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Abstract

Background: Benzodiazepines are usually prescribed for anxiety and sleep disorders in a long-term 
fashion that may cause drug dependence. Discontinuation after prolonged administration may lead to 
withdrawal expression, being anxiety the most predominant sign. It has been described that a context-
dependent associative learning process underlies diazepam dependence. Nitric oxide is a crucial player 
in learning and memory processes, hippocampal transmission, as well as in benzodiazepines withdrawal. 
Considering that previous results from our laboratory showed an increase in hippocampal functional 
plasticity only in diazepam dependent rats, the aim of the present investigation is to determine whether 
diazepam dependence could alter neuronal nitric oxide synthase enzyme (NOS-1) expression within the 
hippocampus, by using western blot.

Results: chronic diazepam-treated animals that developed dependence showed increase in NOS-1 
expression in dorsal, but not in ventral hippocampus, while no-dependent or control animals presented 
similar NOS-1 protein levels.

Conclusion: withdrawal from long-term diazepam exposure could be associated to increased nitric 
oxide neurotransmission within dorsal hippocampus induced by NOS-1 over-expression. This mechanism 
could underlie the improved hippocampal synaptic transmission previously observed in diazepam 
withdrawn animals. Confi rmatory experiments need to be addressed to determine the mechanisms by 
which nitric oxide participates in benzodiazepines withdrawal in order fi nd new molecular targets to 
develop pharmacological tools to prevent the withdrawal syndrome.
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Introduction
Benzodiazepines are commonly prescribed for the treatment of anxiety and sleep 

disorders. However, prolonged treatment may lead to dependence with evident 
withdrawal syndrome [1-3]. Long-lasting neuroadaptations resulting from repeated 
drug exposure involve an associative learning process [4-7]. These learning and 
cognitive aspects of addiction suggest the existence of common neurobiological 
mechanisms mediating drug addiction and memory [5,8-10]. Both phenomena are 
accompanied by alterations in synaptic plasticity at glutamate synapses in the reward 
pathway, involving the ventral tegmental area, nucleus accumbens, and frontal cortex 
[8,11]. In addition to the relevance of the reward circuitry in the development of 
addiction, other brain areas such as the hippocampus (HP) have been implicated [12]. 
This brain structure plays a great role in processing the associations between the 
environmental context and unconditioned stimuli such as drugs of abuse [13]. Within 
the HP, the long-term potentiation (LTP) characterized by an enduring increase in the 
ef icacy of glutamatergic synaptic transmission is a major form of synaptic plasticity. 
This phenomenon is accepted as a molecular mechanism for learning and memory in 
the brain in which contextual cues are relevant [14,15]. We have previously described 
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that Diazepam (DZ) dependence was related to a marked and sustained enhancement 
in the HP dentate gyrus synaptic transmission [6,16], supporting the relevance of HP 
synaptic plasticity in maintenance of the memory trace during BZD withdrawal.

Neuronal excitability and synaptic plasticity in HP and other brain areas, are 
modulated by nitric oxide (NO) [17]. NO is a diffusible neuromodulator synthesized in 
the brain mainly by the neuronal NO synthase enzyme (NOS-1) following glutamatergic 
N-Methyl-D-Aspartate (NMDA) receptor activation [18], and it is involved in a 
variety of physiological and pathophysiological processes including nociception [19], 
neurogenesis [20], learning and memory [21], anxiety [22] and seizure activity [23]. 
Furthermore, NO activated pathways contribute to neuronal adaptations induced 
by different addictive drugs [24-26] and inhibition of NO synthesis attenuates 
pentetrazole-induced withdrawal syndrome in diazepam-dependent mice [27], and 
reduces withdrawal expression from psych stimulants [28], nicotine [29], opioids 
[30,31], ethanol [32]. Then, considering that the evidence regarding participation of 
NOS-1 in BZD withdrawal is based on pharmacological and behavioral results, the aim 
of the present investigation is to characterize possible changes in NOS-1 expression 
within the HP induced by DZ dependence.

Materials and Methods
Ethical statement

All procedures were carried out in accordance with the National Institute of Health 
Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23) revised 
1996 and by the ARRIVE guidelines of the National Centre for the Replacement, 
Re inement, and Reduction of Animals in Research (2011) adopted by NIH. All protocols 
were approved by the Animal Care and Use Committee, School of Chemical Sciences, 
National University of Cordoba (RES-48-2015). Experiments were made minimizing 
the number of animals used and their suffering.

Animals

Male Wistar rats of 5-6 weeks old at the beginning of the treatment, obtained from 
the Department of Pharmacology- IFEC CONICET vivarium (Facultad de Ciencias 
Químicas, Universidad Nacional de Córdoba, Argentina) were used. Animals were 
housed in groups of 3, in plastic boxes with metallic gridded tops, using sawdust as 
bedding material, in a temperature and humidity controlled conditions under a 12-h 
light/dark cycle (light on at 7 am). Food and water were freely available.

