Corollary 1. Every µ ∈ SpecH(π
G
λ ) is equal to (λ1, ρL∩K2) + ρ0 + B where B is a sum

of roots in ΨH0,λ ∩ Φ(p ∩ q, u) = ΨH0,(λ1,ρL∩K2
) ∩ Φn(h0, u) and ρ0 is equal to one half of

the sum of the roots in ΨH0,(λ1,ρL∩K2
) ∩ Φn(h0, u).

Theorem 1 and Theorem 2 are somewhat analogous to results of Gross-Wallach [6] and
statements on branching laws presented in the book of Knapp [9]. Besides, Theorem 2
has a resemblance to results of Kobayashi proved in [12].
Theorem 1 and Theorem 2 coupled with the work of Baldoni Silva-Vergne, [1], provide
an effective method to compute the multiplicity and the Harish-Chandra parameter for
the irreducible factors in the decomposition of resH(π

G
λ ) as H−module.

In the fourth section of this note we analyze the subspace Lλ spanned by the lowest
L−type of the totality irreducible H−factors and for a scalar holomorphic discrete se-
ries we obtain a more precise description of Lλ. We also consider the relation between
HomH(π

H
µ , πG

λ ) and the space of intertwining operators from the lowest L−type of πH
µ

into resL(π
G
λ ). In the fifth section we show, for outer tensor product of two holomorphic

discrete series representations, a similar result to Theorem 1 as well as a similar result
4



to the one obtained in section 4. In section 6, we collect notation and complete some
case by case proofs.

1. Description of the subgroup K1.

We maintain the notation of the previous section. For each root α ∈ Φ(g, t), let gα
denote the root space associated to α, then, by definition, k1(Ψλ) is the ideal of k spanned
by [gα, gβ], α, β ∈ Ψλ ∩ Ψn. We define K1(Ψλ) the analytic subgroup of K which cor-
responds to k1(Ψλ). Thus, K1(Ψλ) = {1} if and only if Ψλ is a holomorphic system.
With respect to Z1(Ψλ), whenever G/K is not an hermitian symmetric space, Z1(Ψλ) is
defined to be equal to the trivial group. For a holomorphic system Ψλ we define Z1(Ψλ)
to be equal to the identity connected component of the center of K, hence, Z1(Ψλ) is a
one dimensional torus. We claim:

(1.1) Assume G/K is an Hermitian symmetric space and let Ψλ be a nonholomorphic
system of positive roots such that πG

λ is an admissible representation of H, then the
subgroup Z1(Ψλ) defined in [4] is the trivial group.

To verify the claim we notice that the hypothesis on admissibility together with the
tables in [16], or else the computations in [4], [5], yields,
(1.2) If G/K is an Hermitian symmetric space and πG

λ is not a holomorphic representation
with admissible restriction to H, then the pair (gR, hR) is one of

(su(m,n), s(u(m, k) + u(n− k))), (su(2, 2n), sp(1, n)),
(so(2m, 2), so(2m, 1)), (su(2, 2), sp(1, 1)).

In the next paragraph, for each of these pairs (G,H), we write compact Cartan subgroups
and list the systems of positive roots Ψλ so that resH(π

G
λ ) is an admissible representation,

for each case, we verify Z1(Ψλ) = {0} and we compute ΨH0,λ,ΨH,λ.
I− 1, I− 2. (su(m,n), s(u(m, k)+ u(n− k))). We fix as Cartan subalgebra t of su(m,n)
the set of diagonal matrices in su(m,n). For certain orthogonal basis ǫ1, . . . , ǫp, δ1, . . . , δq
of the dual vector space to the subspace of diagonal matrices in gl(m+n,C), we may, and
will choose ∆ = {ǫr − ǫs, δp − δq, 1 ≤ r < s ≤ m, 1 ≤ p < q ≤ n}, the set of noncompact
roots is Φn = {±(ǫr − δq)}. We recall the positive roots systems for Φ(g, t) containing ∆
are in a bijective correspondence with the totality of lexicographic orders for the basis
ǫ1, . . . , ǫm, δ1, . . . , δn which contains the ”suborder” ǫ1 > · · · > ǫm, δ1 > · · · > δn. The two
holomorphic systems correspond to the orders ǫ1 > · · · > ǫm > δ1 > · · · > δn; δ1 > · · · >
δn > ǫ1 > · · · > ǫm. We fix 1 ≤ a ≤ m−1, in [5] is verified that for the system of positive
roots Ψa corresponding to the order ǫ1 > · · · > ǫa > δ1 > · · · > δn > ǫa+1 > · · · > ǫm,
we have k1(Ψa) = su(m). We fix 1 ≤ b ≤ n − 1 and let Ψ̃b denote the set of positive
roots associated to the order δ1 > · · · > δb > ǫ1 > · · · > ǫm > δb+1 > · · · > δn, then
k1(Ψ̃b) = su(n). For any other nonholomorphic system Ψ we have k1(Ψ) = su(m)+su(n).
Thus, (0.3) forces Ψλ to be equal to either Ψa or Ψ̃b. A direct computation [5] verifies

R+(Ψa∩Φn)∩i(zk)
⋆
R
= R+(Ψ̃b∩Φn)∩i(zk)

⋆
R
= {0}, hence the definition of Z1(Ψλ) implies

Z1(Ψλ) = {1}. Thus, we have verified claim (1.1) for the pair (su(m,n), s(u(m, k)+u(n−
k))). The root systems for (h, t) and its dual are:

Φ(h, t) = {±(ǫr − ǫs),±(δp − δq),±(ǫi − δj), 1 ≤ r < s ≤ m,

1 ≤ p < q ≤ k, or, k + 1 ≤ p < q ≤ n, 1 ≤ i ≤ m, 1 ≤ j ≤ k}.
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Φ(h0, t) = {±(ǫr − ǫs),±(δp − δq),±(ǫi − δj), 1 ≤ r < s ≤ m,

1 ≤ p < q ≤ k or k + 1 ≤ p < q ≤ n, 1 ≤ i ≤ m, k + 1 ≤ j ≤ n}.

The system ΨH,λ, ΨH0,λ which correspond to Ψa are the system associated to the
respective lexicographic orders

ǫ1 > · · · > ǫa > δ1 > · · · > δk > ǫa+1 > · · · > ǫm

ǫ1 > · · · > ǫa > δk+1 > · · · > δn > ǫa+1 > · · · > ǫm.

For Ψ̃b the description of ΨH,λ, ΨH0,λ is similar.
From now on, qu denotes the restriction map from t⋆ onto u⋆.

II− 1. (su(2, 2n), sp(1, n)), n ≥ 1. We use the notation in A1. The automorphism
σ acts on t⋆ as σ(ǫ1) = −ǫ2, σ(δi) = −δ2n−i+1, i = 1, . . . , 2n. Hence, a basis of u⋆ is
qu(ǫ1 − ǫ2), qu(δr − δ2n−r+1), r = 1, . . . n. Because of the way σ acts on t⋆ we have that
β 6= σ(β) for any noncompact root. For each root β, we fix 0 6= Yβ ∈ gβ. Then,
p∩q =

∑

β∈Φn
C(Yβ−σYβ) and h∩p =

∑

β∈Φn
C(Yβ+σYβ). Hence, Φn(h, u) = Φn(h0, u) =

{±qu(ǫ1 − δi), i = 1, . . . 2n}. Certainly, Φc(h, u) = Φc(h0, u) = {±(ǫ1 − ǫ2), qu(δi − δj), i 6=
j}. The unique possibility for k1(Ψλ) to be contained in sp(1, n) is for Ψλ = Ψ1. The
simple roots for Ψ1 are ǫ1 − δ1, δ1 − δ2, . . . , δ2n−1 − δ2n, δ2n − ǫ2. We notice σ(Ψ1) = Ψ1

and k1(Ψλ) = su2(ǫ1 − ǫ2). We define ΨH,λ = ΨH0,λ and we set ΨH,λ ⊂ Φ(h, u) to be the
system of positive roots for the simple roots

{α1 := qu(ǫ1 − δ1), αi+1 := qu(δi − δi+1), i = 1, . . . , n− 1, αn+1 := (δn − δn+1)}.

For the pair (SU(2, 2), Sp(1, 1)), we have the extra possibility Ψλ = Ψ̃1. In [5] we verify
for any of these systems Z1(Ψλ) is equal to the trivial group.

II− 5 (so(2m, 2), so(2m, 1)), m ≥ 2. We choose an orthogonal basis {ǫ1, . . . , ǫm, δ1} of
it⋆
R
so that ∆ = {ǫk ± ǫs, 1 ≤ k < s ≤ m},Φn = {±(ǫj ± δ1), 1 ≤ j ≤ m}. In this

case, z⋆K = Cδ1. The systems of positive roots Ψλ containing ∆ are parameterized by
the lexicographic orders S±a := ǫ1 > · · · > ǫa > ±δ1 > ǫa+1 > · · · > ǫm−1 > ±ǫm for
a = 0, 1, . . . , m. The two holomorphic systems corresponds to the parameters ±0. In
this case σ acts on t⋆ by the rule σ(δ1) = −δ1, σ(ǫj) = ǫj , j = 1, . . . , m. Hence, u⋆ is
spanned by ǫ1, . . . , ǫm. It readily follows that σ leaves invariant the system of positive
roots associated to S±m. Also, σ(β) 6= β for every noncompact root. Hence, as in the
previous case, Φn(h, u) = Φn(h0, u). Here,

K1(Ψλ) =







so(2m) if m > 2, Ψλ nonholomorphic
su2(ǫ1 ± ǫ2) if m = 2, Ψλ ↔ S±2

so(4) if m = 2, Ψλ ↔ S±1

From actual computation or the computations in [5] we have R+Ψλ ∩ z⋆K = {0} if and
only if Ψλ is associated to one of the orders S±m. From the tables in [16], or computations
in [4], it follows that πG

λ has an admissible restriction to H if and only if Ψλ is associated
to one of the orders S±m. Hence, Z1(Ψλ) = {1} for both cases. Let τ denote ±. For the
system of positive roots Ψτ associated to the order Sτm we define ΨH,λ = ΨH0,λ to be
the system of positive roots for the simple roots

(ǫj − ǫj+1), (ǫm−1 − τǫm), qu(τǫm − δ1) = τǫm, j = 1, . . . , m− 2.

This concludes the verification of (1,1).

