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ASSOCIATED SYMMETRIC PAIR AND MULTIPLICITIES OF
ADMISSIBLE RESTRICTION OF DISCRETE SERIES

JORGE A. VARGAS

ABSTRACT. Let (G, H) be a symmetric pair for a real semisimple Lie group G and
(G, Hy) its associated pair. For each irreducible square integrable representation 7 of
G so that its restriction to H is admissible, we find an irreducible square integrable
representation my of Hy which allows to compute the Harish-Chandra parameter of
each irreducible H —subrepresentation of 7 as well as its multiplicity. The computation
is based on the spectral analysis of the restriction of my to a maximal compact subgroup
of Ho.

INTRODUCTION

Branching laws, that is, to write as explicit as possible the decomposition of a given
representation in terms of irreducible objets is of importance in several branches of math-
ematics as well as physics and chemistry. A particular case is to consider an irreducible
unitary representation 7 of a group G and a closed subgroup H of G and we wish to
find the irreducible H—subrepresentatios and the weakly contained irreducible factors,
as well as their respective multiplicities. To solve this problem involves among other
branches of mathematics, algebraic geometry, differential geometry and hard analysis
as we can learn from examples and theorems presented in [I3], references therein and
further work of T. Kobayashi, N. Wallach as well as other researchers. In the book [9], or
in [10], [12], [19] as well as in the work of other authors [6], we learn that sometimes the
problem of writing the branching law for 7 is translated into the problem of computing
branching law for another pair of groups L C H, and certain irreducible representation
of Hy. From this point of view, in [17], [21], [6] is analyzed the restriction of a family of
Zuckerman modules for a real reductive Lie group G and H the connected component
of the fix point group of an involution of GG. Henceforth, G denotes a connected simple
matrix Lie group. We fix a maximal compact subgroup K of G and a maximal torus 7" in
K. Harish-Chandra showed that G admits square integrable irreducible representations
if and only if 7" is a Cartan subgroup of G. For this note, we always assume 7T is a Cartan
subgroup of GG. Under these hypothesis, Harish-Chandra showed that the set of equiva-
lence classes of irreducible square integrable representations is parameterized by a lattice
in 7t;. In order to state our results we need to explicit this parametrization and set up
some notation. As usual, the Lie algebra of a Lie group is denoted by the corresponding
lower case German letter followed by the subindex R. The complexification of the Lie
algebra of a Lie group is denoted by the corresponding German letter without any sub-
script. V* denotes the dual space to a vector space V. Let 6 be the Cartan involution
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which corresponds to the subgroup K, the associated Cartan decomposition is denoted
by g = €+ p. Let ®(g,t) denote the root system attached to the Cartan subalgebra t.
Hence, ®(g,t) = .U ®,, = O (g,t) U P, (g,t) splits up as the union the set of compact
roots and the set of noncompact roots. From now on, we fix a system of positive roots
A for ®.. For this note, either the highest weight or the infinitesimal character of an
irreducible representation of K is dominant with respect to A. The Killing form gives
rise to an inner product (..,..) in it§. As usual, let p = pe denote half of the sum of the
roots for some system of positive roots for ®(g,h). A Harish-Chandra parameter for G
is A € it} such that (\,a) # 0, for every a € ®(g,t), and so that e*** is a character of
T. To each Harish-Chandra parameter, Harish-Chandra associates a unique irreducible
square integrable representation 7§ of G. Moreover, he showed the map A — 7¥ is a
bijection from the set of Harish-Chandra parameters dominant with respect to A onto
the set of equivalence classes of irreducible square integrable representations for G.
Each Harish-Chandra parameter A gives rise to a system of positive roots

vy = \I]G,)\ = {Oé € (I)(g,f) : ()\,Oé) > 0}

From now on, we assume that Harish-Chandra parameter for G are dominant with
respect to A. Whence, A C W,.

To follow, we fix a nontrivial involutive automorphism o of G. After we replace o
by some conjugate we may and will assume o commutes with 6. Thus, ¢f is another
involution of G' which commutes with 6. We write

h={Xeg:oX)=X}, gi={Xeg:0X)=—-X}hh={Xeg:00(X)=X}

and H (resp. Hp) the identity connected component of the set of fix points of o (resp.
06) in G. Then (G, H) is a symmetric pair as well as (G, Hy), the later pair is called the
associated pair to the former pair. Certainly, H, Hy are closed reductive subgroups of G
and the following decompositions hold:

g=bdqg, hb=hNnt+bNp,g=qgnNt+qgnp ho=hNet+pnaq.

We notice that H and H, share the maximal compact subgroup L := HNK = HyNK. We
may and will assume T is invariant under the involution o, hence U := T'N H is maximal
torus of L. Since c.f. (0.2) we dealt with irreducible square integrable representations of
G with an admissible restriction to H, without lost of generality we may assume

U is a Cartan subgroup of H
and hence U is a compact Cartan subgroup of Hy. We verify W, is invariant under the
involution o. Therefore, there exists a vector in iug which is regular and dominant for
W,, in turn, this vector determines system of positive roots

Ao, Uy, Yp, .\ for respectively @(1,u), ®(h,u), D(ho, u)

such that for a € U, « restricted to u takes on positive values in the Weyl chamber for
Ag. Whenever, U =T we have Ag C A, ¥y =0(h,t) NV, Uy, \ = DP(ho, t) NV,
(0.1) For this note, Harish-Chandra parameters for H as well as for Hy and L are
dominant with respect to Ay.
(0.2) To continue, we assume 75 restricted to H is an admissible representation.

This hypothesis yields there exits a family of irreducible square integrable representa-
tions, Wf , of H, for which the set of corresponding Harish-Chandra parameters is denoted
by

Specy (7$) = {p € quk Wf — resg ()},
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together with a sequence of positive integers m (X, ), u € Specy (7§), so that

resg(md) = Z m (N, ) Wf
peSpecy (r§)

Equality in the previous formula means unitary equivalence. On the right hand side,
sum, means the Hilbert sum of the family of representations of H pointed out. For a
proof c.f. [14].

(0.2a) In [6], [I8] it is shown that every element of Specy(n§) is dominant with respect
to Wy . Moreover, since we are dealing with square integrable representations, we have
that 7§ has an admissible restriction to H if and only if 7§ is an admissible representa-
tion of Hy. This follows from [4].

To each system of positive roots U,, in [4], we have attached a connected normal
subgroup K := Z;(V,)K;(V),) of K and we have shown:

(0.3) ©§ restricted to H is admissible if and only if Z;(W¥,)K;(¥)) is a subgroup of L.
In section 1 we list the 5-tuples (G, H, Hy, V, Z1 (V) K1 (V,)) so that G is simple and

7§’ has an admissible restriction to H. In the course of the note we list the systems

Vi, Y

(0.4) Let €5 = £5(\V)) denote the complementary ideal to €;. Thus, we have a decompo-

sition, as a direct sum of ideals,

P=t 48, t=t+1t, =t +¢.

as we well as the product of normal subgroups K = K;K,. Owing to (0.3), K; is a
subgroup of L hence we have the decomposition L = K;(L N K5) and the decomposition
u =t + (INty). For a reductive Lie algebra s we write s = 35 + 65, where 3, denotes
the center and s, denotes the semisimple factor. For some examples, the decomposition
K = K1K,, T = TiT; and the corresponding decomposition for u are not completely
compatible with the decompositions b = 35 + hss, [ = 31+ lss = 30 + (31 N bss) + Lesy 31 =
35 + 31N bss. However, this is not a drawback for the statements to follow, we dealt with
this matter in (1.6). For A\ € t*, we write A = A\; + XAy = (A, A2), with \; € £/, = 1,2.
For v € u*, we write v = 71 + 72 = (7,72) with 71 € £],7% € (I N tz)*. Because of
our hypothesis on A, it follows that Ay is Harish-Chandra parameter for Ky, (c.f. 1.46),

hence, there exists an representation 7T)I\? of infinitesimal character \,. The branching

law for the restriction of 71')]\(22 to LN Ky is

PeSLNK, (75[\(22) = Z mF B2 (g 1) szzmg.

K
v2E€Specrnky (7T>\22)

For an irreducible square integrable representation ﬂfo of Hy. The assumption, L is a
maximal compact subgroup of Hy, gives rise to the decomposition

resL(wa) = Z mHol (p, v) ot

veSpecr, (Wfo )

Here, as before, 71 denotes de irreducible representation of L of infinitesimal character
v dominant with respect to Ay, and SpecL(wa) denotes the set of Harish-Chandra
parameters of irreducible representations of L that occurs in res L(Wfo). In section 1 we

study when for vy € SpechKQ(ﬁf;) the pair (A1, 1») is a Harish-Chandra parameter
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for Hy. We first show (A, 1) is regular and dominant for Wy, y. However, eAv2)tpmg
may not be a character of U. This is not a problem because twice a Harish-Chandra
parameter always lifts to a character. Thus, e®1#2)PHo is a character of a two-fold
cover of U. Hence, as usual, we replace G by a two fold cover and then we have that
(A1, 9) is a Harish-Chandra parameter. This assumption has as a consequence, that any
Harish-Chandra parameters for H which occurs in resy(7¥) is also a Harish-Chandra
parameters for L. Now, we may state the first result of this note.

Theorem 1. Assume 75 has an admissible restriction to H. Then, we have

m )= S0 mE (A v), ) mH R (g, )

K
va€Specrnk, (me,”)

for each p € Specy(n§)

The lowest K—type 7T§K of 7§, [22], decomposes as the outer tensor product of irre-

ducible representations
71'? = ng X ng

It is known, [6], it may happens that Wgz is the trivial representation of K,. Under
this hypothesis, Bent Orsted and Birgit Speh in [17], [2I] conjectured that for a conve-
nient Harish-Chandra parameter \ for Hy, the set of Harish-Chandra parameters of the
L—types of resp(m1°) is equal to the set of Harish-Chandra parameters of resy (n§) and
that the multiplicity functions mf (X, ?), mHo-E(X | ?) are equal. Actually, their conjecture
is stated for a family of Zuckerman modules A4(\) which includes the family of square
integrable representations so that 722 is the trivial representation. As a consequence of

&2
Theorem 1 we have that their conjecture is true. In fact,

Theorem 2. Assume 7§ is an admissible representation of H as well as that the lowest

K—type of ' is an irreducible representation of K;. Then,

Specu(n§) = Specr(n( , ), m (A ) = mH((M\, proxs), 1)

(MspLnEy
H
for every p € Specr,(m,°).

