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ABSTRACT

González Trilla, G.; Pratolongo, P.; Beget, M.E.; Kandus, P.; Marcovecchio, J., and Di Bella, C., 2013. Relating
biophysical parameters of coastal marshes to hyperspectral reflectance data in the Bahia Blanca Estuary, Argentina.
Journal of Coastal Research, 29(1), 231–238. Coconut Creek (Florida), ISSN 0749-0208.

Salt marshes occupying the tidal fringe of estuaries and protected coasts provide valuable ecosystem services, and
remote sensing is a powerful tool for their large-scale monitoring. However, in order to apply remote sensing techniques
to evaluate the ecological state of salt marshes, a deeper understanding is needed about the interactions between field
biophysical parameters and the sensor’s reflectance. The main objective of this work is to analyze and quantify the
influence of different biophysical parameters characterizing stands of Spartina alterniflora marshes in the Bahia Blanca
Estuary, Argentina, on their spectral response. Spectral reflectance at high resolution was measured in S. alterniflora
canopies under natural conditions, manipulating standing biomass by means of successive harvestings. Reflectance data
were acquired using a FieldSpect spectroradiometer, which measures in the visible, near-infrared, and shortwave-
infrared spectral bands. Based on these reflectance data, spectral indices such as the normalized difference vegetation
index (NDVI) were calculated for each biomass condition. Biomass, leaf area index (LAI), percent canopy cover (PCC),
water content, and soil properties were also evaluated. LAI, PCC, and biomass were positively correlated between each
other. As a general trend, as biomass decreased, absorption in red wavelengths decreased and reflectance in near-
infrared increased. Several indices explained the variability in LAI, biomass, and PCC. For example, NDVIRouse had a
positive regression with PCC (R2¼0.80, N¼75) and LAI (R2¼0.67, N¼75). Results indicate that LAI, biomass, and PCC
of Spartina alterniflora could be accurately determined from spectral data.

ADDITIONAL INDEX WORDS: Coastal marshes, spectral indices, remote sensing, biomass, LAI, canopy cover,
biophysical parameters, Spartina alterniflora.

INTRODUCTION

Coastal wetlands provide widely recognized ecosystem

services. For instance, salt marshes have been proven to act

as effective storm buffers, as well as nutrient and fine sediment

sinks, and these functions translate into valuable services such

as shoreline protection and improvement of estuarine water

quality (Mitsch and Gosselink, 1993). Because functions and

values depend on the ecological integrity of coastal wetlands

(Bedford and Preston, 1988; Brinson, 1988; Daiber, 1986),

there is a growing interest in using environmental indicators to

quantitatively determine changes in the health of coastal

ecosystems (Klemas, 2001).

Landscape-level indicators (OECD 1998, 1999, 2001; O’Neill

et al., 1988, 1997) become particularly important as we shift to

larger temporal, spatial, and organizational scales in order to

study and compare the cumulative effects of coastal ecosystem

degradation over entire landscapes and regions (Haines-

Young, Green, and Cousins, 1993). There are important

landscape-level environmental indicators that can be extracted

from remotely sensed data, such as changes in the size and

configuration of coastal habitats and vegetation cover. These

indicators can be related to estuarine biodiversity and

condition (Arnold and Gibbons, 1996; Klemas, 2001; USDA

Forest Service, 1996), allowing considerable savings of time
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and money, especially if large coastal areas need to be

monitored (Klemas, 2001).

