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a b s t r a c t

The configurational entropy per site of a lattice gas model with non-additive interactions
between adsorbed particles for square, triangular and honeycomb lattices is discussed in
the present study. Themodel used here assumes that the energywhich links a certain atom
with any of its nearest-neighbors strongly depends on the state of occupancy in the first
coordination sphere of that adatom. By means of Monte Carlo simulations in the canonical
ensemble by following the algorithm of parallel tempering and the thermodynamic
integration method the configurational entropy per site has been calculated. By analyzing
the behavior of the configurational entropy per site, the different low-temperature-ordered
phases are described. The dependency of the critical temperature of the system as a
function of characteristic parameters of the model is established.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years the development and improvement of powerful experimental techniques for surface analysis on the
atomic scale has substantially improved our knowledge about the energetic surface topography and the understanding of
themutual interactions between particles deposited on such surfaces. Systematic studies have encouraged the development
of adequate refined atomistic models for describing the interaction energies between adsorbed particles. Such models are
capable of including different kinds of energetic coupling in the statistical description of several thermodynamic processes
taking place on solid substrates. The non-additivity of lateral interactions in fact reflects the role of triple (quadruple, etc.)
interactions as corrections to cases where pair-wise interactions are not enough for describing experimental observations.
In particular, the non-pair-wise (non-additive) interactions have been considered for explaining different experimental
findings in surface science, especially in metal on metal interactions. For this kind of coupling, it is extremely important
to understand the phenomena occurring on the surface of a metal. These multibody interactions have been studied in
several systems such as H on Pd(100) [1], O on W(110) [2–4] and H on Fe(110) [5–7], just to name a few of them. The
multibody interactions can be interpreted with the non-additivity concept, which means that the lateral energy between
nearest-neighbor adsorbed particles depends on how many particles are present (or absent) in their environment. This
situation has been reported in several experimental systems: (i) monolayer growth in a heteroepitaxial system with the
presence of heterogeneities Ag/Au(100),Ag/Pt(100),Au/Pt(100),Au/Pd(100),Au/Ag(100), Pt/Ag(100), Pt/Au(100) and
Pd/Au(100) [8,9] and (ii) the electrochemical phase formation, Ag on Au(111) and Au(100) [10–13].

In the standard lattice gasmodelwhere additive interactions are included, the symmetry between particles and vacancies
has been preserved [14]. However, in several experimental arrangements, the behavior of the thermodynamic quantities
and the phase diagram of the system have shown clear signals of non-equivalence between particles and vacancies. In fact,
adsorption isotherms for methane, ethane, and other adsorbates on AlPO4-5 and SAPO-5 are clearly unsymmetrical around
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half coverage [15–19]. In fact, for experimental systems where non-additive interactions are present, a phase diagram
asymmetry has been reported [20]. These asymmetries can be obtained by using Hamiltonians with terms accounting
for more complex ad–ad interactions. Surface restructuring is another example of a system where more complex ad–ad
interactions take place [21–25]. Another evidence of non-additivity is the tendency to dimer formation. This fact is observed,
for example, in the adsorption of Cu and Ni on W(110) with thermal desorption spectroscopy analysis [26].

Since the seminal studies of non-additive interactions, it was established that the non-additivity is able to modify
the critical temperature of the phase transitions occurring in the systems. In recent years, much work has been done in
this direction [27]. In fact, statistical mechanics of non-additive adsorbed monolayers has been the subject of analytical
treatment by means of the mean-field approximation (MFA) [28–30] and quasi-chemical approach [31], being specially
analyzed in the case of attractive interactions [29]. However, repulsive interactions also represent an interesting case
because (a) experimental phase diagrams corresponding to many systems in the presence of surface restructuring are
explained in terms of those interactions [32–34]; (b) the tendency to dimer formation, which seems to be relevant in several
systemsmentioned above, can be predicted on the basis of such kinds of coupling; and (c) a rich variety of non-symmetrical
phase diagrams can be described.