One consequence of Theorem 2 and Lemma 2.12 in [20] is.

Corollary 1. Every u € Specy(n§) is equal to (M, prrrk,) + po + B where B is a sum

of roots in Wy, xNP(p N q, 1) = Wy prek,) N Pulbo, u) and po is equal to one half of
the sum of the roots in W, (x prak,) N PnlBo, ).

Theorem 1 and Theorem 2 are somewhat analogous to results of Gross-Wallach [6] and
statements on branching laws presented in the book of Knapp [9]. Besides, Theorem 2
has a resemblance to results of Kobayashi proved in [12].

Theorem 1 and Theorem 2 coupled with the work of Baldoni Silva-Vergne, [1], provide
an effective method to compute the multiplicity and the Harish-Chandra parameter for
the irreducible factors in the decomposition of resy(7¥) as H—module.

In the fourth section of this note we analyze the subspace £, spanned by the lowest
L—type of the totality irreducible H—factors and for a scalar holomorphic discrete se-
ries we obtain a more precise description of £,. We also consider the relation between
H omH(wf , ) and the space of intertwining operators from the lowest L—type of wf
into resy,(7§). In the fifth section we show, for outer tensor product of two holomorphic

discrete series representations, a similar result to Theorem 1 as well as a similar result
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to the one obtained in section 4. In section 6, we collect notation and complete some
case by case proofs.

1. DESCRIPTION OF THE SUBGROUP K.

We maintain the notation of the previous section. For each root o € ®(g,t), let g,
denote the root space associated to «, then, by definition, £, (V) is the ideal of £ spanned
by [ga,8s], ., 8 € ¥y N V,. We define K;(V,) the analytic subgroup of K which cor-
responds to & (WU,). Thus, K;(V,) = {1} if and only if ¥, is a holomorphic system.
With respect to Z1(WV,), whenever G/K is not an hermitian symmetric space, Z1(¥,) is
defined to be equal to the trivial group. For a holomorphic system W, we define Z; (V)
to be equal to the identity connected component of the center of K, hence, Z;(¥,) is a
one dimensional torus. We claim:

(1.1) Assume G/ K is an Hermitian symmetric space and let W, be a nonholomorphic
system of positive roots such that 7§ is an admissible representation of H, then the
subgroup Z;(V,) defined in [4] is the trivial group.

To verify the claim we notice that the hypothesis on admissibility together with the
tables in [16], or else the computations in [4], [5], yields,

(1.2) If G/ K is an Hermitian symmetric space and 7% is not a holomorphic representation
with admissible restriction to H, then the pair (gg, hr) is one of

(su(m,n),s(u(m, k) +u(n — k))), (su(2,2n),sp(1,n)),
(s0(2m,2),s0(2m, 1)), (su(2,2),sp(1,1)).

In the next paragraph, for each of these pairs (G, H), we write compact Cartan subgroups
and list the systems of positive roots ¥ so that resy(n{) is an admissible representation,
for each case, we verify Z;(¥,) = {0} and we compute ¥, x, Vg \.

I-1,1-2. (su(m,n),s(u(m,k)+u(n—=k))). We fix as Cartan subalgebra t of su(m,n)
the set of diagonal matrices in su(m,n). For certain orthogonal basis €y, ..., €,,d1,...,0,
of the dual vector space to the subspace of diagonal matrices in gl(m-+n, C), we may, and
will choose A = {e, — €5,6, — 04,1 <1 <s<m,1 <p<q<n}, the set of noncompact
roots is ®,, = {£(e, —d,) }. We recall the positive roots systems for ®(g, t) containing A
are in a bijective correspondence with the totality of lexicographic orders for the basis
€1,...,6€m,01,...,0, which contains the ”suborder” ¢; > --- > €,,, 0; > --- > 0,. The two
holomorphic systems correspond to the orders e; > --- > €, >0 > -+ > 09,; 6y > -+ >
Op > €1 >+ > €. Wefix 1 <a <m-—1,in [5] is verified that for the system of positive
roots W, corresponding to the order ¢ > --- > €, > 01 > -+ > 0, > €401 > -+ > €,
we have £ (¥,) = su(m). We fix 1 < b < n — 1 and let ¥, denote the set of positive
roots associated to the order §; > --- > 0, > € > -+ > €, > Opy1 > -+ > 0y, then
£, (¥;) = su(n). For any other nonholomorphic system ¥ we have & (¥) = su(m) +su(n).
Thus, (0.3) forces ¥y to be equal to either W, or W,. A direct computation [5] verifies
R (U, N®,)Ni(30)5 = RT(U,NP,)Ni(3¢)5 = {0}, hence the definition of Z,(¥,) implies
Z1(¥y) = {1}. Thus, we have verified claim (1.1) for the pair (su(m,n),s(u(m, k)+u(n—
k))). The root systems for (h,t) and its dual are:

O(h,t) = {E(e, —€5), £(0, — &), £(6; —0;), 1 <r <s<m,
1<p<qg<k or, k+1<p<qg<n1<i<m,1<j<k}.
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D(ho, t) = {E(e, —€5), (0, — &), £(6; — 0;),1 <r < s<m,
I1<p<q<kork+1<p<qg<nl<i<mk+1<j<n}

The system Wy, Wy, » which correspond to ¥, are the system associated to the
respective lexicographic orders

€1 > > €, >0 > >0 > €1 > > €6y

€1 > > € > 0pp1 > > 00 > €qaq > 0 > €

For U, the description of Wy 5, Uy, » is similar.
From now on, ¢, denotes the restriction map from t* onto u*.

IT - 1. (su(2,2n),sp(1,n)),n > 1. We use the notation in Al. The automorphism
o acts on t* as o(e;) = —€3,0(8;) = —don_is1,7 = 1,...,2n. Hence, a basis of u* is
qu(€1 — €), qu(0y — don_r11),7 = 1,...n. Because of the way o acts on t* we have that
f # o(f) for any noncompact root. For each root 3, we fix 0 # Y3 € gg. Then,
PG =D gcq, C(Ys—0Yg) and hNp = 3 5, C(Ys+0Yj). Hence, ,,(h,u) = @, (ho,u) =
{:l:qu(El - 52),1 = 1, ces 271,} Certainly, @c(b,u) = (I)c(bo,u) = {:l:(El - 62), Qu(52 - 5j),’i %
j}. The unique possibility for € (¥,) to be contained in sp(1,n) is for ¥, = W;. The
simple roots for Wy are €; — 01,01 — 02, ..., 00,1 — o, d2, — €. We notice o(V;) = U,
and € (V)) = suy(e; — €3). We define Uy = Wy, » and we set Uy, C (b, u) to be the
system of positive roots for the simple roots

{Oél = qu(el — 51), Ay = qu(5, — 5i+1),’é = 1, NN 1, Apt1 = (5n — 5n+1)}~

For the pair (SU(2,2), Sp(1,1)), we have the extra possibility Wy = ¥;. In [5] we verify
for any of these systems Z;(W,) is equal to the trivial group.

IT -5 (so(2m,2),s0(2m, 1)), m > 2. We choose an orthogonal basis {e1,...,€,,d1} of
ith so that A = {ep £€,,1 <k < s <m}, &, = {£(e; £01),1 < j < m}. In this
case, 33 = Cd;. The systems of positive roots ¥, containing A are parameterized by
the lexicographic orders Sy, ;=€ > -+ > €, > +0; > €441 > -+ > €,_1 > *¢, for
a = 0,1,...,m. The two holomorphic systems corresponds to the parameters +0. In
this case o acts on t* by the rule 0(d1) = —61,0(¢;) = €;,7 = 1,...,m. Hence, u* is
spanned by €q,...,¢€,,. It readily follows that o leaves invariant the system of positive
roots associated to Si,,. Also, o(8) # [ for every noncompact root. Hence, as in the
previous case, @, (h,u) = ®,(ho,u). Here,

50(2m) if m > 2, W, nonholomorphic
Kl(\I/)\) = 5u2(€1 + 62) ifm= 2, \If)\ < S:tg
50(4) ifm= 2, \If)\ < S:I:l

From actual computation or the computations in [5] we have RTW, N 3% = {0} if and
only if W, is associated to one of the orders S,,. From the tables in [16], or computations
in [4], it follows that 7§ has an admissible restriction to H if and only if ¥, is associated
to one of the orders Si,,. Hence, Z;(¥,) = {1} for both cases. Let 7 denote £. For the
system of positive roots W, associated to the order S;,, we define Wy, = Uy, \ to be
the system of positive roots for the simple roots

(€ —€j41), (Em—1 — T€m), qu(T€m — 01) = Tem, j=1,...,m— 2.

This concludes the verification of (1,1).



For an arbitrary symmetric pair (G, H), whenever 7§

of H, because of (1.1), we define,

|

In the next tables we present the 5-tuple so that: (G, H) is a symmetric pair, Hy is
the associated group to H, W, is a system of positive such that 7§ is an admissible
representation of H, and K; = Z1(V,)K1(¥,). Actually, instead of writing Lie groups
we write their respective Lie algebras. Each table is in part a reproduction of tables
in [16]. The tables can also be computed by means of the techniques presented in [4].
Note that each table is ”symmetric” when we replace H by Hy. As usual, «a,, denotes
the highest root in W, and sus(a) denotes the compact real subalgebra of gr spanned
by the root vectors corresponding to the compact root «. In this and other sections we

ZK
Ky (Wy)

if \IIA ho

complete the notation for the objects in the tables.