One commonly used and accepted parameter for evaluating

ecosystem condition is biomass and/or net primary productiv-

ity. Both terms refer to the dry weight of plants (expressed as

grams dry weight per square meter for the biomass and usually

as per year for the productivity). Rapid changes in biomass and

primary production may be signs of illness or profound disease

in an ecosystem, where change can include both accumulation

and loss of biomass (Jensen et al., 1998). However, field

estimations of these indicators are particularly complicated in

the case of salt marshes, given their inherent heterogeneity

and the presence of large spatial gradients. To overcome the

problems of direct observation, broad-scale remote monitoring

techniques are increasingly being used (Vis, Hudon, and

Carignan, 2003). Besides biomass, parameters such as percent

cover (Heege, Bogner, and Pinnel, 2004; Pinnel, Heege, and

Zimmermann, 2004) and leaf area index (LAI) (Dierssen and

Zimmerman, 2003) can also be estimated through the use of

remote sensing, providing a tool for quantifying biophysical

and ecological parameters describing macrophyte stands,

which often are required inputs to ecosystem models (Silva et

al., 2008).

Moreover, the use of remotely sensed images allows multi-

temporal studies and provides comprehensive information

from surrounding areas (Vis, Hudon, and Carignan,

2003).The next generation of optical Earth-observing satellites

includes sensors having many additional spectral channels and

higher spatial resolution, which will offer new opportunities to

provide information about site conditions. With the advance of

sensor technology and processing techniques, vegetation

characteristics such as species composition, LAI, biomass,

absorbed photosynthetically active radiation, and even chem-

ical composition can be determined by analysis of radiometric

data (Peñuelas et al., 1993; Tilley et al., 2003). To take

advantage of these technologies, a deeper understanding is

needed about the interaction between field biophysical param-

eters and the reflectance captured by remote sensors.

The purpose of this study was to evaluate key biophysical

parameters (biomass, canopy cover, and LAI) characterizing

stands of Spartina alterniflora marshes in the Bahı́a Blanca

Estuary, Argentina, and build models to relate these param-

eters to commonly used spectral indices derived from remotely

sensed data. Through these models, we expect to test the

suitability of remotely sensed vegetative indices for differenti-

ating coastal marshes and assessing their ecological condition.

MATERIALS AND METHODS

Study Site

The Bahı́a Blanca Estuary is a mesotidal coastal system

located in Argentina, along the Atlantic coast of South America,

between 388450 S and 398250 S and between 618450 W and 628250

W (Figure 1). This system extends over 2500 km2 (Melo, 2004)

and is dissected by a series of major channels running from the

NW to the SE. The mean tidal amplitude ranges from 2.2 to 3.5

m, and the spring tidal amplitude ranges from 3 to 4 m (Piccolo

and Perillo, 1990). Two small rivers discharging less than 3 m3

s�1 enter the estuary from the northern shore and represent the

main sources of freshwater to the system (Carbone et al., 2008;

Perillo et al., 1987). Freshwater inflow from other sources is

restricted to periods of high local rainfall (Melo et al., 2003).

Being in the northern limit of the Patagonian desert,

seasonally hypersaline conditions commonly develop because

of the high evaporation rates (Freije et al., 2008), and the

coastal zone extends through salt flats where the low soil water

potential eliminates all but the most tolerant halophytes

(Pratolongo et al., 2009). Plant associations in the study area

have been previously described by Verettoni (1961). Spartina

alterniflora marshes are the only vegetation type appearing in

the intertidal fringe, below the level of the mean high tide.

These marshes commonly form discontinuous patches near the

mouth of the estuary (Botté et al., 2008; Isacch et al., 2006;

Peláez, Mazzon, and Pratolongo, 2009; Perillo and Iribarne,

2003).