✷
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For an arbitrary symmetric pair (G,H), whenever πG
λ is an admissible representation

of H, because of (1.1), we define,

K1 =

{

ZK if Ψλ holomorphic
K1(Ψλ) otherwise

In the next tables we present the 5-tuple so that: (G,H) is a symmetric pair, H0 is
the associated group to H, Ψλ is a system of positive such that πG

λ is an admissible
representation of H, and K1 = Z1(Ψλ)K1(Ψλ). Actually, instead of writing Lie groups
we write their respective Lie algebras. Each table is in part a reproduction of tables
in [16]. The tables can also be computed by means of the techniques presented in [4].
Note that each table is ”symmetric” when we replace H by H0. As usual, αm denotes
the highest root in Ψλ and su2(α) denotes the compact real subalgebra of gR spanned
by the root vectors corresponding to the compact root α. In this and other sections we
complete the notation for the objects in the tables.

G H H0 Ψλ K1

su(m,n) su(m, k)⊕ su(n− k)⊕ u(1) su(m,n− k)⊕ su(k)⊕ u(1) Ψa su(m)

su(m,n) su(k, n)⊕ su(m − k)⊕ u(1) su(m− k, n)⊕ su(k)⊕ u(1) Ψ̃b su(n)

so(2m, 2n) so(2m, 2k)⊕ so(2n − 2k) so(2m, 2n− 2k)⊕ so(2k) Ψ± so(2m)

so(2m, 2n+ 1) so(2m, k)⊕ so(2n+ 1− k) so(2m, 2n+ 1− k)⊕ so(k) Ψ± so(2m)

so(4, 2n), n > 2 u(2, n)1 wu(2, n)1 Ψ1−1 su2(αm)

so(4, 2n), n > 2 u(2, n)2 wu(2, n)2 Ψ1 1 su2(αm)

so(4, 4) u(2, 2)1 1 wu(2, 2)11 Ψ1−1, wǫ,δΨ1−1 su2(αm)

so(4, 4) u(2, 2)12 wu(2, 2)12 Ψ1−1, wǫ,δΨ1 1 su2(αm)

so(4, 4) u(2, 2)21 wu(2, 2)21 Ψ1 1, wǫ,δΨ1−1 su2(αm)

so(4, 4) u(2, 2)22 wu(2, 2)22 Ψ1 1, wǫ,δΨ1 1 su2(αm)

sp(m,n) sp(m, k)⊕ sp(n− k) sp(m, n− k)⊕ sp(k) Ψ+ sp(m)

f4(4) sp(1, 2)⊕ su(2) so(5, 4) ΨBS su2(αm)

e6(2) so(6, 4)⊕ so(2) su(4, 2)⊕ su(2) ΨBS su2(αm)

e7(−5) so(8, 4)⊕ su(2) so(8, 4)⊕ su(2) ΨBS su2(αm)

e7(−5) su(6, 2) e6(2) ⊕ so(2) ΨBS su2(αm)

e8(−24) so(12, 4) e7(−5) ⊕ su(2) ΨBS su2(αm)

Table I. Case U = T,Ψλ nonholomorphic

G H H0 Ψλ K1

su(2, 2n), n > 2 sp(1, n) sp(1, n) Ψ1 su2(αm)

su(2, 2) sp(1, 1) sp(1, 1) Ψ1 su2(αm)

su(2, 2) sp(1, 1) sp(1, 1) Ψ̃1 su2(αm)

so(2m, 2n),m > 1 so(2m, 2k + 1) + so(2n− 2k − 1) so(2m, 2n− 2k − 1) + so(2k + 1) Ψ± so(2m)

so(2m, 2), m > 2 so(2m, 1) so(2m, 1) Ψ± so(2m)

e6(2) f4(4) sp(3, 1) ΨBS su2(αm)

Table II, Case U 6= T,Ψλ non holomorphic

G H (a) H0 (b)

su(m, n),m 6= n su(k, l) + su(m − k, n− l) + u(1) su(k, n− l) + su(m− k, l) + u(1)

su(n, n) su(k, l) + su(n− k, n− l) + u(1) su(k, n− l) + su(n− k, l) + u(1)

so(2, 2n) so(2, 2k) + so(2n − 2k) so(2, 2n− 2k) + so(2k)

so(2, 2n) u(1, n) u(1, n)

so(2, 2n+ 1) so(2, k) + so(2n+ 1− k) so(2, 2n+ 1− k) + so(k)

so⋆(2n) u(m, n−m) so⋆(2m) + so⋆(2n− 2m)

sp(n,R) u(m, n−m) sp(m,R) + sp(n−m,R)

e6(−14) so(2, 8) + so(2) so(2, 8) + so(2)

e6(−14) su(2, 4) + su(2) su(2, 4) + su(2)

e6(−14) so⋆(10) + so(2) su(5, 1) + sl(2,R)

e7(−25) so⋆(12) + su(2) su(6, 2)

e7(−25) so(2, 10) + sl(2,R) e6(−14) + so(2)

su(n, n) so⋆(2n) sp(n,R)

so(2, 2n) so(2, 2k + 1) + so(2n − 2k − 1) so(2, 2n− 2k − 1) + so(2k + 1)

Table III, πG
λ holomorphic Discrete Series.

The last two lines show the unique holomorphic pairs so that U 6= T.
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For an arbitrary parameter of Harish-Chandra, λ, we recall that we denote the com-
plementary ideal to k1 by k2. Hence, the root system Φ(k2, t2) is a subsystem of Φc. In [4]
we find a proof of:
(1.3) Any simple root for ∆ ∩ Φ(k2, t2) is a simple root for Ψλ.

Let WS denote the Weyl group of a compact connected Lie group S. Then, (1.3) and
a result in [7] yields:
(1.4) for w ∈ WK2 , we have w(Ψλ ∩ Φn) = Ψλ ∩ Φn.
We define,

ρc :=
1

2

∑

α∈∆

α, ρλn :=
1

2

∑

β∈Ψλ∩Φn

β, ρ := ρc + ρλn, ρK2 :=
1

2

∑

α∈∆∩Φ(k2,t2)

α

(1.4a), ρλn ∈ t⋆1, because for α a compact simple root for Ψλ, we have (α, ρλn) = 0. As
before, we write λ = (λ1, λ2), we have:
(1.4b) λ2 is a Harish-Chandra parameter for K2. Indeed, the character e

λ+ρ restricted to
T ∩K2 is equal to the function eλ2+ρK2 .
(1.5) We now verify that for ν2 ∈ SpecL∩K2(π

K2
λ2

), then the pair (λ1, ν2) is either a Harish-
Chandra parameter for H0 or is a Harish-Chandra parameter for a two fold cover of H0.
Always, (λ1, ν2) is dominant and regular for ΨH0,λ.
Indeed, sometimes, ρG − ρH0 may not lift to a character of U, hence (λ1, ν2) + ρH0 may
not lift to a character of U, however, twice of (λ1, ν2) + ρH0 does lift to a character
of U. Thus, we only need to verify (λ, ν2) > 0 for any noncompact root in ΨH0,λ. We
first analyze the case U = T. Owing to a theorem of Kostant, any Harish-Chandra
parameter of resL∩K2(π

K2
λ2

) belongs to the convex hull of the set sλ2, s ∈ WK2. Whence,
ν2 =

∑

s∈WK2
cssλ2, with cs ≥ 0,

∑

cs = 1. Because of (1.4), for β ∈ Ψλ ∩ Φn we

have ((λ1, ν2), β) =
∑

s∈WK2
cs((λ1, λ2), s

−1β) > 0. Thus, (λ1, ν2) is a Harish-Chandra

parameter for either H0 or a two fold cover of H0. The case U 6= T follows from the
previous computation and the observation that H0 has only one noncompact simple
factor, hence, the inner product defined by the respective Killing form’s in the Cartan
subalgebras we are dealing with are positive multiple of each other.

(1.6) The formula in either Theorem 1 or in Theorem 2 gives the Harish-Chandra pa-
rameter of µ ∈ SpecH(π

G
λ ) in term of the decomposition u = u ∩ t1(Ψλ) + u ∩ t2(Ψλ).

However, other decompositions of u are: u = zh + u ∩ hss = zl + u ∩ lss. We now analyze
the relation among these decompositions of u and its consequence in order to compute
the Harish-Chandra parameter of πH

µ . To begin with, we study an illustrative example.
gR = su(2, 1). We consider Ψλ = {α, β, α + β} with α ∈ Φc, β ∈ Φn. hR = tR + sl2(β).
Hence h0 = tR + sl2(α + β). For this system

t1 = zK = Ker(α) = CH2β+α, t2 = CHα, zh = Ker(β) = CH2α+β , t ∩ hss = CHβ.

Thus, u = t1(Ψλ) + u ∩ t2(Ψλ) = zh + u ∩ hss are distinct orthogonal decompositions of
u = zl. More precisely, zh is not equal t1 and is not equal to zl ∩ t2. Hence, in order to
explicit the Harish-Chandra parameter µ as the sum of a central character for h plus a
Harish Chandra parameter for hss, we must carry out a change of coordinates. Explicitly,
µ = a(2β + α) + bα = a+b

2
(2α + β) + 3a−b

2
β. We now show that this picture prevails for

most of the holomorphic systems Ψλ and we analyze what happens when Ψλ is not a
holomorphic system.
(1.6-a) For a nonholomorphic system Ψλ, that is, k1 = k1(Ψλ) is a simple Lie algebra,
then u∩hss = t1(Ψλ)+ t2∩hss, zh ⊂ u∩t2(Ψλ) andzl ⊂ t2. Therefore, µ = µzh+µhss, µzh ∈
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zh, µhss ∈ hss is easily computed from the decomposition µ = µ1 + µ2, µj ∈ tj because
µzh = µ2 restricted to zh.