The non-additivity concept has been applied to monomeric adsorption in lattice gas models with repulsive interactions
where the adsorption thermodynamics was analyzed [31,32]. The authors were able to identify important results: (i) a rich
variety of ordered structures were observed in the adlayer, (ii) the formation of ‘‘k-mers’’ (chains of monomers adsorbed on
k adjacent lattice sites) at high coverage and (iii) the symmetry of particle–vacancy (strictly valid for additive interactions)
is broken and, consequently, the adsorption properties (adsorption isotherms, differential heat of adsorption, etc.) are
asymmetric with respect to half coverage. Similar results have been found in adsorption of monomers in nanotube
bundles [33].

To be more specific, in Ref. [31], a Monte Carlo study of the adsorption of monomers with non-additive interactions on
square lattices has been presented. Adsorption isotherm, adsorption energy and isosteric heat of adsorptionwere calculated
by means of Monte Carlo simulation in the grand canonical ensemble. The main results can be summarized as:

(i) whether the non-additivity weakens the c(2 × 2) ordered phase (as compared to the additive case), it is possible
to distinguish the presence of different low-temperature ordered phases depending on the surface coverage. These
findings are corroborated by very wide plateaus in the adsorption isotherms, steps in the isosteric heat of adsorption
and weak peaks in the thermodynamic factor.

(ii) the formation of ‘‘k-mers’’ is corroborated in a specific range of coverage and interactions. It is interesting to
mention that the structures represented by ‘‘k-mer phases’’, like ‘‘dimer’’ or ‘‘tetrameric phases’’ are observed in
experiments [26].

(iii) if the non-additivity tends to reinforce the c(2 × 2) phase, there exists evidence of the presence of a continuous phase
transition from the c(2 × 2) structure to disorder around half coverage.

For a better description, in Fig. 1 the adsorption isotherms are shown for different degrees of non-additivity and a fixed
low temperature (low temperature should be understood as lower than a critical temperature). The plateauwidth as well as
the critical point depends onhowstrong are the non-additive forces. For other geometries, such as triangular andhoneycomb
lattices, the results are quite similar [32].

The main aim of the present paper is to analyze the dependence of the configurational entropy in the presence of
non-additive interactions for several geometries (squares, triangular and honeycomb lattices) by means of Monte Carlo
simulation and the thermodynamic integration method (TIM) in the canonical ensemble [34–40]. These techniques allow
us to identify the formation of new ordered structure. TIM uses the energy of the system and calculates the configurational
entropy via integration. Thus, the dependence of the critical temperature as a function of the non-additivity parameter can be
estimated. The paper is organized as follows. In Section 2, the lattice gas model for non-additive interactions is presented.
In Section 3, details of Monte Carlo simulations and TIM in the canonical ensemble are given. Results and discussion are
presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. The non-additive lattice model

Let us consider an idealized solid surface of either square, honeycomb or triangular symmetry. The minima of the
potential on the surface form a two-dimensional array with constant a, and coordination number z (=4 for square, 3 for
honeycomb and 6 for triangular array). The considered surface will be a homogeneous potential surface ‘‘as seen’’ by an
adsorbed particle. It is supposed that each adsorption site can be occupied only by one particle; the multiple occupation of
sites is excluded. In fact, the Hamiltonian can be described by:

H = −ε

N
i=1

ci −
N

⟨i,j⟩

wijcicj (1)

where i and j denote the adsorption sites and the local occupation variable ci is 0 (1) if the adsorption site is empty (occupied).
ε reflects the interaction between the substrate and the adatoms, being independent of temperature and coverage (in the
simulations, ε can be considered equal to zero without losing generality). The adsorbate–adsorbate interaction, wij, is
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Fig. 1. Adsorption isotherms ofmonomers on square lattices for a fixed temperature (w/kBT = 10) and different values of the non-additivity parameter P ,
as indicated. The inset shows the adsorption isotherm for P = 0.2where the plateaus are clearly identified and associated to the different low-temperature
ordered phases.

assumed to depend on the occupation state of the surroundings of a given site i. Following the lines of the thinking presented
in previous works [31,32], the simplest non-additive interaction energy is considered. We assume that wij have different
possible values wm (m = 1, 2, . . . , z) depending on how many first neighbors are actually present in the vicinity of a
given atom. The case where wm varies linearly with m and wz = w is considered. Following Refs. [28,29], a non-additivity
parameter is introduced, P = w1/wz , as a measure for the stronger to the weakest bond possible in each system:

wm

w
=

Pz − 1
z − 1

− m
P − 1
z − 1

. (2)