Sampling and Data Collection

In order to analyze and quantify the influence of several

biophysical parameters on the spectral behavior of S. alterni-

flora marshes at the Bahia Blanca Estuary, we measured the

spectral response (in reflectance units) for 23 different stands of

S. alterniflora located on several islands, as well as along the

coastal fringe. We included in the analysis different types of

marshes, in terms of elevation, soil characteristics, and plant

height. Sampling areas were chosen in order to represent the

range of environmental variation along the estuary. Surveys

were performed in February 2009. Reflectance data were

acquired using an ASD FieldSpect (Analytical Spectral

Devices, Boulder, Colorado) visible, near-infrared, and short-

wave-infrared handheld radiometer (400-2400 spectral range,

258 Instantaneous Field of View [IFOV]). The radiometer was

handled 80 cm above the soil surface in order to determine a 37-

cm-diameter circle on the soil. A 50-cm-diameter circle

containing the 37 cm one was used as the sample unit, in order

to cover a buffer zone of influence of the surrounding

vegetation. Measurements were performed under natural

conditions and varying standing biomass by means of partial,

random, successive harvesting of tillers, according to a

procedure specially designed for the present work. For each

site, a series of measurements was performed, the first

corresponding to the natural condition before harvesting (T1),

followed by a variable number of measurements performed

after successive partial harvestings, and ending the series with

a measurement on bare soil (Figure 2). The number of

measurements constituting a series (four to six) was adjusted

to the initial biomass present in the site. This method was

designed in order to keep a constant soil influence for the

different biomass scenes.

Since S. alterniflora grows in the intertidal zone, spectral

measurements were taken at low tide to avoid water influence

on the signal. Fieldwork was performed between 1000 and 1600

local time (3 h before and after nadir sun’s position) to diminish

shadow influence.

For this study, we considered the effects of standing biomass,

LAI, and percentage canopy cover (PCC) on the spectral

response. Standing biomass was determined as the vegetation
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weight after being dried at 708C for 48 h. LAI was estimated as

the sum of each individual leaf area, which was obtained by

approximating the leaf to a triangle shape (measuring length

and width), since S. alterniflora leaves are nearly a gently

tapering isosceles triangle (lanceolate). Canopy cover was

estimated from pictures taken vertically for each scene using

the CAN EYE percentage canopy cover program (https://

www4.paca.inra.fr/can-eye/). These biophysical parameters

were determined for each scene over the 50 cm circular sample

units. In addition, average plant height and tiller density were

determined for each site, at the different harvesting scenes.

Superficial soil samples from the 23 S. alterniflora sites were

analyzed for texture, water content, and organic matter.

Several synthetic indices were calculated (Table 1) and

related to field observations. A set of vegetation and soil indices

was calculated in order to determine the suitability of different

sensors (e.g., different bandwidths and central wavelengths)

for estimating biomass, cover, and LAI. To select the indices

that better explain these variables, a canonical correspondence

analysis (CCA) was performed, followed by regression analysis

on the selected indices.

Spectral Indices

The normalized difference vegetation index (NDVI) and SR

(simple ratio) are structural indices (Eitel et al., 2008), MCARI

(modified chlorophyll absorption reflectance index) is a chloro-

phyll index (Daughtry et al., 2000), and MSAVI (modified soil-

adjusted vegetation index) and OSAVI (optimized soil-adjusted

vegetation index) are indices designed to minimize the soil

noise (Qi et al., 1994). The NDVI is based on the contrast

between the maximum absorption in the red band due to

chlorophyll pigments and the maximum reflection in the

infrared caused by leaf cellular structure. The photosynthet-

ically active radiation absorbed by vegetation (APAR; Asrar,

Figure 1. Location of Bahia Blanca Estuary (BBE) and Spartina alterniflora marshes in the study site.

Figure 2. Sampling design with partial successive harvestings, specially

developed for this work. The spectral reflectance of the same site at different

times (T1 ... T5) was acquired. Between two consecutive times, plants were

randomly harvested, diminishing canopy cover/biomass from an initial high

biomass scene (T1) to a final zero biomass scene (bare soil, T5). Scissors

represent random harvests.
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Kanemasu, and Yoshida, 1985), has a direct and almost linear

relation with NDVI, especially when the leaves are horizontal

and the soil is dark (Sellers, 1989). The total biomass and green

biomass are also closely related to the NDVI (Kennedy, 1989;

Tucker, 1979). Percent green cover and also LAI have a positive

association with the NDVI, especially when vegetation does not

completely cover the ground (Kennedy, 1989; Kerr, Lagouarde,

and Imbernon, 1992). Simple ratio vegetation indices directly

compare signals between the reflection and absorption peak of

chlorophyll pigments, which means they are sensitive to

changes in chlorophyll content (Slater and Jackson, 1982).