G

lomorphic

otherwise

is an admissible representation

G H Ho T, K1
su(m,n) su(m, k) ®su(n — k) du(l) | su(m,n — k) ®su(k) du(l) Ve su(m)
su(m,n) su(k,n) @ su(m — k) du(l) | su(m — k,n) ®su(k) du(l) vy, su(n)

s0(2m, 2n) s50(2m, 2k) @ so(2n — 2k) s0(2m, 2n — 2k) @ so(2k) Wy 50(2m)
s0(2m,2n+1) | so(2m,k)@®so(2n+1—k) | so(2m,2n +1 — k) @ so(k) Wy 50(2m)
s0(4,2n),n > 2 u(2,n)1 wu(2,n)1 Wy g sug (am)
s0(4,2n),n > 2 u(2,n)2 wu(2,n)2 Wy sug (am)
50(4, 4) u(2,2)11 wu(2,2)11 \111,1, U)e’g\I/l,l sug(am)
50(4,4) u(2,2)12 wu(2,2)12 \11171, w6,5\1111 5u2(am)
50(4,4) u(2,2)21 wu(2,2)21 \111 1, w6,5\11171 5u2(am)
50(4, 4) u 2,2)22 wu(2,2)22 \1111, w€75\1111 sug(am)
5p(m,n) sp(m, k) @ sp(n — k) sp(m,n— k) & sp(k) N sp(m)
fa(a) sp(1,2) @ su(2) s50(5,4) Ups suz(am)
¢6(2) 50(6,4) @ s0(2) su(4,2) @ su(2) Yps su2(am)
¢7(—5) 50(8,4) @ su(2) 50(8,4) @ su(2) Yps su2(am)
¢7(—5) s5u(6, 2) ¢g(2) D 50(2) Yps su2(am)
g(—24) 50(12,4) e7(—5) P su(2) Ups sug(am)
Table 1. Case U = T, ¥\ nonholomorphic
a H Ho Ty K1
su(2,2n), n > 2 sp(1,m) sp(1,n) Wy | suz(am)
su(2,2) sp(1,1) sp(1,1) Wy | suz(awm)
su(2,2) sp(1,1) sp(1,1) Wy | suz(am)
s0(2m,2n),m > 1 | so(2m,2k+ 1) +s0(2n — 2k — 1) | so(2m,2n — 2k — 1) +s0(2k +1) | ¥4 s0(2m)
s0(2m, 2),m > 2 s0(2m, 1) s0(2m, 1) Py | so(2m)
£6(2) fa(a) sp(3,1) Ups | suz(am)
Table II, Case U # T, ¥, non holomorphic
G i () Ho (b)
su(m,n),m #n | su(k,l) +su(m —k,n—1)+u(l) | su(k,n —1) + su(m — k,1) +u(1)
su(n,n) su(k,l) +su(n —k,n—1)+u(l) | su(k,n —1)+su(n —k,1)+u(l)
s0(2,2n) 50(2, 2k) + so(2n — 2k) 50(2,2n — 2k) + so(2k)
s0(2,2n) u(l,n) u(1,n)
s50(2,2n+1) 50(2,k) +so(2n+1—k) 50(2,2n 4+ 1 — k) 4 so(k)
s0*(2n) u(m,n —m) 50*(2m) + s0*(2n — 2m)
sp(n, R) u(m,n —m) sp(m, R) + sp(n — m,R)
¢6(—14) 50(2,8) + s0(2) 50(2,8) +s0(2)
C6(—14) su(2,4) + su(2) su(2,4) + su(2)
C6(—14) $0*(10) + s0(2) su(5,1) +sl(2,R)
¢7(—25) 50*(12) + su(2) su(6, 2)
¢7(—25) 50(2,10) + sl(2,R) eg(—14) T 50(2)
su(n,n) 50*(2n) sp(n,R)
s0(2,2n) 50(2,2k + 1) +s0(2n — 2k — 1) 50(2,2n — 2k — 1) 4+ s0(2k + 1)

Table I1I, wf holomorphic Discrete Series.
The last two lines show the unique holomorphic pairs so that U # T.
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For an arbitrary parameter of Harish-Chandra, A\, we recall that we denote the com-
plementary ideal to £; by €. Hence, the root system ® (£, t5) is a subsystem of ®.. In [4]
we find a proof of:

(1.3) Any simple root for A N P (s, t) is a simple root for W.

Let Wy denote the Weyl group of a compact connected Lie group S. Then, (1.3) and
a result in [7] yields:

(1.4) for w € Wk,, we have w(V, N d,) = ¥\ NP,.
We define,

pu:%za,pﬁrzé > B,ptzpﬂrﬂﬁ,pm::% Y a

aEA BEY NPy, aGAﬂ@(EQ,tz)

(1.4a), p) € tf, because for a a compact simple root for ¥y, we have (a, p}) = 0. As
before, we write A = (A1, A2), we have:

(1.4b) Ay is a Harish-Chandra parameter for Ky. Indeed, the character e’ restricted to
T N K, is equal to the function e*2 7%z,

(1.5) We now verify that for v € Specink, (71'){{22), then the pair (A, 112) is either a Harish-
Chandra parameter for Hy or is a Harish-Chandra parameter for a two fold cover of Hj.
Always, (A1, 12) is dominant and regular for Wy, .

Indeed, sometimes, pe — pg, may not lift to a character of U, hence (A1, 12) + pg, may
not lift to a character of U, however, twice of (A1, 15) + pg, does lift to a character
of U. Thus, we only need to verify (\,15) > 0 for any noncompact root in ¥y, ». We
first analyze the case U = T. Owing to a theorem of Kostant, any Harish-Chandra
parameter of resng, (7?/{{22) belongs to the convex hull of the set sAy, s € Wg,. Whence,
vy = ZseWK2 CsSAg, with ¢g > 0, ¢, = 1. Because of (1.4), for § € ¥, N &, we
have ((A1,12),8) = ZSEWKQ cs((A1,A2),871B) > 0. Thus, (A1, v,) is a Harish-Chandra
parameter for either Hy or a two fold cover of Hy. The case U # T follows from the
previous computation and the observation that Hy has only one noncompact simple
factor, hence, the inner product defined by the respective Killing form’s in the Cartan
subalgebras we are dealing with are positive multiple of each other.

(1.6) The formula in either Theorem 1 or in Theorem 2 gives the Harish-Chandra pa-
rameter of u € Specy(r§) in term of the decomposition u = u Nt (¥y) + u N (V).
However, other decompositions of u are: u = 3, +uN by, = 3+ uNly,. We now analyze
the relation among these decompositions of u and its consequence in order to compute
the Harish-Chandra parameter of ﬂf . To begin with, we study an illustrative example.
gr = su(2,1). We consider V) = {a, f,a + f} with a € &, 5 € ,,. hr = tg + slr(5).
Hence hy = tg + sla(av + 5). For this system

fl =3Ik = KG’I“(O[) = CH25+Q, tg = CHa, 3y = KGT’(ﬁ) = CH204+B, tN hss = CHB

Thus, u = t;(V)) + uNtz(Vy) = 3, + uN b, are distinct orthogonal decompositions of
u = 3. More precisely, 35 is not equal t; and is not equal to 3 N t2. Hence, in order to
explicit the Harish-Chandra parameter u as the sum of a central character for b plus a
Harish Chandra parameter for b, we must carry out a change of coordinates. Explicitly,
p=a(2+a)+ba = 4 (2a + ) + 2423, We now show that this picture prevails for
most of the holomorphic systems ¥, and we analyze what happens when W, is not a
holomorphic system.

(1.6-a) For a nonholomorphic system W, that is, ¢; = €(V,) is a simple Lie algebra,
then uNb,, = t1(Vy) +t2aNbys, 35 C uNta(Vy)ands C to. Therefore, = iy, + gy, , pi5, €
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36, Uy,, € bss is easily computed from the decomposition p = pq + po, it € t; because
g, = 2 restricted to 3p.

To show the claim we notice that 7§ being an admissible representation of H forces
¢, C [. Hence, ¢, is a simple Lie ideal in [4. Thus, t; C uNbh,s. Now, the orthogonal to
t; in u is equal to uNty and 3 is orthogonal to u N b, hence, we have shown the second
part of the claim.

(1.6-b) ¥, is a holomorphic system and dimj = 1. Then, 3, = {0} and 3,, = {0},
3= 3¢ = t1(V)), and uNty (V) = unly,. This hypothesis holds for: 11I-3(a) 1 < k < n—1,
3b)1<k<n—1),5(k#{22n—1}),9, 11, 13, 14.

The first equality follows by inspection in table III. Since resg(n{) is an admissible
representation of H and W), is a holomorphic system we have ¢; = 3, = t; C [, hence,
the second equality holds, the third equality follows from that both members are the
orthogonal to 3 = t; in u.

(1.6-c) ¥, is a holomorphic system, dim 3 = 2, and 3, = {0} Then, 3 = t; + 3N t; and
uNlgs C uNty. The admissibility hypothesis forces t; = 3¢ is contained in I. Orthogonality
gives the inclusion. The hypothesis holds for: 11I-3a (k = 1), 3b (k =n—1), ba (k = 2),
5b (k=2n—1),6b (1 <m <n—1), 7b, 10b, 12a.

(1.6-d) W, is a holomorphic system, dimj = 2, and dimg, = 1. Then, u = t. The
orthogonal decompositions of 3; = t; + 3 Nt = 35 + 31 N bss are different except for the
pairs 3a, 3b, ba, bb, 6a n = 2m, Ta n = 2m, for these pairs, we always have 3, = t2 N 3.
We always have t N [;4 C t; and the orthogonal decomposition t N hgs = t N [xs 4 3 N bs.
Thus, in order to obtain the decomposition p = p; + py,, from p = py + pp we write
Mo,, = Mni,, + Mynp,, and notice that the inclusion t N [, C ty gives pyqy,, is equal to
po restricted to t N [g. The components iy, ttynp,, are computed from gy and from
restricted to 3 Nty as in the example (SU(2,1),7SLy(B)). The hypothesis holds for:
[MI-1la-1b (k = m,1 <l <norl <k<ml=mn) 2a2b(k=n1<10<nor
1<k<nidl=n)3a(k=n—1),3b(k=1),4a,4b, 5a (k=2n—1), 5b (k = 2), 6a
(0<m<n),6b(m=1orm=n—1),7a (0 <m <n), 8, 8, 10a, 12b.

