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Abstract We present in this paper a general approach to study the Ricci flow on homo-
geneous manifolds. Our main tool is a dynamical system defined on a subset Hq,n of the
variety of (q + n)-dimensional Lie algebras, parameterizing the space of all simply con-
nected homogeneous spaces of dimension n with a q-dimensional isotropy, which is proved
to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visual-
ize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as
well as to determine the type of the possible singularities. Ancient solutions arise naturally
from the qualitative analysis of the evolution equation. We develop two examples in detail: a
2-parameter subspace of H1,3 reaching most of 3-dimensional geometries, and a 2-parameter
family in H0,n of left-invariant metrics on n-dimensional compact and non-compact semi-
simple Lie groups.
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374 J. Lauret

1 Introduction

We present in this paper a general approach to study the Ricci flow on homogeneous mani-
folds. Our main tool is a dynamical system defined on a space Hq,n parameterizing the space
of all simply connected homogeneous spaces of dimension n with a q-dimensional isotropy,
which is proved to be equivalent in a precise sense to the Ricci flow. Among some other
advantages, this setting helps us to better visualize the possible (nonflat) pointed limits of
Ricci flow solutions, under diverse normalizations, as well as to find ancient solutions and
determine the type of the singularities. Hq,n is a subset of the variety of (q + n)-dimensional
Lie algebras.

Given a homogeneous Riemannian manifold (M, g0), consider the unique homogeneous
Ricci flow solution g(t) starting at g0, that is,

∂

∂t
g(t) = −2Rc(g(t)), g(0) = g0. (1)

As the Ricci flow preserves isometries, any transitive Lie group G ⊂ I(M, g0) provides, for
all t , a presentation as a homogeneous space

(M, g(t)) = (G/K , g〈·,·〉t ), with the same reductive decomposition g = k ⊕ p.

We denote by g〈·,·〉t the G-invariant metric on G/K determined by its value at the origin
〈·, ·〉t = g〈·,·〉t (o), which is an Ad(K )-invariant inner product on p = ToG/K . The family
〈·, ·〉t is the solution to the ODE

d

dt
〈·, ·〉t = −2Rc(〈·, ·〉t ), where Rc(〈·, ·〉t ) = Rc(g(t))(o), (2)

and thus the maximal interval of time where g(t) exists is of the form (T−, T+) for some
−∞ ≤ T− < 0 < T+ ≤ ∞.

This approach seems not to be quite the appropriate one to study certain questions on the
Ricci flow of homogeneous manifolds, as it confines ourselves to the universe of G-invariant
metrics on M . For instance, the possible limits of normalized Ricci flow solutions ct g(t),
as t → T±, that we may directly get for different rescalings ct > 0 must all necessarily
be G-invariant metrics of the form g〈·,·〉± for some 〈·, ·〉± = lim ct 〈·, ·〉t . The reason for
a family ct 〈·, ·〉t to diverge as t → T± can therefore be that it is actually converging to
a G±-invariant metric on some other homogeneous space G±/K±, which might be even
non-homeomorphic to M . The notion of convergence we mainly use in this paper is the so
called pointed or Cheeger–Gromov convergence.

In order to avoid this restriction, we propose the following point of view, which can be
roughly described as evolving the algebraic side of a homogeneous space rather than its
metric.

Given (M, g0) = (G/K , g〈·,·〉0) as above, we consider for a family [·, ·]t ∈ �2g∗ ⊗ g of
Lie brackets the evolution equation, called the bracket flow (see Sect. 3.1), defined by

d

dt
[·, ·]t = −π

([
0 0
0 Rict

])
[·, ·]t , [·, ·]0 = Lie bracket of G, (3)

where π is the canonical representation of gl(g) on �2g∗ ⊗ g given by

π(A)[·, ·] = A[·, ·] − [A·, ·] − [·, A·] = d

ds
|0es A[e−s A·, e−s A·], (4)

and Rict denotes the Ricci operator of a homogeneous space (Gt/Kt , g[·,·]t ) which is deter-
mined by [·, ·]t (the space Hq,n mentioned above turns out to be bracket flow invariant).
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Ricci flow of homogeneous manifolds 375

Here Gt is the simply connected Lie group with Lie algebra (g, [·, ·]t ), the reductive decom-
position is always g = k ⊕ p and g[·,·]t is the Gt -invariant metric on Gt/Kt such that
g[·,·]t (o) = 〈·, ·〉0 (see Sect. 2.1).

We first prove (see Theorem 3.3) that there exists a time-dependent family of diffeomor-
phisms ϕ(t) : M = G/K −→ Gt/Kt such that

g(t) = ϕ(t)∗g[·,·]t , ∀t ∈ (T−, T+).

Moreover, ϕ(t) can be chosen as the equivariant diffeomorphism determined by a Lie group

isomorphism between G and Gt with derivative h̃(t) :=
[

I 0
0 h(t)

]
: g −→ g (i.e. dϕ(t)|o =

h̃(t)|p = h(t)), and the curve h(t) ∈ GL(p) satisfies

d
dt h = −hRic(〈·, ·〉t ),

d
dt h = −Rict h, h(0) = I,

〈·, ·〉t = 〈h·, h·〉0, [·, ·]t = h̃[h̃−1·, h̃−1·]0.

In particular, [·, ·]t is isomorphic to [·, ·]0 for all t and both the Lie bracket on k and the isotropy
representation remain constant in time (i.e. [·, ·]t |k×g ≡ [·, ·]0), so that only [·, ·]t |p×p is really
evolving.

The Ricci flow g(t) therefore differs from the bracket flow g[·,·]t only by pullback by time-
dependent diffeomorphisms, and hence the behavior of the curvature is exactly the same along
any of them. As the maximal interval of time where a solution exists also coincides for both
flows, it follows that the types of the singularities T± of the Ricci flow solution g(t) can be
determined by analyzing the bracket flow solution [·, ·]t . Furthermore, one can for instance
find ancient solutions to the Ricci flow (i.e. T− = −∞) by just showing that [·, ·]t (or its
derivative) remains bounded in the vector space �2g∗ ⊗ g backward in time.

The right rescaling here is given by

c · [·, ·]|k×g = [·, ·], c · [·, ·]|p×p = c2[·, ·]k + c[·, ·]p,
where the superscripts denote the components on k and p of [·, ·]|p×p, respectively (see
Sect. 2.1). Concerning the limit behavior, if ct · [·, ·]t → [·, ·]±, as t → T±, then we
can apply the results given in [28] translating this convergence of Lie brackets into more
geometric notions of convergence, including the pointed topology (see Sect. 2.2). The new
ingredient now is that the limit Lie bracket [·, ·]± may be non-isomorphic to [·, ·]t , providing
an explicit limit (G±/K±, g[·,·]±)with a different algebraic presentation and which can often
be non-diffeomorphic and even non-homeomorphic to M .

This approach has been applied to the study of the Ricci flow on nilmanifolds in [27].
We also refer to [16,33] for other studies of the Ricci flow on nilmanifolds via the bracket
flow (3). In the case of 3-dimensional unimodular Lie groups, a global picture of the qualitative
behavior of the Ricci flow is given in [14] by using the approach proposed in this paper: to vary
Lie brackets instead of inner products. In [3], the bracket flow is applied to study the Ricci
flow for homogeneous manifolds of dimension 4, and in [22] to study homogeneous Ricci
solitons. On the other hand, since the pioneer work [18], the Ricci flow for homogeneous
manifolds has extensively been studied from the standard point of view in dimension 3 (see
[20,13,31], and for the backward case see [7]) and dimension 4 (see [19,31]), on Lie groups
(see [30]), on flag manifolds (see [2,15]) and in particular on the 12-dimensional example
Sp(3)/Sp(1)×Sp(1)×Sp(1) (see [6]), where the Ricci flow evolves certain positively curved
metrics into metrics with mixed Ricci curvature.
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376 J. Lauret

We give, in Propositions 3.8 and 3.11, the evolution equations the different parts of the
Ricci curvature obey along the Ricci flow and its possible normalizations, which provide a
very useful tool in the qualitative analysis of the bracket flow solutions.

In order to illustrate all the aspects of the approach described above, we develop two
examples in detail. In Sect. 3.4, we consider a 2-parameter subspace of H1,3, which is invariant
by the bracket flow and reaches the 3-dimensional geometries R

3, Nil, S2 × R, H2 × R and
some homogeneous spaces isometric to left-invariant invariant metrics on S3 and S̃L2(R).
A particularly interesting feature in this example is the pointed convergence of the solution
on S̃L2(R) normalized by scalar curvature R ≡ − 1

2 towards H2 ×R, which can never appear
on H0,3, the space of all 3-dimensional Lie algebras, as H2 ×R is not a unimodular Lie group
and this is a closed condition on H0,3. Secondly, a 2-parameter family in H0,n of left-invariant
metrics on n-dimensional semisimple Lie groups is studied in Sect. 4. As a result we find
non-Einstein ancient Ricci flow solutions on each compact simple Lie group different from
Sp(2k +1), and show that the Einstein metric which is not bi-invariant represents an unstable
point in both the volume and scalar curvature normalized bracket flow systems.

2 The space of homogeneous manifolds

Our aim in this section is to describe a framework developed in [28] which allows us to work
on the ‘space of homogeneous manifolds’, by parameterizing the set of all homogeneous
spaces of dimension n and isotropy dimension q by a subset Hq,n of the variety of (q + n)-
dimensional Lie algebras.

Let (M, g) be a connected homogeneous Riemannian manifold, i.e. its isometry group
I(M, g) acts transitively on M . Then each closed Lie subgroup G ⊂ I(M, g) acting transi-
tively on M (which can be assumed to be connected) gives rise to a presentation of (M, g)
as a homogeneous space (G/K , g〈·,·〉), where K is the isotropy subgroup of G at some point
o ∈ M . Since K turns to be compact (recall that K can be identified with a closed subgroup
of O(n)), there always exists an Ad(K )-invariant direct sum decomposition g = k⊕p, where
g and k are respectively the Lie algebras of G and K . This is called a reductive decomposi-
tion and is in general non-unique. Thus p can be naturally identified with the tangent space
p ≡ To M = ToG/K , by taking the value at the origin o = eK of the Killing vector fields
corresponding to elements of p (i.e. Xo = d

dt |0 exp t X(o)). We denote by g〈·,·〉 the G-invariant
metric on G/K determined by 〈·, ·〉 := g(o), the Ad(K )-invariant inner product on p defined
by g.

Any homogeneous space G/K will be assumed to be almost-effective, i.e. K contains no
non-discrete normal subgroup of G, or equivalently, the normal subgroup {g ∈ G : ghK =
hK , ∀h ∈ G} is discrete.