Chlorophyll indices have been successfully used to retrieve

plant chlorophyll concentration and LAI (Filella and Peñuelas,

1994; Gitelson and Merzlyak, 1996; Pinar and Curran, 1996).

Leaf chlorophyll indices are also sensitive to variations in leaf

cover and biomass (Eitel et al., 2008). MCARI is based on the

chlorophyll absorption ratio index (CARI; Kim et al., 1994),

which measures the depth of chlorophyll absorption at 670 nm

relative to the green reflectance peak at 550 nm and the

reflectance at 700 nm. CARI was designed to reduce the

variability of the photosynthetically active radiation due to the

presence of diverse nonphotosynthetic materials. It uses bands

corresponding to the minimum absorption of the photosynthet-

ic pigments, centered at 550 nm and 700 nm, in conjunction

with the chlorophyll a maximum absorption band, around 670

nm.

Indices designed to reduce soil noise (MSAVI and OSAVI)

derive from the first soil-adjusted vegetation index (SAVI;

Huete, 1988; Huete, Justice, and Liu, 1994). The main

shortcoming of SAVI is that a soil-brightness correction factor

(L) has to be specified, creating a circular logic problem of

needing to know the vegetation amount/cover before SAVI can

be applied, the results of which are supposed to give

information on the amount of vegetation/cover. This leads to

the use of the default L value of 0.5. Qi et al. (1994) developed

the modified soil-adjusted vegetation index (MSAVI) to more

reliably and simply calculate L based on the slope of the soil line

from a plot of red versus near-infrared brightness values. The

MSAVI seeks to address some of the limitations of NDVI when

applied to areas with a high degree of exposed soil surface

(Jiang et al., 2007). The optimized soil-adjusted vegetation

index (OSAVI; Rondeaux, Steven, and Baret, 1996) was

developed by using bidirectional reflectance in the near-

infrared and red bands; in its formulation, a constant soil-

adjustment coefficient (0.16) was selected as the optimal value

to minimize variation with soil background. Its chief advantage

is its simplified formulation and the lack of a requirement for a

priori knowledge of the soil type. In any case, these indices

reduce soil noise at the cost of decreasing the dynamic range of

the index, and they are slightly less sensitive to changes in

vegetation cover than NDVI at low levels of vegetation cover.

MAIN RESULTS AND DISCUSSION

Spectral profiles for S. alterniflora stands match with the

characteristic spectral profile for vegetation (Jakubauskas et

al., 2000; Tucker and Sellers, 1986), showing low reflectance in

the visible region of the spectra and increasing in the infrared

region up to 0.3–0.4 (Figure 3). Vegetation absorbs most of the

light in the visible part of the spectrum but is strongly reflective

at wavelengths greater than 700 nm. This sharp change in

Table 1. Indices calculated in this study.

Index Index Equation Author

NDVIRouse (q864 - q671)/(q864 þ q671) Kriegler et al. (1969), Rouse et al. (1974)

NDVINOAA (Avq720-1100 - Avq580–680)/(Avq720-1100 þ Avq580–680)

NDVILandsat (Av q760–900 - Avq630–690)/(Avq760–900 þ Avq630–690)

NDVIModis (Av q841–876 - Avq620–670)/(Avq841–876 þ Avq620–670)

GNDVI1 (q800 - q550)/(q800 þ q550) Gitelson, Kaufman, and Merzylak (1996)

GNDVI2 (q780 - q550)/(q780 þ q550) Gitelson, Kaufman, and Merzylak (1996)

GRDIrange (Av q545–565 - Avq660–680)/(Avq545–565 þ Avq660–680)

IRI q740/q730 Reusch (1997)

VARIgreen (Avq545–565 - Avq660–680)/(Avq545–565 þ Avq660–680 - Avq470–490) Gitelson et al. (2002)

PRI 1 (q529 - q569)/(q529 þ q569) Gamon, Peñuelas, and Field (1992)