(1.6-e) W, is a holomorphic system and dim 3 = 3. The hypothesis holds for cases: III-
la(l<k<mandl<l<n),lb(l<k<mandl<n-Il<n)2a(l<k<n
and 1 <l <n),2b (1 <k<nandl <n-1[<mn),3a((n=2k=1)). Then
dimz, = 1 and u = t. We have i) 3, is orthogonal to t; if and only if III-1a mk = nl,
or, III-1b nk = m(n — 1), or, IlI-2a k = [, or, III-2b n = k + [. ii) 3, is not contained
in ty, obviously 3y is not contained in t;. Then, the orthogonal decompositions of 3 =
i+ 3Nt = 35 + 5 N bhss are different. In case i) we have t; C hss N ¢, hence My, 18
equal to the restriction of ps to 35. In case ii) we have t N[5 C t2, as in previous cases,
we write u = Uy + fp,, = Uy + g, and uy = uy + Uy, Then, uy  restricted to
t N [ es equal to u,, = pp restricted to t N [,. In order to compute gy, and iy nyp,,
we must carry out a computation similar to the case (su(2,1),t+ sly(5)). The case
[1I-3a (n = 2,k = 1) is the case I1I-2a (n = 2,k = 1,1 = 1). The first two claims
follows from inspection to table III. To verify i) and ii) we recall notation in I — 1. Then,
h =su(k,l)+su(n—k,m—10)+u(l),by =su(k,n—1)+su(n —k, 1) +u(l) and

O(h,t) = {E(e, —€), (0, — &), £(6; —0;),1 <r<s<kork+1<r<s<m,
1<p<qg<lorl+1<p<q<n,
1<i<kandl1<j<lork+1<i<mandl+1<j<n}.
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Let ej, d;, denote the elements of the dual basis to €;, d;. Then,

w=Clm—k+n-00Q e+Y d)—(k+1)(D_ e+ > dy),

i<k i<l i>k+1 J>1+1
t(Wh) =3 = C["(Z ei) — m(z d;)]
i<m i<n

and the inner product of the pointed out generators for 34, 3¢ is equal to (nk—ml)(m+n).
Thus, i) and ii) follow.

2. MORE ON THE ROOT STRUCTURE FOR (G, H)

As in the previous sections, we assume (G, H) is a symmetric pair and u = h Nt is
a Cartan subalgebra for h. We also assume 7§ has an admissible restriction to H. We
derive consequences of the hypothesis and set up some notation.
For a linear subspace s of g so that [u,s] C s or a complex vector space s where u acts
by semisimple linear operators, we denote by ®(s,u) the multiset of weights of u in s.
That is, ®(s,u) is the set of weights of u in s, each counted with multiplicity. Owing to
our hypothesis we have that o(V,) = U,, ¢; C [ and 0(A) = A, hence, we may choose
a system of positive roots A(¢/[u) = A(ty/(IN€),u) for ®(¢/Lu) = P(L/(INky),u)
naturally associated to A. For w € Wk, as in [4], we define the multiset

S = [au(w(x N Pn)) U qu(A\D;)\D(h, u).

Here, @, is the set of roots that vanishes on u. However, since we assume t is a maximally
compact Cartan subalgebra for the symmetric pair (€, [) we have that @, is the empty set.
The admissibility hypothesis yields the decompositions L = K;(LNK3), and € = € @ €.
These decompositions give rise to the decomposition Wx = Wi, X Wk,.

Lemma 1. For W > w =ts,t € Wg,,s € Wkg,, we have the equality of the multisets
S =W gy A N P, (ho, w)] UA(E/ (1N E), ).

Proof: When U =T we have defined Uy, 5 := U\ N P(ho,t) and Uy, := VN P(h, t).
We have the disjoint union ®,, = ®(h, t),, U ®(bho, t),, = ®,,(h,t) U P, (ho, t).

SH — (ts(Uy N ®,))\®(h, t) UAE/L, 1)
= (t(WA N P,))\P(h,t) UA(E/L ) by (1.4)
= [L((TAN@(h, 1)) U (PANP(ho,t),))\P(h, 1)
UA(EQ/[D'EQ,{) ¢, ClI
= t{((TxN@(h, 1)) U (¥A N P(ho,t),))\P(h, t)] te(h) C (h)

UA(E/(INE), 1)
= W5 (1 Py (o, ] U A(2/ (1N £), 1).

and we conclude the proof of the lemma for the case U = T.

In order to show the lemma when U # T we explicit some more structure.
(2.1) To begin with we note the multiset ¢,(®(g,t)) is equal to the multiset ®(h,u) U
O (ho, u) UP(qNE u) and the equality of multiset g, (P,) = D, (b, u) U P, (ho, u). Because
o(U,) = ¥, we have ¢,(a) € Uy U Uy, » for o € V). Hence, the above equalities of
multisets are also true when we replace everywhere ® by W. Since (G, H) is a symmetric

pair in [22], page 6 it is shown: for v; € ®(g,1), qu(71) = qu(72) if and only if v = v, or
10



7 = 072. Hence, ¢,(a) has multiplicity one in ®(g, u) if and only if the root space of « is
stable under o. Thus, as sets we have W, (h,u) W, (ho,u) = {qu(B), 5 € V,,and  # o3},
and as multisets we have the equality ¢,(V\N®,)\®(h,u) = (¥, .1)n. Moreover, because
of (1.4), for s € Wk,, s(¥,N®,) = ¥, NP, and since K; C L we have t®(h,u) = (b, u)
for t € W, . Thus, ¢,(ts(¥AND,))\P(h,u) = t(¥ g, .1 )n The equalities we have obtained
in the previous paragraphs justify the steps in:

Si = [tau(Tr 0 D) U qu(A)\D(h, u)
= t{qu(Ua N Cu)\P(h, u)] U A(l/1N £z, u)
= t(\IfH(),)\)n U A(Eg/[ N Eg, u).

This completes the proof of the lemma.
O

(2.1b) For s € Wik, we have s(Ug, » NP, (ho,u)) = Wy x N P, (ho, u).

When U = T, the equality readily follows from (1.4). When, U # T it can be done by
direct computation. However, it also follows from (1.4) and the following facts shown in
[22], page 6. For a root o € ®(g,t) (resp. a € ®(h,u)) let S (resp. SI) denote the
reflection about « in t*. (resp. in u*).

(2.2) Let « be a root for (g,t) and assume ¢,(a) € ®(h,u). If a + o(a) is not a root for
(g,t). Then, for every v € t*, we have

SH (@) = au(SESS (7).

(2.3) When « is a root in (g, t) so that & = o(«) or a4 o(«) is a root in g. We have the
obvious equality S (q,(v)) = ¢.(SS(v)). Now, 2.1b follows.

3. PROOF OF THEOREM 1

Let ¢ be a square integrable irreducible representation which has an admissible re-
striction to H. We want to show theorem 1 for this representation. To begin with,
we write several formulae to compute the multiplicity functions m® (X, u), m L (u, v),-
mE2L0E2 (¢ 0) In order to write down the formulae we recall notation from [3],4].

For v € g, let 9§, denote the Dirac measure attached to v and for v # 0, we
consider the Heaviside discrete measure y, == > 5%+m,. For a strict multiset S =
{o1,...,0,} C u* we define ys = ¥y, * -+ * Yo, . Let Py denote the weight lattice for
U. Therefore, the set of Harish-Chandra parameters for H (resp. Hj) is contained in
Py + pu (resp. Py + pr,). We would like to point out that either the set of Harish-
Chandra parameters for H (resp. Hy) or Py + pg (resp. Py + pm,) are invariant under
the action of the Weyl group of L.

Let p be a Harish-Chandra parameter for Hy and dominant for Ay, for each L—type
of ﬂf‘), let v € du} denote the representative of its infinitesimal character which is
dominant with respect to Ag and let m°-L (1, v) denote the multiplicity of 7T£ in 7. We
extend mfoL(pu, v) to P, + py by the rule moL(u, wr) = e(w)moL(u, v) for w € Wy.
We denote by Wy, , the system of positive roots in ®(ho,u) determined by p. Finally,

let v1,...,7 denote an enumeration of the noncompact roots in ¥y, ,. Then, Duflo-
Heckman-Vergne [3] have shown,
Z mt (u,v)d, = Z €(W) 0wy * Yoy * ** * Yur, (dhv)
vEiug weWr,
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The above series converges absolutely in the space of distributions of Schwartz for iu*.
The admissibility hypothesis on resy(7§) implies K; C L (cf.(0.3)) and hence, forces
the decompositions L = K;(L N K3) and the decomposition u = ¢; + uNty,u* > p =
f1 + pro, iy € ), ug € 5. Thus, the right hand side of formula (dhv) is equal to

Z e(t)e(w2)5tu1 * 5w2u2 * yth(‘I/Ho,p.)n'

teWk, ,w2eWrnKk,

We apply the above formula to Harish-Chandra parameters u = (A;,v2) as the one
considered in (1.5). Hence, (2.1b) further simplifies the right hand side of (dhv) to

Z 6(15)6(11)2)(515”1 * 5w2u2 *Yt(W gy )n- (dhvs)

tGWKl ,U)QEWLmKZ

In (1.4b) we noticed A, is a Harish-Chandra parameter for K5, hence, for resng., (77')[\22).
we have the identity

Z B2 L0K (), ) Z €(5) 04y,

K
VQESpechK2(7rA22) s€EWLnk,

=€ > €(W2)Fgy(wore) YAt/ (182)0)-

w2EWK,

Here, €19 = E(A N @(Eg, f), A(Eg/[ N Eg, u))
The hypothesis 7§ is an admissible representation when restricted to H we give us

the equality
resp(rs) = Z mH (X, ) ﬁf.

neSpecy (ﬂf)

We notice in [I8] it is shown that any Harish-Chandra parameter in Specy (75) is dom-

inant for the system Wy . We extend m(\, ) to Py + pg to be a skew symmetric
function, that is, m# (X, wu) = e(w)mf (X, p) for w € Wy. As before, for w € W, let

SH = g (w(Vy N ®,)) U qu(A\®,)]\®(h, 1) = qu(w(¥y N &)\ (b, u) UA(E/[u)

Then, in [4] is proved

Z mt (A, )0, =+ Z €(w) Ogu(wn) * Ysi (rh)

pEUF weWg

The above series converge absolutely in the space of distributions of Schwartz for u*.
Actually, in (rh) the summation on the right hand side is computed over the group
W, /Wi where W; is the Weyl group of the root system @, of those roots in ®(g, t) which
vanishes on u. The hypothesis (G, H) is a symmetric pair implies (K, L) is a symmetric
pair, hence W; is equal to the trivial group. Since t; is contained in [, and A = (A, Ag),
for every wy € Wy, , wy € Wy,, we have

Qu(wiwaX) = w1 Ay + gu(waAa).

