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Abstract: Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial
role as the first line of defense against microbial invasion. Despite the immense richness of wild
amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial
properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides
with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans
(Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and
further studies. The three synthetic peptides, named P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085, inhibited
the growth of two ATCC strains, namely Escherichia coli and Staphylococcus aureus. P3-Ll-2085 was
the most active peptide. In the presence of trifluoroethanol (TFE) and anionic liposomes, it adopted
an amphipathic α-helical structure. P2-Ll-1298 showed slightly lower activity than P3-Ll-2085.
Comparison of the MIC values of these two peptides revealed that the addition of seven amino acid
residues (GLLDFLK) on the N-terminal of P2-Ll-1298 significantly improved activity against both
strains. P1-Ll-1577, which remarkably is an anionic peptide, showed interesting antimicrobial activity
against E. coli and S. aureus strain, showing marked membrane selectivity and non-hemolysis. Due to
this, P1-L1-1577 emerges as a potential candidate for the development of new antibacterial drugs.

Keywords: peptides; frogs; synthesis; antimicrobial; peptidomics

1. Introduction

The rise of bacterial resistance to conventional antibiotics is one of the major causes of high
mortality rates and inefficient therapy. Regarding this, intensive research efforts are being channeled
into the development of new antimicrobials agents [1]. Traditionally, the principal targets of
antibacterial drugs have been the bacterial cell walls and protein synthesis [2,3].
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Regardless of the emerging technologies used for drug discovery, Nature continues to be one of the
most important sources of molecules for the development of novel therapeutic agents [4,5]. Only 20%
of marketed compounds with antimicrobial activity are synthetic and not inspired by Nature [6,7].

The relevance of peptides in drug discovery programs has recently increased [8–10]. Antimicrobial
peptides (AMPs) are produced by a variety of living organisms, including fungi, bacteria, plants,
vertebrates, and invertebrates. These natural molecules are involved in innate immunity and form the
first line of defense against pathogens [11,12]. In animals, AMPs supplement the humoral and cellular
immune system of the host and are produced in the skin, epithelial tissues, and acute inflammatory
cells [13–15]. In general, AMPs contain a significant proportion of hydrophobic amino acid residues
and have a positive net charge (that varies from +2 to +9).

Historically, cationic AMPs were believed to act only by disrupting the integrity of the bacterial
membrane. Bacterial membranes are formed primarily of anionic lipids and do not contain cholesterol,
while mammalian membranes comprise mainly neutral lipids and contain cholesterol [16]. In this
sense, cationic AMPs are electrostatically attracted to bacterial membranes, and the hydrophobic amino
acid residues facilitate interactions with fatty acyl chains.

Several studies have demonstrated that peptides can translocate across the bacterial cytoplasmatic
membrane to inhibit multiple internal targets, including protein folding, cell wall and DNA/RNA
synthesis, translocation and cell division [17–19].

The skin of amphibian serves as a defense system, producing AMPs that are effective against a
wide range of pathogenic microorganisms and predators [16–18]. Granular glands (also called serous
glands or poison glands) produce a large variety of such bioactive substances, including AMPs [16,20],
neurotoxic peptides [21], gastric disturbance peptides [14] and alkaloids [22]. The center of the gland
is filled with granules containing active peptides [23], and when the animal is injured or alarmed,
the content is released through skin secretions [24,25].

Leptodactylus is a genus of frog that includes more than 60 species that have a geographical
distribution ranging from southern North America to South America. Leptodactylus latrans (formerly
known as L. ocellatus) is a common species of the family Leptodactylidae in the Neotropical region.

Here we report the purification of two antimicrobial peptides isolated from L. latrans, together
with their synthesis and that of a hybrid peptide based on a previously reported occelatin. We also
report on the antimicrobial and hemolytic properties of these three synthetic peptides.

2. Results

In a previous study, we examined two widely used extraction methodologies [transcutaneous
amphibian stimulation (TAS) and solvent extraction (SE)]. Both methods rendered material
that inhibited the growth of bacterial strains, against a wide range of bacteria, including
Mycobacterium tuberculosis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas spp.
strains [26]. Here we applied mass spectrometry (MS-MS and LC-MS-MS), in the molecular weight
range from 1000 to 4000 Da, in an extract of L. latrans skin secretion obtained by TAS, to identify
antimicrobial peptides.

2.1. Analysis and Purification of the Complete Extract of L. latrans

Figure 1 shows the chromatogram of the dialyzed fraction of L. latrans and the fractions that were
separated by HPLC. The six fractions were tested against S. aureus ATCC 25923 and E. coli ATCC
25922 using the agar diffusion assay. Fractions 1, 2 and 5 inhibited the growth of the Gram (−) strain,
while only Fraction 4 inhibited the Gram (+) and Gram (−) strains. We, therefore, selected Fraction 4
for further studies.
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Fraction 4 was separated, desalted, and directly analyzed by MS without any further 

purification. The amino acid sequences of some peptides were inferred through “de novo” analysis 

using the Peaks Studio software. Only those with a “de novo” peak scores over 85% were considered.  
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1000–4500 Da; (B) Broad spectrum in the region 1100–2600 Da. 

Figure 1. RP- HPLC of the dialyzed fraction (>1 kDa) of L. latrans. Detection 220 nm. FNR: fraction not
retained; 1–6: fractions collected.

2.2. Mass Spectrometry Analysis of Fraction 4 of L. latrans

Fraction 4 was separated, desalted, and directly analyzed by MS without any further purification.
The amino acid sequences of some peptides were inferred through “de novo” analysis using the Peaks
Studio software. Only those with a “de novo” peak scores over 85% were considered.

The mass spectrum of Fraction 4 is shown in Figure 2 and the identified amino acid sequences are
listed in Table 1 (the MS-MS spectra are shown in the Supplementary Data).
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Table 1. Sequences identified by ESI-MS-MS in fraction 4 of of L. latrans obtained by SE.

ID Experimental MW Amino Acid
Sequence Nr Charge *

Secondary Structure Prediction
H

PSIRED GOR V

S1 1299.72 [M + H]+ AAGKGLVSNLLEK 13 +1 Helix (K4-E12) Helix (L6-L10) −0.05
S2 1578.71 [M + H]+ DEMKLDGFNMHLE 13 −3 Coil Coil −0.18
S3 673.382 [M + H]+ GAMGKPL 7 +1 - - 0.02
S4 743.544 [M + H]+ VVGDLLK 7 0 - - 0.06
S5 801.147 [M + H]+ DEEAKPI 7 −2 - - −0.3

* Net charge at pH: 7. MW: Molecular Weight. Nr: Number of amino acid residues. H: Hydrophobicity according
to the Eisenberg scale and calculated by HydroMCalc (http://www.bbcm.univ.trieste.it/~tossi/HydroCalc/
HydroMCalc.html).

The amino acid residues Leu/Ile and Gln/Lys, which could not be distinguished by MS,
were inferred on the basis of similarity with homologous Ranidae amino acid sequences whenever
possible [27–30]. According to the predictive analyses of the secondary structure, only the amino
acid sequence AAGKGLVSNLLEK showed contributions of α-helix and the amino acid sequence
DEMKLDGFNMHLE corresponded to an unstructured anionic peptide. For the other amino acid
sequences, the predictive analysis could not be considered by GOR V or PSIPRED methods because of
the short length of the peptide.