3. Monte Carlo simulation and thermodynamic integration method in canonical ensemble

Let us consider a lattice gas of N interactive particles, each of which can only occupy a single empty site on an array ofM
sites, at temperature T . The entropy S, can be written as:

∂S
∂T


M,N

=
1
T


∂U
∂T


M,N

(3)

where U represents the internal energy and

S(N,M, T ) = S(N,M, To) +

 T

To

dU
T

. (4)

By using the last expression, the entropy at the equilibrium state can be calculated. This procedure is called
thermodynamic integration. The reference state S(N,M, T0) is trivial to be known:

lim
To→∞

S(N,M, To) = kB


M
N


= kB ln


M!

N!(M − N)!


(5)
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Fig. 2. Configurational entropy per site for monomers adsorbed on square lattices, P = 0.2 and different values of w/kBT , as indicated.

where kB is the Boltzmann constant. By using Stirling’s approximation in Eq. (5), one can obtain:

s(θ, To → ∞)

kB
= −θ ln θ − (1 − θ) ln(1 − θ) (6)

where s = S/M is the entropy per site.
On the other hand, the integral in Eq. (4) can be evaluated by using Monte Carlo (MC) simulation. For this purpose, an

adsorption–desorption algorithm is performed in the canonical ensemble applying the method of parallel tempering or
replica exchange. This technique is useful for models with slow dynamics because the system is able to escape from local
minima faster. The characteristic times to escape from these minima grow rapidly as the temperature decreases and upon
increasing the size of the system [41–45].

Themain idea of parallel tempering consists in simulatingR replicas of the original systemwhere each replica is simulated
at different temperatures. The temperature range includes both phases of high and low temperature. Parallel tempering
allows the exchange of systems at different temperatures generating a good sampling of the phase space.

Each attempt of changing the configurational state of the system is performed simultaneously for each one of the R
replicas by using in each case a convenient transition probabilitywhich obviously depends on the temperature of the sample.
As a consequence, such a simulation of R replicas requires R times more computational effort, but the parallel tempering
makes 1/R times more efficient than a standard MC simulation. The method consists of two procedures. The first one, a
standard MCmethod is used to simulate each replica which is updated by using the Metropolis rule [43]. In the second one,
a trial exchange of two configurations Xn and Xm (corresponding to the n-th and m-th replicas) is attempted and accepted
with probability:

W (Xnβn/Xmβm) =


1 for ∆ < 0
exp(−∆) for ∆ > 0 (7)

where ∆ = (βm − βn) [H(Xn) − H(Xm), ] and H is the Hamiltonian of the replica, and βm(n) = 1/kBTm(n). The temperature
range (Tm−Tn) = (Thigh−Tlow)/(R−1) includes the phases of high temperatures and low temperatures. Following Ref. [46],
the replica exchange is restricted to the casem = n+ 1. The way of combining the number of elementary steps of standard
MC and the number of replica exchanges is as follows. The simulation starts with a random initial condition; a few MC
steps (MCSs) of standard MC are applied to replica 1 (each MCS consists of M elementary steps of standard MC). The same
procedure is done successively for each replica but taking the last configuration of replicam as the initial condition of replica
m+ 1. A parallel tempering step (PTs) is defined asM × R cycles, each cycle being one elementary step of standard MC plus
one replica exchange. After those cycles, the algorithm stops, then the observables are calculated. The approximation to
thermodynamic equilibrium is usually reached in 106 PTs. Then, mean values of the internal energy, U , are obtained by
averaging over 106 PTs configurations. Then, U(T ) is numerically integrated.