To show the claim we notice that πG
λ being an admissible representation of H forces

k1 ⊂ l. Hence, k1 is a simple Lie ideal in lss. Thus, t1 ⊂ u ∩ hss. Now, the orthogonal to
t1 in u is equal to u∩ t2 and zh is orthogonal to u∩ hss, hence, we have shown the second
part of the claim.
(1.6-b) Ψλ is a holomorphic system and dimzl = 1. Then, zh = {0} and zh0 = {0},
zl = zk = t1(Ψλ), and u∩t2(Ψλ) = u∩lss. This hypothesis holds for: III-3(a) 1 < k < n−1,
3(b) 1 < k < n− 1), 5 (k 6= {2, 2n− 1}), 9, 11, 13, 14.
The first equality follows by inspection in table III. Since resH(π

G
λ ) is an admissible

representation of H and Ψλ is a holomorphic system we have k1 = zk = t1 ⊂ l, hence,
the second equality holds, the third equality follows from that both members are the
orthogonal to zl = t1 in u.
(1.6-c) Ψλ is a holomorphic system, dim zl = 2, and zh = {0} Then, zl = t1 + zl ∩ t2 and
u∩lss ⊂ u∩t2. The admissibility hypothesis forces t1 = zk is contained in l. Orthogonality
gives the inclusion. The hypothesis holds for: III-3a (k = 1), 3b (k = n− 1), 5a (k = 2),
5b (k = 2n− 1), 6b (1 < m < n− 1), 7b, 10b, 12a.
(1.6-d) Ψλ is a holomorphic system, dim zl = 2, and dimzh = 1. Then, u = t. The
orthogonal decompositions of zl = t1 + zl ∩ t2 = zh + zl ∩ hss are different except for the
pairs 3a, 3b, 5a, 5b, 6a n = 2m, 7a n = 2m, for these pairs, we always have zh = t2 ∩ zl.
We always have t ∩ lss ⊂ t2 and the orthogonal decomposition t ∩ hss = t ∩ lss + zl ∩ hss.
Thus, in order to obtain the decomposition µ = µzh + µhss from µ = µ1 + µ2 we write
µhss = µt∩lss + µzl∩hss and notice that the inclusion t ∩ lss ⊂ t2 gives µt∩lss is equal to
µ2 restricted to t ∩ lss. The components µzh, µzl∩hss are computed from µ1 and from µ2

restricted to zl ∩ t2 as in the example (SU(2, 1), TSL2(β)). The hypothesis holds for:
III-1a-1b (k = m, 1 ≤ l < n or 1 ≤ k < m, l = n ), 2a-2b (k = n, 1 ≤ l < n or
1 ≤ k < n, l = n ), 3a (k = n − 1), 3b (k = 1), 4a, 4b, 5a (k = 2n− 1), 5b (k = 2), 6a
(0 < m < n), 6b (m = 1 or m = n− 1), 7a (0 < m < n), 8a, 8b, 10a, 12b.
(1.6-e) Ψλ is a holomorphic system and dim zl = 3. The hypothesis holds for cases: III-
1a (1 ≤ k < m and 1 ≤ l < n), 1b (1 ≤ k < m and 1 ≤ n − l < n), 2a (1 ≤ k < n
and 1 ≤ l < n), 2b (1 ≤ k < n and 1 ≤ n − l < n), 3a (n = 2, k = 1)). Then
dimzh = 1 and u = t. We have i) zh is orthogonal to t1 if and only if III-1a mk = nl,
or, III-1b nk = m(n − l), or, III-2a k = l, or, III-2b n = k + l. ii) zh is not contained
in t2, obviously zh is not contained in t1. Then, the orthogonal decompositions of zl =
t1 + zl ∩ t2 = zh + zl ∩ hss are different. In case i) we have t1 ⊂ hss ∩ t, hence µzh is
equal to the restriction of µ2 to zh. In case ii) we have t ∩ lss ⊂ t2, as in previous cases,
we write u = uzh + µt∩hss = uzl + ulss and uzl = uzh + uzl∩hss. Then, uhss restricted to
t ∩ lss es equal to ulss = µ2 restricted to t ∩ lss. In order to compute µzh and uzl∩hss
we must carry out a computation similar to the case (su(2, 1), t + sl2(β)). The case
III-3a (n = 2, k = 1) is the case III-2a (n = 2, k = 1, l = 1). The first two claims
follows from inspection to table III. To verify i) and ii) we recall notation in I− 1. Then,
h = su(k, l) + su(n− k,m− l) + u(1), h0 = su(k, n− l) + su(n− k, l) + u(1) and

Φ(h, t) = {±(ǫr − ǫs),±(δp − δq),±(ǫi − δj), 1 ≤ r < s ≤ k or k + 1 ≤ r < s ≤ m,

1 ≤ p < q ≤ l or l + 1 ≤ p < q ≤ n,

1 ≤ i ≤ k and 1 ≤ j ≤ l or k + 1 ≤ i ≤ m and l + 1 ≤ j ≤ n}.
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Let ej, dk denote the elements of the dual basis to ǫj , δk. Then,

zh = C[(m− k + n− l)(
∑

i≤k

ei +
∑

j≤l

dj)− (k + l)(
∑

i≥k+1

ei +
∑

j≥l+1

dj)],

t1(Ψλ) = zk = C[n(
∑

i≤m

ei)−m(
∑

j≤n

dj)]

and the inner product of the pointed out generators for zh, zk is equal to (nk−ml)(m+n).
Thus, i) and ii) follow.

2. More on the root structure for (G,H)

As in the previous sections, we assume (G,H) is a symmetric pair and u = h ∩ t is
a Cartan subalgebra for h. We also assume πG

λ has an admissible restriction to H. We
derive consequences of the hypothesis and set up some notation.
For a linear subspace s of g so that [u, s] ⊂ s or a complex vector space s where u acts
by semisimple linear operators, we denote by Φ(s, u) the multiset of weights of u in s.
That is, Φ(s, u) is the set of weights of u in s, each counted with multiplicity. Owing to
our hypothesis we have that σ(Ψλ) = Ψλ, k1 ⊂ l and σ(∆) = ∆, hence, we may choose
a system of positive roots ∆(k/l, u) = ∆(k2/(l ∩ k2), u) for Φ(k/l, u) = Φ(k2/(l ∩ k2), u)
naturally associated to ∆. For w ∈ WK , as in [4], we define the multiset

SH
w := [qu(w(Ψλ ∩ Φn)) ∪ qu(∆\Φz)]\Φ(h, u).

Here, Φz is the set of roots that vanishes on u. However, since we assume t is a maximally
compact Cartan subalgebra for the symmetric pair (k, l) we have that Φz is the empty set.
The admissibility hypothesis yields the decompositions L = K1(L∩K2), and k = k1⊕ k2.
These decompositions give rise to the decomposition WK = WK1 ×WK2 .

Lemma 1. For WK ∋ w = ts, t ∈ WK1 , s ∈ WK2 , we have the equality of the multisets

SH
w = t[ΨH0,λ ∩ Φn(h0, u)] ∪∆(k2/(l ∩ k2), u).

Proof: When U = T we have defined ΨH0,λ := Ψλ ∩Φ(h0, t) and ΨH,λ := Ψλ ∩Φ(h, t).
We have the disjoint union Φn = Φ(h, t)n ∪ Φ(h0, t)n = Φn(h, t) ∪ Φn(h0, t).

SH
w = (ts(Ψλ ∩ Φn))\Φ(h, t) ∪∆(k/l, t)

= (t(Ψλ ∩ Φn))\Φ(h, t) ∪∆(k/l, t) by (1.4)

= [t((Ψλ ∩ Φ(h, t)n) ∪ (Ψλ ∩ Φ(h0, t)n))]\Φ(h, t)

∪∆(k2/l ∩ k2, t) k1 ⊂ l

= t[((Ψλ ∩ Φ(h, t)n) ∪ (Ψλ ∩ Φ(h0, t)n))\Φ(h, t)] tΦ(h) ⊂ Φ(h)

∪∆(k2/(l ∩ k2), t)

= t[Ψλ ∩ Φn(h0, t)] ∪∆(k2/(l ∩ k2), t).

and we conclude the proof of the lemma for the case U = T.
In order to show the lemma when U 6= T we explicit some more structure.

(2.1) To begin with we note the multiset qu(Φ(g, t)) is equal to the multiset Φ(h, u) ∪
Φ(h0, u)∪Φ(q∩ k, u) and the equality of multiset qu(Φn) = Φn(h, u)∪Φn(h0, u). Because
σ(Ψλ) = Ψλ we have qu(α) ∈ ΨH,λ ∪ ΨH0,λ for α ∈ Ψλ. Hence, the above equalities of
multisets are also true when we replace everywhere Φ by Ψ. Since (G,H) is a symmetric
pair in [22], page 6 it is shown: for γi ∈ Φ(g, t), qu(γ1) = qu(γ2) if and only if γ1 = γ2 or
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γ1 = σγ2. Hence, qu(α) has multiplicity one in Φ(g, u) if and only if the root space of α is
stable under σ. Thus, as sets we have Ψn(h, u)∩Ψn(h0, u) = {qu(β), β ∈ Ψn and β 6= σβ},
and as multisets we have the equality qu(Ψλ∩Φn)\Φ(h, u) = (ΨH0,λ)n. Moreover, because
of (1.4), for s ∈ WK2, s(Ψλ∩Φn) = Ψλ∩Φn and since K1 ⊂ L we have tΦ(h, u) = Φ(h, u)
for t ∈ WK1 . Thus, qu(ts(Ψλ∩Φn))\Φ(h, u) = t(ΨH0,λ)n. The equalities we have obtained
in the previous paragraphs justify the steps in:

SH
w = [t[qu(Ψλ ∩ Φn)] ∪ qu(∆)]\Φ(h, u)

= t[qu(Ψλ ∩ Φn)\Φ(h, u)] ∪∆(k2/l ∩ k2, u)

= t(ΨH0,λ)n ∪∆(k2/l ∩ k2, u).

This completes the proof of the lemma.

✷

(2.1b) For s ∈ WL∩K2 we have s(ΨH0,λ ∩ Φn(h0, u)) = ΨH0,λ ∩ Φn(h0, u).
When U = T, the equality readily follows from (1.4). When, U 6= T it can be done by

direct computation. However, it also follows from (1.4) and the following facts shown in
[22], page 6. For a root α ∈ Φ(g, t) (resp. α ∈ Φ(h, u)) let SG

α (resp. SH
α ) denote the

reflection about α in t⋆. (resp. in u⋆).
(2.2) Let α be a root for (g, t) and assume qu(α) ∈ Φ(h, u). If α + σ(α) is not a root for
(g, t). Then, for every γ ∈ t⋆, we have

SH
qu(α)(qu(γ)) = qu(S

G
α S

G
σ(α)(γ)).

(2.3) When α is a root in (g, t) so that α = σ(α) or α+ σ(α) is a root in g. We have the
obvious equality SH

α (qu(γ)) = qu(S
G
α (γ)). Now, 2.1b follows.

3. Proof of Theorem 1

Let πG
λ be a square integrable irreducible representation which has an admissible re-

striction to H. We want to show theorem 1 for this representation. To begin with,
we write several formulae to compute the multiplicity functions mH(λ, µ), mHo,L(µ, ν),-
mK2,L∩K2(ξ, ν2). In order to write down the formulae we recall notation from [3],[4].

For ν ∈ iu⋆
R
, let δν denote the Dirac measure attached to ν and for ν 6= 0, we

consider the Heaviside discrete measure yν :=
∑

n≥0 δ ν
2
+nν . For a strict multiset S =

{σ1, . . . , σn} ⊂ u⋆ we define yS = yσ1 ⋆ · · · ⋆ yσn . Let PU denote the weight lattice for
U. Therefore, the set of Harish-Chandra parameters for H (resp. H0) is contained in
PU + ρH (resp. PU + ρH0). We would like to point out that either the set of Harish-
Chandra parameters for H (resp. H0) or PU + ρH (resp. PU + ρH0) are invariant under
the action of the Weyl group of L.