2.1 Varying Lie brackets viewpoint

Let us fix for the rest of the paper a (q + n)-dimensional real vector space g together with a
direct sum decomposition

g = k ⊕ p, dim k = q, dim p = n, (5)

and an inner product 〈·, ·〉 on p. We consider the space of all skew-symmetric algebras
(or brackets) of dimension q + n, which is parameterized by the vector space

Vq+n := {μ : g × g −→ g : μ bilinear and skew-symmetric},
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Ricci flow of homogeneous manifolds 377

and we set

Vn := {μ : p × p −→ p : μ bilinear and skew-symmetric}.
For any X ∈ g, we denote left multiplication (or adjoint action) as usual by adμ X (Y ) =
μ(X, Y ) for all Y ∈ g.

Definition 2.1 The subset Hq,n ⊂ Vq+n consists of the brackets μ ∈ Vq+n such that:

(h1) μ satisfies the Jacobi condition, μ(k, k) ⊂ k and μ(k, p) ⊂ p.
(h2) If Gμ denotes the simply connected Lie group with Lie algebra (g, μ) and Kμ is the

connected Lie subgroup of Gμ with Lie algebra k, then Kμ is closed in Gμ.
(h3) 〈·, ·〉 is adμ k-invariant (i.e. (adμ Z |p)t = − adμ Z |p for all Z ∈ k).
(h4) {Z ∈ k : μ(Z , p) = 0} = 0.

Each μ ∈ Hq,n defines a unique simply connected homogeneous space,

μ ∈ Hq,n �
(
Gμ/Kμ, gμ

)
, (6)

with Ad(Kμ)-invariant decomposition g = k ⊕ p and gμ(oμ) = 〈·, ·〉, where oμ := eμKμ
is the origin of Gμ/Kμ and eμ ∈ Gμ is the identity element. It is almost-effective by (h4),
and it follows from (h3) that 〈·, ·〉 is Ad(Kμ)-invariant as Kμ is connected. We note that
any n-dimensional simply connected homogeneous Riemannian space (G/K , g〈·,·〉) which
is almost-effective can be identified with some μ ∈ Hq,n , where q = dim K . Indeed, G can
be assumed to be simply connected without losing almost-effectiveness, and we can identify
any Ad(K )-invariant decomposition with g = k ⊕ p. In this way, μ will be precisely the Lie
bracket of g.

We also fix from now on a basis {Z1, . . . , Zq} of k and an orthonormal basis {X1, . . . , Xn}
of p (see (5)) and use them to identify the groups GL(g),GL(k),GL(p) and O(p, 〈·, ·〉), with
GLq+n(R),GLq(R),GLn(R) and O(n), respectively.

There is a natural linear action of GLq+n(R) on Vq+n given by

h · μ(X, Y ) = hμ(h−1 X, h−1Y ), X, Y ∈ g, h ∈ GLq+n(R), μ ∈ Vq+n . (7)

The following result gives a useful geometric meaning to the action of some subgroups or
subsets of GLq+n(R) on Hq,n .

Proposition 2.2 ([28]) If μ ∈ Hq,n, then h · μ ∈ Hq,n for any h ∈ GLq+n(R) of the form

h :=
[

hq 0
0 hn

]
∈ GLq+n(R), hq ∈ GLq(R), hn ∈ GLn(R), (8)

such that

[ht
nhn, adμ k|p] = 0. (9)

In that case,

(i) Gh·μ/Kh·μ and Gμ/Kμ are equivariantly diffeomorphic.
(ii)

(
Gh·μ/Kh·μ, gh·μ

)
is equivariantly isometric to

(
Gμ/Kμ, g〈hn ·,hn ·〉

)
.

It follows from part (ii) that the metrics gμ and gh·μ have the same volume element if
det hn = 1, and that the subset{

h · μ : hq = I, hn satisfies (9)
} ⊂ Hq,n,
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378 J. Lauret

parameterizes the set of all Gμ-invariant metrics on Gμ/Kμ. Also, by setting hn = 1
c I, c �= 0,

for any hq we get the rescaled Gμ-invariant metric 1
c2 g〈·,·〉 on Gμ/Kμ, which is isometric

according to (ii) and (7) to the element of Hq,n denoted by c · μ and defined by

c · μ|k×k = μ, c · μ|k×p = μ, c · μ|p×p = c2μk + cμp, (10)

where the subscripts denote the k and p-components of μ|p×p given by

μ(X, Y )=μk(X, Y )+μp(X, Y ), μk(X, Y ) ∈ k, μp(X, Y ) ∈ p, ∀X, Y ∈ p. (11)

The R
∗-action on Hq,n, μ �→ c · μ, can therefore be considered as a geometric rescaling of

the homogeneous space (Gμ/Kμ, gμ).

2.2 Convergence

We now survey some definitions and results given in [28] about convergence of homoge-
neous manifolds. In order to define some notions of convergence, of a sequence (Mk, gk)

of homogeneous manifolds, to a homogeneous manifold (M, g), we start by requiring the
existence of a sequence �k ⊂ M of open neighborhoods of a basepoint p ∈ M together
with embeddings φk : �k −→ Mk such that φ∗

k gk → g smoothly as k → ∞ (i.e. the tensor
φ∗

k gk − g and its covariant derivatives of all orders each converge uniformly to zero on com-
pact subsets of M eventually contained in all �k). We set pk := φk(p) ∈ Mk . According
to the different conditions one may require on the size of the �k’s, we have the following
notions of convergence in increasing degree of strength:

• infinitesimal: no condition on �k , it may even happen that
⋂
�k = {p} (i.e. only

the germs of the metrics at p are involved). Nevertheless, the sequence (Mk, gk)

has necessarily bounded geometry by homogeneity (i.e. for all r > 0 and j ∈
Z≥0, sup

k
sup

Bgk (pk ,r)
‖∇ j

gk Rm(gk)‖gk < ∞).

• local:�k stabilizes, i.e. there is a nonempty open subset� ⊂ �k for every k sufficiently
large. A positive lower bound for the injectivity radii inj(Mk, gk, pk) therefore holds,
which is often called the non-collapsing condition.

• pointed or Cheeger–Gromov: �k exhausts M , i.e. �k contains any compact subset of
M for k sufficiently large. We note that in the homogeneous case, the location of the
basepoints pk ∈ Mk and p ∈ M play no role, neither in the pointed convergence nor in
the bounds considered in the items above, in the sense that we can change all of them
by any other sequence qk ∈ Mk and q ∈ M and use homogeneity. However, topology
issues start to come in at this level of convergence.

• smooth (up to pull-back by diffeomorphisms): �k = M and φk : M −→ Mk is a
diffeomorphism for all k. This necessarily holds when M is compact. Recall that if M is
noncompact, then φ∗

k gk converges smoothly to g uniformly on compact sets in M .

It follows at once from the definitions that these notions of convergence of homogeneous
manifolds satisfy:

smooth ⇒ pointed ⇒ local ⇒ infinitesimal.
None of the converse assertions hold (see [28]). However, it is worth noticing that local

convergence implies bounded geometry and non-collapsing for the sequence, and thus there
must exist a pointed convergent subsequence by the compactness theorem.

We may also consider convergence of the algebraic side of homogeneous manifolds. Recall
from Sect. 2.1 the space Hq,n of Lie algebras parameterizing the set of all n-dimensional
simply connected homogeneous spaces with q-dimensional isotropy, which inherits the usual
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Ricci flow of homogeneous manifolds 379

vector space topology from Vq+n . We shall always denote by μk → λ the convergence in
Hq,n relative to such topology, which turns out to be essentially equivalent to infinitesimal
convergence of homogeneous manifolds.

Theorem 2.3 ([28, Theorem 6.12]) Let μk be a sequence and λ an element in Hq,n.

(i) Ifμk → λ in Hq,n (usual vector space topology), then (Gμk /Kμk , gμk ) infinitesimally
converges to (Gλ/Kλ, gλ).
(ii) If (Gμk /Kμk , gμk ) infinitesimally converges to (Gλ/Kλ, gλ), then

(μk)p → λp,

where the subscript p is defined as in (11).

Both the converse assertions to (i) and (ii) in this theorem can in general be false (see [28,
Remark 6.13]). As some sequences of Aloff–Walach spaces show (see [28, Example 6.6]), in
order to get the stronger local convergence from the usual convergence of brackets μk → λ,
and consequently pointed subconvergence, it is necessary (and also sufficient) to require an
‘algebraic’ non-collapsing type condition. The Lie injectivity radius of

(
Gμ/Kμ, gμ

)
, μ ∈

Hq,n , is the largest rμ > 0 such that

πμ ◦ expμ : B(0, rμ) −→ Gμ/Kμ,

is a diffeomorphism onto its image, where expμ : g −→ Gμ is the Lie exponential map,
πμ : Gμ −→ Gμ/Kμ is the usual quotient map and B(0, rμ) denotes the euclidean ball of
radius rμ in (p, 〈·, ·〉). We note that expμ is in general quite different from the Riemannian
exponential map, unless the homogeneous space be naturally reductive.

Theorem 2.4 ([28, Theorem 6.14]) Let μk be a sequence such that μk → λ in Hq,n, as
k → ∞, and assume that inf

k
rμk > 0. Then,

(i) (Gμk /Kμk , gμk ) locally converges to (Gλ/Kλ, gλ).
(ii) There exists a subsequence of (Gμk /Kμk , gμk ) which converges in the pointed sense
to a homogeneous manifold locally isometric to (Gλ/Kλ, gλ).
(iii) (Gμk /Kμk , gμk ) converges in the pointed sense to (Gλ/Kλ, gλ) if Gλ/Kλ is compact.

The limit for the pointed subconvergence stated in the above theorem may not be unique,
as certain sequence of alternating left-invariant metrics on S3 (Berger spheres) and S̃L2(R)

shows (see [28, Example 6.17]).

Example 2.5 We take the basis of the Lie subalgebra RI ⊕ su(2) ⊂ gl2(C) given by

Y0 =
[

1 0
0 1

]
, Y1 =

[
0 −1
1 0

]
, Y2 =

[
i 0
0 −i

]
, Y3 =

[
0 i
i 0

]
,

whose nonzero Lie brackets are

[Y1, Y2] = 2Y3, [Y1, Y3] = −2Y2, [Y2, Y3] = 2Y1.

