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In tomato, auxin and gibberellins (GAs) interact with each other to drive fruit growth and 

development. While the role of auxin in directing GA biosynthesis and signal is already known, 

very little information has been obtained about GA-mediated control of auxin signalling and 

response. Interestingly, we show that GA3 is able to modify the expression of several auxin 

signalling genes in the partial auxin-insensitive diageotropica (dgt) mutant, suggesting that GAs 

may override the control of DGT on auxin signal. Procera (pro) mutation, which confers a 

constitutively active GA signal, enhances the effects of exogenous auxin, indicating that PRO may 

act as a negative effector of auxin responses in fruits. Indeed, transcript modulation of some 

Aux/IAA and ARF genes in auxin-treated dgt/pro fruits, suggests that PRO controls their 

expression possibly bypassing DGT. It was also shown that GA biosynthesis, in response to auxin 

treatment, is largely controlled by DGT. It is therefore conceivable that the DGT-mediated increase 

of active GAs in auxin-treated or pollinated fruits, would promote PRO degradation, which in turn 

activates part of the auxin signalling cascade.  

 

Abbreviations − Aux/IAA, auxin/indole acetic acid; ARF, auxin response factor; 4-CPA, 4-

chlorophenoxyacetic acid; Cyp1, cyclophilin1; dgt, diageotropica; GAs, gibberellins; pro, procera. 
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Introduction 

Auxin is involved in every aspect of plant physiology including tropisms, lateral root formation, 

leaf abscission and response to pathogens (Sauer et al. 2013), and has a primary role during the 

conversion of the ovary into a growing fruit (reviewed by Pattison et al. 2014). In tomato (Solanum 

lycopersicum), the application of a synthetic auxin as well as the interruption of indoleacetic acid 

(IAA) export from unpollinated ovaries induces parthenocarpic fruit formation (Serrani et al. 2008, 

2010). Similarly, enhancement of auxin sensitivity or increase of endogenous IAA biosynthesis 

spontaneously triggers tomato fruit growth (Carmi et al. 2003, Molesini et al. 2009). Using gene 

silencing and gene overexpression techniques, it has been possible to address functions related to 

tomato fruit-set and early development to several auxin signalling components. Members of the 

auxin signalling family Auxin/Indole Acetic Acid (Aux/IAAs) and Auxin Response Factors (ARFs) 

family are involved in the transition of flowers to fruits by regulating photoassimilate allocation to 

the ovary (SlIAA9, SlIAA27, SlARF4) (Wang et al. 2009, Bassa et al. 2012, Sagar et al. 2013), or 

by controlling cell divisions (SlARF9; de Jong et al. 2015) or cell expansions (SlARF7 and 

SlIAA17; de Jong et al. 2011, Su et al. 2014). A model was proposed for fruit-set, where 

heterodimers of specific Aux/IAAs and ARFs would repress transcription of auxin-related genes in 

pre-anthesis ovaries and, consequently, prevent ovaries from growing. Following pollination, a 

burst of endogenous auxin promotes the binding between the F-box auxin receptor proteins and 

Aux/IAAs leading to their degradation via the ubiquitin–proteasome pathway. Once freed from 

Aux/IAA repression, ARFs would subsequently regulate auxin-responsive genes (Sotelo-Silveira et 

al. 2014).  

The diageotropica (dgt) mutant shows defects in some auxin-related phenotypical features such as 

gravitropism of shoots, lateral root formation and xylem development (Zobel 1973). These traits are 

not attributed to lower auxin content (Fujino et al. 1998) but rather to auxin insensitivity (Muday et 

al. 1995). Indeed, the dgt lesion disrupts part of the auxin signal transduction pathway (Nebenführ 

et al. 2000). Genetic studies revealed that DGT is a cyclophilin (Cyclophilin1, SlCyp1), a peptidyl-

prolyl cis-trans isomerase (PPIase) (Oh et al. 2006). Interestingly, DGT mediates responses in target 

tissues by moving from the shoot to the roots via phloem as a mobile signal protein (Spiegelman et 

al. 2017). How cyclophilins-like DGT integrate auxin signalling is still unclear (Retzer and 