PRI 2 (q570 - q531)/(q570 þ q531) Gamon, Peñuelas, and Field (1992)

WBI q900/q970

MCARI (q700 - q670) - 0.2 (q700 - q550) (q700/q670) Daughtry et al. (2000)

TCARI 3 [(q700 - q670) - 0.2 (q700 - q550) (q700/q670)] Haboudane et al. (2002)

MSAVI 0.5 {2 q800 þ 1 - =[(2 q800 þ 1)2 - 8(q800 - q670)]} Qi et al. (1994)

q695/q420 q695/q420 Carter (1994)

q695/q760 q695/q760 Carter, Cibula, and Miller (1996)

q800/q550 q800/q550 Buschman and Nagel (1993)

REIP 700 þ 40 [(q670 þ q780)/2 - q700]/(q740 - q700) Guyot and Baret (1988)

OSAVI (1 þ 0.16) (q800 - q670)/(q800) Rondeaux, Steven, and Baret (1996)

SR q800/q670 Jordan (1969), Rouse et al. (1974)

R ¼ reflectance in the corresponding wavelength; q ¼ reflectance; Av ¼ average mean value for the wavelenght interval indicated; NDVIRouse ¼ normalized

difference vegetation index as ascribed by Rouse et al. (1974); NDVINOAA, NDVILandsat, NDVIModis¼ normalized difference vegetation index calculated for

NOAA, Landsat, and Modis data; GNDVI¼ green NDVI; GRDIrange¼ green red difference index; IRI¼ infrared index; VARIgreen¼ visible atmospherically

resistant index; PRI¼ photochemical reflectance index; WBI¼water band index; MCARI¼modified chlorophyll absorption in reflectance index; TCARI¼
transformed CAR index; MSAVI¼modified soil-adjusted vegetation index; REIP ¼ red edge inflection point; OSAVI ¼ optimized soil-adjusted vegetation

index; SR ¼ simple ratio.
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reflectance in the near-infrared range is commonly referred as

the ‘‘red edge’’ (Horler, Dockray, and Barber, 1983; Horler et

al., 1983), with variations that typically range from 0.05 to 0.5

reflectance between 680 nm to 750 nm (Artigas and Yang, 2006;

Filella and Peñuelas, 1994; Pinar and Curran, 1996). At each

individual site, the general pattern observed agreed with this

theoretical trend, with lower absorption in the red wavelengths

and lower reflectance in the near-infrared band as biomass

decreased from T1 to T5 (Figure 3).

Results from the CCA showed that biomass, LAI, and PCC

strongly and positively correlate each other (r ¼ 0.838).

According to several authors, LAI is closely related to biomass

(Casanova, Epema, and Goudrian, 1998, Song et al., 2005; Sun

et al., 2009; Zhao, Wang, and Nolte, 2008) and is also closely

related to exposed area of living leaves and thus is a measure of

the area exposed to capture incident electromagnetic energy.

By being strongly correlated, any of these parameters can be

accurately estimated from the others.

A negative strong correlation was found between the CCA

first axis and the biophysical parameters (r ¼�0.920 for LAI

and�0.985 for PCC). The vegetation indices with highest scores

for the CCA first axis, and in consequence the indices that

better explain variations in the biophysical parameters of

interest, were: MCARI, MSAVI, SR, OSAVI, NDVIlandsat,

NDVImodis, NDVIrouse in that order.