For a, b ∈ R, b > 0, the new basis

Z1 = − a
b Y0 + 1

2 Y1, X1 = Y0, X2 =
√

b
2 Y2, X3 =

√
b

2 Y3,

satisfies

[X3, Z1] = X2, [Z1, X2] = X3, [X2, X3] = aX1 + bZ1. (12)
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380 J. Lauret

Let μ = μa,b denote the element of H1,3 defined as in (12) (see Sect. 2.1). Then (g, μ)
is isomorphic to R ⊕ su(2) and (Gμ/Kμ, gμ) is isometric to a left-invariant metric on S3

for any b > 0. In order to apply Theorem 2.4, we need to know a lower bound for the Lie
injectivity radius rμ. We have that Kμ = expμ(RZ1), and thus

πμ(expμ(r1 X1 + r2 X2 + r3 X3)) = πμ(expμ(s1 X1 + s2 X2 + s3 X3)) (13)

if and only if

er1 exp

(
i
√

b

2

[
r2 r3

r3 −r2

])
= es1 exp

(
i
√

b

2

[
s2 s3

s3 −s2

])
e−at/b

[
cos t/2 − sin t/2
sin t/2 cos t/2

]
,

for some t ∈ R, where exp : gl2(C) −→ GL2(C) is the usual exponential map. By using
uniqueness of the polar decomposition and the formula

exp

(
i

[
x y
y −x

])
= 1

N

[
x sin N + N cos N y sin N
y sin N −x sin N + N cos N

]
, N :=

√
x2 + y2,

it is easy to see that if (13) holds then

s1 − r1 = 4kπ a
b ,

√
b

2

√
r2

2 + r2
3 = ±

√
b

2

√
s2

2 + s2
3 + 2 jπ, for some k, j ∈ Z.

We deduce thatπμ◦expμ is injective on B(0, r) for any b > 0, where r = min{2π |a|
b , 2π 1√

b
}.

On the other hand, it is well-known that

expμ : B(0, π
‖μ‖ ) −→ Gμ (14)

is always a diffeomorphism onto its image (see e.g. [28, Lemma 6.19]), and consequently

rμ ≥ min

{
2π |a|

b , 2π 1√
b
, π√

2(a2+b2+2)

}
.

The analysis for b < 0 is quite different. Consider the basis {Y0, Y1,iY2,iY3} of the Lie
algebra gl2(R) = RI ⊕ sl2(R). The new basis

Z1 = − a
b Y0 + 1

2 Y1, X1 = Y0, X2 =
√−b

2 iY2, X3 =
√−b

2 iY3,

gives the same Lie bracket as in (12), that is, we get μ = μa,b for b < 0. Thus (Gμ/Kμ, gμ)
is isometric to a left-invariant metric on S̃L2(R) for any b < 0, the simply connected cover
of SL2(R). If ẽxp : sl2(R) −→ S̃L2(R) is the exponential map, then

expμ(r1 X1 + r2 X2 + r3 X3) = expμ(r1 X1) expμ(r2 X2 + r3 X3)

= expμ(r1Y0) expμ(r2

√−b
2 iY2 + r3

√−b
2 iY3)

=
(

r1, ẽxp(r2

√−b
2 iY2 + r3

√−b
2 iY3)

)
∈ R × S̃L2(R) = Gμ.

Since

expμ(t Z1) = (− at
b , ẽxp( t

2 Y1)
) ∈ R × S̃L2(R) = Gμ, ∀t ∈ R,

and (x, y, z) �→ ẽxp(xY1)ẽxp(yY2 + zY3) is a diffeomorphism between R
3 and S̃L2(R), it

follows that (13) holds if and only if t = 0 and ri = si for all i = 1, 2, 3. This implies that
rμ = ∞ for any b < 0.
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Ricci flow of homogeneous manifolds 381

Finally, for b = 0, one has that rμ = ∞ as Gμ = Kμ � H3, where H3 denotes the
Heisenberg Lie group, and so expμ : p −→ Gμ coincides with the exponential map of H3,
which is well-known to be a diffeomorphism.

As a consequence of the computation of rμ given above, we obtain that if (ak, bk) →
(a∞, b∞), then μ(ak ,bk ) → μ(a∞,b∞) produces the following types of convergence:

• a∞ �= 0, b∞ > 0: pointed, by Theorem 2.4, (iii).
• b∞ ≤ 0: local (or pointed subconvergence), by Theorem 2.4, (i) and (ii).

See Sect. 3.4 for a study of the Ricci flow on these manifolds.

Remark 2.6 Let μk ∈ Hq,n be a sequence such that μk → λ, as k → ∞. It may happen that
λ /∈ Hq,n , and a very interesting behavior to be understood is under the failure of condition
(h2) for λ, that is, when Kλ is not closed in Gλ. Since its closure Kλ has strictly higher dimen-
sion, it is natural to expect pointed Gromov–Hausdorff subconvergence to a homogeneous
manifold locally isometric to (Gλ/Kλ, gλ), and thus we would be in the presence of what is
called collapsing with bounded curvature in the literature (actually with bounded geometry).
Collapsing of homogeneous manifolds from this algebraic point of view has not yet been
studied in detail (see [28, Section 6.5]).

In the case of left-invariant metrics on Lie groups (i.e. H0,n = Ln , the variety of
n-dimensional Lie algebras), the parts of the brackets μk which might not be affected by an
infinitesimal convergence g̃μk → g̃λ are not present, as q = 0, and the condition inf

k
rμk > 0

automatically holds when μk → λ by (14).
Theorems 2.4 and 2.3 can therefore be rephrased in the case of Lie groups in a stronger

way (see Theorem 2.7). One can say even more in some particular cases as compact or
completely solvable Lie groups. Another advantage in this case is that Ln is closed in Vn ,
and thus any limit λ of a sequence μk ∈ Ln must lie in Ln and can always be identified with
a left invariant metric on some Lie group. On the contrary, Hq,n is never closed in Vq+n for
q > 0.

Recall that μ ∈ Ln is said to be completely solvable if all the eigenvalues of adμ X are
real for any X ; in particular, Gμ is solvable and expμ : g −→ Gμ is a diffeomorphism. For
μ ∈ Ln , we denote by (Gμ, 〈·, ·〉) the corresponding homogeneous space (Gμ, gμ) attached
to μ as in (6), i.e. the Lie group Gμ endowed with the left-invariant metric determined by
the fixed inner product 〈·, ·〉 on g.

Theorem 2.7 ([28, Corollary 6.20]) Let μk be a sequence in Ln = H0,n Then the following
conditions are equivalent:

(i) μk → λ in Ln (usual vector space topology).
(ii) (Gμk , 〈·, ·〉) infinitesimally converges to (Gλ, 〈·, ·〉).
(iii) (Gμk , 〈·, ·〉) locally converges to (Gλ, 〈·, ·〉).
(iv) (Gμk , 〈·, ·〉) converges in the pointed sense to (Gλ, 〈·, ·〉), provided Gλ is compact
or all μk are completely solvable.
(v) gμk → gλ smoothly on R

n ≡ g, provided all μk are completely solvable, where all
Gμk and Gλ are identified with g via the corresponding exponential maps.

In any case, there is always a subsequence of (Gμk , 〈·, ·〉) that is convergent in the pointed
sense to a homogeneous manifold locally isometric to (Gλ, 〈·, ·〉).
2.3 Ricci curvature

As within any class of Riemannian manifolds, in order to study the Ricci flow for homo-
geneous spaces, a deep understanding of their Ricci curvature is crucial. In this section, we
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382 J. Lauret

describe the Ricci operator of
(
Gμ/Kμ, gμ

)
for anyμ ∈ Hq,n . Recall that g = k⊕p is always

the Ad(Kμ)-invariant or reductive decomposition, p = ToμGμ/Kμ and gμ(oμ) = 〈·, ·〉.
There is a unique element Hμ ∈ p which satisfies 〈Hμ, X〉 = tr adμ X for any X ∈ p.

Let Bμ : p −→ p denote the symmetric map defined by

〈BμX, Y 〉 = tr adμ X adμ Y , ∀X, Y ∈ p.

According to [5, 7.38], the Ricci operator Ricμ of
(
Gμ/Kμ, gμ

)
is given by:

Ricμ = Mμ − 1
2 Bμ − S(adμ Hμ|p), (15)

where

S : gln(R) −→ gln(R), S(A) := 1
2 (A + At ), (16)

is the symmetric part of an operator, and Mμ : p −→ p is the symmetric operator defined by

〈MμX, Y 〉 = − 1
2

∑
〈μ(X, Xi ), X j 〉〈μ(Y, Xi ), X j 〉

+ 1
4

∑
〈μ(Xi , X j ), X〉〈μ(Xi , X j ), Y 〉, ∀X, Y ∈ p, (17)

for any orthonormal basis {X1, . . . , Xn} of (p, 〈·, ·〉).
A closer inspection to formula (15) for Ricμ shows that Hμ only depends on μp, as

μ(k, p) ⊂ p (see (11)). Notice that if the Lie algebra (k, μ) is unimodular, then Hμp = 0 if
and only if (g, μ) is unimodular. Also, the operator Mμ only depends on μp and satisfies

m(μp) = 4
||μp ||2 Mμp , (18)

where m : Vn −→ sym(p) is the moment map for the natural action of GLn(R) on Vn :=
�2p∗ ⊗ p (see e.g. [17] or [26] for more information on real moment maps). In other words,
Mμp may be alternatively defined as follows:

tr Mμp E = 1
4 〈π(E)μp, μp〉, ∀E ∈ gln(R), (19)

where π(E)μp = Eμp(·, ·) − μp(E ·, ·) − μp(·, E ·) is the representation of gln(R) on Vn

obtained as the derivative of the action (7) with q = 0 (see [25, Proposition 3.5]). Here 〈·, ·〉
also denotes the inner product defined on Vn by

〈μ, λ〉 =
∑

〈μ(Xi , X j ), λ(Xi , X j )〉. (20)

Concerning Bμ, we note that this is the Killing form of the Lie algebra (g, μ) restricted to
p×p in terms of the inner product 〈·, ·〉, and so it does depend on the value of μ on the whole
space g × g.

A formula for the Ricci operator Ricμ of
(
Gμ/Kμ, gμ

)
may therefore be rewritten as

Ricμ = Mμp − 1
2 Bμ − S(adμp Hμp ), (21)

where adμp Hμp : p −→ p is defined by adμp Hμp (X) = μp(Hμp , X) for all X ∈ p.
It follows that the scalar curvature is then given by

R(μ) = − 1
4‖μp‖2 − 1

2 tr Bμ − ‖Hμp ‖2. (22)

The next two examples reach all 3-dimensional Thurston geometries.
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Example 2.8 Let μ = μa,b,c be the Lie bracket in H0,3 = L3 defined by

μ(X2, X3) = aX1, μ(X3, X1) = bX2, μ(X1, X2) = cX3.