Also, for v, € ENu*t € Wk, s € Wk, we have ts(A; + 12) = tA] + svpand 0y, * 0y =
Ots(\+4us)- The previous equalities, Lemma 1, (2.1b), (dhvs) and the considerations in the
12



previous paragraphs, justify the following transformations on the right hand side in (rh)

>, mAp,

E—_
= E (£)0ex, K § €(W2) g (wara) YA (82 /(1182),10) KYL(W 7, 3)n
tEWKl szWK2
K2, LK.
DD GLIN STICTANS ) m 22 (Ng, v2)€(8) Osuy
€W VzGSpeCLmKQ(Wf\?),SGWLm@

= Z mF2 L2 (), 1) Z €()e(8)drsn, K Otsvn KYts( 7, 2)n

122} tEWKl ,SEWLQKQ

= Ym0 ) m (A1), ) O

vaESpecrnK, (7rA ) feiug

Since Py is a discrete subset of u*, and the above series converge absolutely in the
topology of the space of distributions on u*, we have shown Theorem 1.
As a consequence, we obtain particular cases of a more general result shown in [I1].

Proposition 1. Assume Uy is a holomorphic system. Then, whenever resy(n$) is an

admissible representation of H, there exists a constant C < oo so that m" (A, pn)) < C
for every p € Specy(n§.)

Proof: It follows from the hypothesis W) is a holomorphic system that ¥y, , is also a
holomorphic system. Hence, the subspaces

po= > by pi= > b

_BE(\I/H())\)” Be(\PHo,A)”l

are abelian subalgebras and we have the L—invariant and direct sum decomposition
pNp =pg +p, . Let (x T p > Wt ) denote the lowest L—type of the Discrete series 7THO
For a vector space V, the symmetric algebra for V' is denoted by S(V'). For a Harlsh—
Chandra parameter for ho and dominant for ¥y, », a result of Harish-Chandra [§] gives
us that resp(7/°) is equivalent to S(pg) ® W10 . Since each L—irreducible factor of
S(pg) has multiplicity one, we have, owing to a tensor product argument, that there
exist a constant C' < oo so that m"oE(y, &) < C for every Harish-Chandra parameter &
for L. The formula in Theorem 2 concludes the proof of the proposition.

Corollary 2. For a scalar holomorphic discrete series, then m(\, u) = 1 for every
w € Specy ().

4. ANALYSIS OF STRUCTURE OF L—TYPES

As in the previous setting we assume 7§ has an admissible restriction to H as well
as that (G, H) is a symmetric pair. We also assume that the lowest K—type is an
irreducible representation of Kj. Then, (4.1) yields that the Harish-Chandra parameter

A = (A1, pK,) and the lowest K—type is (wgﬁ%p@),Véfﬁpém@)). Theorem 2 shows

)\1 P ﬁL)) and mH()‘nu) = mH()’L(()‘lapKzﬂL)a :U)' Now, (41)

together with the fact that the Towest L—type of a discrete series representation for H
13
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has multiplicity one yield

dimHomH(wgﬁpMm@), resg(m5)) = m (N, (A + po, prok,))

=m0 (M, pranr)s (M + po, preonr)) = 1

Here, and from now on, in order to avoid cumbersome notation, we write po(resp p;) for
one half of the sum of the noncompact in Wy, \(resp. Uy ). Thus, when U = T we have
o) = p1 + po. We now show

Proposition 2. The lowest L—type 7 ) has multiplicity one

L H
(M\1+pp.prnKy) of T (\i+p0.010K,
in resp(r$).

Proof: Let Wf be an irreducible subrepresentation of resg(n§’) which contains a copy
L

Cutodpinicy)” Because of (4.1) we have

of the L—type 7

(A1 + pi\HpLﬂK2) =p+p1+ Dy,

here D stands for a sum of noncompact roots in Wy y.
Theorem 2 let us write

p = (A1 + po, prak,) + Bo

where By is a sum of noncompact roots in Wy, x. Hence, D; + By = 0. The fact that ¥,
is invariant under o forces D; = By = 0 and proposition 2 follows.

For the next lemma we keep the assumption that the lowest K —type of n{ is an irre-

ducible representation (7 Vs ) for K;.

K
(A1+pp,0K, A1+0,0K)

Lemma 2. I/{(bo)‘/(f\iﬂ%,p}{z) is an irreducible (ho, L)—submodule and has multiplicity
one in resg, (7$).

Proof: Since we are dealing with restriction of discrete series representation, [4] we
have that the underlying Harish-Chandra module for 7§ is an admissible representation
of L. Thus, U (bO)V(‘f1 Fodpr,) 1S an admissible L—module. Besides, since the Harish-

mno 2

Chandra module for 7§ is admissible as representation of by we have that every vector

en the Harish-Chandra module for 7§/ is 3y, —finite. Thus, we are in the hypothesis

of Theorem 4.2.1 in [23]. Therefore, Z/{(bo)‘/'(f\iﬂ)A o,y 18 an ho—module of finite length.
niPKo

Whence, the closure of u(bo)v(iﬂg,p@

V; of discrete series representations V; for Hy. Since, VI |
()‘1+anng

for U (f)o)V(f\{l oA prs) the orthogonal projector onto V; takes on nonzero values on the
ns 2
K

L—irreducible subspace V(\{ . \ picy)

) is equal to a finite orthogonal sum V; + - 4

) is a cyclic generator

. Proposition 2 forces s = 1 and lemma 2 follows.

As previously, we consider 7¢ to be an admissible representation for H. Let

[h1; fh2, - - -

denote the Harish-Chandra parameters of the distinct irreducible H—factors of resy (7%),
we know [6], [I8] every s; is dominant with respect to Wy .

For each 7,7 = 1,2,--- the lowest L—type in the sense of Schmid-Vogan of 7/l is

Ty - The next proposition holds for the pairs (su(m, n), su(m, ) + su(n — 1) + u(1)),

(s0(2,2n),u(1,n)), (s0*(2n),u(l,n — 1)), (eg—14),50(2,8) + s50(2)).
14



Proposition 3. We further assume Wy is a holomorphic system. Then, for r # j,
HomL(wﬁﬁpl,r@sL(ﬂi)) ={0}

Proof: For each of the pair (su(m,n),su(m,l) + su(n — 1) +u(l)), (so(2,2n),u(l,n)),
(s0*(2n),u(1,n — 1)), (es(—14),50(2,8) + 50(2)), we show

Lemma 3. There exists x € it,y € it such that

fora e U\Nd,(h,t), alr)>0 anda(y) =0,
fora e U\ N®,(ho,t), a(x)=0 and a(y) > 0.

We note that the existence of a nonzero x € it so that a(z) = 0 for every noncom-
pact root in ®(h,t) forces the center of h to have positive dimension because of the
equality [p,p] = €. However, it readily follows that the lemma is not true for the pair
(su(m,n),su(k,l) +su(m —k,n—1)+u(l)) and its dual when 1 <k <m,1 <[l <n. A
proof of lemma 3 is done case by case after we verify proposition 3.

(4.1) We recall the following result proved in [20]. The highest weight of any K —type
of 7§ is equal to A\+p) —pe+P1+. .. B, where 3,4 = 1,. .., s are noncompact roots in Uy

(4.2) We notice that whenever the lowest K —type of n{ is an irreducible representation
of K, the Harish-Chandra parameter is A\ = (), px,) with A\; + p} a Harish-Chandra
parameter for K. This is so, because from (1.4a) we have that p) lies in t}, also € = £ +&,
a direct sum of ideals. Thus (4.2) follows.

We now show proposition 3, a Harish-Chandra parameters for a L— of types of 7/

(MipLnky)

is of the shape

(A1, prom,) + po + B
where B is a sum of roots in Wy, NP, (ho, t). Hence, we may and will order the Harish-
Chandra parameters of the L—types of 71 ) in an increasing way according to the

(M,prnK,
value each of them takes on y. Because, of Theorem 2, this gives an order

< prg < ...
Also, the Harish-Chandra parameter of an L—type of 71'57. is
pr +p1+C
where C' is a sum of noncompact roots in Wy 5. Thus, if HomL(Wﬁﬁpl,resL(ﬂﬁ)) is

nontrivial, we have the equality p; + p1 = pr + p1 + C where C' is a sum of roots in

Uy N, Since C(y) = 0, we obtain r = j and we have shown proposition 3.

In order to justify lemma 2 for the case of (su(m,n), su(m,l)+su(n—1)+u(1)) we recall

notation in T — 1, we set ¢;, d to be the dual basis to ¢, d,. Then, z = 37" e; — 320 d; +

Siadyand y =Y e; + Y1 d;j — 307, d; verify the claim for this pair.

ITI — 4 (so(2m, 2),u(m, 1)). We refer to notation in II —5. Then ®(h,t) = {£(e; —

01), £(es — €x), s # k}, ©(ho,t) = {£(¢; + 1), £(es — €x), k # s}. For the holomorphic

system Wy, x=—>""e;+di,y =2, e+ d; verify the claim.

(s0*(2n),u(l,n — 1)). Notation as in III — 6. x = e;,y = —e; + (2 + -+ + €,). For

(s0*(2n),u(n — 1,1)) we do a similar choice.