Luschnig 2015). However, recent findings demonstrated that the PPIase LATERAL ROOTLESS2 

(LRT2) is responsible for the correct folding of OsIAA11 in rice. This conformational adjustment 

would enable OsIAA11 destabilization and the consequent derepression of auxin-regulated genes 

(Jing et al. 2015). Mutation at DGT locus reduces fruit size, number of seeds and number of locules 

as a result of auxin signalling alteration (Balbi and Lomax 2003).  
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Although auxin has a central role in controlling fruit-set and early growth, it is not the only 

hormone that takes part in these processes. Actually, various hormones were reported to be involved 

in complex networks during fruit development (Kumar et al. 2014). Gibberellins (GAs) represent a 

class of phytohormones that plays a fundamental role during fruit development. GAs are 

synthetized from geranylgeranyl diphosphate (GGDP), the precursor of diterpenoids. Through the 

action of ent-copalyl diphosphate synthase and ent-kaurene synthase, GGDP is converted to ent-

Kaurene, which in turn is transformed into GA12 by ent-kaurene oxydase (KO) and ent-kaurenoic 

acid oxydase (KAO). In the 13-hydroxylated pathway, GA12 is oxidized on C13 by GA13 oxidase to 

form GA53. The latter is converted to active GAs (GA1 and GA3) by sequential oxidation on C20 by 

GA 20-oxidases (GA20oxs) and on C3 by GA 3β-oxidases (GA3oxs). Inactivation of GAs is 

mainly catalysed by GA 2 β-oxidases (GA2oxs) that produce GA29, GA34 and GA8 from GA20, GA4 

and GA1, respectively (Yamaguchi et al. 2008). 

It is widely known that in tomato and Arabidopsis thaliana (Arabidopsis), external application of 

GA3 or genetically enhanced GA signal, triggers spontaneous fruit growth (Vivian-Smith and 

Koltunow 1999, Serrani et al. 2007a, Martí et al. 2007). On the other hand, block of GA 

biosynthesis in pollinated ovaries arrests fruit development (Serrani et al. 2007b) and active GAs 

(GA1 and GA3) accumulate in tomato ovaries following pollination due to upregulation of GA 

biosynthesis genes such as GA 20-oxidases (Rebers et al. 1999, Serrani et al. 2007b, Mariotti et al. 

2011). Various lines of evidence indicate that auxin and GAs interact together during the first stages 

of fruit development. According to a hierarchical scheme, auxin induces GA biosynthesis and active 

GA accumulation which in turn promote destabilization of DELLA proteins, GA signalling 

repressors, triggering GA signal and fruit growth initiation (Tang et al. 2015). DELLA proteins 

have been shown to control fruit formation, since the accumulation of four della mutations in 

Arabidopsis and a silenced SlDELLA in tomato have led to parthenocarpic fruit formation (Dorcey 

et al. 2009, Martí et al. 2007). Similarly, the procera (pro) mutant of tomato, known for its GA-

constitutive phenotype, displays spontaneous fruit growth due to a point mutation in the VHVID 

domain of the DELLA protein (Bassel et al. 2008, Jasinski et al. 2008, Carrera et al. 2012). 

To date, very few studies have been carried out on GA-mediated auxin signalling regulation in 

fruits. In this context, it has been reported that SlARF7 expression is modulated in GA-induced 

parthenocarpic tomato fruits (Carrera et al. 2012) and that cell divisions in tomato fruit pericarps are 

promoted by GAs that indirectly activate some ARF genes (Liu et al. 2016b). 

Our study provides further evidence for GA modulation of the auxin signalling pathway during fruit 

development. In particular, using the dgt mutant, we found that GA3 treatment stimulates fruit 

development by modifying the expression level of auxin signalling genes. Moreover, the dgt/pro 
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mutant allowed us to observe that, besides a direct effect, auxin treatment results in fruit 

development via a GA-mediated change in the expression of some key genes involved in auxin 

signalling. A possible mechanism of interaction between the auxin and GA pathways during tomato 

fruit growth and development is proposed.  