It is easy to see that Hμ = 0,

Bμ =
⎡
⎣−2bc

−2ac
−2ab

⎤
⎦ , Mμ=− 1

2

⎡
⎣−a2+ b2 + c2

a2 − b2+ c2

a2+ b2 − c2

⎤
⎦ ,

Ricμ = 1
2

⎡
⎣ a2 − (b − c)2

b2 − (a − c)2

c2 − (a − b)2

⎤
⎦ ,

and R(μ) = − 1
2 (a

2 + b2 + c2)+ ab + ac + bc. This family covers all left-invariant metric
(up to isometry and scaling) on all unimodular 3-dimensional simply connected Lie groups,
which are given by S3, S̃L2(R), E(2), Sol, Nil and R

3 (see [32], [14] or [28, Example 3.2]
for a more detailed treatment of this example).

Example 2.9 We refer to [28, Example 3.3] for more details on this example. Consider the
bracket μ = μa,b,c ∈ H1,3 given by{

μ(X3, Z1) = X2, μ(X2, X3) = aX1 + bZ1, μ(X3, X1) = cX2,

μ(Z1, X2) = X3, μ(X1, X2) = cX3,

where k = RZ1 and {X1, X2, X3} is an orthonormal basis of (p, 〈·, ·〉). It is easy to see that
Hμ = 0,

Bμ =
⎡
⎣−2c2

−2(b + ac)
−2(b + ac)

⎤
⎦ , Mμ = − 1

2

⎡
⎣ 2c2 − a2

a2

a2

⎤
⎦ ,

Ricμ =
⎡
⎣

1
2 a2

− 1
2 a2 + b + ac

− 1
2 a2 + b + ac

⎤
⎦ , R(μ) = − 1

2 a2 + 2(b + ac).

The homogeneous metrics attained by this family are R × S2,R × H2, the flat metric on
E(2), some left-invariant metrics on S3 (Berger spheres) and S̃L2(R), and all the left-invariant
metrics on the Heisenberg group (Nil) and R

3, up to isometry.

3 Homogeneous Ricci flows

Let (M, g0) be a simply connected homogeneous manifold and consider a presentation of
(M, g0) as a homogeneous space of the form

(
Gμ0/Kμ0 , gμ0

)
for some μ0 ∈ Hq,n , with

reductive decomposition g = k ⊕ p (see Sect. 2.1). Let g(t) be a solution to the Ricci flow

∂

∂t
g(t) = −2Rc(g(t)), g(0) = g0. (23)

The short time existence of a solution follows from [34], as g is homogeneous and hence com-
plete and of bounded curvature. Alternatively, one may require Gμ0 -invariance of g(t) for all t ,
and thus (M, g(t))would have, as a homogeneous space, the presentation

(
Gμ0/Kμ0 , g〈·,·〉t

)
,
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where 〈·, ·〉t := g(t)(oμ0) is a family of inner products on p. The Ricci flow equation (23) is
therefore equivalent to the ODE

d

dt
〈·, ·〉t = −2Rc(〈·, ·〉t ), 〈·, ·〉0 = 〈·, ·〉, (24)

where Rc(〈·, ·〉t ) := Rc(g(t))(oμ0), and hence short time existence and uniqueness of the
solution in the class of Gμ0 -invariant metrics is guaranteed. Recall that the set of all inner
products on p is parameterized by the symmetric space GLn(R)/O(n) and the subset of those
which are Ad(Kμ0)-invariant is a submanifold of it. As the field defined by Rc is tangent to
this submanifold, the solution 〈·, ·〉t to (24) stays Ad(Kμ0)-invariant for all t . In this way,
g(t) is homogeneous for all t , and hence the uniqueness within the set of complete and with
bounded curvature metrics follows from [9]. It is actually a simple matter to prove that such
a uniqueness result, in turn, implies our assumption of Gμ0 -invariance, as the solution must
preserve any isometry of the initial metric. The need for this circular argument is due to the
fact that the uniqueness of the Ricci flow solution is still an open problem in the noncompact
general case (see [8]).

In any case, there is an interval (a, b) ⊂ R such that 0 ∈ (a, b) and where existence
and uniqueness (within complete and with bounded curvature metrics) of the Ricci flow g(t)
starting at a homogeneous manifold (M, g0) hold.

Remark 3.1 One can use in the homogeneous case the existence and uniqueness of the
solution g(t), forward and backward from any t ∈ (a, b), to get that I(M, g(t)) = I(M, g0)

for all t . This fact has recently been proved for the more general class of all complete and
with bounded curvature metrics in [21].

It is easy to check that if

〈·, ·〉t = 〈P(t)·, ·〉,
where P(t) is the corresponding smooth curve of positive definite operators of (p, 〈·, ·〉), then
equation (24) determines the following ODE for P:

d

dt
P = −2PRic(〈·, ·〉t ), (25)

where Ric(〈·, ·〉t ) := Ric(g(t))(oμ0) : p −→ p is the Ricci operator at the origin.
On the other hand, if

〈·, ·〉t = 〈h(t)·, h(t)·〉
for some smooth curve h : (a, b) −→ GLn(R) (which there always exists but it is far from
being unique), then ht h = P and so equation (24) determines the following ODE for h:

ht d

dt
h +

(
d

dt
h

)t

h = −2ht hRic(〈·, ·〉t ). (26)

Here ht denotes transpose with respect to our fixed inner product 〈·, ·〉.
It follows from the Ad(Kμ0)-invariance of 〈·, ·〉t that condition (9) holds for h(t) and μ0

for all t . Proposition 2.2 therefore implies that

μ(t) :=
[

I 0
0 h(t)

]
· μ0

is a curve in Hq,n , which is equivalent in a way (to be more precisely defined later) to the
Ricci flow. Thus the understanding of its evolution equation and dynamical properties may

123

Author's personal copy
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provide new insights into the study of homogeneous Ricci flows and solitons. This is the aim
of the next section.

3.1 The bracket flow

The parametrization of homogeneous manifolds as points in the set Hq,n given in Sect. 2.1
suggests the following natural question:

How does the Ricci flow look on Hq,n?

More precisely,

what is the evolution equation a curve μ(t) ∈ Hq,n must satisfy in order to get that(
Gμ(t)/Kμ(t), gμ(t)

)
is a Ricci flow solution up to pullback by time-dependent diffeo-

morphisms?

The answer is the content of Theorem 3.3 below and is given by the following ODE for a
curve

μ(t) ∈ Vq+n = �2g∗ ⊗ g

of bilinear and skew-symmetric maps, which will be called the bracket flow from now on:

d

dt
μ = −π

([
0 0
0 Ricμ

])
μ, μ(0) = μ0. (27)

Here Ricμ is defined as in (15) andπ : glq+n(R) −→ End(Vq+n) is the natural representation
given by

π(A)μ = Aμ(·, ·)− μ(A·, ·)− μ(·, A·), A ∈ glq+n(R), μ ∈ Vq+n . (28)

We note thatπ is the derivative of the GLq+n(R)-representation defined in (7) andπ(A)μ = 0
if and only if A ∈ Der(μ), the Lie algebra of derivations of the algebra μ.

Equation (27) is well defined as Ricμ can be computed for anyμ ∈ Vq+n by using formula
(15), and not only for μ ∈ Hq,n . However, as the following lemma shows, this technicality is
only needed to define the ODE. Let (a, b) denote from now on a time interval with 0 ∈ (a, b)
where a solution μ(t) exists.

Lemma 3.2 If μ : (a, b) −→ Vq+n is a solution to (27) such that μ0 ∈ Hq,n, then μ(t) ∈
Hq,n for all t ∈ (a, b).

Proof We must check conditions (h1)-(h4) in Definition 2.1 for μ = μ(t). We have that the
right hand side of (27) is tangent to the GLn(R)-orbit of μ:

π

([
0 0
0 Ricμ

])
μ= d

ds
|0e

s

[
0 0
0 Ricμ

]

· μ∈ Tμ

([
I 0
0 GLn(R)

]
· μ

)
⊂Vq+n, ∀t ∈ (a, b).

By a standard ODE theory argument, we get that μ(t) ∈
[

I 0
0 GLn(R)

]
· μ0 for all t , which

implies that condition (h1) holds for μ(t), and furthermore,

μ(t)|k×k = μ0, ∀t ∈ (a, b). (29)
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Now, for each Z ∈ k, set ψ := eadμ0 Z . It is easy to see by using that ψ |p is orthogonal that
Ricψ.μ = ψ |pRicμ(ψ |p)−1, and thus the curve λ(t) := ψ · μ(t) satisfies

d

dt
λ = ψ · d

dt
μ = ψ ·

(
−π

([
0 0
0 Ricμ

]))
μ = −π

(
ψ

[
0 0
0 Ricμ

]
ψ−1

)
ψ · μ

= −π
([

0 0
0 Ricλ

])
λ.

But λ(0) = ψ · μ(0) = μ(0) as ψ ∈ Aut(g, μ0), so that λ(t) = μ(t) for all t by uniqueness
of the solution. Thusψ ∈ Aut(g, μ(t)) for all t , which implies thatψ |p commutes with Ricμ
and so

[adμ0 Z |p,Ricμ] = 0, ∀Z ∈ k. (30)

It follows from (27) that

d

dt
adμ Z |p = − ad

π

([
0 0
0 Ricμ

])
μ

Z |p = [adμ Z |p,Ricμ],

and since the same ODE is satisfied by the constant map adμ0 Z |p, it follows that

adμ Z |p = adμ0 Z |p, ∀t ∈ (a, b), Z ∈ k. (31)

Conditions (h3) and (h4) are therefore satisfied by μ(t). Finally, since Kμ0 is closed in Gμ0 ,
we get that Kμ is also closed in Gμ as it is the image of Kμ0 by the isomorphism between

Gμ0 and Gμ with derivative at the identity of the form

[
I 0
0 h(t)

]
. This implies that condition

(h2) holds, concluding the proof of the lemma. ��
We conclude from Lemma 3.2 that a homogeneous space (Gμ(t)/Kμ(t), gμ(t)) can indeed

be associated to each μ(t) in a bracket flow solution provided that μ0 ∈ Hq,n . We now show
that the Ricci flow and the bracket flow are intimately related.

For a given simply connected homogeneous manifold (M, g0) = (
Gμ0/Kμ0 , gμ0

)
, μ0 ∈

Hq,n , let us consider the following one-parameter families:

(M, g(t)),
(
Gμ0/Kμ0 , g〈·,·〉t

)
,

(
Gμ(t)/Kμ(t), gμ(t)

)
, (32)

where g(t), 〈·, ·〉t and μ(t) are the solutions to the Ricci flows (23), (24) and the bracket
flow (27), respectively. Recall that g = k ⊕ p is a reductive decomposition for any of the
homogeneous spaces involved.