The most cationic and hydrophobic amino acid sequence, S1, was analyzed through the AMP
database APD (http://aps.unmc.edu/AP). The results of the alignment allowed us to determine the
most similar peptides in the database (Table S1. Supplementary Data) and revealed that S1 shows
significant similarity to the 8–17 region of occelatin 5 [31].

2.3. Solid-Phase Peptide Synthesis

The following three novel peptides were synthesized (see Table 2), and subsequent studies of
their structure and antimicrobial activity were performed:

Table 2. Amino acid sequences and properties of the analogs synthesized.

ID Amino Acid Sequence Net Charge
pH = 7

Secondary Structure Prediction Experimental
MW (*)

Rel. Hydro
AA/Total AA

H
PSIPRED GOR V

P1-Ll-1577 DEMKLDGFNMHLE-NH2 −2 Coil Coil 1577.713 5/13 (38%) −0.18

P2-Ll-1298 AAGKGLVSNLLEK-NH2 +2 Helix (K4-E12) Helix (L6-L10) 1298.75 6/13 (46%) −0.05

P3-Ll-2085 GLLDFLKAAGKGLVSNLLEK-NH2 +2 Helix (L2-E19) Helix (L3-A9,
L13-L17) 2085.205 10/20 (50%) −0.01

(*) Corresponding to the Ion [M + H]+, determined by MALDI-TOF. H: Hydrophobicity means, according to the Eisenberg
scale, calculated with HydroMCalc (http://www.bbcm.univ.trieste.it/~tossi/HydroCalc/HydroMCalc.html). Rel. AA
Hydro/total AA: Ratio of hydrophobic amino acids to total amino acids. The secondary structure prediction was
performed using GOR V (http://gor.bb.iastate.edu/) and PSIRED (http://bioinf.cs.ucl.ac.uk/psipred/).

1. Peptides corresponding to two identified amino acid sequences from L. latrans (ID: S1
and S2) corresponding to the [M + H]+ = 1578.71 and [M + H]+ = 1299.72. ID: P1-Ll-1577 and
P2-Ll-1298, respectively.

2. A hybrid peptide consisting of the combination of two fragments: the region 1–7 of ocellatin 5
(GLLDFLK) reported in UniProt database (Entry name: OCE5_LEPOE) as N-terminal, followed by P2
-Ll-1298 (Table 2). ID: P3-Ll-2085.

2.4. Antimicrobial and Hemolytic Activity of the Synthetic Peptides

The MIC values obtained for the three analogs against E. coli ATCC 25922 and S. aureus ATCC
25923 are shown in Table 3.

http://www.bbcm.univ.trieste.it/ ~tossi/HydroCalc/HydroMCalc.html
http://www.bbcm.univ.trieste.it/ ~tossi/HydroCalc/HydroMCalc.html
http://aps.unmc.edu/AP
http://www.bbcm.univ.trieste.it/~tossi/HydroCalc/HydroMCalc.html
http://gor.bb.iastate.edu/
http://bioinf.cs.ucl.ac.uk/psipred/
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Table 3. MIC of the analogs.

ID
MIC (µM)

E. coli
ATCC 25922

MIC (µM)
S. aureus

ATCC 25923

P1-Ll-1577 (*) 20 40.5
P2-Ll-1298 24.6 49
P3-Ll-2085 15 15

(*) Anionic peptide dissolved in 10 µM ZnCl2 and 0.14 M NaCl pH 6.7.

All peptides, except P1-Ll-1577, were dissolved in 36 µL of Milli-Q water and subsequently diluted
to the maximum concentration tested (1280 µg/mL). The anionic peptide identified as P1-L-1577
(net charge: −2) was dissolved in a buffer of zinc chloride and sodium chloride. In the absence of these
ions, the peptide showed no inhibitory activity against any of the strains. In many cases, the presence
of cations (Zn+2, Na+, Mg+2, etc.) led to the interaction of anionic peptides with the bacterial membrane,
as reported elsewhere [32].

The MIC values of P1-Ll-1577 are shown in Table 3. This peptide showed significant inhibitory
activity against both strains, but in particular against E. coli. P3-Ll-2085 presented a MIC of 15 µM
against both bacterial strains while P2-Ll-1298 showed slightly lower activity, presenting a MIC of
24.6 µM against E. coli and 49 µM against S. aureus. Comparison of the MIC values of the two analogs
revealed that the addition of seven amino acid residues (GLLDFLK) on the N-terminal of P2-Ll-1298
significantly improved inhibitory capacity.

Figure 3 shows the hemolytic activity of the analogs. At the MIC value, none of the peptides,
except P3-Ll-2085, presented percentages of hemolysis above 10%. At the highest tested concentration
(320 µM), P2-Ll-1298 reached the 100% hemolysis while P1-Ll-1577 caused only 12%.
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Figure 3. Hemolytic activity of the peptides.

At 40 µM, P3-Ll-2085 caused 100% hemolysis; This observation is consistent with the high
hydrophobicity (H: −0.01) and amphipathicity (µH: 0.447) of the amino acid sequence, calculated
using the Eisenberg scale [33]. Studies with helical peptides have shown that an increase in cationicity
enhances antimicrobial activity while an increase in hydrophobicity, amphipathicity and helicity favor
hemolytic activity and loss of selectivity for microorganism membranes [34].

All the analogs showed a therapeutic index (TI) over 1 (Table 4), meaning that total hemolysis
is not achieved at the MIC. P1-Ll-1577 showed exciting TI values, especially for E. coli. The lowest
TI value was obtained with P3-Ll-2085, comparable with that of toxins such as melitin, for which TI
values of 0.6 against Gram (+) and Gram (−) bacteria have been reported [35].
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Table 4. Therapeutic index of synthetic peptides.

Analog
Identification

MIC
(µM) MHC

(µM)

Therapeutic Index
(TI)

E. coli S. aureus E. coli S. aureus

P1-Ll-1577 20 40.5 640 32 15.8
P2-Ll-1298 24.6 49 320 13 6.5
P3-Ll-2085 15 15 40 2.7 2.7

MHC: minimal hemolytic concentration, MIC: minimal inhibitory concentration.

2.5. Secondary Structure Determination by Circular Dichroism (CD)

The CD spectra of the analogs are shown in Figure 4. Spectra were collected in four distinct
environments: water, trifluoroethanol (TFE)/water (50% v/v), and in the presence of DPPG or
DPPC vesicles.
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DPPG, (D) DPPC. Peptide concentration: 0.2 mg/mL.

The CD spectra showed that none of the compounds adopted a preferential conformation in water,
which is consistent with the presence of a minimum at 198 nm. In the presence of TFE, P3-Ll-2085
adopted a helical conformation, an observation consistent with the presence of two minimums at
205–207 nm and 215–220 nm and a maximum at 195 nm.

Deconvolution spectra by SELCON and CONTILL methods indicated more than 70% helical
structure for P3-Ll-2085. P2-Ll-1298 also showed contributions of α-helix, while P1-Ll-1577, although
presenting contributions of turn structure, was less ordered in the presence of TFE (percentage of an
unordered structure higher than 40%).

In the presence of DPPG vesicles (Figure 4C), P3-Ll-2085 and P2-Ll-1298 adopted a helical structure.
Nevertheless, the higher molar ellipticity values registered for the former, together with slight shifts
of the positions of the minima, indicate further stabilization of the helix about the latter. The spectra
deconvolution of P3-Ll-2085 and P2-Ll-1298 by SELCON 3 and CONTILL showed contributions of
α-helix of over 70% and 50%, respectively.