Let µ be a Harish-Chandra parameter for H0 and dominant for ∆0, for each L−type
of πH0

µ , let ν ∈ iu⋆
R

denote the representative of its infinitesimal character which is

dominant with respect to ∆0 and let mH0,L(µ, ν) denote the multiplicity of πL
µ in πG

λ . We

extend mH0,L(µ, ν) to Pu + ρH by the rule mH0,L(µ, wν) = ǫ(w)mH0,L(µ, ν) for w ∈ WL.
We denote by ΨH0,µ the system of positive roots in Φ(h0, u) determined by µ. Finally,
let γ1, . . . , γr denote an enumeration of the noncompact roots in ΨH0,µ. Then, Duflo-
Heckman-Vergne [3] have shown,

∑

ν∈iu⋆
R

mH0,L(µ, ν)δν =
∑

w∈WL

ǫ(w)δwµ ⋆ ywγ1 ⋆ · · · ⋆ ywγr (dhv)
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The above series converges absolutely in the space of distributions of Schwartz for iu⋆.
The admissibility hypothesis on resH(π

G
λ ) implies K1 ⊂ L (cf.(0.3)) and hence, forces

the decompositions L = K1(L ∩ K2) and the decomposition u = t1 + u ∩ t2, u
⋆ ∋ µ =

µ1 + µ2, µ1 ∈ t⋆1, µ2 ∈ t⋆2. Thus, the right hand side of formula (dhv) is equal to
∑

t∈WK1
,w2∈WL∩K2

ǫ(t)ǫ(w2)δtµ1 ⋆ δw2µ2 ⋆ ytw2(ΨH0,µ
)n .

We apply the above formula to Harish-Chandra parameters µ = (λ1, ν2) as the one
considered in (1.5). Hence, (2.1b) further simplifies the right hand side of (dhv) to

∑

t∈WK1
,w2∈WL∩K2

ǫ(t)ǫ(w2)δtµ1 ⋆ δw2µ2 ⋆ yt(ΨH0,λ
)n . (dhvs)

In (1.4b) we noticed λ2 is a Harish-Chandra parameter forK2, hence, for resL∩K2(π
K2
λ2

).
we have the identity

∑

ν2∈SpecL∩K2
(π

K2
λ2

)

mK2,L∩K2(λ2, ν2)
∑

s∈WL∩K2

ǫ(s)δsν2

= ǫ12
∑

w2∈WK2

ǫ(w2)δqu(w2λ2)⋆y∆(k2/(l∩k2),u).

Here, ǫ12 = ǫ(∆ ∩ Φ(k2, t),∆(k2/l ∩ k2, u)).
The hypothesis πG

λ is an admissible representation when restricted to H we give us
the equality

resH(π
G
λ ) =

∑

µ∈SpecH(πG
λ
)

mH(λ, µ) πH
µ .

We notice in [18] it is shown that any Harish-Chandra parameter in SpecH(π
G
λ ) is dom-

inant for the system ΨH,λ. We extend mH(λ, µ) to PU + ρH to be a skew symmetric
function, that is, mH(λ, wµ) = ǫ(w)mH(λ, µ) for w ∈ WL. As before, for w ∈ WK , let

SH
w = [qu(w(Ψλ ∩ Φn)) ∪ qu(∆\Φz)]\Φ(h, u) = qu(w(Ψλ ∩ Φn))\Φ(h, u) ∪∆(k/l, u)

Then, in [4] is proved
∑

µ∈iu⋆
R

mH(λ, µ)δµ = ±
∑

w∈WK

ǫ(w) δqu(wλ) ⋆ ySH
w

(rh)

The above series converge absolutely in the space of distributions of Schwartz for iu⋆.
Actually, in (rh) the summation on the right hand side is computed over the group
Wz/WK where Wz is the Weyl group of the root system Φz of those roots in Φ(g, t) which
vanishes on u. The hypothesis (G,H) is a symmetric pair implies (K,L) is a symmetric
pair, hence Wz is equal to the trivial group. Since t1 is contained in l, and λ = (λ1, λ2),
for every w1 ∈ Wk1 , w2 ∈ Wk2, we have

qu(w1w2λ) = w1λ1 + qu(w2λ2).

Also, for ν2 ∈ t⋆2 ∩ u⋆, t ∈ WK1 , s ∈ WK2 we have ts(λ1 + ν2) = tλ1 + sν2 and δtλ1 ⋆ δsν2 =
δts(λ1+ν2). The previous equalities, Lemma 1, (2.1b), (dhvs) and the considerations in the
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previous paragraphs, justify the following transformations on the right hand side in (rh)

∑

µ∈SpecH(πH
λ
)

mH(λ, µ) δµ

=
∑

t∈WK1

ǫ(t)δtλ1⋆
∑

w2∈WK2

ǫ(w2)δqu(w2λ2)⋆y∆(k2/(l∩k2),u)⋆yt(ΨH0,λ
)n

=
∑

t∈WK1

ǫ(t)δtλ1⋆yt(ΨH0,λ
)n⋆

∑

ν2∈SpecL∩K2
(π

K2
λ2

), s∈WL∩K2

mK2,L∩K2(λ2, ν2)ǫ(s)δsν2

=
∑

ν2

mK2,L∩K2(λ2, ν2)
∑

t∈WK1
,s∈WL∩K2

ǫ(t)e(s)δtsλ1⋆δtsν2⋆yts(ΨH0,λ
)n

=
∑

ν2∈SpecL∩K2
(π

K2
λ2

)

∑

ξ∈iu⋆
R

mK2,L∩K2(λ2, ν2)m
H0,L((λ1, ν2), ξ) δξ

Since PU is a discrete subset of u⋆, and the above series converge absolutely in the
topology of the space of distributions on iu⋆, we have shown Theorem 1.

As a consequence, we obtain particular cases of a more general result shown in [11].

Proposition 1. Assume Ψλ is a holomorphic system. Then, whenever resH(π
G
λ ) is an

admissible representation of H, there exists a constant C < ∞ so that mH(λ, µ)) ≤ C
for every µ ∈ SpecH(π

G
λ .)

Proof: It follows from the hypothesis Ψλ is a holomorphic system that ΨH0,λ is also a
holomorphic system. Hence, the subspaces

p−0 =
∑

−β∈(ΨH0,λ
)n

hβ, p+0 =
∑

β∈(ΨH0,λ
)n

hβ

are abelian subalgebras and we have the L−invariant and direct sum decomposition
p∩p = p+0 +p−0 . Let (π

L
µ+ρ0n

,Wµ+ρ0n
) denote the lowest L−type of the Discrete series πH0

µ .

For a vector space V , the symmetric algebra for V is denoted by S(V ). For a Harish-
Chandra parameter for h0 and dominant for ΨH0,λ, a result of Harish-Chandra [8] gives
us that resL(π

H0
µ ) is equivalent to S(p+0 ) ⊗ Wµ+ρ0n . Since each L−irreducible factor of

S(p+0 ) has multiplicity one, we have, owing to a tensor product argument, that there
exist a constant C < ∞ so that mH0,L(µ, ξ) ≤ C for every Harish-Chandra parameter ξ
for L. The formula in Theorem 2 concludes the proof of the proposition.

Corollary 2. For a scalar holomorphic discrete series, then mH(λ, µ) = 1 for every
µ ∈ SpecH(π

G
λ ).

4. Analysis of structure of L−types

As in the previous setting we assume πG
λ has an admissible restriction to H as well

as that (G,H) is a symmetric pair. We also assume that the lowest K−type is an
irreducible representation of K1. Then, (4.1) yields that the Harish-Chandra parameter
λ = (λ1, ρK2) and the lowest K−type is (πK

(λ1+ρλn,ρK2
), V

K
(λ1+ρλn,ρK2

)). Theorem 2 shows

that SpecH(π
G
λ ) = SpecL(π

H0

(λ1,ρK2∩L)
) and mH(λ, µ) = mH0,L((λ1, ρK2∩L), µ). Now, (4.1)

together with the fact that the lowest L−type of a discrete series representation for H
13



has multiplicity one yield

dimHomH(π
H
(λ1+ρ0,ρL∩K2

), resH(π
G
λ )) = mH(λ, (λ1 + ρ0, ρL∩K2))

= mH0,L((λ1, ρK2∩L), (λ1 + ρ0, ρK2∩L)) = 1

Here, and from now on, in order to avoid cumbersome notation, we write ρ0(resp ρ1) for
one half of the sum of the noncompact in ΨH0,λ(resp. ΨH,λ). Thus, when U = T we have
ρλn = ρ1 + ρ0. We now show

Proposition 2. The lowest L−type πL
(λ1+ρλn,ρL∩K2

)
of πH

(λ1+ρ0,ρL∩K2
) has multiplicity one

in resL(π
G
λ ).

Proof: Let πH
µ be an irreducible subrepresentation of resH(π

G
λ ) which contains a copy

of the L−type πL
(λ1+ρλn,ρL∩K2

). Because of (4.1) we have

(λ1 + ρλn, ρL∩K2) = µ+ ρ1 +D1,

here D1 stands for a sum of noncompact roots in ΨH,λ.
Theorem 2 let us write

µ = (λ1 + ρ0, ρL∩K2) +B0

where B0 is a sum of noncompact roots in ΨH0,λ. Hence, D1 +B0 = 0. The fact that Ψλ

is invariant under σ forces D1 = B0 = 0 and proposition 2 follows.

For the next lemma we keep the assumption that the lowest K−type of πG
λ is an irre-

ducible representation (πK
(λ1+ρλn,ρK2

), V
K
(λ1+ρλn,ρK2

)) for K1.

Lemma 2. U(h0)V
K
(λ1+ρλn,ρK2

) is an irreducible (h0, L)−submodule and has multiplicity

one in resH0(π
G
λ ).

Proof: Since we are dealing with restriction of discrete series representation, [4] we
have that the underlying Harish-Chandra module for πG

λ is an admissible representation
of L. Thus, U(h0)V

K
(λ1+ρλn,ρK2

) is an admissible L−module. Besides, since the Harish-

Chandra module for πG
λ is admissible as representation of h0 we have that every vector

en the Harish-Chandra module for πG
λ is zU(h0)−finite. Thus, we are in the hypothesis

of Theorem 4.2.1 in [23]. Therefore, U(h0)V
K
(λ1+ρλn,ρK2

) is an h0−module of finite length.