In our work, the MCARI, MSAVI, SR, OSAVI, and NDVI

indices showed strong correlations with the biophysical

parameters LAI, biomass, and PCC (Table 2). These vegetation

indices also had strong significant (p , 0.05) regressions with

LAI, PCC, and biomass, with MCARI, MSAVI, and SR showing

linear adjustments, whereas NDVI showed logarithmic ones

and OSAVI showed logarithmic regressions for biomass and

LAI and a linear regression for PCC (Table 3). Silva et al. (2008)

pointed out that plant biomass can be estimated by means of

spectral data, mainly through the use of regression analysis,

with bands or band combinations as predictor variables, but the

authors also found that the relationship between the spectral

signal and the biophysical parameter commonly approaches an

asymptote (Peñuelas et al., 1993). That is the case of the

logarithmic regressions found in this work (NDVI and OSAVI

for biomass and LAI; Table 3). According to the literature,

NDVI saturates for a dense and multilayered canopy and

shows a nonlinear relationship with biophysical parameters

such as LAI (Baret, Clevers, and Steven, 1995; Baret and

Guyot, 1991; Gilabert, Gandia, and Melia, 1996; Gitelson,

Kaufman, and Merzlyak, 1996; Lillesaeter, 1982; Sellers, 1987;

Vina et al., 2004).

MCARI, MSAVI, and SR had significant linear regressions

showing no saturation at high levels of vegetation cover. Our

results agree with those obtained by Haboudane et al. (2004),

who found that the main difference between NDVI and MSAVI

resides in the saturation effect as LAI increases: While NDVI

reaches a saturation level asymptotically when LAI exceeds 2,

MSAVI shows a better trend without a clear saturation at high

Figure 3. Spectral signatures for different biomass, PCC, and LAI levels in 2 of the 23 sites. Inside each graph, different plots indicate different biomass levels

for the same site obtained by successive harvesting.

Table 2. Coefficients of determination for correlations between biomass,

PCC (percentage canopy cover), and LAI (leaf area index) and several

vegetation indices derived from hyperspectral data. All correlations were

significant at a ¼ 0.05. N ¼ 68.

Index Biomass PCC LAI

MCARI 0.79 0.86 0.86

MSAVI 0.82 0.92 0.85

SR 0.82 0.91 0.85

OSAVI 0.78 0.92 0.83

NVDILandsat 0.72 0.89 0.77

NVDIModis 0.72 0.90 0.77

NVDIRouse 0.72 0.89 0.76
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LAI levels (up to 6). According to Broge and Leblanc (2000), this

explains, in part, why MSAVI has proven to be a better

indicator of greenness measure. Based on radiative transfer

models, MSAVI would also be a better LAI estimator in terms of

sensitivity to canopy effects (Broge and Leblanc, 2000), being

less affected by variations in canopy parameters as well as soil

spectral properties in dense canopies (Haboudane et al., 2004).

Based on these results, MSAVI is the most suitable index to

retrieve LAI, offering a clear improvement over NDVI. This is

an interesting result, considering that the majority of the

papers that use remote sensing data use NDVI without

checking the precision of their estimations.

CONCLUSION

The different levels of biomass, LAI, and PCC considered

through this work were highly correlated to vegetation indices

MCARI, MSAVI, and SR derived from field radiometry data,

showing that the biophysical parameters of interest can be

accurately estimated from remotely sensed reflectance. The

main outcome of this work is a series regression equations built

on local data, which set the basis for future applications

involving the mapping of biophysical parameters in the study

area, at a landscape scale, from satellite imagery. The

regression equations, even limited to local applications, set a

precedent for similar works worldwide. Given that Spartina

alterniflora marshes are found across the world, either as a

native or invasive plant, obtaining this type of regression model

for marshes elsewhere, under different environmental condi-

tions, would provide a valuable tool for monitoring and

management of the species.
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of 4th International Colloquium on Spectral Signatures of Objects
in Remote Sensing (ESA, Assois, France), pp. 279–286.

Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J., and
Strachan, I., 2004. Hyperspectral vegetation indices and novel
algorithms for predicting green LAI of crop canopies: modeling and
validation in the context of precision agriculture. Remote Sensing
of Environment, 90, 337–352.

Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J., and
Dextraze, L., 2002. Integrated narrow-band vegetation indices for
prediction of crop chlorophyll content for application to precision
agriculture. Remote Sensing of Environment, 81(2–3), 416–426,
doi:10.1016/S0034-4257(02)00018-4.