P1-Ll-1577 did not interact with DPPG vesicles, an observation that can be explained by its anionic
character (net charge of −2).
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Most of the peptides were not ordered in the presence of DPPC vesicles. Nevertheless, for
P3-Ll-2085, data deconvolution by CONTILL indicated partial contribution of α-helix.

In spite of the wide variety of the amino acid sequences found in amphibian AMPs, several reports
have revealed that, in general, they tend to form amphipathic α-helical structures in the presence
of membrane-mimetic micelles, liposomes, and organic solvent mixtures. Of the three synthesized
peptides here, only two showed α-helix contributions.

3. Discussion

Data in the literature on the antimicrobial activity of peptides isolated from amphibians vary
greatly. Magainin 2 (isolated from Xenopus laevis) has a MIC of 100 µM against S. aureus and E. coli [36].
Many peptides with activity against Gram (+) and Gram (−) bacteria in a range of concentrations that
vary from 40 µM to 100 µM have been isolated from the Leptodactylidae family [37–42]. Among them,
six ocellatins isolated from L. latrans, including ocellatin 4, which has been the most widely studied,
inhibit strains of E. coli and S. aureus with MIC values of 64 µM [40].

Several peptides isolated from the Hylidae and Leptodactylidae families show low hemolytic
activity. These include hylins (isolated from H. biobeba) [43,44], and leptoglycin and pentadactylin (L.
pentadactylus) [38,42], among others. In contrast, ocellatin 4 produces 50% hemolysis at 14.3 µM [40].

The therapeutic potential of many temporins is limited due to their high hemolytic activity against
human erythrocytes, except temporin A and B, which show scarce hemolytic activity [45,46].

A direct correlation between cytolytic activity and hydrophobicity have been demonstrated
with studies with model α-helical peptides. Other parameters, such as hydrophobic moment,
amphipathicity, helicity, and the size of the hydrophobic/hydrophilic domain influence selectivity and
membrane interaction [16,47,48].

Although there is no consensus about the precise mechanism underlying the action of AMPs, it is
acknowledged that cytolytic activity is not mediated through the interaction with specific receptors.
Several reports have shown that peptide-lipid interactions lead to membrane permeation and that
these interactions play a vital role in the activity of AMPs. Membrane permeation by amphipathic
helical peptides has been suggested to occur via one of two mechanisms, namely transmembrane pore
formation via a “barrel-stave” mechanism or membrane solubilization/ destruction via a “carpet”
mechanism [16,49–55].

The “barrel-stave” model implies the formation of transmembrane pores/channels by bundles of
amphipathic helices, such that the hydrophobic surfaces interact with the lipid core of the membrane
and their hydrophilic surfaces point inward, producing an aqueous pore. Peptides with cytolytic
properties toward both mammalian cell membranes and bacteria are considered to act following the
“barrel-stave” model [52].

In a membrane-mimetic environment, temporins have the propensity to form a stable amphipathic
α-helix. The lack of selectivity of these peptides may be related to the low positive net charge of the
peptides, and the hydrophobic interactions are responsible for the binding to the membrane. In this
regard, Mangoni et al. [50] proposed that temporins use a “barrel-stave” mechanism. It has also been
reported that the peptide Ctx-Ha isolated from Hypsiboas albopunctatus, act by this mechanism [54].

In the “carpet” model proposed by Shai and co-workers [52,56], the membrane is permeabilized
in a “detergent-like” manner. The peptides are in contact with the lipid head groups during membrane
permeation, and they do not insert into the hydrophobic core of the membrane. This mechanism
explains the mode of action of a range of α-helical AMPs derived from frog skin that show selective
activity against bacteria compared to eukaryotic cells.

In previous studies, we demonstrated that a bacteriocin named Plan149a, which shows a helical
secondary structure, acts by the “carpet” mechanism [57–59]. In the present work, the synthetized
peptide P3-Ll-2085, showed significant antimicrobial activity and the same ability to inhibit the growth
of E. coli and S. aureus strains. Containing 50% hydrophobic amino acid residues, this peptide had a
net charge of +2 and formed an extended amphipathic α-helical structure in the presence of anionic
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liposomes and TFE. As it was markedly hemolytic, showing 100% hemolysis at 40 µM. P3-Ll-2085,
the membrane selectivity was very low. In this regard, P2-Ll-1298 exerted higher antimicrobial activity
against E. coli than S aureus. The amino acid sequence formed an extended amphipathic α-helical
structure in the presence of anionic liposomes and TFE had a net charge of +2 and contained 46%
hydrophobic amino acid residues. However, the membrane selectivity of P2-Ll-1298 was higher,
showing low hemolytic activity at the MIC concentration.

Although other studies are necessary, according to the CD spectroscopy results and in light of the
α-helix folding of P2-Ll-1298 and P3-Ll-2085 observed in the presence of negatively charged vesicle
and their net charge, the antimicrobial activity of these peptides could be explained by the formation
of transmembrane pores. However, the same folding was not observed for the mimicking a eukaryotic
membrane (purely zwitterionic vesicles).

The mechanism of action of anionic peptides has not been elucidated. However, it is postulated
that they interact with the membrane, without permeabilization, which contrasts with the mechanism
shown by cationic antimicrobial peptides. Studies by Bottari et al. showed that both glutamate and
aspartate form stable complexes with cations such as Zn+2 [32].

Information regarding anionic peptides isolated from anuran amphibians is scarce. In this regard,
an anionic peptide isolated from Bombina maxima was identified as maximin H5, which showed activity
only against one strain of S. aureus. In that case, the presence of Zn+2, and Mg+2 did not modify the
antimicrobial activity [60].

About other animal species, two anionic peptides have recently been isolated from the hemolymph
of the wax moth Galleria mellonella [61]. In mammals, three anionic peptides isolated from sheep lungs
showed significant antimicrobial activity against Pasteurella haemolytica, but only in the presence of
Mg+2 ions [62,63].

Also, the anionic antimicrobial peptide dermcidin (DCD), present only in humans, has recently
been described. DCD is constitutively expressed in eccrine sweat glands and is transported through
sweat to the epidermal surface [64,65]. Its mechanism of action is unknown; however, it shows potent
activity against S. aureus, E. coli and Candida [66].

The anionic peptide identified in our work, P1-Ll-1577, showed considerable antimicrobial activity
and a higher capacity to inhibit the growth of the E. coli than the S. aureus strain. The amino acid
sequence contained 38% hydrophobic amino acid residues, had a net charge of −2, and did not adopt
an amphipathic helical structure in the presence of TFE and liposomes. It showed marked membrane
selectivity and non-hemolysis in the whole concentration range tested. Due to its antimicrobial activity
and low hemolytic properties, P1-L1-1577 emerges as a potential candidate for the development
of a new AMP, that will be further investigated not only as an antimicrobial agent, but also their
therapeutics properties will be explored.

4. Materials and Methods

4.1. Collection of Amphibian Specimens

Adult specimens of L. latrans (Ll) (n = 7) were collected from the northern access to the city of
Paraná (province of Entre Ríos, Argentina) during the summer months between 2006 and 2010.