Whence, the closure of U(h0)V
K
(λ1+ρλn,ρK2

)
is equal to a finite orthogonal sum V1 + · · · +

Vs of discrete series representations Vj for H0. Since, V
K
(λ1+ρλn,ρK2

)
is a cyclic generator

for U(h0)V
K
(λ1+ρλn,ρK2

) the orthogonal projector onto Vi takes on nonzero values on the

L−irreducible subspace V K
(λ1+ρλn,ρK2

). Proposition 2 forces s = 1 and lemma 2 follows.

As previously, we consider πG
λ to be an admissible representation for H. Let

µ1, µ2, . . .

denote the Harish-Chandra parameters of the distinct irreducibleH−factors of resH(π
G
λ ),

we know [6], [18] every µj is dominant with respect to ΨH,λ.
For each πH

µj
, j = 1, 2, · · · the lowest L−type in the sense of Schmid-Vogan of πH

µj
is

πL
µj+ρ1

. The next proposition holds for the pairs (su(m,n), su(m, l) + su(n − l) + u(1)),

(so(2, 2n), u(1, n)), (so⋆(2n), u(1, n− 1)), (e6(−14), so(2, 8) + so(2)).
14



Proposition 3. We further assume Ψλ is a holomorphic system. Then, for r 6= j,

HomL(π
L
µj+ρ1

, resL(π
H
µr
)) = {0}

Proof: For each of the pair (su(m,n), su(m, l) + su(n− l) + u(1)), (so(2, 2n), u(1, n)),
(so⋆(2n), u(1, n− 1)), (e6(−14), so(2, 8) + so(2)), we show

Lemma 3. There exists x ∈ it, y ∈ it such that

for α ∈ Ψλ ∩ Φn(h, t), α(x) > 0 and α(y) = 0,
for α ∈ Ψλ ∩ Φn(h0, t), α(x) = 0 and α(y) > 0.

We note that the existence of a nonzero x ∈ it so that α(x) = 0 for every noncom-
pact root in Φ(h, t) forces the center of h to have positive dimension because of the
equality [p, p] = k. However, it readily follows that the lemma is not true for the pair
(su(m,n), su(k, l) + su(m− k, n− l) + u(1)) and its dual when 1 ≤ k < m, 1 ≤ l < n. A
proof of lemma 3 is done case by case after we verify proposition 3.

(4.1) We recall the following result proved in [20]. The highest weight of any K−type
of πG

λ is equal to λ+ρλn−ρc+β1+. . . βs, where βi, i = 1, . . . , s are noncompact roots in Ψλ.

(4.2) We notice that whenever the lowest K−type of πG
λ is an irreducible representation

of K1, the Harish-Chandra parameter is λ = (λ1, ρK2) with λ1 + ρλn a Harish-Chandra
parameter forK1. This is so, because from (1.4a) we have that ρλn lies in t⋆1, also k = k1+k2
a direct sum of ideals. Thus (4.2) follows.
We now show proposition 3, a Harish-Chandra parameters for a L− of types of πH0

(λ1,ρL∩K2
)

is of the shape
(λ1, ρL∩K2) + ρ0 +B

where B is a sum of roots in ΨH0,λ∩Φn(h0, t). Hence, we may and will order the Harish-

Chandra parameters of the L−types of πH0

(λ1,ρL∩K2
) in an increasing way according to the

value each of them takes on y. Because, of Theorem 2, this gives an order

µ1 < µ2 < . . . .

Also, the Harish-Chandra parameter of an L−type of πH
µr

is

µr + ρ1 + C

where C is a sum of noncompact roots in ΨH,λ. Thus, if HomL(π
L
µj+ρ1

, resL(π
H
µr
)) is

nontrivial, we have the equality µj + ρ1 = µr + ρ1 + C where C is a sum of roots in
ΨH,λ ∩ Φn. Since C(y) = 0, we obtain r = j and we have shown proposition 3.

In order to justify lemma 2 for the case of (su(m,n), su(m, l)+su(n− l)+u(1)) we recall

notation in I− 1, we set ej, ds to be the dual basis to ǫj , δs. Then, x =
∑m

1 ej −
∑l

1 dj +
∑n

l+1 dj and y =
∑m

1 ej +
∑l

1 dj −
∑n

l+1 dj verify the claim for this pair.
III− 4 (so(2m, 2), u(m, 1)). We refer to notation in II− 5. Then Φ(h, t) = {±(ǫj −
δ1),±(ǫs − ǫk), s 6= k}, Φ(h0, t) = {±(ǫj + δ1),±(ǫs − ǫk), k 6= s}. For the holomorphic
system Ψ+, x = −

∑m
1 ej + d1, y =

∑m
1 ej + d1 verify the claim.

(so⋆(2n), u(1, n − 1)). Notation as in III− 6. x = e1, y = −e1 + (e2 + · · · + en). For
(so⋆(2n), u(n− 1, 1)) we do a similar choice.
III− 8 (e6(−14), so(2, 8)+so(2)). The Vogan diagram for a holomorphic system for e6(−14)

is
Then Φn(so(2, 8) + so(2), t) = {

∑

j ajαj ∈ Φ(e6, t) : a1 = 0, a6 = 1},Φn(h0, t) =

{
∑

j ajαj ∈ Φ(e6, t) : a1 = 1, a6 = 1} and Φ(l, t) = {
∑

j ajαj ∈ Φ(e6, t) : a1 = a6 = 0}.
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α2◦

◦◦ ◦ ◦ •
α1 α3 α4 α5 α6

Here, z⋆h = CΛ1, z
⋆
h0

= Λ1−Λ6. Hence x = Λ6−Λ1, y = Λ1 completes the proof of lemma
2. Here, Λj is the fundamental weight associated to αj.

4.1. The subspace of lowest L−types in resH(π
G
λ ). We fix (πG

λ , V
G
λ ) a discrete se-

ries representation, for which, we assume has an admissible restriction to H. Since, we
are dealing with discrete series representations and symmetric pairs in [4] we find a
proof that resL(π

G
λ ) is an admissible representation of L and in [13] a proof that the

underlying Harish-Chandra module VG
λ of V G

λ is an algebraic direct sum of irreducible
(h, L)−modules, namely

VG
λ =

⊕

µ∈SpecH(πG
λ )

mH(λ, µ) VH
µ .

Here, mH(λ, µ)VH
µ denotes the isotopic component of VG

λ associated to the discrete series

representation πH
µ . For each subspace VH

µ the subspace which affords the lowest L−type of

πH
µ , or equivalently, the subspace of vectors which behaves according to the representation

πL
µ+ρ1 of L is denoted by VL

µ+ρ1 . A problem considered for [17] is to analyze the structure
of the subspace

Lλ :=
⊕

µ∈SpecH(πλ)

mH(λ, µ) VL
µ+ρ1

. (LL)

For a partial answer, we further assume the lowest K−type of πG
λ restricted to K1 is an

irreducible representation. We claim:

(4.3) The respective representations of L on the subspaces Lλ and on U(h0)V
K
(λ1+ρλn,ρK2

)

are equivalent.
Indeed, lemma 2 implies that U(h0)V

K
(λ1+ρλn,ρK2

) is the underlying Harish-Chandra module

for πH0

(λ1+ρ1,ρL∩K2
), Theorem 2 concludes the proof of the claim.

To continue, we assume πG
λ is a holomorphic representation. We set p+ =

∑

β∈(Ψλ)n
gβ

and p− = p̄+. Since zk is contained in l we also have h = l + h ∩ p+ + h ∩ p−. Thus, the
systems ΨH,λ,ΨH0,λ are holomorphic. The representation of K in

(VG
λ )

p− := {v ∈ VG
λ : πλ(Y )(v) = 0, ∀ Y ∈ p−}

is the realization of VK
(λ1+ρλn,ρK2

)
as a subspace of VG

λ . Moreover, the fact ΨH,λ is holomor-

phic and that for each constituent πH
µ of resH(π

G
λ ) the Harish-Chandra parameter µ is

dominant for ΨH,λ yield

Vh∩p−

λ = Lλ.

Certainly VK
(λ1+ρλn,ρK2

) ⊂ Vh∩p−

λ ∩ U(h0)V
K
(λ1+ρλn,ρK2

).

Proposition 4. We further assume πG
λ is scalar holomorphic discrete series represen-

tation. Then,

i) If [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] = {0}, then Vh∩p−

λ = U(h0)(V
K
(λ1+ρλn,ρK2

)).
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ii) If [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] 6= {0}, then Vh∩p−

λ 6= U(h0)(V
K
(λ1+ρλn,ρK2

)).

In a case by case checking, we verify that the unique pairs (g, h) that satisfy the
hypothesis in i) are:
(4.4) (su(m,n), su(m, l) + su(n − l) + u(1)), (so(2m, 2), u(m, 1)), (so⋆(2n), u(1, n − 1)),
(e6(−14), so(2, 8) + so(2)). That is, the same pairs that satisfy Lemma 3. Whence, when
consider case i) T is a Cartan subgroup of H .
Proof: In order to verify i) we show that left hand side of the equality is contained

in Vh∩p−

λ , in (4.3) we observed Lλ and U(h0)(V
K
(λ1+ρλn,ρK2

)
) have the same L−module

structure, hence the reverse inclusion follows. In order to verify ii) we produce an

element in the left hand side which is not in Vh∩p−

λ . For each root α ∈ Φ(g, t) we choose
a nonzero root vector Yα in the root space of α. Owing to our hypothesis we may write
VK
(λ1+ρλn,ρK2

) = Cw with w a nonzero vector. We denote by Φ(p+, t) = {β1, . . . , βq}, where

Φ(h0 ∩ p+) = {β1, . . . βs}. Since, V
G
λ ≡ U(g)U(k+p−)⊗VK

(λ1+ρλn,ρK2
) ≡K S(p+)⊗VK

(λ1+ρλn,ρK2
)

the projection onto VG
λ of the set

{Y a1
β1

· · ·Y
aq
βq

⊗ w, aj ∈ Z≥0, j = 1, . . . , q}

is a linear basis for VG
λ . Thus, U(h0)V

K
(λ1+ρλn,ρK2

)
is equal to the subspace of VG

λ spanned

by the projection of S(h0 ∩ p+)⊗ Cw. Under the hypothesis in i) we verify that

πλ(Y−βh
)[Y a1

β1
· · ·Y as

βs
⊗ w] = 0 for all Y−βh

∈ h ∩ p−.

by induction on a1+· · ·+as. Here, [D⊗w] denotes the class ofD⊗w ∈ U(g)⊗V K
(λ1+ρλn,ρK2

)
.