Theorem 3.3 There exist time-dependent diffeomorphisms ϕ(t) : M −→ Gμ(t)/Kμ(t) such
that

g(t) = ϕ(t)∗gμ(t), ∀t ∈ (a, b).

Moreover, if we identify M = Gμ0/Kμ0 , then ϕ(t) : Gμ0/Kμ0 −→ Gμ(t)/Kμ(t) can be
chosen as the equivariant diffeomorphism determined by the Lie group isomorphism between

Gμ0 and Gμ(t) with derivative h̃ :=
[

I 0
0 h

]
: g −→ g, where h(t) := dϕ(t)|oμ0

: p −→ p is

the solution to any of the following systems of ODE’s:

(i) d
dt h = −hRic(〈·, ·〉t ), h(0) = I .

(ii) d
dt h = −Ricμ(t)h, h(0) = I .
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The following conditions also hold:

(iii) 〈·, ·〉t = 〈h·, h·〉.
(iv) μ(t) = h̃μ0(h̃−1·, h̃−1·).

Remark 3.4 Before proceeding with the proof, it is worth pointing out the following useful
facts which are direct consequences of the theorem:

• The Ricci flow g(t) and the bracket flow gμ(t) differ only by pullback by time-dependent
diffeomorphisms.

• They are equivalent in the following sense: each one can be obtained from the other
by solving the corresponding ODE in part (i) or (ii) and applying parts (iv) or (iii),
accordingly.

• The maximal interval of time where a solution exists is therefore the same for both flows.
• At each time t , the Riemannian manifolds in (32) are all isometric to each other, so that

the behavior of the curvature and of any other Riemannian invariant along the Ricci flow
g(t) can be studied along the bracket flow gμ(t).

• If some sequence μ(tk) (or a suitable normalization) converges to λ ∈ Hq,n , then we
can apply the results described in Sect. 2.2 to get convergence or subconvergence of the
metrics gμk → gλ relative to natural notions of convergence, as infinitesimal, local or
pointed.

Proof We will first prove that part (i) implies all the other statements in the theorem. Consider
the solution h = h(t) ∈ GLn(R) to the ODE

d

dt
h = −hRic(〈·, ·〉t ), h(0) = I,

where Ric(〈·, ·〉t ) := Ric(g(t))(0), which is defined on the same interval of time as g(t) by
a standard result in ODE theory (h(t) is easily seen to be invertible for all t). If (·, ·)t :=
〈h(t)·, h(t)·〉 and h′ := d

dt h(t) then

d

dt
(·, ·)t = 〈h′·, h·〉 + 〈h·, h′·〉

= −〈hRic(〈·, ·〉t )·, h·〉 − 〈h·, hRic(〈·, ·〉t )·〉 (33)

= −(Ric(〈·, ·〉t )·, ·)t − (·,Ric(〈·, ·〉t )·)t .

On the other hand, since Ric(〈·, ·〉t ) is symmetric with respect to 〈·, ·〉t , it follows from (24)
that 〈·, ·〉t satisfies

d

dt
〈·, ·〉t = −2Rc(〈·, ·〉t ) = −2〈Ric(〈·, ·〉t )·, ·〉t = −〈Ric(〈·, ·〉t )·, ·〉t − 〈·,Ric(〈·, ·〉t )·〉t .

Thus (·, ·)t and 〈·, ·〉t , as curves in the manifold GLn(R)/O(n) of inner products on p, satisfy
the same ODE and (·, ·)0 = 〈·, ·〉0 = 〈·, ·〉, and so part (iii) follows by uniqueness of the
solution. This also implies that condition (9) holds for h(t) and μ0, from we get that

ϕ(t) : (Gμ0/Kμ0 , g〈·,·〉t ) −→ (
Gλ(t)/Kλ(t), gλ(t)

)

123

Author's personal copy



388 J. Lauret

is an isometry for the curve λ(t) := h̃(t).μ0 for all t (see Proposition 2.2). In particular,
Ricλ(t) = h(t)Ric(〈·, ·〉t )h(t)−1, or equivalently, h′ = −Ricλ(t)h, and thus

d

dt
λ = h̃′μ0(h̃

−1·, h̃−1·)− h̃μ0(h̃
−1h̃′h̃−1·, h̃−1·)− h̃μ0(h̃

−1·, h̃−1h̃′h̃−1·)
= (h̃′h̃−1)h̃μ0(h̃

−1·, h̃−1·)−h̃μ0(h̃
−1(h̃′h̃−1)·, h̃−1·)−h̃μ0(h̃

−1·, h̃−1(h̃′h̃−1)·) (34)

= π(h̃′h̃−1)λ = −π
([

0 0
0 Ricλ

])
λ.

The curve λ(t) is therefore a solution to the bracket flow and since λ(0) = μ0, we obtain
that μ(t) = λ(t) for all t , from which parts (ii) and (iv) follow. We also deduce that

ϕ(t) : (M, g(t)) = (Gμ0/Kμ0 , g〈·,·〉t ) −→ (Gμ(t)/Kμ(t), gμ(t))

is an isometry.
Let us now assume that part (ii) holds, and so h(t) is defined on the same time interval as

g(t). By carrying out the same computation as in (34) for μ, we get that h̃(t) ·μ0 satisfies the
same ODE as μ(t) and it also starts at μ0. Thus h̃(t) · μ0 = μ(t) ∈ Hq,n for all t (i.e. part
(iv) holds), from which easily follows that h(t) satisfies (9) and therefore (·, ·)t := 〈h·, h·〉
defines a Gμ0 -invariant metric on Gμ0/Kμ0 for all t . Moreover, we have that

ϕ(t) : (Gμ0/Kμ0 , g(·,·)t ) −→ (
Gμ(t)/Kμ(t), gμ(t)

)
is an isometry for all t (see Proposition 2.2), and so Ricμ(t) = h(t)Ric((·, ·)t )h(t)−1, or
equivalently, h′ = −hRic((·, ·)t ). This implies that (·, ·)t is a solution to the Ricci flow (24)
by arguing as in (33), and consequently, (·, ·)t = 〈·, ·〉t for all t . In this way, parts (i) and (iii)
follow, concluding the proof of the theorem. ��

Sinceμ(t)|k×g = μ0|k×g for all t ∈ (a, b) (see (29) and (31)), we have that onlyμ(t)|p×p

is actually evolving, and so the bracket flow equation (27) can be rewritten as the simpler
system ⎧⎨

⎩
d
dtμk = μk(Ricμ·, ·)+ μk(·,Ricμ·),

μk(0)+ μp(0) = μ0|p×p,
d
dtμp = −πn(Ricμ)μp,

(35)

where μk and μp are the components of μ|p×p as in (11) and πn : gln(R) −→ End(Vn) is
the representation defined in (28) for q = 0.

Example 3.5 Let μ = μa,b,c be the Lie bracket in H0,3 = L3 defined by

μ(X2, X3) = aX1, μ(X3, X1) = bX2, μ(X1, X2) = cX3.

If follows from the formula for the Ricci operator Ricμ given in Example 2.8 that this family
is invariant under the bracket flow, which is equivalent to the following ODE system for the
variables a(t), b(t), c(t):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt a = (− 1

2 (3a2 − b2 − c2)+ ab + ac − bc
)

a,

d
dt b = (− 1

2 (3b2 − a2 − c2)+ ab − ac + bc
)

b,

d
dt c = (− 1

2 (3c2 − a2 − b2)− ab + ac + bc
)

c.

We refer to [14] for a complete qualitative study of this dynamical system, including some
nice phase plane pictures. One can use Theorem 2.7 to get subsequences which are convergent
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in the pointed sense from all convergent (normalized) bracket flow solutions obtained in [14],
and even smooth convergence in many cases.

Example 3.6 The Ricci operator of the bracket μ = μa,b,c ∈ H1,3 given by{
μ(X3, Z1) = X2, μ(X2, X3) = aX1 + bZ1, μ(X3, X1) = cX2,

μ(Z , X2) = X3, μ(X1, X2) = cX3,

was computed in Example 2.9. It is easy to see that the bracket flow leaves this family invariant
and is equivalent to the ODE system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt a = (− 3

2 a2 + 2b + 2ac)a,

d
dt b = (−a2 + 2b + 2ac)b,

d
dt c = 1

2 a2c.

Notice that μk is given by μk(X2, X3) = bZ1, and a, c are the structural constants of μp. It
follows at once from the equations that all the coordinate axes and planes are invariant by the
flow, and it is also easy to see that if b �= 0, then ac

b ≡ constant , which gives rise to more
invariant subsets. The case c = 0 will be studied in detail in Sect. 3.4, where some interesting
convergence features appear (see [3] for a qualitative analysis of all possible cases).

3.2 Some evolution equations along the bracket flow

We study in this section how the different parts of the Ricci curvature of gμ(t) evolve along
the bracket flow (see Sect. 2.3 for most of the notation used in what follows).

Lemma 3.7 For any μ ∈ Hq,n, the following conditions hold:

(i) If δμp : gln(R) −→ �2p∗ ⊗ p is defined by δμp (E) = −π(E)μp, then

δμp (I ) = μp, δt
μp
(μp) = −4Mμp ,

where δt
μp

: �2p∗ ⊗ p −→ gln(R) is the transpose of δμp .

(ii) tr Mμp = − 1
4‖μp‖2.

(iii) tr Mμp D = tr BμD = 0 for any

[
0 0
0 D

]
∈ Der(μ).

(iv) Bh̃·μ = (h−1)t Bμh−1 for any h̃ =
[

I 0
0 h

]
∈ GLq+n(R), h ∈ GLn(R).

(v) Hh·μp = (h−1)t (Hμp ) for any h ∈ GLn(R).
(vi) μ(Z , Hμp ) = 0 for any Z ∈ k.
(vii) [adμ Z |p,Ricμ]= [adμ Z |p,Mμp ]= [adμ Z |p, Bμ]= [adμ Z |p, S(adμp Hμp )]= 0,
for any Z ∈ k.

Proof The proofs of parts (i)–(v) easily follow by only using the definitions and (19), and the
vanishing of all the brackets in (vii) can be proved by using that et adμ Z is an automorphism
of (g, μ) which is orthogonal on p for all t and so it is easily seen to commute with all the
operators on the right in each bracket.