Drugs

Commercially available ampoules of DZ (10mg/2ml, Klonal SRL, Argentina) were 
used. Vehicle (VEHIC) was prepared using distilled water with Tween 80 (0.3%, Sigma 
Aldrich-Fluka, Argentina) and propilenglycol (5%, Sintorgan SA, Argentina). Saline 
solution was prepared at 0.9 % NaCl.

Experimental protocol

Animals received DZ (5mg/kg/day, n=32) or VEHIC (n=10) via intraperitoneal 
(i.p.) along 18 days (Figure 1a). This procedure was performed by the same operator, 
in the same room location and with a speci ic piece of fabric used along the treatment. 
Forty eight hs. After the last DZ or VEHIC administration, animals were evaluated in 
the elevated plus-maze (EPM) test to evidence an “anxiety-like behavior” as a sign of 
the withdrawal syndrome. Immediately after the EPM, a group of rats (n=16) were 
sacri iced for western blot experiments, by guillotine decapitation.

Elevated plus maze test

The EPM apparatus consisted of two opposite open arms (50x10 cm), and two 
opposite enclosed arms, (50x10x40 cm), with an open roof arranged. The arms 
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extended from a central platform (10x10 cm) and the apparatus was elevated to a 
height of 50 cm. Rats were placed in the center of the maze during 5 min and different 
dependent variables were analyzed using the method previously reported. These 
variables include percentage of time spent on the open arms (%TA), entries and 
extreme arrivals in open arms, which served as index of anxiety. Also, the entries in 
closed arms were measured as loco motor activity index.

Western blot

Immediately after the EPM test animals were sacri iced by guillotine decapitation, 
their brains were quickly removed and placed on ice. Coronal brain slices of 
2 mm containing dorsal or ventral HP were prepared, homogenized in a lysis buffer 
containing protease and phosphatase inhibitors, the homogenate were centrifuged at 
12000g for 10 min at 4 °C. The supernatant was combined with Laemmli’s buffer, boiled 
at 100 °C for 5 min and stored in aliquots at -20 °C until use. Aliquots of the supernatant 
were used for total protein quanti ication using the Bradford´s method. Samples (70 μg of 
protein) were separated in 8% SDS-PAGE gel, and transferred to polivinylidenedi luoride 
membranes in a Tris-glycine buffer, 20% methanol. Membranes were cut at 75kDa in 
order to incubate NOS-1 (160kDa) and actin (43kDa) with their respective antibodies. 
Then, they were incubated overnight at 4 °C with a previously characterized, 
commercially available NOS-1 antibody (1:500; Cell Signaling Technology, Cat #4234), 
and actin antibody (1:1000; Santa Cruz Biotechnology, INC. Cat# sc-1616), the next 
day membranes were subsequently incubated with the corresponding anti-rabbit 
antibody (1:20000; IRDye 800 wc) and anti-goat antibody (1:20000; IRDye 680 LD) 
for 2 h at room temperature. The membranes were scanned (Odyssey CLx, LI-COR) and 
the value of optical density (OD) of each band was quanti ied with an image analysis 
program (GelPro32 Analyzer). The actin expression was used as internal control and 
results are expressed as OD NOS-1/OD actin.

Statistical Analyses

Results from EPM and western blots were analyzed by one-way ANOVA, followed 
by the post hoc Newman-Keuls pairwise comparisons of means. Pearson’s correlation 
was used to analyze the correlation between %TA and NOS-1 protein levels. Analyses 
were performed using GraphPad Prism 6. Data were expressed as the means±SE. The 
signi icance level used for all statistical analyses was set at p<0.05.

Results
Long-term diazepam administration induced “anxiety like” behavior in a 
proportion of treated rats 48 hs after last administration