Since, πG
λ is an scalar holomorphic representation, we have πλ(Y−βj

)[1 ⊗ w] = 0, ∀ βj ∈
Ψλ∩Φn and, πλ(Yγ)[1⊗w] = 0, for every γ ∈ Φc. Hence, for j ≤ s, we have π(Y−βh

)[Yβj
⊗

w] = [Yβj
Y−βh

⊗w+ [Y−βh
, Yβj

]⊗w] = 0 because [Y−βh
, Yβj

] ∈ q∩ k which is contained in

kss. In general, for a1 = · · · = aj−1 = 0, aj ≥ 1, j ≤ s we have π(Y−βh
)[Y

aj
βj

. . . Y as
βs

⊗w] =

[Yβj
Y−βh

Y
aj−1
βj

. . . Y as
βs

⊗ w + [Y−βh
, Yβj

]Y
aj−1
βj

. . . Y as
βs

⊗ w] = 0 if aj = 1, otherwise, we

may assume aj ≥ 2. In this case, the hypothesis in i) states that [Y−βh
, Yβi

] commutes
with Yβk

for 1 ≤ i ≤ s, 1 ≤ k ≤ s. Hence, we have shown i). In order to show ii)
when U = T we compute π(Y−βh

)[Yβj
Yβr ⊗ w] = [Yβj

Y−βh
Yβr ⊗ w + [Y−βh

, Yβj
]Yβr ⊗

w] = [Yβj
YβrY−βh

⊗w + Yβj
[Y−βh

, Yβr ]⊗ w + [[Y−βh
, Yβj

], Yβr ]⊗w + Yβr [Y−βh
, Yβj

]⊗w] =
[[Y−βh

, Yβj
], Yβr ]⊗w]. Now [[Y−βh

, Yβj
], Yβr ] ∈ h∩ p+. Under the hypothesis in ii) we may

choose βh ∈ (ΨH,λ)n, βj, βr,withj, r ≤ s so that the triple bracket is nonzero, and we
have shown ii) in case U = T. When U 6= T always the hypothesis in ii) holds because
we check by the end of section 6 that there exists β ∈ Φn(h, u) ∩ Φn(h0, u) 6= ∅ and
X−β ∈ h−β and Vβ ∈ (h0)β so that [[X−β, Vβ], Vβ] 6= 0. Whence, U(h0)(1 ⊗ w) 6= Lλ.
Thus, we have shown proposition 4.

5. Tensor product of holomorphic Discrete Series

Let G0 be a real simple Lie group so that the associated symmetric space is Hermitian.
Let K0 (resp. T0) denote a maximal compact subgroup (resp. maximal torus) of G0

(resp. K0). Thus, T0 = ZK0T
s
0 where T s

0 is a maximal torus of the semisimple factor
Ks

0 of K0. Let θ0 denote the Cartan involution of G0 associated to K0. We set G :=
G0 × G0, hence K := K0 × K0 (resp. T := T0 × T0) is maximal compact subgroup
(resp. is a compact Cartan subgroup) of G. In G we consider the involution σ(x, y) =
(y, x). Thus, the fix point subgroup H of σ is the image of the diagonal immersion of
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the group G0 in G. In this case, L = H ∩ K is the image of the diagonal immersion
of K0. The associated pair to (G,H) is (G,H0) with H0 the image of the immersion
of G0 in G via the map x → (x, θ0x). Thus, the pair (H0, L) is isomorphic to the
symmetric pair (G0, K0). Then, we set K1 := diagonal subgroup of (ZK0 × ZK0) =:
∆(ZK0) and hence, K2 = Z2(K

s
0 × Ks

0), where Z2 is a complement in ZK0 × ZK0 to
the diagonal subgroup ∆(ZK0). Hence, U = H ∩ T = ∆(ZK0)∆(T s

0 ) = ∆(T0) and
L ∩K2 = ∆(Ks

0). We fix a holomorphic system of positive roots Ψ0 for Φ(g0, t0). Hence
Ψ := Ψ0 × {0} ∪ {0} × Ψ0 is a holomorphic system of positive roots for Φ(g, t). Let
(λ, φ) denote a Harish-Chandra parameter for G dominant for Ψ. Then, πG0

λ and πG0
φ are

holomorphic irreducible square integrable representations of G0 and sinceK1 is contained
in H, the outer tensor product πG

(λ,φ) := πG0
λ ⊠ πG0

φ is an admissible representation of H

[15]. Because of the decomposition K = Z2∆(ZK0)(K
s
0×Ks

0) the lowest K−type of πG
(λ,φ)

restricted to ∆(ZK0)(K
s
0 × Ks

0) is an irreducible representation and the corresponding
Harish-Chandra parameter is ((λzk0

+ φzk0
)/2 + ρn, (λzk0

+ φzk0
)/2 + ρn) + (λs, φs), where

we write t⋆ ∋ λ = λzk0
+ λs with λzk0

∈ zk0 , λs ∈ ts0. The branching law for the restriction

of π
Ks

0×Ks
0

(λs,φs)
to ∆(Ks

0) is,

resL∩K2(π
Ks

0×Ks
0

(λs,φs)
) =

∑

ν∈Spec∆(Ks
0
)(π

Ks
0
×Ks

0
(λs,φs)

)

mKs
0×Ks

0 ,L∩K2((λs, φs), ν) π
L∩K2
ν .

Following the path of the proof of Theorem 1 we show,

Theorem 3. The multiplicity mH((λ, φ), µ) of πH
µ in resH(π

G
(λ,φ)) is given by

∑

ν∈Spec∆(Ks
0)
(π

Ks
0
×Ks

0
(λs,φs)

)

mG0,K0(((λzk0
+ φzk0

)/2, ν), µ)mKs
0×Ks

0 ,∆(Ks
0)((λs, φs), ν).

For this case, as in section 4, we may consider the L−invariant subspaces L(λ,φ),

and U(h0)(V
K0

λ+ρn
⊠ V K0

φ+ρn
. When we assume that both representations are scalar holo-

morphic, theorem 3 yields that both subspaces are equivalent as representations of L.
However, they are not equal, because hypothesis ii) in proposition 4 holds. In fact,
[[(Y−β, Y−β)), (Yβ,−Yβ))], (Yβ,−Yβ))] 6= 0 for every root β ∈ Ψ0.

6. Notation for Table I, II and III.

In this section we complete the notation for the objets presented in the three tables
and we do a case by case verification of (4.4).
I− 3 (so(2m, 2n), so(2m, 2k) + so(2m, 2n− 2k)), m ≥ 2, n ≥ 2.
For a suitable orthogonal basis ǫ1, . . . , ǫm, δ1, . . . , δn of it⋆

R

∆ = {(ǫi ± ǫj), 1 ≤ i < j ≤ m} ∪ {(δr ± δs), 1 ≤ r < s ≤ n}

Φn = {±(ǫr ± δs), r = 1, . . . , m, s = 1, . . . , n}.

Φ(l, t) = {±(ǫi ± ǫj), 1 ≤ i < j ≤ m} ∪ {±(δr ± δs), 1 ≤ r < s ≤ k}, Φn(h, t) =
{±(ǫr ± δs), r = 1, . . . , m, s = 1, . . . , k}. The systems of positive roots Ψλ so that πG

λ is
an admissible representation of H are the systems Ψ± associated to the lexicographic
orders

ǫ1 > · · · > ǫm > δ1 > · · · > δn, ǫ1 > · · · > ǫm−1 > −ǫm > δ1 > · · · > δn−1 > −δn

Here, k1(Ψ±) = so(2m).
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I− 4 (so(2m, 2n + 1), so(2m, k) + so(2m, 2n + 1 − k)), m ≥ 2, n ≥ 2. For a suitable
orthogonal basis ǫ1, . . . , ǫm, δ1, . . . , δn of it⋆

R

∆ = {(ǫi ± ǫj), 1 ≤ i < j ≤ m} ∪ {(δr ± δs), 1 ≤ r < s ≤ n} ∪ {δj, j = 1, ..., n}

Φn = {±(ǫr ± δs), r = 1, . . . , m, s = 1, . . . , n} ∪ {±ǫj , j = 1, . . . , m}.

The systems of positive roots Ψλ so that πG
λ is an admissible representation of H are the

systems Ψ± associated to the lexicographic orders

ǫ1 > · · · > ǫm > δ1 > · · · > δn, ǫ1 > · · · > ǫm−1 > −ǫm > δ1 > · · · > δn−1 > −δn.

Here, for M ≥ 3 k1(Ψ±) = so(2m). For m = 2, k1(Ψ±) = su2(ǫ1 ± ǫ2).
I− 5 (so(4, 2n), u(2, n)1), n ≥ 3. hR = u(2, n)1 has for root system Φ(h, t) = {±(ǫ1 −
ǫ2)}∪{(δk−δs), k 6= s}∪{±(ǫ1−δj),±(ǫ2−δj), j = 1, . . . , n}. (h0)R ∼ u(2, n) has for root
system Φ(h0, t) = {±(ǫ1− ǫ2)}∪{(δk−δs), k 6= s}∪{±(ǫ1+ δj),±(ǫ2+ δj), j = 1, . . . , n}.
The system of positive roots Ψλ so that πG

λ is an admissible representation of H is the
systems Ψ1,−1 associated to the lexicographic order

ǫ1 > −ǫ2 > δ1 > · · · > δn−1 > −δn

Here, k1 = su2(ǫ1 − ǫ2).
I− 6 (so(4, 2n), u(2, n)2), n ≥ 3. hR = u(2, n)2 has for root system Φ(h, t) = {±(ǫ1 +
ǫ2)}∪{(δk−δs), k 6= s}∪{±(ǫ1+δj),±(ǫ2−δj), j = 1, . . . , n}. (h0)R ∼ u(2, n) has for root
system Φ(h0, t) = {±(ǫ1+ ǫ2)}∪{(δk−δs), k 6= s}∪{±(ǫ1−δj),±(ǫ2+ δj), j = 1, . . . , n}.
The system of positive roots Ψλ so that πG

λ is an admissible representation of H is the
systems Ψ11 associated to the lexicographic order

ǫ1 > ǫ2 > δ1 > · · · > δn

Here, k1 = su2(ǫ1 + ǫ2).
I− 7 (so(4, 4), u(2, 2)xy). hR = u(2, 2)11 = u(2, 2)1 has for root system Φ(h, t) = {±(ǫ1 −
ǫ2)} ∪ {±(δ1 − δ2)} ∪ {±(ǫ1 − δj),±(ǫ2 − δj), j = 1, 2}. (h0)R = wu(2, 2)11 has for root
system Φ(h0, t) = {±(ǫ1 − ǫ2)} ∪ {δ1 − δ2, } ∪ {±(ǫ1 + δj),±(ǫ2 + δj), j = 1, 2}. We set
wǫ,δ = Sǫ1−δ1Sǫ2−δ2 . wǫδ normalizes ∆ and switches epsilon’s in delta’s. The systems of
positive roots Ψλ so that πG