ITI — 8 (e6(—14),50(2,8) +50(2)). The Vogan diagram for a holomorphic system for eg(_14)

is

Then (I)n<50(2, 8) + 50(2), t) = {23 a;jo; € (I)(eﬁ,t) Lap = 0, ag = 1}, (I)n<b07 t) =

{>2; a0 € P(es,t) : ar = 1,a6 = 1} and (I, t) = {>_, a;a; € P(eq,t) : a1 = ag = 0}
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oO——0O (@] (e) [ J
a1 as Oy (673 Qg

Here, 357 = CAy, 35, = A1 — Ag. Hence x = Ag — A1,y = A; completes the proof of lemma
2. Here, A; is the fundamental weight associated to «;.

4.1. The subspace of lowest L—types in resy(n{). We fix (7§, V,E) a discrete se-
ries representation, for which, we assume has an admissible restriction to H. Since, we
are dealing with discrete series representations and symmetric pairs in [4] we find a
proof that resp(7¢) is an admissible representation of L and in [13] a proof that the
underlying Harish-Chandra module V{ of V¥ is an algebraic direct sum of irreducible
(h, L)—modules, namely

V& = @ m(\, ) Vf.

peSpec ()

Here, m# (), M)VH denotes the isotopic component of V' associated to the discrete series
representation 7r . For each subspace VH the subspace which affords the lowest L—type of
H , Or equlvalently, the subspace of Vectors which behaves according to the representation

of L is denoted by VE, . A problem considered for [I7] is to analyze the structure

u+p1 ptp1e

of the subspace

Ly = @ mH (X, ) V£+p1 (LL)
peSpecy (my)
For a partial answer, we further assume the lowest K —type of 7§ restricted to K, is an
irreducible representation. We claim:

(4.3) The respective representations of L on the subspaces £, and on U (bo)Vgl A ory)

are equivalent.

Indeed, lemma 2 implies that U/ (f)o) ) 1 the underlying Harish-Chandra module

(A1+0,0K5)

for ! Theorem 2 concludes the proof of the claim.

()\1 +p1,0LNK,)’

To continue, we assume Wf is a holomorphic representation. We set p™ = > Be(wy), 98

and p~ = p*. Since 3 is contained in [ we also have h = [+ hNp* + HhNp~. Thus, the
systems Wy, Uy, » are holomorphic. The representation of K in

VP ={v eVl :m()(v) =0, VY €p~}

is the realization of VX ) asa subspace of V{. Moreover, the fact ¥y ) is holomor-

A1+p.pK
phic and that for each constituent 7T of resy(n§) the Harish-Chandra parameter j is
dominant for Wy , yield

VI = 5.

Certainly VX ) C ngpi NU(ho) VK

(A1+pdprcy)”

Proposition 4. We further assume w5 is scalar holomorphic discrete series represen-

tation. Then,

i) If [[h e~ bo N pt) b Npt] = {0}, then VY™ = UMV, 1 pre))-
16
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i) If [[5 Np~,bo N p*] b N pt] # {0}, then VY™ UM0) (VS 1 pe))-

In a case by case checking, we verify that the unique pairs (g, h) that satisfy the
hypothesis in i) are:
(4.4) (su(m,n),su(m,l) + su(n — 1) +u(l)), (so(2m,2),u(m, 1)), (so*(2n),u(l,n — 1)),
(e6(—14),50(2,8) 4+ s0(2)). That is, the same pairs that satisfy Lemma 3. Whence, when
consider case i) T' is a Cartan subgroup of H.
Proof: In order to verify i) we show that left hand side of the equality is contained

in VI in (4.3) we observed £, and Z/{(bo)( Crtpdorcy)
structure, hence the reverse inclusion follows. In order to verify ii) we produce an

) have the same L—module

clement in the left hand side which is not in V)"® . For each root o € ®(g, t) we choose
a nonzero root vector Y, in the root space of . Owing to our hypothesis we may write

V[§1+pn pKQ) = Cw with w a nonzero vector. We denote by ®(p*,t) = {f,...,5,}, where

®(hoNp™) = {Bi,...Bs}. Since, V§ = U(9)uetp- ®V(/\1+p prey) =K S(pt )®V()\1+p o)
the projection onto V{ of the set

{Yal"'Yaq(X)w ajGZZO,jzl,...,q}

is a linear basis for V. Thus, U(ho)VE o opicy) is equal to the subspace of V{ spanned

by the projection of S(ho N p*) ® Cw. Under the hypothesis in i) we verify that
TA(Yop ) [Yg! - Y @uw]=0forall Y5 € hNp~.

by induction on a;+- - -+a,. Here, [D®@w] denotes the class of D@w € U(g)® Véfﬁp o))’
Since, 7 is an scalar holomorphic representation, we have m,(Y_g,)[1 ® w] =0,V §; €
U\N®,, and, m\(Y,)[1®w] = 0, for every v € ®.. Hence, for j < s, we have W(Y_gh)[ng ®
w] = [Y3,Y_ g @w+ [Y_p,,Ys,] ®w] = 0 because [Y_g,,Ys,] € g€ which is contained in
tss. In general, for a; =--- =a;_1 =0,a; > 1,j < s we have 7(Y_ 5h)[Y LY @w] =
Vo, Yop, Yy Y @w+ [Yog, Ya Yy . Yss ®@w] = 0if a; = 1, otherwise, we
may assume a; > 2. In this case, the hypothesis in i) states that [Y_g ,Y}s,] commutes
with Y, for 1 < i < 5,1 < k < s. Hence, we have shown i). In order to show ii)
when U = T we compute 7(Y_p, )[Y3, Y5 @ w| = [Y5,Y_ 5 Y5 @ w + [Y_g,,Yp,]Ys ®
w] =Y, Y5, Y g @w+Yp [Yop, Vs | @w+[[Yop,Y5 ], Y5 | @w+ Y [Y_g, Y5 | ] =
[[Y_g,, Ys,], Y] @w]. Now [[Y_g,,Yp,],Ys,] € hNp™. Under the hypothesis in ii) we may
choose By € (Yyr)n, B, Br, withj,r < s so that the triple bracket is nonzero, and we
have shown ii) in case U = T. When U # T always the hypothesis in ii) holds because
we check by the end of section 6 that there exists 8 € ®,(h,u) N ®,(ho,u) # 0 and
X_p5 € h_gand Vi € (ho)s so that [[X_g, V5], V5] # 0. Whence, U(ho)(1 ® w) # L.
Thus, we have shown proposition 4.

5. TENSOR PRODUCT OF HOLOMORPHIC DISCRETE SERIES

Let GG be a real simple Lie group so that the associated symmetric space is Hermitian.
Let Ky (resp. Tp) denote a maximal compact subgroup (resp. maximal torus) of Gy
(resp. Ky). Thus, Th = Zg, 1§ where T is a maximal torus of the semisimple factor
K; of Ky. Let 6, denote the Cartan involution of Gy associated to Ky. We set G :=
Go X Gy, hence K = Ky x Ky (resp. T := Ty x Tpy) is maximal compact subgroup
(resp. is a compact Cartan subgroup) of G. In G we consider the involution o(z,y) =

(y,x). Thus, the fix point subgroup H of ¢ is the image of the diagonal immersion of
17



the group Gy in G. In this case, L = H N K is the image of the diagonal immersion
of Ky. The associated pair to (G, H) is (G, Hy) with Hy the image of the immersion
of Gy in G via the map z — (z,60px). Thus, the pair (Hy, L) is isomorphic to the
symmetric pair (Go, Kp). Then, we set K; := diagonal subgroup of(Zg, X Zg,) =:
A(Zk,) and hence, Ky = Zy(K§ x K§), where Zy is a complement in Zx, X Zg, to
the diagonal subgroup A(Zg,). Hence, U = HNT = A(Zg,)A(T5) = A(Tp) and
LN Ky =A(K}). We fix a holomorphic system of positive roots ¥, for ®(go, ty). Hence
U = Uy x {0} U{0} x ¥, is a holomorphic system of positive roots for (ID(g,t) Let
(A, @) denote a Harish-Chandra parameter for G dominant for ¥. Then, 7r/\  and 7r¢ are
holomorphic irreducible square integrable representations of Gy and since K is contained
in H, the outer tensor product 7T(>\ 5 = 7T>\0 X 7TGO is an admissible representation of H
[15]. Because of the decomposition K = Z2A(ZKO)(K8 x K§) the lowest K —type of 7T()\ 8
restricted to A(Zg,)(K§ x K§) is an irreducible representation and the corresponding
Harish-Chandra parameter is (A, + @5, )/2 + pns (Agy, + B3, )/2 + pn) + (As, &), Where
we write t* 35 \ = )\330 + A with )\5% € 3¢5, As € 1. The branching law for the restriction

of 7T(I§O>;K)O to A(K}) is,

resing, (7 ()\:X(zf)o) — Z mBEKSLOK2 (N @) 1) plnKe,

K x K3
vespeeag) (MG ,) )

Following the path of the proof of Theorem 1 we show,
Theorem 3. The multiplicity m* (X, ¢), ) of /1 in resH(wg\’(b)) is given by

S mOI(O, o+ 04,)/20) ) TS, 6,), ).

vespeca i) (7 o))

For this case, as in section 4, we may consider the L—invariant subspaces Ly ¢),
and U(hy)(VL? X Vdﬁopn. When we assume that both representations are scalar holo-
morphic, theorem 3 yields that both subspaces are equivalent as representations of L.
However, they are not equal, because hypothesis ii) in proposition 4 holds. In fact,
[(Y_3,Y_p)), (Y5, =Yg))], (Y3, —Y3))| # 0 for every root 8 € W,.

6. NOTATION FOR TABLE I, IT AnD III.

In this section we complete the notation for the objets presented in the three tables
and we do a case by case verification of (4.4).
I -3 (s0(2m,2n),s0(2m, 2k) + so(2m,2n — 2k)),m > 2, n > 2.

For a suitable orthogonal basis €1, ..., €,,01,...,0, of ity
A={(exe€),1<i<ji<m}U{(s,x6s),1<r<s<n}
O, ={£(e, £0s5),7r=1,....m,s=1,...,n}.