It has been previously described that the “anxiety like” behavior as a sign of DZ 
withdrawal during the first exposure to the EPM, after 18 days of DZ administration, can 
be observed until 4 days after the last injection [6]. In the present work, we reproduced 
those results showing that an “anxiety like” behavior was observed 48 hs after the 
last DZ administration, assessed by % of time spent in open arms (%TA), entries and 
extreme arrivals in open arms, in a proportion of treated animals (dependent animals). 
An animal was considered “anxious” or dependent [DZ(D), n=13] if the %TA was less 
than 13%, above this percentage animals were considered as non-dependent [DZ(ND), 
n=19]. This criterion was adopted considering the hippocampal synaptic transmission 
results after this treatment [16]. The one-way ANOVA showed a signi icant differences 
on the %TA [F(2, 39)= 50.5; p=0.0001] (Figure 1b). Newman-Keuls pairwise comparisons 
of means showed that the %TA was signi icantly lower in DZ(D) (5.0±1.4, n=13) when 
compared to VEHIC (32.87±2.78, n=10) or DZ(ND) (27.06±1.91, n=19, *p<0.05). No 
differences were found between DZ(ND) and VEHIC (p>0.05). When the open arms 
entries were analyzed (Figure 1d), a signi icant effect was observed between groups 
[F(2, 39)= 6.79; p=0.003]. Newman-Keuls pairwise comparisons of means showed that 
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open arms entries was signi icantly lower in DZ(D) (0.38±0.15) when compared to 
VEHIC (1.6±0.36) or DZ(ND) (1.21±0.2, *p<0.05). No differences were found between 
DZ(ND) and VEHIC (p>0.05). Also, a signi icant effect was observed on the e xtreme 
arrivals [F(2, 39)= 22.16; p=0.0001] (Figure 1e). Moreover Newman-Keuls pairwise 
comparisons of means showed that extreme arrivals were signi icantly lower in DZ(D) 
(0.54±0.25) when compared to VEHIC (3.2±0.47) or DZ(ND) (2.63±0.23, *p<0.05). No 
differences were found between DZ(ND) and VEHIC groups (p>0.05). On the other 
hand, no differences were found on the closed arms entries between groups [F(2, 39)= 
0.98; p=0.079] (Figure 1c). These results indicate that no changes were observed in 
loco motor activity between groups.

Hippocampal NOS-1 expression in diazepam treated animals.

It has been shown that systemic non-selective NOS-1 inhibition exerts an inhibitory 
effect on some of the signs of BZD withdrawal in mice and rats [27]. In order to 
evaluate how chronic DZ administration may induce possible alterations within the 
NO system, we measured NOS-1 protein expression within the dorsal or ventral HP. 
The one-way ANOVA on the NOS-1 protein levels in dorsal HP indicated signi icant 
differences between groups [F(2, 13)= 6.21; p=0.013] (Figure 2a). Newman-Keuls 
pairwise comparisons of means showed that NOS-1 expression was signi icantly higher 
in DZ(D) (1.2±0.1 OD, n=3) when compared to DZ(ND) (0.72±0.08 OD, n=5) or VEHIC 
(0.79±0.07 OD, n=8, *p<0.05). No differences were found between VEHIC and DZ(ND) 
(p>0.05). On the other hand, in ventral HP the one-way ANOVA showed no signi icant 
differences on the NOS-1 protein levels [F(2, 11)= 0.57; p=0.581] between groups (DZ(D) 
1.55±0.39 OD, n=4; DZ(ND) 1.48±0.23 OD n=5; VEHIC 1.19±0.24 OD n=5). Interestingly, 
when we analyzed the relationship between %TA and NOS-1 protein levels in DZ(D) 
and DZ(ND) groups, a negative correlation was observed in dorsal HP between those 
parameters (Pearson’s correlation r=-0.87; p=0.0048; Figure 2b). No correlation was 
observed in ventral HP (Pearson’s correlation r=-0.08; p=0.8305; Figure 2c,2d).

 

Figure 1: Long-term diazepam administration induced “anxiety like” behavior in a proportion of treated rats 48 hs 
after last administration: a) Schematic representation of protocol administration. 
b) %Time in open arms in VEHIC, DZ(D) and DZ(ND) animals (*p<0.05 compared all groups)
c) Closed arms entries in VEHIC, DZ(D) and DZ(ND) animals (p>0.05 compared all groups)
d) Open arms entries in VEHIC, DZ(D) and DZ(ND) animals (*p<0.05 compared all groups)
e) Extreme Arrivals in VEHIC, DZ(D) and DZ(ND) animals (*p<0.05 compared all groups). For b-e bars represent 
means±SE.
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Figure 2: Hippocampal NOS-1 expression in diazepam treated animals: a) Bar graphs show NOS-1 expression (OD, 
optical density, NOS-1/actin) in VEHIC, DZ(D) and DZ(ND) animals in dorsal HP (*p<0.05 compared to all groups). 
b) Graphs show correlation between the %TA and NOS-1 expression in DZ(D) and DZ(ND) in dorsal HP. The 
correlation coeffi cients (r) are indicated inside the graph. 
c) Bar graphs show NOS-1 expression (OD, optical density, NOS-1/actin) in VEHIC, DZ(D) and DZ(ND) animals in 
ventral HP. 
d) Graphs show correlation between the %TA and NOS-1 expression in DZ(D) and DZ(ND) in ventral HP. The 
correlation coeffi cients (r) are indicated inside the graph. In both a and c, bars represent means±SE and below each 
graph representative western blot for NOS-1 and actin immunoreactivity are shown. Full-length blots from cropped 
VEHIC, DZ(D) and DZ(ND) in dorsal and ventral HP are shown in supplementary fi gure 1a and 1b respectively.