λ is an admissible representation of u(2, 2)11 are the systems
Ψ1,−1, wǫδΨ1,−1. Where, Ψ1,−1 is the system associated to the lexicographic order

ǫ1 > −ǫ2 > δ1 > −δ2

Here, k1(Ψ1,−1) = su2(ǫ1 − ǫ2), k1(wǫδΨ1,−1) = su2(δ1 − δ2).
I− 8 (so(4, 4), u(2, 2)12). Φ(h, t) = {±(ǫ1 − ǫ2)} ∪ {±(δ1 + δ2)} ∪ {±(ǫ1 − δ1),±(ǫ1 +
δ2),±(ǫ2 − δ1),±(ǫ2 − δ2)}. (h0)R = wu(2, 2)12 has for root system Φ(h0, t) = {±(ǫ1 −
ǫ2)} ∪ {(δ1 + δ2)} ∪ {±(ǫ1 + δj),±(ǫ2 + δj), j = 1, 2} The systems of positive roots Ψλ so
that πG

λ is an admissible representation of u(2, 2)12 are the systems Ψ1,−1, wǫδΨ1,1. Ψ1,1

is the system associated to the lexicographic order

ǫ1 > ǫ2 > δ1 > δ2

Here, k1(Ψ1,−1) = su2(ǫ1 − ǫ2), k1(wǫδΨ1,1) = su2(δ1 + δ2).
I− 9 (so(4, 4), u(2, 2)21 = u(2, 2)2). Φ(h, t) = {±(ǫ1 + ǫ2)} ∪ {±(δ1 − δ2)} ∪ {±(ǫ1 −
δj),±(ǫ2+ δj), j = 1, 2}. (h0)R = wu(2, 2)21 has for root system Φ(h0, t) = {±(ǫ1+ ǫ2)}∪
{(δ1 − δ2), } ∪ {±(ǫ1 + δj),±(ǫ2 − δj), j = 1, 2)}. The systems of positive roots Ψλ so
that πG

λ is an admissible representation of u(2, 2)21 are the systems Ψ1,1, wǫδΨ1,−1. Here,
k1(Ψ11) = su2(ǫ1 + ǫ2), k1(wǫδΨ1,−1) = su2(δ1 − δ2).
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I− 10 (so(4, 4), u(2, 2)22). Φ(h, t) = {±(ǫ1 + ǫ2)} ∪ {±(δ1 + δ2)} ∪ {±(ǫ1 − δ1),±(ǫ1 +
δ2),±(ǫ2+δ1),±(ǫ2−δ2)}. (h0)R = wu(2, 2)22 has for root system Φ(h0, t) = {±(ǫ1+ǫ2)}∪
{(δ1+ δ2), }∪{±(ǫ1+ δ1),±(ǫ1−δ2),±(ǫ2−δ1),±(ǫ2+ δ2)} The systems of positive roots
Ψλ so that πG

λ is an admissible representation of u(2, 2)22 are the systems Ψ1,1, wǫδΨ1,1.
Note for all of the pairs (so(4, 2n), u(2, n)) we have wh = h0 where w is an automor-

phism of so(4 + 2n,C) which extends the linear operator of t⋆ so that w(ǫj) = ǫj , j =
1, 2, w(δk) = −δk, k = 1, . . . , n.
I− 11 (sp(m,n), sp(m, k) + sp(n − k)). For some orthogonal basis ǫ1, . . . , ǫm, δ1, . . . , δn
of it⋆

R

∆ = {(ǫi ± ǫj), 1 ≤ i < j ≤ m} ∪ {2ǫj, j = 1, . . . , m}

∪ {(δr ± δs), 1 ≤ r < s ≤ n} ∪ {2δj, j = 1, . . . , n}

Φn = {±(ǫr ± δs), r = 1, . . . , m, s = 1, . . . , n}.

The system of positive roots Ψλ so that πG
λ is an admissible representation of H is the

system Ψ+ associated to the lexicographic order

ǫ1 > · · · > ǫm > δ1 > · · · > δn.

Here, k1(Ψ+) = sp(m).
I− 12, ..., I− 16 For all of these exceptional groups, we have U = T, it follows from the
tables in [16], [5] that the unique system Ψλ so that k1 ⊂ l is for Ψλ so that k1 = su(αm)
and this happens only for Ψλ == ΨBS a Borel de Siebenthal system of positive roots.
By explicit calculations we find that both ΨBS ∩ Φ(h, t) and ΨBS ∩ Φ(h0, t) are again a
Borel de Siebenthal system.
II− 4 (so(2m, 2n), so(2m, 2k + 1)× so(2n− (2k + 1))). We fix an outer automorphism
ν of g so that ν(ǫj) = ǫj , j = 1, . . . , m; ν(δj) = δj , j = 1, . . . , n − 1, ν(δn) = −δn and
such that the fix point subalgebra of ν is so(2m, 2n− 1) + so(1). We set h0 = 0 and for
k = 1, . . . , n−1 let hk ∈ itR be so that (ǫj−ǫj+1)(hk) = (ǫm−δ1)(hk) = 0, (δi−δi+1)(hk) =
δik, (δn−1+δn)(hk) = 0, i = 1, . . . , n−1, j = 1, . . . , m−1. Let σk = Ad(exp(πihk))ν. Then,
σk is the involution which gives rise the pair (so(2m, 2n), so(2m, 2n−(2k+1))×so(2k+1)).
For any σk, obviously, u

⋆ is the subspace spanned by ǫ1, . . . , ǫm, δ1, . . . , δn−1.

Φ(h, u) = {±(ǫr ± ǫs), 1 ≤ r < s ≤ m} ∪ {±(δi ± δj), 1 ≤ i < j ≤ 2(n− k − 1) + 1, or

± (δi ± δj), 2n− 2k ≤ i < j ≤ n− 1} ∪ {±ǫr, r = 1, . . . , m} ∪ {±δi, i = 1, . . . , n− 1}

∪ {±(ǫp ± δq), p = 1, . . . , m, q = 1, . . . , 2n− 2k − 1}.

The two system Ψλ so that πG
λ is an admissible representation for H are: Ψ+ the

system associated to the lexicographic orders ǫ1 > . . . ǫm > δ1 > · · · > δn and Ψ− :=
Sǫm−δnSǫm+δnΨ+. Here, k1 = so(2m). It is obvious that σk(Ψ±) = Ψ±.
The corresponding systems ΨH,λ are: Ψ+ the system associated to the lexicographic
orders ǫ1 > . . . ǫm > δ1 > · · · > δn−1 and Ψ− = SǫmΨ+. The systems ΨH0,λ are: the
system associated to the lexicographic orders ǫ1 > . . . ǫm > δ1 > · · · > δn−1 and the
image of this system by Sǫm.
II− 6 (e6(2), f4(4)). Here, k = su2(αm) + su6, l = su2(αm) + sp(3) Hence, from [5] it
follows there is a unique system of positive roots such that k1 ⊂ l. The system is the
Borel de Siebenthal ΨBS. The Vogan diagram of ΨBS is
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αmax◦
α2•

◦◦ ◦ ◦ ◦
α1 α3 α4 α5 α6

Here, α1, α3, . . . , α6 are the compact simple roots and α2 is the noncompact simple root.
The automorphism σ of g acts on the simple roots as follows

σ(α2) = α2, σ(α1) = α6, σ(α3) = α5, σ(α4) = α4.

Hence, σ(ΨBS) = ΨBS. Let Zr = 2Hαr

(αr ,αr)
∈ itR, r = 1, . . . , 6. Hence, u is the subspace

spanned by Z2, Z4, Z1+Z6, Z3+Z5. and t−σ is spanned by Z1−Z6, Z3−Z5. Let h2 ∈ it⋆
R

be so that αj(h2) = δj2 for j = 1, . . . , 6. Hence, h2 = 2Hαm

(αm,αm)
and θ = Ad(exp(πih2)).

Let σ2 = θσ = Ad(exp(πih2))σ. Then, the fix point subalgebra for σ2 is isomorphic to
sp(1, 3) and the pair (e6(2), sp(1, 3)) is the associated pair to (e6(2), f4(4)). The simple roots
for ΨH,λ,ΨH0,λ, respectively, are:

α2, α4, qu(α3) = qu(α5), qu(α1) = qu(α6).
qu(α2 + α4 + α5) = qu(α2 + α4 + α3), qu(α1) = qu(α6), qu(α3) = qu(α5), α4.

The respective Dynkin diagrams are:

<◦◦ ◦•
qu(α3) α4

> ◦• ◦ ◦
α2 α4 qu(α3) qu(α1)

An observation which follows from inspection of the Vogan diagram for each Ψλ is:
for a compact simple root α in Ψλ we have α + σ(α) is not a root.

Next, we determine the holomorphic systems which satisfy the hypothesis in i) for propo-
sition 4.

III− 1, III− 2 (su(m,n), su(k, l) + su(m− k, n− l) + u(1)). h0 = su(k, n− l) + su(m−
k, l) + u(1). We follow notation in I− 1. For 1 ≤ k < m and 1 ≤ l < n, a nonzero
element of [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] is [[Y−ǫ1+δ1 , Yǫ1−δl+1