4.2. Method for Biological Sampling. Transcutaneous Amphibian Stimulation (TAS)

Biological samples from each frog were collected, using the transcutaneous membrane stimulator
method, by electrical stimulation of the granular glands [67]. All samples obtained were lyophilized
and stored at −20◦C.

4.3. Liquid Chromatography coupled to Mass Spectrometry (LC-MS-MS)

A nanoAcquity liquid chromatograph (Waters, Milford, MA, USA) coupled to an
LTQOrbitrapVelos (Thermo Scientific, Waltham, MA, USA) mass spectrometer was used. Aliquots of
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the resuspended samples were injected for chromatographic separation in a C18 column
(75 µm × 10 cm, 1.7 µm BEH column, Waters). Solvents: A: 0.1% formic acid in water; B: 0.1%
formic acid in acetonitrile (ACN). The following gradient elution was used: 1 to 40% of B in 20 min,
followed by 40 to 60% of B in 5 min, and a flow rate of 250 µL/min. The eluted peptides were ionized
by applying an electrical potential of 2 kV with a nano-electrospray needle. The masses of the peptides
were measured in Full Scan MS (Orbitrap at a resolution of 60,000 full width at half maximum or
FWHM, at 400 m/z). Up to five of the most abundant peptides (minimum intensity of 3000 counts)
were selected in each MS analysis to be fragmented in the High Energy Collision-Induced Dissociation
(HCD) trap with helium as collision gas and normalized collision energy of 40%. Data were acquired
with Thermo Xcalibur Software (v.2.1.0.1140) in raw format.

For the “de novo” analyses, Peaks Studio v5.2 software (Thermo Scientific, Waltham, MA, USA)
was used (error tolerance of the peptide: 10 ppm; error tolerance of the fragment: 0.1 Da).

4.4. Structure Analysis

Secondary Structure Prediction

Each amino acid sequence identified by LC-MS-MS was analyzed by the PSIPRED (http://
bioinf.cs.ucl.ac.uk/psipred/) and GOR V (http://gor.bb.iastate.edu/) predictive methods [68,69].
Some amino acid sequences were also analyzed through web resources for 3D structure prediction
named Spark X (http://sparks.informatics.iupui.edu/) and PEP-FOLD (http://bioserv.rpbs.univ-
paris-diderot.fr/cgi-bin/PEP-FOLD). This approach allowed us to obtain a predictive structural model
for the most studied amino acid sequences [69–72].

4.5. Circular Dichroism (CD) Analyses

Far-UV CD measurements were taken on a J-810 CD spectrometer (Jasco, Tokyo, Japan) in a 0.1-cm
path quartz curvet (Hellma, Mullheim, Germany) and recorded after the accumulation of five runs. CD
analyses were recorded in the presence of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoyl
phosphatidylglycerol (DPPG) vesicles. For the preparation of small unilamellar vesicles (SUVs),
the lipid dispersion in MilliQ H2O was sonicated, using a tip-sonicator, until the solution became
transparent. In all samples, the peptide concentration was 0.2 mg/mL, and the final lipid concentration
was 3 mM. To correct for background scattering caused by the vesicles, the spectrum of a single vesicle
solution was subtracted from that of the peptide in the presence of vesicles. Additional spectra were
obtained in the presence of trifluoroethanol (TFE) [50% TFE (v/v)] and in H2O. Deconvolution of CD
spectra was performed using the SELCOM 3 and CONTILL methods by means of the CDPro software
package (Colorado State University, Fort Collins, CO, USA) [73–76]

4.6. Peptide Synthesis

Peptides were synthesized by Fmoc solid-phase peptide synthesis (SPPS) as
C-terminal amides. Couplings were performed using diisopropylethylamine (DIEA) and
N-[(1H-benzotriazole-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate
N-oxide (HBTU). Fmoc removal was achieved with 20% piperidine in DMF (v/v). Final cleavage from
the resin was achieved by a mixture of TFA /H2O/1,2-ethanedithiol (EDT)/triisopropylsilane (TIS)
(94.5:2.5:2.5:0.5) (v/v). After 3 h, the resin was filtered off, and the crude peptide was precipitated
in dry cold diethyl ether, centrifuged, and washed several times with cold diethyl ether until the
scavengers were removed. The product was then lyophilized twice. The synthetic peptides were
purified by reverse phase HPLC using a C18 Jupiter Proteo semi-preparative column (10 µm, 90Å,
250 × 10 mm, Phenomenex, Torrance, CA, USA) with a gradient of 5–70% acetonitrile in water
containing 0.1% trifluoroacetic acid. Then, these analogs were analyzed by analytical C18 RP-HPLC.

http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://gor.bb.iastate.edu/
http://sparks.informatics.iupui.edu/
http://bioserv.rpbs.univ-paris-diderot.fr/cgi-bin/PEP-FOLD
http://bioserv.rpbs.univ-paris-diderot.fr/cgi-bin/PEP-FOLD
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4.7. Minimal Inhibitory Concentration (MIC) Determination

MIC determinations were done using the modified microtiter dilution assay, following the
procedures proposed by the Hancock Laboratory for testing AMPs (http://cmdr.ubc.ca/bobh/
methods/MODIFIEDMIC.html). The target strains Escherichia coli ATCC 25922 and Staphylococcus
aureus ATCC 25923 were activated by culture in Mueller-Hinton Broth (MHB) (Biokar Diagnostics,
Cedex, France) for 24 h at 37 ◦C. An inoculum was taken and adjusted to cellular concentrations
of 5 × 107 CFU/mL. These inocula were used to perform the assay using diluted MHB and were
incubated from 18 to 24 h at 37 ◦C [77–80]. The MIC was the lowest peptide concentration that inhibited
the growth of each bacterial strain. All the peptides were dissolved in 36 µL of Milli-Q H2O with the
addition of 10% acetic acid to favor their solubilization. They were then further diluted to the highest
concentration of the assay (1280 µg/mL). A solution of 10 µM ZnCl2 and 0.14 M NaCl pH 6.7 was used
as control.

4.8. Hemolysis Assays

The assay was performed using human red blood cells (hRBCs) and following previously
described protocols [81,82].

4.9. Calculation of Therapeutic Index

The Therapeutic Index (TI) or specificity is defined as the relationship between the MIC and
the lowest hemolytic concentration (LHC is the lowest peptide concentration that produces 100%
hemolysis). When 100% of hemolysis was not detected at 320 µM, a value of 640 µM was used to
calculate the TI. The index was calculated for each peptide, and bacterial strain tested.

Supplementary Materials: The following are available online. Figure S1: Analysis of the MS-MS spectra of Seq.2.
Theoretical MW: 1577.8, Figure S2: Analysis of the MS-MS spectra of Seq.1. Theoretical MW: 1298.5, Figure S3:
Chromatographic profile of the three synthetic peptides. Column: Phenomenex C18 Jupiter Proteo. Gradient:
5–70% ACN: H2O. Detection: 220 nm., Table S1: Alignment of the ion with m/z: 1298.72 with the amino acid
sequences of the six ocellatins reported from L. latrans.

Author Contributions: A.S.: Performance of research work and bioassays. Work writing. M.V.H.: Antimicrobial
assay performance. E.d.O.: MS and MS-MS peptidomic analyses. F.A.: Work writing and supervision during
Peptide synthesis. A.C.S.: Supervision of antimicrobial assays. R.L.: Collection, information, and identification
of amphibian species. G.G.T.: Work writing and supervision. All the authors approved the final version of
the manuscript.