 

Materials and methods 

Plant material and hormonal treatments 

Seeds of tomato (Solanum lycopersicum L.) cv. Ailsa Craig (AC, accession n. LA2838A) and pro 

mutant (accession n. LA3283, in AC background) were obtained from the Tomato Genetics 

Resource Center (University of California, Davis, CA). Near-isogenic line of dgt, repeatedly 

backcrossed in AC, was donated by Dr. C. Coenen (Allegheny College, Meadville, PA). Dgt/pro 

double mutant was obtained by screening F2 population for double recessive individuals. Typically, 

double mutant plants are smaller than the wild type, they show extremely slender and droopy 

growth habit, and have dark green lanceolate leaves with reduced leaf margin serrations (Fig. S1). 

Four-week-old plants were transplanted in 5-l pots with peat-based substrate pH 5.5-6.5 (Dynamics 

2, Agriservice, Buenos Aires, Argentina) and grown under greenhouse conditions during autumn at 

the University of the Northeast (UNNE, Corrientes, Argentina). Plants were regularly watered and 

fertilized with complex NPK plus micro elements fertilizer (Blaukorn classic, Compo, Münster, 

Germany). Treatments to ovaries were carried out after emasculating the flowers at pre-anthesis 

stage (2 days before full bloom). Gibberellic acid (GA3, Sigma-Aldrich, St Louis, MO; 2 µg per 

ovary), 4-chlorophenoxyacetic acid (4-CPA, Sigma-Aldrich, 100 ng per ovary) and the combination 

of the two hormones were applied as a 10 µl drop containing 1% ethanol and 0.01% Triton X 

(Mignolli et al. 2012). Equal volume of solvent was used as mock. Experiments with AC, dgt, pro, 

and dgt/pro were performed by collecting ovaries at pre-anthesis stage (0) and after 1, 4 and 8 days 

from mock and 4-CPA application, according what described above. Pollinated fruits (Figs S3 and 

S4) were obtained by manually pollinating with AC pollen, emasculated pre-anthesis flowers. 

Ovaries/fruits were then harvested a 0, 2, 4 and 6 days after pollination. In all cases, samples, were 

weighed and stored at -70°C up to analyses.  

 

Expression analysis of auxin signalling genes 

For total fruit RNA extraction, cDNA synthesis and qPCR reaction set up, we followed the method 

described by Mignolli et al. (2015). In brief, frozen fruit tissues of approximately 0.1 g were ground 

in mortar with the addition of 1 ml of TRI Reagent® (MRC, Cincinnati, OH). Samples were 

centrifuged (12 000 g, 10 min at 4°C) and the supernatant partitioned with chloroform. Precipitation 
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of RNA was accomplished by adding ice-cold isopropanol and high salt solution (0.8 M sodium 

citrate and 1.2 M sodium chloride, Sigma-Aldrich, St Louis, MO) to the aqueous fraction. RNA 

pellet was washed with 75% ethanol, dried, and solubilized in DEPC water. Contaminating DNA 

was removed by incubating RNA samples with DNAse TURBO DNA free kit (Ambion, Austin, 

TX) and successively 5 μg of purified RNA was reverse transcribed into cDNA with the High-

Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). Auxin signalling and GA 

biosynthesis gene transcripts were analysed by Real Time qPCR (ABI Prism 7500, Applied 

Biosystems). Fifty ng of cDNA were amplified with 7.5 µl of Master Mix (Mezcla Real, 

Biodynamics, Buenos Aires, Argentina), and 10 mM forward and reverse primers. Cycling stage 

was set to 40 cycles at 95°C for 15 sec and 60°C for 1 min. Expression was normalized with the 

transcript level of the housekeeping gene LeEF1α. Primer sequences and gene accessions are listed 

in supplemental material (Table S1).  

 

Analysis of endogenous GAs in fruits 

Endogenous GAs were determined in AC and dgt entire fruits following pollination and application 

of mock and 4-CPA according to the methodology described by Mignolli et al. (2015). In short, 1 g 

of frozen samples was ground in 80% methanol, centrifuged, and the supernatant was collected. 