], Yǫk+1−δ1 ]. A nonzero element
in [[h0 ∩ p−, h ∩ p+], h ∩ p+] is [[Y−ǫ1+δl+1

, Yǫ1−δ1 ], Yǫk+1−δl+1
]. When k = m, 1 ≤ l < n, we

fix 1 ≤ i ≤ m, 1 ≤ j ≤ l, 1 ≤ a ≤ m, l + 1 ≤ b ≤ n, 1 ≤ r ≤ m, l + 1 ≤ s ≤ n, then
[[Y−ǫi+δj , Yǫa−δb ], Yǫr−δs ] = [Yδj−δb , Yǫr−δs ] = 0. Thus, [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] = {0}. It
readily follows [[h0 ∩ p−, h ∩ p+], h ∩ p+] = {0} as well the analysis when l = n, k < m.
III− 3 (so(2, 2n), so(2, 2k) + so(2(n − k))), n ≥ 2. We use notation in I− 3. Here,
[[h∩ p−, h0 ∩ p+], h0 ∩ p+] ∋ [[Y−ǫ1+δ1 , Yǫ1−δn ], Yǫ1+δn ] 6= 0, and [[h0 ∩ p−, h∩ p+], h∩ p+] ∋
[[Y−ǫ1−δn , Yǫ1−δ1 ], Yǫ1+δ1 ] 6= 0.
III− 4 (so(2m, 2), u(m, 1)). The holomorphic system Ψ is so that Ψ ∩ Φ(l, t) = {ǫj −
ǫk, 1 ≤ j < k ≤ m},Ψ ∩ Φn(h, t) = {δ1 − ǫj , 1 ≤ j ≤ m}. Ψ ∩ Φn(h0, t) = {δ1 +
ǫj , 1 ≤ j ≤ m}. Then, [[Y−(δ1−ǫr), Yǫk+δ1 ], Yǫa+δ1 ] = 0, and [[Y−(δ1+ǫr), Yδ1−ǫk ], Y−ǫa+δ1 ] = 0.
Hence,[[h ∩ p−, h0 ∩ p+], h0 ∩ p+] = [[h0 ∩ p−, h ∩ p+], h ∩ p+] = {0}.
III− 5 (so(2, 2n + 1), so(2, k) + so(2n + 1 − k)). Notation as in I− 4. For k = 1,
[[h ∩ p−, h0 ∩ p+], h0 ∩ p+] ∋ [[Y−ǫ1, Yǫ1+δn ], Yǫ1−δn ] 6= 0, and [[h0 ∩ p−, h ∩ p+], h ∩
p+] ∋ [[Y−ǫ1+δn , Yǫ1], Yǫ1] 6= 0. k = 2n is symmetric to k = 1. For 2 ≤ k ≤ 2n − 1,
[[h∩ p−, h0 ∩ p+], h0 ∩ p+] ∋ [[Y−ǫ1+δ1 , Yǫ1−δn ], Yǫ1+δn ] 6= 0, and [[h0 ∩ p−, h∩ p+], h∩ p+] ∋
[[Y−ǫ1+δn , Yǫ1+δ1 ], Yǫ1−δ1 ] 6= 0.
III− 6 (so⋆(2n), u(m,n − m)) 1 ≤ m < n, n ≥ 3, h0 = so⋆(2m) × so⋆(2(n − m))).
The holomorphic system Ψ is so that Ψ ∩ Φ(l, t) = {(ǫi − ǫj), 1 ≤ i < j ≤ m} ∪ {(ǫi −
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ǫj), m+ 1 ≤ i < j ≤ n}. Ψ ∩ Φn(h, t) = {(ǫi + ǫj), 1 ≤ i ≤ m < j ≤ n}, Ψ ∩ Φn(h0, t) =
{(ǫi + ǫj), 1 ≤ i < j ≤ m} ∪ {(ǫi + ǫj), m + 1 ≤ i < j ≤ n}. For m = 1, 2 ≤ j, r, s, a, b
we have [[Y−ǫ1−ǫj , Yǫr+ǫs], Yǫa+ǫb] = 0, hence [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] = {0}. Also,
[[Y−ǫr−ǫs, Yǫ1+ǫj ], Yǫ1+ǫb] = 0, whence [[h0 ∩ p−, h ∩ p+], h ∩ p+] = {0}. Analogously for
m = n− 1 we obtain [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] = [[h0 ∩ p−, h ∩ p+], h ∩ p+] = {0}. For
2 ≤ m ≤ n−2, n ≥ 4, we have [[h∩p−, h0∩p+], h0∩p+] ∋ [[Y−ǫ1−ǫn, Yǫ1+ǫ2], Yǫn−1+ǫn] 6= 0,
and [[h0 ∩ p−, h ∩ p+], h ∩ p+] ∋ [[Y−ǫ1−ǫ2, Yǫ1+ǫn], Yǫ2+ǫn−1 ] 6= 0.
III− 7 (sp(n,R), u(m,n − m)) 1 ≤ m < n, n ≥ 3, h0 = sp(m,R) × sp(n − m,R)).
The holomorphic system Ψ is so that Ψ ∩ Φ(l, t) = {(ǫi − ǫj), 1 ≤ i < j ≤ m} ∪
{(ǫi − ǫj), m + 1 ≤ i < j ≤ n}, Ψ ∩ Φn(h, t) = {(ǫi + ǫj), 1 ≤ i ≤ m < j ≤ n}, and
Ψ∩Φn(h0, t) = {(ǫi+ ǫj), 1 ≤ i ≤ j ≤ m}∪{(ǫi+ ǫj), m+1 ≤ i ≤ j ≤ n}. For 1 ≤ m < n
we have, [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] ∋ [[Y−ǫ1−ǫm+1, Y2ǫm+1], Y2ǫ1] 6= 0. For 1 ≤ m ≤ n − 2,
we have [[h0 ∩ p−, h ∩ p+], h ∩ p+] ∋ [[Y−2ǫ1, Yǫ1+ǫn−1], Yǫ1+ǫn] 6= 0. For m = n − 1, n ≥ 2
[[h0 ∩ p−, h ∩ p+], h ∩ p+] ∋ [[Y−2ǫn, Yǫ1+ǫn], Yǫn−1+ǫn] 6= 0.
III− 8 (e6(−14), so(2, 8) + so(2)). βh ∈ h, β, γ ∈ h0, if [[Y−βh

, Yβ], Yγ] were nonzero, then
the coefficient of α1 in −βh + β + γ would be 2, a contradiction. Thus, [[h ∩ p−, h0 ∩
p+], h0 ∩ p+] = {0}. Analogously we obtain [[h0 ∩ p−, h ∩ p+], h ∩ p+] = {0}.
III− 9 (e6(−14), su(2, 4) + su(2)), h0 = su(2, 4) + su(2). In notation of III− 8. Ψn(h) =
{
∑

djαj : d3 ∈ {0, 2}, d6 = 1}, Ψn(h0) = {
∑

djαj : d3 = d6 = 1}, Ψ(l, t) = {
∑

djαj :
d3 ∈ {0, 2}, d6 = 0}. β = α1 + α2 +α3 + α4 +α5 + α6, βh0 = α3 +α4 + α5 +α6 we obtain
[[h∩p−, h0∩p

+], h0∩p
+] ∋ [[Y−α6 , Yβh0

], Yβ] 6= 0. Next, we set βh0 = α1+α3+α4+α5+α6.
Then βh = α1 + α2 + 2(α3 + α4 + α5) + α6 = α3 + (α1 + α2 + α3 + 2(α4 + α5) + α6 is a
root. Hence, [[h0 ∩ p−, h ∩ p+], h ∩ p+] ∋ [[Y−βh0

, Yβ], Yα6] 6= 0.

III− 10 (e6(−14), so
⋆(10)+so(2)), h0 = su(5, 1)+sl2(R). In notation of III− 8. Ψn(h) =

{
∑

djαj : d2 = d6 = 1}, Ψn(h0) = {
∑

djαj : d2 = 0, d6 = 1} ∪ {αm}, Ψ(l, t) = {
∑

djαj :
d2 = d6 = 0}, we define βh = α1 + α3 + α4 + α5 + α6, βh0 = α1 + α2 + α3 + α4 + α5 + α6

since αm − α2 ∈ Ψn(h0) we obtain [[h ∩ p−, h0 ∩ p+], h0 ∩ p+] ∋ [[Y−βh
, Yβh0

], Yαm−α2 ] 6= 0.
Next, we set βh0 = α1 + α2 + α3 + α4 + α5 + α6. Then αm − βh0 = α2 + α3 + 2α4 + α5 =
α4+(α2+α3+α4+α5) is a root. Hence, [[h0∩p−, h∩p+], h∩p+] ∋ [[Y−βh0

, Yαm ], Yα6] 6= 0.
III− 11 (e7(−25), so

⋆(12)+su(2)), h0 = su(6, 2). We use the notation set up by Bourbaki,
thus, for the holomorphic system α1, . . . α6 are the compact simple roots and α7 is the
noncompact simple root. α1 is adjacent to the opposite of the maximal root. Φ(l, t) =
{
∑

djαj : d2 ∈ {0, 2} d7 = 0}, Ψn(h, t) = {
∑

djαj : d2 = d7 = 1}, Φn(h0, t) = {
∑

djαj :
d2 ∈ {0, 2}, d7 = 1}. Let βh = α3+(α1+α2+α3+2(α4+α5+α6)+α7) = α1+α2+2(α3+
α4+α5+α6)+α7, then −βh+αm+α6+α7 = (α1+α2+α3+2α4+α5)+(α6+α7) is a root,
hence [[Y−βh

, Yαm], Yα6+α7 ] 6= 0. Next, let βh = α1 + α2 + 2(α3 + α4 + α5 + α6) + α7, β =
α1 + (α2 + α3 + 2(α4 + α5) + α6 + α7) ∈ Ψn(h) and −αm + βh as well as −αm + βh + β
are roots, hence [[Y−αm , Yβh

], Yβ] 6= 0.
III− 12 (e7(−25), e6(−14) + so(2)) h0 = so(2, 10) + sl2(R). We use the notation III− 11,
Φ(l, t) = {

∑

djαj : d1 = d7 = 0}, Ψn(h, t) = {
∑

djαj : d1 = d7 = 1}, Φn(h0, t) =
{
∑

djαj : d1 = 0, d7 = 1} ∪ {αm}. A classical algebras computation yields βh = α1 +
(α2 +α3 +2α4 +2α5 +α6 +α7) ∈ Ψn(h), β = α5 +α6+α7 ∈ Ψn(h0) and that −βh +αm

as well as (−βh + αm) + βh0 = α1 + α2 + 2(α3 + α4 + α5 + α6) + α7 are roots. Thus,
[[Y−βh

, Yβh0
], Yβ] 6= 0. Now, αm−α1 ∈ Ψn(h) and for βh0 = α2+α3+α4+α5+α6+α7, βh =

α1 + α2 + α3 + α4 + α5 + α6 + α7 we obtain [[Y−βh0
, Yβh

], Yαm−α1 ] 6= 0.
III− 13 (su(n, n), so⋆(2n)), n ≥ 2. h0 = sp(n,R)). We make use of the notation in
I− 1. The outer automorphism σ acts on t⋆ as follows σ(ǫj) = −δn−j+1, j = 1, . . . , n.
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Hence u⋆ is the subspace spanned by ǫj − δn−j+1, j = 1, . . . , n we note that σ(β) 6= β for
at least one noncompact root.
III− 14 (so(2, 2n), so(2, 2k+1)+so(2n−2k−1)). We make use of the notation in I− 3

The outer automorphism σ acts in t⋆ as σ(ǫ1) = ǫ1, σ(δj) = δj , j = 1, . . . , n− 1, σ(δn) =
−δn. In this case σ(β) 6= β for at least one noncompact root β.

Let β be a noncompact root so that σ(β) 6= β then hqu(β) (resp. hqu(β)) is spanned by
Xβ := Yβ + σ(Yβ) (resp. Vβ := Yβ − σ(Yβ)). Since, [[X−β, Vβ], Vβ] 6= 0 we have that the
hypothesis in condition ii holds for the pairs III− 13, III− 14.
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