Funding: The work was supported by grants from the Universidad Nacional del Litoral (CAI+D Research
Programs (PJ50020150100044LI) and the Fundación Nuevo Banco Santa Fe.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Yeung, A.T.; Gellatly, S.L.; Hancock, R.E. Multifunctional cationic host defence peptides and their clinical
applications. Cell. Mol. Life Sci. 2011, 68, 2161–2176. [CrossRef] [PubMed]

2. Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [CrossRef] [PubMed]
3. Silver, L.L. A persistent problem. J. Med. Microbiol. 2011, 60, 267–268. [CrossRef] [PubMed]
4. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod.

2007, 70, 461–477. [CrossRef] [PubMed]
5. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.

J. Nat. Prod. 2012, 75, 311–335. [CrossRef] [PubMed]
6. Butler, M.S.; Buss, A.D. Natural products–the future scaffolds for novel antibiotics? Biochem. Pharmacol. 2006,

71, 919–929. [CrossRef] [PubMed]
7. Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products:

An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238–254. [CrossRef] [PubMed]
8. Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem. 2012, 4, 1527–1531. [CrossRef] [PubMed]

http://cmdr.ubc.ca/bobh/ methods/MODIFIEDMIC.html
http://cmdr.ubc.ca/bobh/ methods/MODIFIEDMIC.html
http://dx.doi.org/10.1007/s00018-011-0710-x
http://www.ncbi.nlm.nih.gov/pubmed/21573784
http://dx.doi.org/10.1128/CMR.00030-10
http://www.ncbi.nlm.nih.gov/pubmed/21233508
http://dx.doi.org/10.1099/jmm.0.029967-0
http://www.ncbi.nlm.nih.gov/pubmed/21212149
http://dx.doi.org/10.1021/np068054v
http://www.ncbi.nlm.nih.gov/pubmed/17309302
http://dx.doi.org/10.1021/np200906s
http://www.ncbi.nlm.nih.gov/pubmed/22316239
http://dx.doi.org/10.1016/j.bcp.2005.10.012
http://www.ncbi.nlm.nih.gov/pubmed/16289393
http://dx.doi.org/10.1039/B916096E
http://www.ncbi.nlm.nih.gov/pubmed/20111803
http://dx.doi.org/10.4155/fmc.12.94
http://www.ncbi.nlm.nih.gov/pubmed/22917241


Molecules 2018, 23, 2943 11 of 14

9. Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today 2013,
18, 807–817. [CrossRef] [PubMed]

10. De la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2017. An Analysis of FDA Drug Approvals
from the Perspective of Molecules. Molecules 2018, 23, 533. [CrossRef] [PubMed]

11. Bulet, P.; Stocklin, R.; Menin, L. Anti-microbial peptides: From invertebrates to vertebrates. Immunol. Rev.
2004, 198, 169–184. [CrossRef] [PubMed]

12. Lehrer, R.I.; Ganz, T. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol.
1999, 11, 23–27. [CrossRef]

13. Berkowitz, B.A.; Bevins, C.L.; Zasloff, M.A. Magainins: A new family of membrane-active host defense
peptides. Biochem. Pharmacol. 1990, 39, 625–629. [CrossRef]

14. Bevins, C.L.; Zasloff, M. Peptides from frog skin. Annu. Rev. Biochem. 1990, 59, 395–414. [CrossRef] [PubMed]
15. Lehrer, R.I.; Ganz, T.; Selsted, M.E. Defensins: Endogenous antibiotic peptides of animal cells. Cell 1991,

64, 229–230. [CrossRef]
16. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [CrossRef]

[PubMed]
17. Nicolas, P. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J.

2009, 276, 6483–6496. [CrossRef] [PubMed]
18. Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003,

55, 27–55. [CrossRef] [PubMed]
19. Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of action of the antimicrobial peptide buforin II: Buforin II

kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys.
Res. Commun. 1998, 244, 253–257. [CrossRef] [PubMed]

20. Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: Taxonomic and
phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta 2004,
1696, 1–14. [CrossRef] [PubMed]

21. You, D.; Hong, J.; Rong, M.; Yu, H.; Liang, S.; Ma, Y.; Yang, H.; Wu, J.; Lin, D.; Lai, R. The first gene-encoded
amphibian neurotoxin. J. Biol. Chem. 2009, 284, 22079–22086. [CrossRef] [PubMed]

22. Daly, J.W.; Spande, T.F.; Garraffo, H.M. Alkaloids from amphibian skin: A tabulation of over eight-hundred
compounds. J. Nat. Prod. 2005, 68, 1556–1575. [CrossRef] [PubMed]

23. Giovannini, M.G.; Poulter, L.; Gibson, B.W.; Williams, D.H. Biosynthesis and degradation of peptides derived
from Xenopus laevis prohormones. Biochem. J. 1987, 243, 113–120. [CrossRef] [PubMed]

24. Dockray, G.J.; Hopkins, C.R. Caerulein secretion by dermal glands in Xenopus laevis. J. Cell Biol. 1975,
64, 724–733. [CrossRef] [PubMed]

25. Mills, J.W.; Prum, B.E. Morphology of the exocrine glands of the frog skin. Am. J. Anat. 1984, 171, 91–106.
[CrossRef] [PubMed]

26. Siano, A.; Gatti, P.I.; Imaz, M.S.; Zerbini, E.; Simonetta, A.; Lajmanovich, R.; Tonarelli, G. A Comparative
Study of the Biological Activity of Skin and Granular Gland Secretions of Leptodactylus latrans and
Hypsiboas pulchellus from Argentina. Rec. Nat. Prod. 2014, 8, 8.

27. Conlon, J.M. Structural diversity and species distribution of host-defense peptides in frog skin secretions.
Cell. Mol. Life Sci. 2011, 68, 2303–2315. [CrossRef] [PubMed]

28. Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from the skins of North American frogs.
Biochim. Biophys. Acta 2009, 1788, 1556–1563. [CrossRef] [PubMed]

29. Thomas, P.; Vineeth Kumar, T.V.; Reshmy, V.; Kumar, K.S.; George, S. A mini review on the antimicrobial
peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian
skin peptides. Mol. Biol. Rep. 2012, 39, 6943–6947. [CrossRef] [PubMed]

30. Xi, X.; Li, B.; Chen, T.; Kwok, H.F. A review on bradykinin-related peptides isolated from amphibian skin
secretion. Toxins 2015, 7, 951–970. [CrossRef] [PubMed]

31. Nascimento, A. Cytolytic Peptides and Proteases from the Skin Secretion of the Frog Leptodactylus Ocellatus.
Ph.D. Thesis, University of Brasilia, Brasilia, Brazil, 2007.