Haines-Young, R.; Green, D.R., and Cousins, S.H., 1993. Landscape
Ecology and GIS. London: Taylor & Francis.

Heege, T.; Bogner, A., and Pinnel, N., 2004. Mapping of submerged
aquatic vegetation with a physically based process chain. Remote
Sensing of the Ocean and Sea Ice 2003. Proceedings of SPIE Vol.
5233, pp. 43–50.

Horler, D.N.H.; Dockray, M., and Barber, J., 1983. The red edge of
plant leaf reflectance. International Journal of Remote Sensing,
4(2), 273–288, doi:10.1080/01431168308948546.

Horler, D.N.H.; Dockray, M.; Barber, J., and Barringer, A.R., 1983.
Red edge measurements for remotely sensing plant chlorophyll
content. Advances in Space Research, 3(2), 273–277, doi:10.1016/
0273–1177(83)90130-8.

Huete, A.R., 1988. A soil vegetation adjusted index (SAVI). Remote
Sensing of Environment, 25, 295–309.

Huete, A.R.; Justice, C., and Liu, H., 1994. Development of vegetation
and soil indices for MODIS-EOS. Remote Sensing of Environment,
49, 224–234.

Isacch, J.; Costa, C.; Rodriguez-Gallego, L.; Conde, D.; Escapa, M.,
and Gagliardini, D., 2006. Distribution of salt marsh plant
communities associated with environmental factors along a
latitudinal gradient on the south-west Atlantic coast. Journal of
Biogeography, 33, 888–900, doi: 10.1111/j.1365-2699.2006.01461.x.

Jakubauskas, M.; Kindscher, K.; Fraser, A.; Debinski, D., and Price,
K.P., 2000. Close-range remote sensing of aquatic macrophyte
vegetation cover. International Journal of Remote Sensing, 21(8),
3533–3538, doi:10.1080/014311600750037543.

Jensen, J.; Coombs, C.; Porter, D.; Jones, B.; Schill, S., and White, D.,
1998. Extraction of smooth cordgrass (Spartina alterniflora)
biomass and leaf area index parameters from high resolution
imagery. Geocarto International, 13(4), 25–34.

Jiang, Z.; Huete, A.; Li, J., and Qi, J., 2007. Interpretation of the
modified soil-adjusted vegetation index isolines in red-NIR reflec-
tance space. Journal of Applied Remote Sensing, 1, 013503, doi:10.
1117/1.2709702.

Jordan, C.F., 1969. Derivation of leaf area index from quality of light
on the forest floor. Ecology, 50, 663–666.

Kennedy, P.J., 1989. Monitoring the phenology of Tunisian grazing
lands. International Journal of Remote Sensing, 10, 835–845.

Kerr, Y.H.; Lagouarde, J.P., and Imbernon, J., 1992. Accurate land
surface temperature retrieval from AVHRR data with use of an
improved split window algorithm. Remote Sensing of Environment,
41, 197–209.

Kim, M.S.; Daughtry, C.S.T.; Chappelle, E.W.; McMurtrey, J.E., III,
and Walthall, C.L., 1994. The use of high spectral resolution bands
for estimating absorbed photosynthetically active radiation (Apar).
In: Proceedings of the 6th Symposium on Physical Measurements
and Signatures in Remote Sensing (Centre National d’Etudes
Spatiales, Val D’Isere, France), pp. 299–306.

Klemas, V., 2001. Remote sensing of landscape-level coastal environ-
mental indicators. Environmental Management, 27(1) 47–57,
doi:10.1007/s002670010133.

Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; and Richardson, W., 1969.
Preprocessing transformations and their effects on multispectral
recognition. In: Proceedings of the Sixth International Symposium
on Remote Sensing of Environment (University of Michigan, Ann
Arbor, Michigan, USA), pp. 97–131.

Lillesaeter, O., 1982. Spectral reflectance of partly transmitting
leaves: laboratory measurements and mathematical modeling.
Remote Sensing of Environment, 12, 247–254.
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