Extraction procedure was repeated four times. Fifty ng of deuterated GAs were added to the extracts 

as internal standards. Extracts were first partitioned with ethyl acetate and then eluted in a methanol 

gradient by HPLC equipped with Hypersil ODS C18 column (Thermo Fisher Scientific, Waltham, 

MA). All fractions were dried and trimethylsilylated with N, O- bis(trimethylsilyl) 

trifluoroacetamide (BSTFA) containing 1% of trimethylchlorosilane (Pierce, Rockford, IL) at 70°C 

for 1 h. Endogenous GAs were finally detected and quantified by GC–MS/MS equipment Saturn 

2200 quadrupole ion trap mass spectrometer coupled with a CP- 3800 gas chromatograph (Varian 

analytical Instrument, Walnut Creek, CA). 

 

Results 

GA3 enhances 4-CPA response in dgt fruits  

We treated emasculated dgt and AC flowers at pre-anthesis stage with mock solution, 4-CPA, GA3 

and a combination of both hormones. In dgt, 4-CPA treatment produced parthenocarpic fruits that 

were 6-fold smaller than AC and presented an extremely reduced placental tissue (Fig. 1A, B; 

Mignolli et al. 2012). GA3 induced fruit growth in both genotypes (Fig. 1). However, GA3 treatment 

resulted in smaller fruits than 4-CPA in AC, while GA3 fruits were two times bigger than fruits 

treated with auxin in dgt (Fig. 1A, B). In both genotypes, fruits obtained following GA3 treatment 
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had thick pericarps with negligible development of placental tissue (Fig. 1A, B). Interestingly, when 

4-CPA and GA3 were simultaneously applied, no additive effect on fruit weight was observed in 

AC, whereas dgt ovaries produced parthenocarpic fruits that were more than 2.5 times heavier than 

fruits obtained with 4-CPA alone. In addition, 4-CPA+GA3-treated dgt fruits had a well-developed 

placental tissue that filled all locular cavities (Fig. 1A).  

 

4-CPA-induced fruit development is enhanced in pro/dgt mutant 

With the aim to observe whether a constitutive GA signal was able to enhance auxin responsiveness 

in dgt, pre-anthesis ovaries of AC, dgt, pro and dgt/pro were treated with mock solution and 4-CPA. 

Growth and internal morphology of 30-day-old fruits were then observed. Mock-treated pro and 

dgt/pro fruits grew parthenocarpically showing thick pericarp and lack of placental tissue (Fig. 2A). 

Interestingly, although 4-CPA dgt/pro fruits attained approximately 7-fold higher fresh weight with 

respect to 4-CPA-treated dgt fruits, they were significantly smaller than 4-CPA-treated AC and pro 

fruits (Fig. 2B). Moreover, as evidenced by transversal cuts, placental tissue development was 

observed in 4-CPA-treated fruits in dgt/pro but not in dgt (Fig. 2A). While no statistical differences 

were observed between 4-CPA- and mock-treated dgt fruits, 4-CPA-treated dgt/pro fruits grew 

significantly more than its mock, indicating that 4-CPA had an additional effect on the double 

mutant fruit growth (Fig. 2B).  

 

Pro mutation modulates some auxin signalling genes in dgt  

In order to establish whether PRO (SlDELLA) is involved as modulator of auxin signalling, we 

performed gene transcript analysis of SlIAA2, SlIAA14, SlARF7, SlARF8 and SlARF9 in AC, dgt, 

pro and dgt/pro fruits after treatment with mock or 4-CPA (Fig. 3). SlIAA2, SlIAA14 and SlARF9 

genes (Fig. 3A, B, and E) were up-regulated in AC after 4-CPA application showing a peak 4 days 

after the treatment. Lower induction of these genes was observed in dgt fruits at 4 and 8 days (Fig. 

3A, B, and E). In 4-CPA-treated pro fruits, the expression levels of SlIAA2 at 1, 4 and 8 days were 

respectively approximately 7-, 2.5-, and 1.5-fold higher than in AC fruits (Fig. 3A). A similar 

pattern of expression was observed also for SlIAA14 in 4-CPA-treated pro fruits (Fig. 3B). Notably, 

SlIAA2, SlIAA14 and SlARF9 genes at 1, 4 and 8 days were more induced in dgt/pro than in dgt 

after treatment with 4-CPA (Fig. 3A, B and E).  