P(lt) = {£(e; £¢),1 <i < j<m}U {:t(ér +5),1 <r < s <k}, ,(h,t) =
{£(e, £0),7 =1,...,m,s =1,...,k}. The systems of positive roots ¥, so that 7§ is
an admissible representation of H are the systems W, associated to the lexicographic
orders

€1 > >€p >0 > >0y, €1 "> €p_1 > —€y >0 > >0,_1>—0,

Here, €, (V) = s0(2m).
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I—4 (so(2m,2n + 1),s50(2m, k) + so(2m,2n + 1 — k)),m > 2,n > 2. For a suitable
orthogonal basis €1,. .., €y,01,...,0, of ity

A={(e+te¢), 1 <i<ji<m}uU{(0,+6),1<r<s<n}uU{d,j=1,..,n}
O, ={£(e, £05),r=1,....m,s=1,... ,n} U{xe;,j=1,...,m}.

The systems of positive roots ¥y so that 7§ is an admissible representation of H are the
systems W associated to the lexicographic orders

€1 > > € >0 > >0, €1 > €1 > —€ > 01 > > 01 > —0.

Here, for M > 3 £, (Vy) = s0(2m). For m = 2,8, (V) = suy(e; £ €).

I-5 (s0(4,2n),u(2,n)1),n > 3. bg = u(2,n); has for root system ®(h,t) = {+(e; —
€2) FU{(0r—0s), k # s}U{E(e1—0;), £(e2—0;),j = 1,...,n}. (ho)r ~ u(2,n) has for root
system ®(ho,t) = {£(e1 —€2) FU{(0r, — I5), k # stU{x(e1 +9;), £(e2+9;), 5 =1,...,n}.
The system of positive roots W, so that 7§ is an admissible representation of H is the
systems W; _; associated to the lexicographic order

€1>_€2>51>"'>5n—1>_5n

Here, El = 5112(61 — 62).

I—-6 (s0(4,2n),u(2,n)2),n > 3. bg = u(2,n)y has for root system ®(h,t) = {£(e; +
€2) YU{(0k, —0s), k # s}U{E(e1+9;), £(e2—0;),5 = 1,...,n}. (ho)r ~ u(2,n) has for root
system ®(bo, t) = {£(e1 +e2) }U{(0k —s), k # s}U{E£(e1 —6;), £(e2+9;),5 =1,...,n}.
The system of positive roots ¥y so that 7§ is an admissible representation of H is the
systems Wq; associated to the lexicographic order

€L >€ >0 > >0,

Here, El = 5u2(€1 + 62).

I—-7 (s0(4,4),u(2,2)4,). br = u(2,2)11 = u(2,2); has for root system ®(h,t) = {£(e; —
62)} U {ﬂ:((;l - 52)} U {ﬂ:(El - 5j), j:(€2 — 5j),j = 1, 2} (hO)R = ’LUU(2, 2)11 has for root
system ®(ho,t) = {£(e1 — €2)} U {61 — 0o, } U {E(e1 +6;), (€2 +6;),j = 1,2}. We set
Wes = Sey—6;9¢s—6,- Wes NOormalizes A and switches epsilon’s in delta’s. The systems of
positive roots Wy so that 7 is an admissible representation of u(2,2);; are the systems
Uy 1, wesWy —1. Where, W, _; is the system associated to the lexicographic order

€1 > —€9 >51 > —(52

Here, El(\lll,—l) = 5112(61 — 62), El (wﬂg\lfl’_l) = 5112((51 — 52)

I—8(s0(4,4),u(2,2)12). ®(h,t) = {F(e7 — €2)} U{E£(d + d2)} U {£(e1 — 1), (&1 +
d2), (€3 — 61),E£(e2 — d2) }. (ho)r = wu(2,2)1 has for root system ®(ho,t) = {+(e; —
€2) } U{(01+02) } U{E(e1 +6;), £(e2 +6;), 7 = 1,2} The systems of positive roots ¥, so
that 7§ is an admissible representation of u(2,2);, are the systems Uy 1, wes Wi, Wi
is the system associated to the lexicographic order

€1>€2>51>52

Here, El(qjl,—l) = 5112(61 — 62), El (’LUE(;\Ile) = 5112(51 + 52)

I-9 (50(4,4),u(2,2)21 = u(2,2)2). (I)([],f) = {:f:(El + 62)} U {ﬂ:((Sl — 52)} U {ﬂ:(El —
8;), £(e2+6;),7 = 1,2}. (ho)r = wu(2,2)2 has for root system ®(ho,t) = {£(e1+€)} U
{(61 = 62), } U {=£(ex + ;), £(e2 — 6;), 7 = 1,2)}. The systems of positive roots ¥, so
that Wf is an admissible representation of u(2,2),; are the systems Uy 1, w.s¥; ;. Here,

£1(U11) = sus(er + €2), 81 (wesW1,—1) = sU2(d1 — 02).
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I—10 (so0(4,4),u(2,2)9). ®(h,t) = {£(e1 + €2)} U {£(01 + d2)} U {£(e1 — d1), £(e1 +
d2), £(€2461), £(e2—02)}. (ho)r = wu(2, 2)9; has for root system ®(ho, t) = {£(e1+€2) }U
{(61402), }U{E(e1+01), £(e1 — 2), £(e2 — 1), £(e2+ d2) } The systems of positive roots
v, so that ﬂf is an admissible representation of u(2,2)q are the systems Wy 1, wesWy ;.
Note for all of the pairs (s0(4,2n),u(2,n)) we have wh = by where w is an automor-
phism of s0(4 + 2n, C) which extends the linear operator of t* so that w(e;) = ¢€;,j =
1,2,’&U(5k) = —5k,k5 = 1,. o, n.
I—11 (sp(m,n),sp(m, k) + sp(n — k)). For some orthogonal basis €1, ..., €,,d1,...,0,
of ity

A:{(EliEJ),1§Z<jSm}U{2€],j:1,,m}
U{(6, £0s),1 <r<s<n}uU{2d;,j=1,...,n}

¢, ={£(e, £ 0s5),r=1,....m,s=1,...,n}.

The system of positive roots ¥y so that 7§ is an admissible representation of H is the
system W, associated to the lexicographic order

€L> > €y >01 > >0,

Here, & (V) = sp(m).

I—-12,...,T— 16 For all of these exceptional groups, we have U = T, it follows from the
tables in [16], [5] that the unique system W, so that ¢ C ['is for ¥, so that & = su(a,)
and this happens only for ¥, == WUgg a Borel de Siebenthal system of positive roots.
By explicit calculations we find that both Wpg N ®(h,t) and Ws N P(hy, t) are again a
Borel de Siebenthal system.

IT — 4 (so(2m,2n),s50(2m, 2k + 1) x so(2n — (2k 4+ 1))). We fix an outer automorphism
v of g so that v(e;) =¢,5 =1,....mv(d;) =6;,j =1,....,n—1,v(,) = —d, and
such that the fix point subalgebra of v is s0(2m,2n — 1) 4+ so(1). We set hy = 0 and for
k=1,...,n—1let hy € itg be so that (¢;—¢j11)(hi) = (€m—01)(hi) = 0, (8;—6i1) (hi) =
dikes (On—1+0n)(hg) =0,i=1,...,n—1,7=1,...,m—1. Let o, = Ad(exp(mihy))v. Then,
oy, is the involution which gives rise the pair (so(2m, 2n), s0(2m, 2n—(2k+1)) xs0(2k+1)).
For any oy, obviously, u* is the subspace spanned by €1,...,€,,01,...,0,_1.

O(hu) ={*(e, te), 1 <r<s<mpU{£(; £6;),1<i<j<2(n—k—1)+1, or
(6 £0;),2n -2k <i<j<n—-1}U{xe,r=1,... myU{£d,i=1,...,n—1}
U{t(e, £9),p=1,....mqg=1,...,2n — 2k — 1}.

The two system W, so that 7% is an admissible representation for H are: W, the
system associated to the lexicographic orders ¢; > ...€, > 6; > --- > 0, and V_ =
Ser—bnSemto, V. Here, & = s0(2m). It is obvious that oy (V) = W_.

The corresponding systems Wy, are: W, the system associated to the lexicographic
orders €; > ...€y, > 01 > -+ > 0,01 and V_ = S, W,. The systems Vg, » are: the
system associated to the lexicographic orders ¢ > ...¢,, > 6 > .-+ > d,_1 and the
image of this system by S, .

IT -6 (es2),faqa)). Here, € = suy(ay,) + sug, | = suy(oy,) + sp(3) Hence, from [3] it
follows there is a unique system of positive roots such that ¢, C [. The system is the

Borel de Siebenthal Wpg. The Vogan diagram of Vpgg is
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Here, aq, as, . . ., ag are the compact simple roots and as is the noncompact simple root.
The automorphism ¢ of g acts on the simple roots as follows

O'(Oég) = (9, O'(Oél) = O, O'(Oég) = (s, O'(Oé4) = (4.

Hence, 0(VUpg) = Upg. Let Z, = (ifIZ:) € itg,r = 1,...,6. Hence, u is the subspace

spanned by Zy, Zy, Z1 + Zg, Zs+ Zs. and t7 is spanned by Z; — Zg, Z3 — Zs. Let hy € it
be so that a;(hy) = ;0 for j = 1,...,6. Hence, hy = (jf"oz) and 6 = Ad(exp(mihs)).
Let 09 = #o = Ad(exp(mihs))o. Then, the fix point subalgebra for oy is isomorphic to
sp(1, 3) and the pair (eg(2), sp(1, 3)) is the associated pair to (eg(2), facs)). The simple roots

for Uy, Uy, respectlvely, are:

Qg, (Qy, Qu(ai’») _Qu( )a u( ): ( 6)'
Qg + oy +as) = qulas + oy + az), qulon) = qulas), @las) = qulas), aa.

The respective Dynkin diagrams are:

e — 0==0 o ®e—oO 0=<=0
o2 a4 qu(as) qu(al) qu(oz3) a4

An observation which follows from inspection of the Vogan diagram for each W, is:
for a compact simple root v in ¥ we have a + o(«) is not a root.