32. Bottari, E.; Festa, M.R.; Jasionowska, R. Zinc(II) Complexes with Aspartate and Glutamate. J. Coord. Chem.
1990, 21, 215–224. [CrossRef]

33. Eisenberg, D.; Weiss, R.M.; Terwilliger, T.C. The helical hydrophobic moment: A measure of the
amphiphilicity of a helix. Nature 1982, 299, 371–374. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.drudis.2013.05.011
http://www.ncbi.nlm.nih.gov/pubmed/23726889
http://dx.doi.org/10.3390/molecules23030533
http://www.ncbi.nlm.nih.gov/pubmed/29495494
http://dx.doi.org/10.1111/j.0105-2896.2004.0124.x
http://www.ncbi.nlm.nih.gov/pubmed/15199962
http://dx.doi.org/10.1016/S0952-7915(99)80005-3
http://dx.doi.org/10.1016/0006-2952(90)90138-B
http://dx.doi.org/10.1146/annurev.bi.59.070190.002143
http://www.ncbi.nlm.nih.gov/pubmed/2197979
http://dx.doi.org/10.1016/0092-8674(91)90632-9
http://dx.doi.org/10.1038/415389a
http://www.ncbi.nlm.nih.gov/pubmed/11807545
http://dx.doi.org/10.1111/j.1742-4658.2009.07359.x
http://www.ncbi.nlm.nih.gov/pubmed/19817856
http://dx.doi.org/10.1124/pr.55.1.2
http://www.ncbi.nlm.nih.gov/pubmed/12615953
http://dx.doi.org/10.1006/bbrc.1998.8159
http://www.ncbi.nlm.nih.gov/pubmed/9514864
http://dx.doi.org/10.1016/j.bbapap.2003.09.004
http://www.ncbi.nlm.nih.gov/pubmed/14726199
http://dx.doi.org/10.1074/jbc.M109.013276
http://www.ncbi.nlm.nih.gov/pubmed/19535333
http://dx.doi.org/10.1021/np0580560
http://www.ncbi.nlm.nih.gov/pubmed/16252926
http://dx.doi.org/10.1042/bj2430113
http://www.ncbi.nlm.nih.gov/pubmed/3606567
http://dx.doi.org/10.1083/jcb.64.3.724
http://www.ncbi.nlm.nih.gov/pubmed/1150750
http://dx.doi.org/10.1002/aja.1001710108
http://www.ncbi.nlm.nih.gov/pubmed/6333176
http://dx.doi.org/10.1007/s00018-011-0720-8
http://www.ncbi.nlm.nih.gov/pubmed/21560068
http://dx.doi.org/10.1016/j.bbamem.2008.09.018
http://www.ncbi.nlm.nih.gov/pubmed/18983817
http://dx.doi.org/10.1007/s11033-012-1521-3
http://www.ncbi.nlm.nih.gov/pubmed/22307792
http://dx.doi.org/10.3390/toxins7030951
http://www.ncbi.nlm.nih.gov/pubmed/25793726
http://dx.doi.org/10.1080/00958979009409718
http://dx.doi.org/10.1038/299371a0
http://www.ncbi.nlm.nih.gov/pubmed/7110359


Molecules 2018, 23, 2943 12 of 14

34. Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Leprince, J. Strategies for transformation of naturally-occurring
amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 2007,
42, 349–357. [CrossRef] [PubMed]

35. Zhu, W.L.; Nan, Y.H.; Hahm, K.S.; Shin, S.Y. Cell selectivity of an antimicrobial peptide melittin diastereomer
with D-amino acid in the leucine zipper sequence. J. Biochem. Mol. Biol. 2007, 40, 1090–1094. [CrossRef]
[PubMed]

36. Cruciani, R.A.; Barker, J.L.; Durell, S.R.; Raghunathan, G.; Guy, H.R.; Zasloff, M.; Stanley, E.F. Magainin 2,
a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur. J. Pharmacol. 1992,
226, 287–296. [CrossRef]

37. Nascimento, A.; Zanotta, L.C.; Kyaw, C.M.; Schwartz, E.N.F.; Schwartz, C.A.; Sebben, A.; Sousa, M.V.;
Fontes, W.; Castro, M.S. Ocellatins: New antimicrobial peptides from the skin secretion of the South
American frog Leptodactylus ocellatus (Anura: Leptodactylidae). Protein J. 2004, 23, 501–508. [CrossRef]
[PubMed]

38. King, J.D.; Al-Ghaferi, N.; Abraham, B.; Sonnevend, A.; Leprince, J.; Nielsen, P.F.; Conlon, J.M. Pentadactylin:
An antimicrobial peptide from the skin secretions of the South American bullfrog Leptodactylus
pentadactylus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005, 141, 393–397. [CrossRef] [PubMed]

39. Rollins-Smith, L.A.; King, J.D.; Nielsen, P.F.; Sonnevend, A.; Conlon, J.M. An antimicrobial peptide from
the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). Regul. Pept.
2005, 124, 173–178. [CrossRef] [PubMed]

40. Nascimento, A.; Chapeaurouge, A.; Perales, J.; Sebben, A.; Sousa, M.V.; Fontes, W.; Castro, M.S. Purification,
characterization and homology analysis of ocellatin 4, a cytolytic peptide from the skin secretion of the frog
Leptodactylus ocellatus. Toxicon 2007, 50, 1095–1104. [CrossRef] [PubMed]

41. Conlon, J.M.; Abdel-Wahab, Y.H.; Flatt, P.R.; Leprince, J.; Vaudry, H.; Jouenne, T.; Condamine, E.
A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog
Leptodactylus laticeps (Leptodactylidae). Peptides 2009, 30, 888–892. [CrossRef] [PubMed]

42. Sousa, J.C.; Berto, R.F.; Gois, E.A.; Fontenele-Cardi, N.C.; Honorio, J.E. Jr.; Konno, K.; Richardson, M.;
Rocha, M.F.; Camargo, A.A.; Pimenta, D.C.; et al. Leptoglycin: A new Glycine/Leucine-rich antimicrobial
peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus
(Leptodactylidae). Toxicon 2009, 54, 23–32. [CrossRef] [PubMed]

43. Castro, M.S.; Ferreira, T.C.; Cilli, E.M.; Crusca, E. Jr.; Mendes-Giannini, M.J.; Sebben, A.; Ricart, C.A.;
Sousa, M.V.; Fontes, W. Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog
Hypsiboas albopunctatus (“spotted treefrog”). Peptides 2009, 30, 291–296. [CrossRef] [PubMed]

44. Castro, M.S.; Matsushita, R.H.; Sebben, A.; Sousa, M.V.; Fontes, W. Hylins: Bombinins H structurally related
peptides from the skin secretion of the Brazilian tree-frog Hyla biobeba. Protein Pept. Lett. 2005, 12, 89–93.
[CrossRef] [PubMed]

45. Mangoni, M.L.; Saugar, J.M.; Dellisanti, M.; Barra, D.; Simmaco, M.; Rivas, L. Temporins, small antimicrobial
peptides with leishmanicidal activity. J. Biol. Chem. 2005, 280, 984–990. [CrossRef] [PubMed]

46. Michael Conlon, J. The temporins. In Handbook of Biologically Active Peptides; Abba, J.K., Ed.; Academic Press:
Burlington, NJ, USA, 2006; pp. 305–309.