Finally, part (vi) follows from the fact that

〈μ(Z , Hμp ), X〉 = −〈Hμp , [Z , X ]〉 = − tr [adμ Z , adμ X ] = 0, ∀X ∈ p,

concluding the proof of the lemma. ��
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Let us also denote by M, B and H the maps defined by

M : �2p∗ ⊗ p −→ gln(R), B : �2g∗ ⊗ g −→ gln(R) H : �2p∗ ⊗ p −→ p,

M(λ) := Mλ, B(λ) := Bλ, H(λ) := Hλ.

If E ∈ gln(R) satisfies Et = E , then it follows from (19) and (28) that

〈dM|λδλ(A), E〉 =
〈

d

dt
|0Me−t A .λ, E

〉
= 1

4
d

dt
|0〈πn(E)e

−t A.λ, e−t A.λ〉
= 1

2 〈πn(E)λ, δλ(A)〉 = − 1
2 〈δt

λδλ(A), E〉.
This implies that

dM|λδλ(A) = − 1
2�λ(A), ∀A ∈ gln(R), λ ∈ �2p∗ ⊗ p, (36)

where

�λ := S ◦ δt
λδλ : gln(R) −→ gln(R),

and S is as in (16). For the function B we use Lemma 3.7, (iv) to easily obtain that

d B|λδλ( Ã) = At Bλ + BλA, ∀A ∈ gln(R), λ ∈ �2g∗ ⊗ g, (37)

where we set Ã =
[

0 0
0 A

]
∈ glq+n(R) for any A ∈ gln(R), that is, Ã|k = 0, Ã|p = A.

Concerning H , it follows from Lemma 3.7, (v) that

d H |λδλ(A) = At (Hλ), ∀A ∈ gln(R), λ ∈ �2p∗ ⊗ p. (38)

Letμ(t) ∈ Hq,n be a solution to the bracket flow (27). We introduce the following notation
in order to simplify the formulas for the ODE’s we need to study:

Ric(t) := Ricμ(t), M(t) := Mμp (t), B(t) := Bμ(t),

H(t) := Hμp (t), U (t) := S(adμp (t) H(t)), R(t) := tr Ric(t),

�(t) := �μp (t).

(39)

Proposition 3.8 The bracket flow equation (27) for μ(t) produces the following evolution
equations:

(i) d
dt Ric = − 1

2�(Ric)− 1
2 (BRic + RicB)− 2S(adμp Ric(H))− S([adμp H,Ric]).

(ii) d
dt M = − 1

2�(Ric).

(iii) d
dt B = BRic + RicB.

(iv) d
dt H = Ric(H).

(v) d
dt U = 2S(adμp Ric(H))+ S([adμp H,Ric]).

(vi) d
dt R = 2 tr Ric2 = 2‖Ric‖2.

(vii) d
dt ‖μp‖2 = −8 tr Ric M.

(viii) d
dt tr B = 2 tr RicB.

(ix) d
dt ‖H‖2 = −2 tr S(adμp H)2.

Proof We use (36) in the last equality of the following line to prove part (ii),

d

dt
M = dM|μp

d

dt
μp = dM|μp δμp (Ric) = − 1

2�(Ric),
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and parts (iii) and (iv) follow similarly by using (37) and (38), respectively.
It follows from part (iv) and the fact that S and ad are linear that

d

dt
U = S

(
d

dt
adμp H

)
= S

(
adδμp

(Ric)H + adμp Ric(H)
)

= S
(
adμp Ric(H)+ adμp H ◦ Ric − Ric ◦ adμp H + adμp Ric(H)

)
= 2S(adμp Ric(H))+ S([adμp H,Ric]),

which proves part (v). It is clear that part (i) follows from part (ii), (iii) and (v).
We have that

〈Ric(H), H〉 = 〈M(H), H〉 − 1
2 〈B(H), H〉

= − 1
2 tr (adμp H)t adμp H + 1

4

∑
tr adμ μ(Xi , X j )− 1

2 tr (adμp H)2

= − tr S(adμp H) adμp H = − tr S(adμp H)2,

and thus by Lemma 3.7, (iii), we get

〈Ric(H), H〉 = − tr S(adμp H)2 = 〈Ric, S(adμp H)〉. (40)

We now use part (i) and (40) to prove (iv) as follows:

d

dt
R = tr

d

dt
Ric = − 1

2 tr δt
μp
δμp (Ric)− 2 tr B Ric − 2 tr adμp Ric(H)

= − 1
2 〈Ric, δt

μp
(μp)〉 − 2〈Ric, B〉 − 2〈Ric(H), H〉

= 2〈Ric,M〉 − 2〈Ric, B〉 − 2〈Ric, S(adμp H)〉 = 2 tr Ric2.

By using (ii) we obtain part (vii):

d

dt
‖μp‖2 = 2

〈
μp,

d

dt
μp

〉
= 2〈μp, δμp (Ric)〉 = −8 tr Ric M.

Finally, parts (viii) and (x) follow from (iii) and (iv), (40), respectively, concluding the proof
of the proposition. ��
A few comments are in order here:

• In the general case, along a Ricci flow solution g(t), the scalar curvature R = R(g(t))
evolves according to

∂

∂t
R = �(R)+ 2‖Rc‖2,

where � is the Laplacian of (M, g(t)) (see e.g. [10, Lemma 6.7]). Since at each fixed
time R is constant as a function on M for homogeneous manifolds, one obtains the
evolution given in Proposition 3.8, (vi). In particular, the scalar curvature is always strictly
increasing in the homogeneous case, unless g(t) ≡ g0 is flat (recall that a homogeneous
manifold is flat if and only if it is Ricci flat; see [1]).

• If μ(t) → λ ∈ Hq,n , as t → ∞, then R(t) → R(λ) (increasing) and so Ricλ = 0, that
is, (Gλ/Kλ, gλ) is flat.

• It follows from Proposition 3.8, (ix) that homogeneous spaces become ‘more unimodular’
(i.e. H = 0) while evolve by the Ricci flow.
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3.3 Normalized flows

Let (M, g0) be a Riemannian manifold. By rescaling the metric and reparametrizing the time
variable t , one can transform the Ricci flow (23) into an r-normalized Ricci flow

∂

∂t
gr (t) = −2Rc(gr (t))− 2r(t)gr (t), gr (0) = g0, (41)

for some normalization function r(t) which may depend on gr (t). It is easy to see that
a solution has the form gr (t) = a(t)g(b(t)) with g(s) the Ricci flow and thus a scalar
Riemannian invariant may remain constant or bounded in time as a result of an appropriate
choice of the function r(t). Normalizations are therefore very useful to prevent a Ricci flow
solution from a finite-time singularity as well as from converging to a flat metric. Usually,
the challenge is to be able to prevent both by using the same normalization.

In the case (M, g) is homogeneous, say (M, g) = (
Gμ0/Kμ0 , gμ0

)
, μ0 ∈ Hq,n , we have

that the flow (41) is equivalent to

d

dt
〈·, ·〉r

t = −2Rc(〈·, ·〉r
t )− 2r(t)〈·, ·〉r

t , 〈·, ·〉r
0 = 〈·, ·〉. (42)

This motivates the definition of the r-normalized bracket flow for μr = μr (t) and r = r(t)
by

d

dt
μr = −π

([
0 0
0 Ricμr + r I

])
μr , μr (0) = μ0, (43)

or equivalently, as the system analogous to (35) given by⎧⎨
⎩

d
dtμ

r
k = μr

k(Ricμr ·, ·)+ μr
k(·,Ricμr ·)+ 2rμr

k(·, ·),
μr

k(0)+ μr
p(0) = μ0|p×p,

d
dtμ

r
p = −πn(Ricμr + r I )μr

p = −πn(Ricμr )μr
p + rμr

p.

(44)

Given a continuous (or just integrable) normalization function r , we consider the solutions
to the ODE’s {c′ = rc, c(0) = 1} and {τ ′ = c2, τ (0) = 0}, that is,

r � c(t) := e
∫ t

0 r(s) ds, τ (t) =
t∫

0

c2(s) ds. (45)

Notice that c(t) > 0 and τ ′(t) > 0 for all t . If g(t), 〈·, ·〉t andμ(t) denote the (unnormalized)
Ricci and bracket flows (23), (24) and (27), respectively, then it is straightforward to check
that

gr (t) = 1
c2(t)

g(τ (t)), 〈·, ·〉r
t = 1

c2(t)
〈·, ·〉τ(t),

μr (t) = c(t) · μ(τ(t)), i.e. μr
k(t) = c2(t)μk(τ (t)), μr

p(t) = c(t)μp(τ (t)).
(46)

Let [0, T ) be the maximal interval of forward time for the bracket flow solutionμ(t), with
T ∈ R>0 ∪ {∞}.
Lemma 3.9 If the r-normalized bracket flow solution μr (t) is defined for t ∈ [0,∞) and
τ(t) → T1 < T , as t → ∞, then μr (t) → 0, as t → ∞.

Proof Under these hypothesis, one has that μ(τ(t)) → μ(T1) and c2(t) = τ ′(t) → 0, as
t → ∞, and thus μr (t) → 0 by (46). ��
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In particular, if μr (t) → λ �= 0, as t → ∞, then τ(t) → T and λ is therefore providing
information on the behavior of μ(t) close to the singularity T .

For the corresponding one-parameter families of homogeneous manifolds:

(M, gr (t)),
(
Gμ0/Kμ0 , g〈·,·〉r

t

)
,

(
Gμr (t)/Kμr (t), gμr (t)

)
, (47)

one can prove the following result in much the same way as Theorem 3.3, or alternatively,
by just defining hr as in part (v) below, which make all the statements easy to check.

Theorem 3.10 There exist time-dependent diffeomorphisms ϕr (t) : M −→ Gμr (t)/Kμr (t)

such that

gr (t) = ϕr (t)∗gμr (t), ∀t ∈ (a, b).

Moreover, if we identify M = Gμ0/Kμ0 , then ϕr (t) : Gμ0/Kμ0 −→ Gμr (t)/Kμr (t) can be
chosen as the equivariant diffeomorphism determined by a Lie group isomorphism between

Gμ0 and Gμ(t) with derivative h̃r :=
[

I 0
0 hr

]
: g −→ g, where hr (t) := dϕ(t)|oμ0

: p −→ p

is the solution to any of the following ODE systems:

(i) d
dt hr = −hr (Ric(〈·, ·〉r

t )+ r(t)I ), hr (0) = I .

(ii) d
dt hr = −(Ricμr (t) + r(t)I )hr , hr (0) = I .

The following conditions also hold:

(iii) 〈·, ·〉r
t = 〈hr ·, hr ·〉.