4. Results and discussion

The entropy per site in the case of non-additive repulsive interactions between adparticles on a square lattice is analyzed
in the first place. By using lattice sizes larger than L = 128, it was verified that size effects are negligible. The dependence
of the entropy on the temperature is discussed first. In fact, Fig. 2 shows the entropy for different values of temperature in
units of w/kBT , for a particular non-additive situation, P = 0.2 as indicated. For all temperatures considered, in the limit
θ → 0 (θ → 1.0), the entropy tends to zero as expected. At very high temperature, the entropy is symmetric with respect
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Fig. 3. Configurational entropy per site for monomers adsorbed on square lattices, w/kBT = 20 and different values of the non-additivity parameter P , as
indicated.

to θ = 1/2 which corresponds to the systems without interactions (Langmuir case: lattice gas without lateral interactions).
As the temperature decreases, the symmetry around half coverage is broken. The entropy tends to zero at the coverage
where the ordered structures are formed and where the plateaus in the isotherms appear. These minima are deeper upon
decreasing the temperature (always below the critical point, i.e. at P = 1, kBTc/w = 0.567). For a more clear analysis,
different adsorption regimes can be defined for T < Tc :
(a) 0 ≤ θ ≤ 1/2: the particles adsorb in such a way as to avoid the occupation of nearest-neighbor (NN) sites. In this

regime, the c(2 × 2) structure, which corresponds to an ordered lattice gas phase (or, in magnetic language, to the AF
ordered two-dimensional phase), begins to be formed (see Table 1). The entropy shows a maximum around θ = 1/4 at
low temperatures.

(b) 1/2 ≤ θ ≤ 2/3: in this regime the structure c(2× 2) begins to be destroyed and the entropy increases until it reaches a
maximum, which depends on T . Then, the entropy falls because a new structure is formed at 2/3 monolayer coverage.
This structure is characterized by domains of parallel ‘‘zig–zag ’’ strips oriented at ±45° from the lattice symmetry axes,
separated from each other by strips of single empty sites (see Table 1).

(c) 2/3 ≤ θ ≤ 4/5: the situation is similar to (b), the only difference is the formation of the so-called ‘‘tetrameric ordered
structure’’, because it resembles ordered tetramers on a square lattice (see Table 1).

(d) 4/5 ≤ θ ≤ 1.0: finally the entropy increases, goes to a maximum at θ = 0.88 and decreases until the lattice is filled at
full coverage.

It is of interest to know the behavior of the system below the critical point because in this range of temperatures all
the new reported structures are formed. Fig. 3 shows the entropy versus surface coverage for different situations of non-
additivity and at a fixed temperature w/kBT = 20.0. At the additive situation, P = 1.0, the entropy is symmetric around
θ = 1/2, as a consequence of the equivalence between particle and vacancy. For all the cases considered, the entropy
shows amaximum around θ = 1/4. Because the interactions are weakening as P decreases, this maximum increases. In the
situation θ > 1/2, the corresponding minima for the new structures appear with different intensity, because the structures
become stronger as P < 1.0. The minimum at θ = 2/3, is more deep as the ‘‘zig–zag structure’’ is reinforced, which occurs
as P < 0.7. The minimum for the ‘‘tetrameric structure’’ only appears as P < 0.5.

The configurational entropy is useful in order to estimate the influence of non-additive interactions on the critical
temperature for the main structures formed. The entropy versus kBT at the critical coverage presents an inflection point
at Tc . This behavior is shown in inset (a) of Fig. 4, for P = 0.7. To identify the maximum, the derivative of the entropy with
respect to the temperature is shown in inset (b) of Fig. 4. For the c(2 × 2) ordered phase (half coverage), the dependence of
Tc on P can be calculated. Thus, Fig. 4 presents Tc(P) (in units of critical temperature for the additive case, kBTc/w = 0.567)
on the non-additive parameter. Bymeans of a linear fit, one gets Tc(P) = 0.10(2)+0.47(2)P . This nearly linear dependence
is in complete agreement with previous work on adsorption thermodynamics [31]. Note that, for the additive case (P = 1),
the critical temperature is the expected value.