47. Dathe, M.; Wieprecht, T.; Nikolenko, H.; Handel, L.; Maloy, W.L.; MacDonald, D.L.; Beyermann, M.;
Bienert, M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate
antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 1997, 403, 208–212.
[CrossRef]

48. Dathe, M.; Wieprecht, T. Structural features of helical antimicrobial peptides: Their potential to modulate
activity on model membranes and biological cells. Biochim. Biophys. Acta 1999, 1462, 71–87. [CrossRef]

49. Mangoni, M.L.; Grovale, N.; Giorgi, A.; Mignogna, G.; Simmaco, M.; Barra, D. Structure-function
relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 2000,
21, 1673–1679. [CrossRef]

50. Mangoni, M.L.; Rinaldi, A.C.; Di Giulio, A.; Mignogna, G.; Bozzi, A.; Barra, D.; Simmaco, M.
Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin.
Eur. J. Biochem. 2000, 267, 1447–1454. [CrossRef] [PubMed]

51. Ehrenstein, G.; Lecar, H. Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 1977, 10, 1–34.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ymeth.2007.01.004
http://www.ncbi.nlm.nih.gov/pubmed/17560323
http://dx.doi.org/10.5483/BMBRep.2007.40.6.1090
http://www.ncbi.nlm.nih.gov/pubmed/18047808
http://dx.doi.org/10.1016/0922-4106(92)90045-W
http://dx.doi.org/10.1007/s10930-004-7877-z
http://www.ncbi.nlm.nih.gov/pubmed/15648972
http://dx.doi.org/10.1016/j.cbpc.2005.09.002
http://www.ncbi.nlm.nih.gov/pubmed/16236555
http://dx.doi.org/10.1016/j.regpep.2004.07.013
http://www.ncbi.nlm.nih.gov/pubmed/15544856
http://dx.doi.org/10.1016/j.toxicon.2007.07.014
http://www.ncbi.nlm.nih.gov/pubmed/17884127
http://dx.doi.org/10.1016/j.peptides.2009.01.008
http://www.ncbi.nlm.nih.gov/pubmed/19428765
http://dx.doi.org/10.1016/j.toxicon.2009.03.011
http://www.ncbi.nlm.nih.gov/pubmed/19298834
http://dx.doi.org/10.1016/j.peptides.2008.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19056441
http://dx.doi.org/10.2174/0929866053405977
http://www.ncbi.nlm.nih.gov/pubmed/15638808
http://dx.doi.org/10.1074/jbc.M410795200
http://www.ncbi.nlm.nih.gov/pubmed/15513914
http://dx.doi.org/10.1016/S0014-5793(97)00055-0
http://dx.doi.org/10.1016/S0005-2736(99)00201-1
http://dx.doi.org/10.1016/S0196-9781(00)00316-8
http://dx.doi.org/10.1046/j.1432-1327.2000.01143.x
http://www.ncbi.nlm.nih.gov/pubmed/10691983
http://dx.doi.org/10.1017/S0033583500000123
http://www.ncbi.nlm.nih.gov/pubmed/327501


Molecules 2018, 23, 2943 13 of 14

52. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by
alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1999,
1462, 55–70. [CrossRef]

53. Bessin, Y.; Saint, N.; Marri, L.; Marchini, D.; Molle, G. Antibacterial activity and pore-forming properties
of ceratotoxins: A mechanism of action based on the barrel stave model. Biochim. Biophys. Acta 2004,
1667, 148–156. [CrossRef] [PubMed]

54. Cespedes, G.F.; Lorenzon, E.N.; Vicente, E.F.; Mendes-Giannini, M.J.; Fontes, W.; Castro, M.S.; Cilli, E.M.
Mechanism of action and relationship between structure and biological activity of Ctx-Ha: A new
ceratotoxin-like peptide from Hypsiboas albopunctatus. Protein Pept. Lett. 2012, 19, 596–603. [CrossRef]
[PubMed]

55. Lorenzon, E.N.; Cespedes, G.F.; Vicente, E.F.; Nogueira, L.G.; Bauab, T.M.; Castro, M.S.; Cilli, E.M. Effects of
dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob. Agents
Chemother. 2012, 56, 3004–3010. [CrossRef] [PubMed]

56. Shai, Y.; Oren, Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial
peptides. Peptides 2001, 22, 1629–1641. [CrossRef]

57. Muller, D.M.; Carrasco, M.S.; Simonetta, A.C.; Beltramini, L.M.; Tonarelli, G.G. A synthetic analog of
plantaricin 149 inhibiting food-borne pathogenic bacteria:evidence for alpha-helical conformation involved
in bacteria-membrane interaction. J. Pept. Sci. 2007, 13, 171–178. [CrossRef] [PubMed]

58. Lopes, J.L.; Nobre, T.M.; Siano, A.; Humpola, V.; Bossolan, N.R.; Zaniquelli, M.E.; Tonarelli, G.;
Beltramini, L.M. Disruption of Saccharomyces cerevisiae by Plantaricin 149 and investigation of its
mechanism of action with biomembrane model systems. Biochim. Biophys. Acta 2009, 1788, 2252–2258.
[CrossRef] [PubMed]

59. Siano, A.; Humpola, M.V.; Rey, M.C.; Simonetta, A.; Tonarelli, G.G. Interaction of acylated and substituted
antimicrobial peptide analogs with phospholipid-polydiacetylene vesicles. Correlation with their biological
properties. Chem. Biol. Drug Des. 2011, 78, 85–93. [CrossRef] [PubMed]

60. Lai, R.; Liu, H.; Hui Lee, W.; Zhang, Y. An anionic antimicrobial peptide from toad Bombina maxima.
Biochem. Biophys. Res. Commun. 2002, 295, 796–799. [CrossRef]

61. Brown, S.E.; Howard, A.; Kasprzak, A.B.; Gordon, K.H.; East, P.D. A peptidomics study reveals the impressive
antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem. Mol. Biol. 2009, 39, 792–800.
[CrossRef] [PubMed]

62. Brogden, K.A.; De Lucca, A.J.; Bland, J.; Elliott, S. Isolation of an ovine pulmonary surfactant-associated
anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA 1996, 93, 412–416.
[CrossRef] [PubMed]

63. Heidari, M.; Hamir, A.; Cutlip, R.C.; Brogden, K.A. Antimicrobial anionic peptide binds in vivo to
Mannheimia (Pasteurella) haemolytica attached to ovine alveolar epithelium. Int. J. Antimicrob. Agents 2002,
20, 69–72. [CrossRef]

64. Schittek, B.; Hipfel, R.; Sauer, B.; Bauer, J.; Kalbacher, H.; Stevanovic, S.; Schirle, M.; Schroeder, K.; Blin, N.;
Meier, F.; et al. Dermcidin: A novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2001,
2, 1133–1137. [CrossRef] [PubMed]

65. Rieg, S.; Garbe, C.; Sauer, B.; Kalbacher, H.; Schittek, B. Dermcidin is constitutively produced by eccrine
sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br. J. Dermatol.
2004, 151, 534–539. [CrossRef] [PubMed]

66. Lai, Y.P.; Peng, Y.F.; Zuo, Y.; Li, J.; Huang, J.; Wang, L.F.; Wu, Z.R. Functional and structural characterization
of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 2005,
328, 243–250. [CrossRef] [PubMed]

67. Tyler, M.J.; Stone, D.J.; Bowie, J.H. A novel method for the release and collection of dermal, glandular
secretions from the skin of frogs. J. Pharmacol. Toxicol. Methods 1992, 28, 199–200. [CrossRef]

68. Kloczkowski, A.; Ting, K.L.; Jernigan, R.L.; Garnier, J. Combining the GOR V algorithm with evolutionary
information for protein secondary structure prediction from amino acid sequence. Proteins 2002, 49, 154–166.
[CrossRef] [PubMed]