Next, we determine the holomorphic systems which satisfy the hypothesis in i) for propo-
sition 4.
ITT — 1,111 — 2 (su(m,n),su(k,l) + su(m — k,n—1) +u(1)). ho = su(k,n —1) + su(m —
k,1) + u(1). We follow notation in I—1. For 1 < k < mand 1 < [ < n, a nonzero
element of [[h Mp~, ho N p™], o N p*]is [[Yoc 460, Yei—5,1], Yo i -61]- A nonzero element
n [[bO Np~,bNp ] hNp ] H —€1+5l+17}/;-1—51]7}/5k+1_5l+1]' When k =m,1 <1 <n, we
fix1<i<m1<j<lL1<a<mil+1<b<nl<r<mlil+1<s<n,then
Y_eits;5 Yeamsy)s Yer—s.] = [Y5,-5,, Ye,—s5.] = 0. Thus, [[h np~, ho NpT], ho Np*] = {0}. It
readily follows [[hoNp~, b NpT],HNp*] = {0} as well the analysis when [ =n, k < m.
III — 3 (s0(2,2n),s0(2,2k) + s0(2(n — k))),n > 2. We use notation in I — 3. Here,
bNp= bonp™],hoNpt] 3 [Yoeiha, Ye—s.), Yeis,) # 0, and [[hoNp~, b NpT].hNpt] 3
[[Y—61—5n7 K1—51]’ }/;1+51] 7é 0.
IIT — 4 (so(2m,2),u(m,1)). The holomorphic system VU is so that ¥ N ®([,t) = {e; —
1 < j <k <mhUnd,(ht) = {6 —¢,1 <j<m} UNd,(h,t) = {0 +
€5, 1 S] S m} Then> [[Y—(él—er)a }/ek+61]7 }/ea-l-(h] = 0, and [[Y—(51+er)a Y;Sl—fk]a Y—Ea-l—él] = 0.
Hence,[[b Np~, bo Np*l ho Np*]=[lboNp~.h Np*L.hNp*] = {0}.
IIT -5 (s0(2,2n + 1),s0(2,k) + so(2n + 1 — k)) Notation as in I —4. For k& = 1,
[(bAp~ boNp ] hoNpT] > [Yoe, Yeus,] Yo—s,] # 0, and [[ho Np~, b NpTlhN
pt] > [[Y_51+57L,Y ,Y,,] # 0. k = 2n is symmetric to k = 1. For 2 < k < 2n — 1,
(6P~ boNp*], b Np*] 3 [[Yoeits, Ye—s.], Yer4s,] # 0, and [[hoNp~, b0 p*], hNp*] 5
[[Y—61+5m}/€1+51] 51—61] 7é 0.
III -6 (so*(2n),u(m,n—m)) 1 < m < n,n > 3, hy = s0*(2m) x s0*(2(n — m))).
The holomorphic system W is so that ¥ N ®([t) = {(; —¢;),1 <i < j <m}U{(e —
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€),m+1<i<j<n}k VN, (ht)={(e+¢),1<i<m<j<n}, ¥N,(ho,t) =
{ei+¢€),1<i<j<miU{(e+e¢)m+1<i<j<n} Form=12<yrsab
we have [[Y_ _c;,Ye 1c.], Yeutre,) = 0, hence [[h N p~,ho N p*], bo NpT] = {0}. Also,
I e Yarre Vi) = 0, whence ([0 M p=,b N p*],5 1 p*] = {0}. Analogously for
m = - 1 we obtain (I Ny, bo N p¥]. bo N p+] = [l N p. b N p*, b 1 p¥] = {0} For
2<m<n—2n2 4, wehave [H0p~, bop*], boNPT] 3 [[Yor e Vaeal: Yooy 7 0.
and [[bO N P, h N p+]a h N p+] > [[Y—61—62> YE1+6n]’ }/;24‘51171] 7& 0.

I -7 (sp(n,R),u(m,n—m)) 1 < m < n,n > 3, hy = sp(m,R) x sp(n — m,R)).
The holomorphic system W is so that ¥ N (L t) = {(; —¢),1 < i < j < m} U
{(e; —€j))ym+1<i<j<n} ¥VNd,(h,t) ={(e+¢)1<i<m<j<n}, and
UNd,(ho,t) ={(e;+€), 1 <i<j<m}U{(e+¢)m+1<i<j<n}.Forl<m<n
we have, [[b Np~,bhoN p+]7 bo N p+] 2 [[Y—El_ﬁerl’ }/25m+1]7 }/251] #0.For1 <m <n-2,
we have [[ho N p~, 6N pT, NPT D [Yooe, Yeten i), Yete,] #0. For m=n—1,n > 2
[[bO N P, h N p+]a h N p+] > [[Y—2en> K1+Evl]> Y'Enfl"l‘ﬁn] 7& 0.

ITI — 8 (eg(-14),50(2,8) +50(2)). By € b, 8,7 € b, if [[Y_g,,Ys], Y] were nonzero, then
the coefficient of oy in —fy + f + v would be 2, a contradiction. Thus, [[h N p~,ho N
pT],bo Np*] = {0}. Analogously we obtain [[hp Np~,hNpT],hNpt] = {0}.

ITI — 9 (e(—14), 58(2,4) 4 5u(2)), ho = s5u(2,4) + su(2). In notation of IIT — 8. ¥, (h) =
{Z djaj td3 € {072}7d6 = 1}7 Wn(bO) = {Zdjaj tdy = dg = 1}7 \I](L t) = {Zdjaj :
d3 - {0,2},d6 = 0} ,B = Oé1+042+043+0é4+0é5+046,ﬁh0 = a3+ Q4 + Q5+ g We obtain
[[bﬂp_, boﬂp+], boﬂp+] > [[Y_QG, Yﬁho]’ YB] 7£ 0. Next, we set 5{]0 = a1+ a3+ ay+ a5+ og.
Then By = a1 + g +2(as + oy + as5) + ag = az + (g + ag + g + 2(as + a5) + ag is a
root. Hence, [[bO np—,HN p+]a hn p+] 2 [[Y—ﬁhoa Yﬁ]’ Yae] 7é 0.

ITI — 10 (eg(—14),50*(10) +50(2)), ho = su(5, 1) +sl>(R). In notation of III — 8. ¥,,(h) =
{Z djOéj : d2 = d@ = 1}, \Ifn(f)o) = {Z djOéj : d2 = 0,d6 = 1} U {Oém}, \If([, t) = {Z djOéj :
dg :dﬁ :0}, we deﬁne 5[) :a1+0z3+0z4+0z5+a6,ﬁh0 :Oél+042+0é3+0é4+045+046
since o, —ay € Wy,(ho) we obtain [[h N p~, ho Np™], bo Np*] > [Yop,, Vs, |, Ya,—as] # 0.
Next, we set [y, = aq + as + az + as + a5 + ag. Then oy, — By, = 0 + a3 + 204 + a5 =
o+ (az+az+ag+as) is aroot. Hence, [[hoNp~, hNp*], 6Np™] > [[Yopg, . Ya, ], Yae] # 0.
ITT — 11 (e7(—25), 50*(12) +su(2)), ho = su(6,2). We use the notation set up by Bourbaki,
thus, for the holomorphic system aq,...ag are the compact simple roots and «x is the
noncompact simple root. «; is adjacent to the opposite of the maximal root. ®([,t) =
{Z djaj cdy € {0,2} dy = 0}, \I’n(b,f) = {Z djaj cdy = dy = 1}, (I)n(bo,f) = {Z djaj :
dy € {0, 2},d7 = 1}. Let 5(] = Oé3—|-(0él—|-Oz2—|-0z3+2(0é4—|-0é5—|-0é6)+047) = a1+a2+2(a3+
ag+os+ag)+ag, then —fFy+ oy, +as+ar = (1 +as+as+2a4+a5)+ (s +ay) is aroot,
hence [[Y_g,, Ya,.], Yagtas] # 0. Next, let By = ay + ag + 2(az + oy + a5 + ag) + a7, f =
ar + (g + az + 2(aq + as) + ag + a7) € ¥, (h) and —ay, + By as well as —ay,, + Sy + 0
are roots, hence [[Y_o,,, Y], Y] # 0.

ITI — 12 (e7(—25), e6(—14) + 50(2)) ho = 50(2,10) + sl,(R). We use the notation ITI — 11,
(I)([,t) = {Zdjozj : d1 = d7 = 0}, \Ifn(b,t) = {Zdjozj : d1 = d7 = 1}, (I)n(bo,t) =
{> djo; : dy = 0,d7 = 1} U {a, }. A classical algebras computation yields £y = oq +
(ag 4+ as+ 204+ 205 + s +a7) € U, (h), = a5+ as+ ar € ¥, (ho) and that —F + ay,
as well as (= + aum) + By, = o1 + a2 + 2(as + a4 + a5 + ag) + o7 are roots. Thus,
[[Y_ﬁh, Yﬁho]’ Yﬁ] 7§ 0. NOW, Ay, — Q1 € \Ifn(f)) and for ﬁho = g+ Q3+ o+ o5+ 0+ O, Bh =
a1+ o + a3 + oy + a5 + Qg + p we obtain [[Y_ﬁho’ Yﬁh]’ Yam—a1] # 0.

IIT - 13 (su(n,n),s0*(2n)),n > 2. hy = sp(n,R)). We make use of the notation in
I — 1. The outer automorphism o acts on t* as follows o(¢;) = —6,—j41,5 = 1,...,n.

22



Hence u* is the subspace spanned by €; —0,_;41,j = 1,...,n we note that o(3) # g for
at least one noncompact root.
IIT — 14 (so(2,2n),50(2,2k+1)+s0(2n—2k—1)). We make use of the notationin I — 3
The outer automorphism o acts in t* as o(e1) = €1,0(0;) =6;,7=1,...,n—1,0(5,) =
—0,,. In this case o() # [ for at least one noncompact root f3.

Let 8 be a noncompact root so that o(3) # § then by, (g (resp. bg,(s)) is spanned by
Xp =Yg+ o(Yp) (resp. Vg :=Ys —o(Yp)). Since, [[X_g, V3], V5] # 0 we have that the
hypothesis in condition ii holds for the pairs IIT — 13, IIT — 14.
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