Now, the behavior of the entropy for a system with the Hamiltonian given by Eq. (1) in a triangular lattice is analyzed.
In Fig. 5, the entropy for P = 0.2 and different temperatures is shown. As the temperature begins to drop, a first minimum
appears at θ = 2/3, due to the (

√
ι ×

√
ι)∗ ordered phase is formed. This low-temperature ordered phase has been already

reported for additive systems [47]. Anotherminimum appears at θ = 1/3, which corresponds to a (
√

ι×
√

ι) ordered phase,
also reported for additive systems. At very low temperature, other minima at θ = 2/5, 1/2, 3/4 and 5/6 can be identified
(see Table 1). All these minima separate different adsorption regimes and determine the specific concentrations where new
ordered structures appear, all of them in correspondence to those reported in a previous work [32].
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Fig. 4. Linear dependence of Tc versus P (in units of Tc(P = 1)) for the c(2 × 2) ordered phase. Inset (a): configurational entropy versus kBT for P = 0.7.
Inset (b): derivative of the configurational entropy with respect to temperature for the case shown in the inset (a).

Table 1
Typical snapshots of the low temperature phases for square, triangular and honeycomb lattices as indicated.
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a b

Fig. 5. Same as Fig. 2 for triangular lattices. The minima indicate the different structures formed in the adlayer.

Fig. 6. Configurational entropy per site for monomers adsorbed on triangular lattices, w/kBT = 20.0 and P = 0.2. The minima, indicating the different
structures formed in the adlayer, are marked with arrows. The inset shows the variation of the critical temperature with the non-additive parameter for
the (

√
ι ×

√
ι) and (

√
ι ×

√
ι)∗ ordered phases.

To see that the minima of the entropy are a clear indication of the presence of the new ordered structures which were
found through the analysis of the isotherms [32], in Fig. 6 the entropy for P = 0.2 is shown. The arrows are used to point
out the minima corresponding to those structures. The dependence of the critical temperature with P is also estimated, at
θ = 1/3 and θ = 2/3, with the same method used before (see inset in Fig. 6). Tc for (

√
ι ×

√
ι)[(

√
ι ×

√
ι)∗] ordered phase

decreases [increases] as a function of P in complete agreement with the isotherms analysis [32]. The (
√

ι×
√

ι)[(
√

ι×
√

ι)∗]
structure is weakened [strengthened] as P decreases [increases]. The linear fits for each structure in the inset of Fig. 6 are:

Tc = 0.32P + 0.01 for θ = 1/3 and
Tc = −0.01P + 0.34 for θ = 2/3,

respectively. As it is expected, both lines tend to the same ordinate to the origin, Tc , in the additive condition.
Finally, in Fig. 7 the entropy for the honeycomb lattice, several values of P and low temperature are presented. The

curves present minima at θ = 1/2, 5/8 and 3/4, which correspond to different ordered structures (see Table 1) [32]. The
minimum for θ = 3/4 only appears for P < 0.7. In the inset, the behavior of Tc at half coverage is shown. The linear fit is
Tc = 0.34P + 0.03. As before, this behavior is in complete agreement with the conclusions drawn from the isotherms [32].
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Fig. 7. Same as Fig. 2 for honeycomb lattices. The inset shows the variation of the critical temperature with the non-additive parameter for the ordered
phase occurring at half coverage.

5. Conclusions

By using the thermodynamic integration method, the configurational entropy per site was calculated for a lattice gas of
monomers adsorbed on square, triangular andhoneycomb surfaces. The traditional andwidely used assumption of additivity
for the lateral interaction energy between adatoms was replaced by a more realistic one for several experimental systems:
the energy between nearest neighbor depends on the state of occupation in the first coordination sphere of each adatom.

A non-additivity parameter P was introduced as a measure for the stronger to the weakest lateral coupling possible
in each system. For the case P less than one, it is possible to identify minima in the configurational entropy per site at
defined coverageswhere different ordered structures are formed in the adlayer. Theseminima allowus to conclude about the
existence of low-temperature ordered phases in each one of the considered lattices, in complete agreement with previous
results coming from the adsorption isotherms [31,32].

Finally, the critical temperatures corresponding to the different ordered phases occurring in the studied adlayers were
estimated by plotting the configurational entropy per site (and its derivative) as a function of the temperature. The inflection
on s/kB (the peak in its derivative) determines the critical temperatures. In all cases, a nearly linear dependence of TC with
the non-additivity parameter was established. A more exact determination of TC based on Monte Carlo simulations in the
canonical ensemble and finite-size scaling theory will be the object of future studies.
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