69. Camproux, A.C.; Tuffery, P.; Chevrolat, J.P.; Boisvieux, J.F.; Hazout, S. Hidden Markov model approach for
identifying the modular framework of the protein backbone. Protein Engin. 1999, 12, 1063–1073. [CrossRef]

http://dx.doi.org/10.1016/S0005-2736(99)00200-X
http://dx.doi.org/10.1016/j.bbamem.2004.09.011
http://www.ncbi.nlm.nih.gov/pubmed/15581850
http://dx.doi.org/10.2174/092986612800494011
http://www.ncbi.nlm.nih.gov/pubmed/22519531
http://dx.doi.org/10.1128/AAC.06262-11
http://www.ncbi.nlm.nih.gov/pubmed/22391524
http://dx.doi.org/10.1016/S0196-9781(01)00498-3
http://dx.doi.org/10.1002/psc.828
http://www.ncbi.nlm.nih.gov/pubmed/17266050
http://dx.doi.org/10.1016/j.bbamem.2009.06.026
http://www.ncbi.nlm.nih.gov/pubmed/19595988
http://dx.doi.org/10.1111/j.1747-0285.2011.01099.x
http://www.ncbi.nlm.nih.gov/pubmed/21496212
http://dx.doi.org/10.1016/S0006-291X(02)00762-3
http://dx.doi.org/10.1016/j.ibmb.2009.09.004
http://www.ncbi.nlm.nih.gov/pubmed/19786100
http://dx.doi.org/10.1073/pnas.93.1.412
http://www.ncbi.nlm.nih.gov/pubmed/8552650
http://dx.doi.org/10.1016/S0924-8579(02)00048-1
http://dx.doi.org/10.1038/ni732
http://www.ncbi.nlm.nih.gov/pubmed/11694882
http://dx.doi.org/10.1111/j.1365-2133.2004.06081.x
http://www.ncbi.nlm.nih.gov/pubmed/15377337
http://dx.doi.org/10.1016/j.bbrc.2004.12.143
http://www.ncbi.nlm.nih.gov/pubmed/15670776
http://dx.doi.org/10.1016/1056-8719(92)90004-K
http://dx.doi.org/10.1002/prot.10181
http://www.ncbi.nlm.nih.gov/pubmed/12210997
http://dx.doi.org/10.1093/protein/12.12.1063


Molecules 2018, 23, 2943 14 of 14

70. Camproux, A.C.; Gautier, R.; Tuffery, P. A hidden markov model derived structural alphabet for proteins.
J. Mol. Biol. 2004, 339, 591–605. [CrossRef] [PubMed]

71. Yang, J.Y.; Chen, X. Improving taxonomy-based protein fold recognition by using global and local features.
Proteins 2011, 79, 2053–2064. [CrossRef] [PubMed]

72. Zhang, W.; Liu, S.; Zhou, Y. SP5: Improving protein fold recognition by using torsion angle profiles and
profile-based gap penalty model. PLoS ONE 2008, 3, e2325. [CrossRef] [PubMed]

73. Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Analysis of protein circular dichroism spectra based on the
tertiary structure classification. Anal. Biochem. 2001, 299, 271–274. [CrossRef] [PubMed]

74. Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra:
Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem.
2000, 287, 252–260. [CrossRef] [PubMed]

75. Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of protein secondary structure from circular
dichroism spectra: Inclusion of denatured proteins with native proteins in the analysis. Anal. Biochem. 2000,
287, 243–251. [CrossRef] [PubMed]

76. Sreerama, N.; Woody, R.W. A self-consistent method for the analysis of protein secondary structure from
circular dichroism. Anal. Biochem. 1993, 209, 32–44. [CrossRef] [PubMed]

77. Amsterdam, D. The laboratory diagnosis of tuberculosis in a period of resurgence: Challenge for the
laboratory. Clin. Lab. Sci. 1996, 9, 207–212. [PubMed]

78. Steinberg, D.A.; Hurst, M.A.; Fujii, C.A.; Kung, A.H.; Ho, J.F.; Cheng, F.C.; Loury, D.J.; Fiddes, J.C. Protegrin-1:
A broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 1997,
41, 1738–1742. [CrossRef] [PubMed]

79. Wu, M.; Hancock, R.E. Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic
peptide. Antimicrob. Agents Chemother. 1999, 43, 1274–1276. [CrossRef] [PubMed]

80. Wu, M.; Hancock, R.E. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and
cytoplasmic membrane. J. Biol. Chem. 1999, 274, 29–35. [CrossRef] [PubMed]

81. Siano, A.; Humpola, M.V.; de Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G.
Antimicrobial peptides from skin secretions of Hypsiboas pulchellus (Anura: Hylidae). J. Nat. Prod. 2014,
77, 831–841. [CrossRef] [PubMed]

82. Siano, A.; Tonarelli, G.; Imaz, M.S.; Perin, J.C.; Ruggeri, N.; Lopez, M.; Santi, M.N.; Zerbini, E. Bactericidal
and hemolytic activities of synthetic peptides derived from granulysin. Protein Pept. Lett. 2010, 17, 517–521.
[CrossRef] [PubMed]

Sample Availability: Samples of the compounds P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085 are available from
the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmb.2004.04.005
http://www.ncbi.nlm.nih.gov/pubmed/15147844
http://dx.doi.org/10.1002/prot.23025
http://www.ncbi.nlm.nih.gov/pubmed/21538542
http://dx.doi.org/10.1371/journal.pone.0002325
http://www.ncbi.nlm.nih.gov/pubmed/18523556
http://dx.doi.org/10.1006/abio.2001.5420
http://www.ncbi.nlm.nih.gov/pubmed/11730356
http://dx.doi.org/10.1006/abio.2000.4880
http://www.ncbi.nlm.nih.gov/pubmed/11112271
http://dx.doi.org/10.1006/abio.2000.4879
http://www.ncbi.nlm.nih.gov/pubmed/11112270
http://dx.doi.org/10.1006/abio.1993.1079
http://www.ncbi.nlm.nih.gov/pubmed/8465960
http://www.ncbi.nlm.nih.gov/pubmed/10163492
http://dx.doi.org/10.1128/AAC.41.8.1738
http://www.ncbi.nlm.nih.gov/pubmed/9257752
http://dx.doi.org/10.1128/AAC.43.5.1274
http://www.ncbi.nlm.nih.gov/pubmed/10223951
http://dx.doi.org/10.1074/jbc.274.1.29
http://www.ncbi.nlm.nih.gov/pubmed/9867806
http://dx.doi.org/10.1021/np4009317
http://www.ncbi.nlm.nih.gov/pubmed/24717080
http://dx.doi.org/10.2174/092986610790963555
http://www.ncbi.nlm.nih.gov/pubmed/19961432
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Analysis and Purification of the Complete Extract of L. latrans 
	Mass Spectrometry Analysis of Fraction 4 of L. latrans 
	Solid-Phase Peptide Synthesis 
	Antimicrobial and Hemolytic Activity of the Synthetic Peptides 
	Secondary Structure Determination by Circular Dichroism (CD) 

	Discussion 
	Materials and Methods 
	Collection of Amphibian Specimens 
	Method for Biological Sampling. Transcutaneous Amphibian Stimulation (TAS) 
	Liquid Chromatography coupled to Mass Spectrometry (LC-MS-MS) 
	Structure Analysis 
	Circular Dichroism (CD) Analyses 
	Peptide Synthesis 
	Minimal Inhibitory Concentration (MIC) Determination 
	Hemolysis Assays 
	Calculation of Therapeutic Index 

	References