Discussion
Drug dependence is often related to a contextual learning phenomenon [33], 

and seems to be the principal mechanism underlying BZD dependence, in which the 
contextual environment during drug administration have a preponderant role in 
establishment of physical dependence and withdrawal in both animals and humans 
[4,34]. The HP, through its connections with structures such as the Amygdala or the 
medial Prefrontal Cortex, among others, is a brain structure implicated in contextual 
conditioning [35]. Furthermore, the anxiogenic effect promoted by DZ withdrawal 
was accompanied by signi icant Fos-positive immunoreactivity in telencephalic, 
diencephalic and mesencephalic areas related to anxiety and fear circuits in the brain 
[36], as well as to enhanced Locus Coeruleus and Dorsal Raphe Nucleus neuronal 
activity [16,37]. All these changes may contribute not only to the physical withdrawal 
symptoms involving autonomic function, but also to the increased HP plasticity that 
has been described to underlie DZ dependence and withdrawal [6,16,38]. Previous 
reports from our laboratory showed that the increased HP plasticity observed during 
DZ dependence is positively associated to the expression of the behavioral signs of 
DZ withdrawal; while absence of anxiety-like behavior is associated to HP synaptic 
transmission comparable to control values [4,6,16]. Moreover, considering the role 
of NMDA receptors in several types of learning, it seems likely that these receptors 
participate in the conditioning of the behavioral activation observed after chronic 
psychoactive drug treatments [39-41]. In fact, administration of MK-801, a non-
competitive NMDA receptor antagonist, impairs the development of tolerance to DZ 
and other psychoactive drugs [42-44], prevents the enhanced HP synaptic plasticity 
and the increased mRNA for the NR1-NR2B NMDA receptor subunit associated with 
the development of tolerance to DZ [45].

In this scenario, NO synthesized upon NMDA receptor stimulation [46], seems to 
play an important role not only in learning and memory processes [47] and HP LTP 
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[48], but also contribute to the neuronal adaptations induced by different addictive 
[24-26,49]. Indeed, likewise to the MK-801 effects, inhibition of NO synthesis reduces 
withdrawal expression from psychostimulants [28], nicotine [29], opioids [30,31,50], 
ethanol [32] and BZD [27]. Furthermore, chronic nicotine withdrawal increases NOS-1 
immunoreactivity in the Dorsal Raphe Nueclues and Locus Coeruleus of adult rats [51]. 
In the present work, we showed that chronic DZ increases NOS-1 protein levels within 
the dorsal HP only in dependent animals (DZ(D)), while non-dependent animals did 
not show alterations in NOS-1 protein levels compared to control rats. This result is 
in agreement with previous indings indicating that acute inhibition of NO synthesis 
decreases anxiety in the EPM test in rats [52], while augmentation of the NO-activated 
cascade induces anxiogenic-like effect in mice [53]. The dorsal HP is a region primarily 
involved in the cognitive process of learning and memory [54], and it is important to 
note that the increase in NOS-1 protein levels was only observed in this region and not 
in ventral HP.

Analyzing previous reports together with the present behavioral and molecular 
results, a negative and signi icant correlation was observed between “anxiety like” 
behavior and NOS-1 expression within dorsal HP, supporting previous results in which 
low levels of %TA were related to increased HP transmission and now with high NOS-
1 protein levels. These augmented protein levels may indicate that NOS-1 enzyme 
evidenced a neuroadaptative process after repeated administration, in which activation 
of NMDA receptors during chronic DZ exposure may lead to a NO overproduction 
that up-regulates NOS-1 protein expression within HP, explaining at least in part, 
maintenance of high levels of HP synaptic plasticity during long term DZ withdrawal 
[6], as well as expression of the “anxiety like” behavior. However, we cannot discharge 
that changes in NOS-1 levels or synaptic transmission in other brain structures may 
account for expression of DZ withdrawal.

Conclusions

Long-term DZ exposure seems to be able to induce functional and molecular changes 
within the HP, such as enhanced synaptic transmission probably by increases of NO 
availability, and consequently contribute with the learning and memory processes that 
underlie BZD dependence. Further studies need to be conducted in order to con irm 
the causal relationship between BZD withdrawal expression, HP synaptic transmission 
and NO signaling, as well as to characterize other mechanism and/or brain structures 
involved in this process and the molecular pathways by which NO participates in BZD 
dependence in order to ind new molecular targets to design pharmacological tools to 
prevent DZ dependence and withdrawal.
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