(iv) μr (t) = h̃rμ0(h̃r −1·, h̃r −1·).
(v) hr (t) := 1

c(t)h(τ (t)), where h(t) is defined as in Theorem 3.3 and c and τ are given
by (45).

It is worth mentioning at this point that by Theorem 2.3, any convergence μr (t) → λ ∈
Hq,n , as t → ∞, we may get from some normalized flow of the form (43) gives rise to infini-
tesimal convergence

(
Gμr (t)/Kμr (t), gμr (t)

) → (Gλ/Kλ, gλ), as well as to local convergence
(and hence pointed subconvergence) provided the Lie injectivity radius remains uniformly
bounded from below, i.e. inf

t∈[0,∞)
rμ(t) > 0. Recall also that gr (t) and gμr (t) are isometric for

all t , and so any geometric quantity constant or bounded in time for the normalized bracket
flow μr (t) will also be so for the normalized Ricci flow gr (t).

We now give the evolutions of the quantities associated to the Ricci curvature along an
r -normalized bracket flow.

Proposition 3.11 If we replaceμ byμr in every formula given in (39), then the r-normalized
bracket flow equation (43) for μr (t) produces the following evolution equations:

(i) d
dt Ric = − 1

2�(Ric)− 1
2 (BRic + RicB)

− 2S(adμr
p

Ric(H))− S([adμr
p

H,Ric])+ 2rRic.

(ii) d
dt M = − 1

2�(Ric)+ 2rM.

(iii) d
dt B = BRic + RicB + 2r B.

(iv) d
dt H = Ric(H)+ r H.

(v) d
dt U = 2S(adμr

p
Ric(H))+ S([adμr

p
H,Ric])+ 2r S(adμr

p
H).

(vi) d
dt R = 2 tr Ric2 + 2r R = 2‖Ric‖2 + 2r R.

(vii) d
dt ‖μr

p‖2 = −8 tr Ric M + 2r‖μr
p‖2.

(viii) d
dt tr B = 2 tr RicB + 2r tr B.

(ix) d
dt ‖H‖2 = −2 tr S(adμr

p
H)2 + 2r‖H‖2.
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Proof We can replace Ric by Ric+r I everywhere in the proof of Proposition 3.8, and obtain
a proof for each item in exactly the same way. One only need to be careful in the proof of
part (vi), where only the Ric on the left must be changed. ��
Example 3.12 In order to get the volume element of gμr constant in time (i.e. det hr ≡ 1)
one can take r(t) = − 1

n R(μr ). Indeed, by using Theorem 3.10, (ii), we obtain

d

dt
det hr = det hr tr

(
(hr )−1 d

dt
hr

)
= − det hr tr (Ricμr + r I ) = 0,

and so det hr ≡ 1 as hr (0) = I . A useful property of this normalization is that the scalar
curvature is still increasing. Indeed, by Theorem 3.11, (vi), we have that

d

dt
R(μr ) = 2

(
tr Ric2

μr − 1

n
R(μr )

2
)

≥ 0,

and equality holds if and only if μ0 is Einstein, in which case μr (t) ≡ μ0, t ∈ (−∞,∞).

Example 3.13 In the homogeneous case, the scalar curvature is just a single number attached
to the metric, providing a natural curvature quantity to have fixed along the flow. It follows

from Theorem 3.11, (vi) that by normalizing with r(t) = − tr Ric2
μr

R(μr )
, we get R(μr ) ≡ R(μ0)

provided R(μ0) �= 0.

Example 3.14 If the normalization keeps the norm of the bracket uniformly bounded, then
two useful consequences follow: the bracket flow is defined for t ∈ [0,∞) and there exist
convergent subsequences. For instance, we have that

r(t) = 4
tr Ricμr Mμr

p

‖μr
p‖2

gives ‖μr
p‖ ≡ ‖μp(0)‖ (see Theorem 3.11, (vii)).

Example 3.15 In order to prevent convergence to a flat metric without fixing a sign for the
scalar curvature as in Example 3.13, which also leaves out the metrics with R = 0, we can
use that a homogeneous manifold is flat if and only if it is Ricci flat (see [1]), and consider the
normalized bracket flow such that tr Ric2

μr ≡ tr Ric2
μ0

. Thus the solution stays uniformly
far from being flat for all t , as soon as g0 is nonflat, and any eventual limit will therefore be
automatically nonflat. It is difficult in this case to compute r(t) explicitly, although we know
that the normalized solution will have the form

μr (t) =
(

tr Ric2
μ0

tr Ric2
μ(τ(t))

)1/4

· μ(τ(t)),

for some appropriate time reparametrization τ(t), where μ(s) is the bracket flow solution
with μ(0) = μ0.

3.4 Example in dimension 3

We consider more in detail in this section the family of metrics given in Example 3.6 with
c = 0. Thus their brackets μ = μa,b,0 ∈ H1,3 are defined by

μ(X3, Z1) = X2, μ(Z1, X2) = X3, μ(X2, X3) = aX1 + bZ1,
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Fig. 1 Phase plane for the ODE system (48)

each homogeneous space (Gμ/Kμ, gμ) has Ricci operator and scalar curvature (see Example
2.9) given by

Ricμ =
⎡
⎣

1
2 a2

− 1
2 a2 + b

− 1
2 a2 + b

⎤
⎦ , R(μ) = − 1

2 a2 + 2b,

and the bracket flow is equivalent to the ODE system

⎧⎨
⎩

d
dt a = (− 3

2 a2 + 2b
)

a,

d
dt b = (−a2 + 2b)b.

(48)

The phase plane for this system is displayed in Fig. 1, as computed in Mathematica. Up
to isometry, it is enough to assume 0 ≤ a, which we do from now on, and the metrics we get
can be divided in bracket flow invariant subsets as follows:

• a = 0, b > 0: product metrics on S2 × R.
• a = 0, b = 0: euclidean metric on R

3.
• a = 0, b < 0: product metrics on H2 × R.
• a > 0, b > 0: left-invariant metrics on S3 (Berger spheres).
• a > 0, b = 0: left-invariant metrics on the Heisenberg group (Nil).
• a > 0, b < 0: left-invariant metrics on S̃L2(R) (only those with a 4-dimensional isometry

group, which may be considered as the hyperbolic analogues to Berger metrics on S3).

It is easy to see that for b > 0 the bracket flow solution μ(t) goes to infinity in finite time,
and that the parabola b = a2 is invariant, which correspond to the round metrics on S3 as
their Ricci operator equals 1

2 a2 I . When b ≤ 0, one also easily obtain thatμ(t)|p×p → 0 (i.e.
(a, b) → (0, 0)), as t → ∞, which implies that gμ(t) locally converges and subconverges in
the pointed sense to a flat metric by Theorem 2.4 and Example 2.5.
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Fig. 2 Volume-normalized bracket flow and scalar curvature behavior

The region b ≥ a2 is invariant by the bracket flow, and for the backward flow we have
that

d

dt
(a2 + b2) = 2

(
3

2
a2 − 2b

)
a2 + 2(a2 − 2b)b2 ≤ −a4 − 2a2b2 ≤ 0.

Thus all the solutions inside this region are defined for t ∈ (−∞, 0], and so they produce
ancient solutions to the Ricci flow. These solutions may be considered the 3-dimensional
analogous of the Angenent ovals for the curve shortening flow and the Rosenau solutions for
the Ricci flow on surfaces (see [10, Chapter 2, Section 3.3]).

Let us now consider different normalizations μr = μa,b,0 starting at μ0 = μa0,b0,0.
(i) Volume element (see Example 3.12). An easy computation gives r = 1

6 a2 − 2
3 b, and

thus the volume-normalized bracket flow equation is given by{ d
dt a = 4

3 (b − a2)a,
d
dt b = 2

3 (b − a2)b.

It is easy to check that d
dt

a
b2 ≡ 0, which gives a = αb2 for any b �= 0 if we assume a0 = αb2

0,
for some α > 0. This implies that

d

dt
b = 2

3 b2(1 − α2b3),

from it can be deduced that the only fixed points are (a, b) = (0, 0) (flat) and (a, b) =
(α− 1

3 , α− 2
3 ) (round metric on S3), and that b decreases for 1 < b and increases otherwise.

An alternative way to get this is by using that R must always increase forward in time for
any volume-normalized solution, and we have that R(b) = − 1

2α
2b4 + 2b (see Fig. 2 for the

case α = 1). By Theorem 2.4, (iv) and Example 2.5, we have that the volume-normalized
Ricci flow solutions on S3 (i.e. b > 0) all converge in the pointed sense to a round metric
(i.e. b = a2). On the other hand, on S̃L2(R) (i.e. b < 0), the volume-normalized solutions
still locally converge (or subconverge in the pointed sense) to a flat metric.
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Fig. 3 R-normalized bracket flows: R ≡ 3
2 and R ≡ − 1

2

(iii) Positive scalar curvature (see Example 3.13). By taking r = − 1
2 a4 − 4

3 b2 + 4
3 a2b

we obtain R(μr ) = − 1
2 a2 + 2b ≡ 3

2 , from which follows that

d

dt
a = 1

2 (− 1
4 a4 − 1

2 a2 + 3
4 )a.

Thus (a, b) = (0, 3
4 ) (S2 × R) and (a, b) = (1, 1) (round metric on S3) are the only fixed

points and a is increasing for 0 < a < 1 and decreasing for 1 < a < ∞. Forward in time, this
gives the same convergence behavior as for the volume-normalized flow above (see Fig. 3),
but it produces S2 × R as a limit a t → ∞. It follows that the ancient solutions (i.e. b ≥ a2)
‘connect’ S2 × R with S3 in the sense considered in [4].

(iv) Negative scalar curvature (see Example 3.13). In order to get R(μr ) = − 1
2 a2 +2b ≡

− 1
2 we must consider r = ( 3

2 a4 + 4b2 − 4a2b). It follows that

d

dt
a = 1

2 (
1
2 a4 − 1

4 a2 − 1
4 )a,

and so the fixed points are (a, b) = (0,− 1
4 ) (H2 × R) and (a, b) = (1, 0) (Nil). Moreover,

we obtain that a is decreasing for 0 < a < 1 and increasing for 1 < a < ∞. This implies
that on S3 (i.e. 1 < a), the solution μr (t) goes to ∞, as t → ∞. However, the R-normalized
solution on S̃L2(R) (i.e. a < 1) satisfies

lim
t→∞μ

r (t) = μ0,− 1
4 ,0
,

and so we get H2 × R in the limit (see Fig. 3). It follows from Theorems 3.10 and 2.4 (and
Example 2.5) that the R-normalized (R ≡ − 1

2 ) Ricci flow solution gr (t) of left-invariant

metrics on S̃L2(R) locally converges to H2 × R up to pullback by time-dependent diffeo-
morphisms, and also that there exists a subsequence gr (tk) converging in the pointed sense
to H2 × R. This convergence behavior was proved to hold in [31, 3.3.5] and [13, 4.3.1] for
certain rescalings of the Ricci flow solution starting at any left-invariant metric on S̃L2(R).
Recall that H2 ×R is not a unimodular Lie group, and thus this convergence can never appear
in the study of the bracket flow on L3 = H0,3 (since unimodularity is a closed condition
on L3). However, we have just showed that it does on H1,3 (compare with [14, Section 6]).
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4 Example on compact Lie groups

In this section, we study the Ricci flow on certain 2-parameter family of left-invariant metrics
on semisimple Lie groups.

Let g be a compact simple Lie algebra of dimension n, with Lie bracket denoted by
[·, ·]. Endow g with the inner product 〈·, ·〉 given by minus the Killing form of g, that is,
B(X, X) = −1 for any X ∈ g, ‖X‖ = 1. This implies that (ad X)t = − ad X for any X ,
from which it follows that the moment map equals M = − 1

4 I , and so the Ricci operator of
the bi-invariant metric defined by 〈·, ·〉 on the corresponding simply connected Lie group G
is given by Ric = 1

4 I . Consider a Cartan decomposition g = h ⊕ m, dim h = h, dim m = m
(i.e. [h, h] ⊂ h, [h,m] ⊂ m and [m,m] ⊂ h), which is automatically orthogonal with respect
to 〈·, ·〉, and let us make the following assumption: the Killing form Bh is a multiple of B
restricted to h, say

Bh = αB|h×h, 0 ≤ α < 1. (49)

It is easy to see that α = 2h−m
2h (see [12, Theorem 11,(i)]). This situation holds for instance

for any irreducible symmetric space G/H with H simple or abelian, and so G can be any
compact simple Lie group in this section, with the only exception of Sp(2k + 1) (see e.g. the
list [5, Table 7.102]).

Let μ = μa,b denote the Lie bracket on the vector space g defined by

μ|h×h = a[·, ·], μ|h×m = a[·, ·], μ|m×m = b[·, ·].
We note that (g, μ) is isomorphic to g for a, b > 0, and to a noncompact simple Lie algebra
gnc for b < 0 < a, which is another real form of the complexification gC. Asμa,b is isometric
to μ−a,−b, it is enough to assume 0 ≤ a, and by using the Killing form below, it is easy to
see that the left-invariant metrics we get can be arranged according to their underlying Lie
group as follows (any item defines a bracket flow invariant subset):

(i) a = 0, b �= 0: a 2-step nilpotent Lie group N with h-dimensional derived algebra equal
to its center.

(ii) a = 0, b = 0: abelian group R
n (euclidean metric).

(iii) a > 0, b > 0: compact simple Lie group G.
(iv) a > 0, b = 0: a semidirect product H � R

m (these metrics are actually isometric to the
product H × R

m of a bi-invariant metric on H and the euclidean metric on R
m).

(v) a > 0, b < 0: noncompact simple Lie group Gnc with Lie algebra gnc.

Let (Gμ, 〈·, ·〉) be the Lie group endowed with a left-invariant metric according to (6),
corresponding to μ = μa,b ∈ Ln = H0,n . It follows from (51) and Proposition 2.2, (ii) that
for a, b > 0 (resp. a > 0, b < 0), (Gμ, 〈·, ·〉) is isometric to the left invariant metric on G
(resp. Gnc) defined by the inner product

〈·, ·〉a,b := 1

a2 〈·, ·〉|h×h + 1

a|b| 〈·, ·〉|m×m.

It is known that (Gμ, 〈·, ·〉) is a naturally reductive homogeneous manifold for any a, b, with
respect to its presentation as a homogeneous space G × H/H (see [12, Theorem 1] for the
semisimple cases (iii), (v), and [23] for the nilpotent case (i)). Furthermore, it easily follows
from [12, Theorem 3] that (Gμ, 〈·, ·〉) = G × H/H is normal homogeneous if and only if
0 ≤ b ≤ a, and from [12, Theorem 9] that (Gμ, 〈·, ·〉) has nonnegative sectional curvature if
and only if 0 ≤ b ≤ 4

3 a.
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Fig. 4 Phase plane for the ODE system (50)

It is straightforward to see by using (49) that the Killing form and moment map of
(Gμ, 〈·, ·〉) are respectively given by

Bμ =
[−a2 I

−abI

]
, Mμ =

[
− a2

2 I + a2

4 α I + b2

4 (1 − α)I
− 1

4 b2 I

]
.

The Ricci operator and scalar curvature are therefore given by

Ricμ = 1
4

[
(αa2 + (1 − α)b2)I

(2ab − b2)I

]
, R = 2h − m

8
a2 − m

8
b2 + m

2
ab,

and an easy computation gives that

π(Ricμ)μ|h×g = − 1
4 (αa2 + (1 − α)b2)a [·, ·],

π(Ricμ)μ|m×m = 1
4 (αa2 + (3 − α)b2 − 4ab)b [·, ·].

This implies that the bracket flow is equivalent to the following ODE system for a = a(t), b =
b(t):

⎧⎨
⎩

d
dt a = 1

4 (αa2 + (1 − α)b2)a,

d
dt b = − 1

4 (αa2 + (3 − α)b2 − 4ab)b.
(50)

The phase plane for this system is displayed in Fig. 4, as computed in Mathematica, in the
particular case g = su(3), h = su(2) (where h = 3,m = 5 and α = 1

6 ).
We have that (Gμ, 〈·, ·〉) is Einstein if and only if αa2 + (1 − α)b2 = 2ab − b2, whose

solutions are b = a (i.e. bi-invariant metrics on G) and b = α
2−α a. The other Ricci solitons

are H × R
m , as it is a product of an Einstein manifold and an euclidean space, and the
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nilsoliton N (see [24]), whose Ricci operator satisfies

Ricμ0,b = − 1
4 ((1 − α)b2 + 2b2)I +

[ 1
2 ((1 − α)b2 + b2)I

1
4 ((1 − α)b2 + b2)I

]

∈ RI ⊕ Der(g, μ0,b).

It follows that the region 0 ≤ b ≤ a is invariant by the bracket flow, and since d
dt a ≥ 0

on it the backward flow stays forever bounded. Thus all the solutions inside this region are
defined for (−∞, 0], and so this gives explicit examples of left-invariant ancient solutions
to the Ricci flow on any compact simple Lie group different from Sp(2k + 1). We actually
get two non-equivalent (up to homothety) ancient solutions which are not Einstein if α �= 0:
α

2−α a < b < a and 0 < b < α
2−α a (by using that the ratio of the two Ricci eigenvalues is

respectively > 1 and < 1). From the behavior of the R-normalized bracket flow obtained
below (see Fig. 7, left), we have that these ancient solutions flow the second Einstein metric E2
(i.e. b = α

2−α a) into the bi-invariant metric Gbi (i.e. b = a) and into the Ricci soliton H ×R
m ,

respectively. We have recently become aware that the same behavior has been discovered in
[4] for certain ancient solutions on many homogeneous spaces including spheres and complex
projective spaces, and that the construction given above is actually a particular case of the
Riemannian submersion method given in [4, Section 7].

On the contrary, for b > a > 0, it is easy to see that b → ∞, as t → T , for some finite
negative time −∞ < T < 0, and thus these are not ancient solutions.

We now consider some normalizations.
(i) Volume element (see Example 3.12). By using that for all a > 0, b �= 0,

μa,b =
[

1
a I

1√
a|b| I

]
· μ1,±1, ±1 := b

|b| , (51)

we obtain that vol(μa,b) = a−(h+m/2)|b|−m/2vol(μ1,±1), and a region of constant volume
element is therefore given by

b = ±a−ω, ω := m + 2h

m
> 1.

The scalar curvature can be written as

R(a) = 1
4

(
hαa2 + h(1 − α)a−2ω ± 2ma1−ω − ma−2ω) ,

and thus

R′(a) = 1
2 a−2ω−1 p±(aω+1), where p±(x) := hαx2±(1 − ω)mx+ω(m − h(1 − α)).

It follows from [12, Theorem 11,(i)] that α ≥ 2h−m
2h > h−m

h (this also follows by using that
‖μa,b‖2 = −4 tr M2

μa,b
= h(2 − α)a2 + (m − (1 − α)h)b2), and so p±(0) > 0. On the

other hand, we know that R′(a) and henceforth p± vanishes precisely on the a-coordinate of
Einstein metrics (see Example 3.12). This implies that in the compact case b > 0, the zeroes
of p+ are a = 1, ( 2−α

α
)−ω−1, and hence p+ < 0 for 1 < a < ( 2−α

α
)−ω−1 and p+ > 0

otherwise. For the noncompact case b < 0, one has that p− is always positive. As R must
always increase, we obtain from the behavior of p± just described that a decreases when
1 < a < ( 2−α

α
)−ω−1 and increases otherwise if b > 0, and that a always increases if b < 0

(see Figs. 5, 6). By using Theorem 2.7, (iv), we obtain pointed convergence to the bi-invariant
metric Gbi on G. On the contrary, the other Einstein metric is unstable, and the solution on
Gnc diverges.
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Fig. 6 Scalar curvature behavior

(i) Scalar curvature (see Example 3.13). In order to get more convergence information,
we consider the normalizations by scalar curvature:

R = 1
4

(
(αa2 + (1 − α)b2)h + (2ab − b2)m

) ≡ R0,

which is obtained with the r -normalized bracket flow with

r = − tr Ric2

R
= − 1

16R0

(
(αa2 + (1 − α)b2)2h + (2ab − b2)2m

)

In the positive case, say R0 = 2, we replace in the equation

d

dt
b = − 1

4 (αa2 + (3 − α)b2 − 4ab)b + rb,

the value of a and r by their expressions in terms of b, and deduce the behavior of the solution
from the sign of d

dt b (see Fig. 7, left). This also gives pointed convergence to Gbi , but in
addition local convergence (or pointed subconvergence) to H × R

m of two solutions, one
consisting of left-invariant metrics on G and the other on Gnc.

For R0 = − 3
2 , we argue in the same way by writing

d

dt
a = 1

4 (αa2 + (1 − α)b2)a + ra,

in terms of a and using that μa,b is isometric to μ−a,−b (see Fig. 7, right). This does not
provide any convergence in forward time, it only shows that N is unstable.
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Fig. 7 R-normalized bracket flow: R ≡ 2 and R ≡ −3
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