4-CPA treatment reduced SlARF7 transcript level in all four genotypes but the decrease was more 

pronounced in pro and pro/dgt at 1 and 8 days (Fig. 3C). Interestingly, a steady decline of SlARF7 

transcripts was observed in mock-treated pro and pro/dgt fruits (Fig. 3C). With a different trend, 

SlARF8 was up-regulated only in dgt and dgt/pro fruits after 8 days from treatment with 4-CPA, 
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whereas its expression in 4-CPA-treated AC and pro fruits was maintained below mock levels (Fig. 

3D). 

 

GA3 induces some auxin signalling genes independently from dgt mutation 

We wanted to determine whether auxin signalling gene expression was modulated in response to 

GA3 but not 4-CPA treatment in the dgt mutant. Therefore, we analysed the expression of several 

auxin signalling related genes in ovaries/fruits at 0, 1, 4 and 10 days treated with mock, 4-CPA and 

GA3. In dgt, the expression of SlIAA2 was much lower than in AC at 4 and 10 days after 4-CPA 

treatment, yet higher than in the mock. Interestingly, the application of GA3 considerably raised 

SlIAA2 expression, particularly in dgt (Fig. 4A). Although the treatment with GA3 resulted in higher 

induction of SlIAA14 in respect to 4-CPA in both genotypes, this was more evident in dgt (Fig. 4B). 

Conversely, SlARF7 was similarly regulated in both genotypes, showing a sharp down-regulation in 

response to 4-CPA and GA3 after 1 day (Fig. 4C). SlARF9 was induced in response to 4-CPA after 

1 day in both genotypes but its transcripts were relatively less abundant in dgt at 4 and 10 days. 

Similarly to SlARF7, SlARF9 did not show any significant differences in terms of relative transcript 

content between AC and dgt GA3-treated fruits at 1, 4 and 10 days after the hormone application. 

(Fig. 4D). 

 

Dgt mutation reduces 4-CPA-induced GA biosynthesis  

We measured the content of GAs from the early 13-hydroxylation pathway (GA19, GA20, GA1, GA8, 

GA5, GA3 and GA29) and the expression of some GA metabolism genes (SlGA20ox1, SlGA3ox1, 

SlGA2ox1) in AC and dgt fruits at 10 days from the application of 4-CPA (Table 1, Fig. 5). The 

content of endogenous GAs was significantly reduced in dgt. In particular, GA3 content, one of the 

active GAs, was less than half of the level found in AC. Levels of GA19 and GA20, and of GA8, the 

GA1 catabolite, were also lower in the mutant (Table 1). The expression of SlGA20ox1 was induced 

in response to 4-CPA application in both genotypes and a peak was produced after 4 days of 

treatment. However, transcript levels increased more steeply in AC showing 2.2-, 4.4- and 23-fold 

higher induction than in dgt at 1, 4 and 8 days after treatment, respectively (Fig. 5). In AC, 

SlGA3ox1 was down-regulated following the application of the synthetic auxin. However, in dgt, 

the increase in SlGA3ox1 expression one day after 4-CPA treatment was followed by an abrupt 

decrease 4 days after the treatment. SlGA2ox2 was less induced in 4-CPA-treated AC and dgt fruits 

with respect to the mock, but no considerable differences in expression were observed in 4-CPA-

treated AC and dgt fruits (Fig. 5).  
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Discussion 

In tomato ovaries, full responsiveness to exogenous auxin depends on the activity of the cyclophilin 

DGT (Mignolli et al. 2012). However, when the synthetic auxin 4-CPA is applied in combination 

with GA3 to dgt ovaries, an increase in fruit growth was observed with respect to treatment with 4-

CPA or GA3 alone (Fig. 1A, B). We suggest that GA3 and 4-CPA may have an additive effect on 

the auxin signalling of fruits when the responsiveness to auxin treatment is hindered by the dgt 

mutation. In addition, 4-CPA+GA3-treated dgt fruits presented conspicuous placental tissue if 

compared to that obtained by single hormone application (Fig. 1A). According to Lemaire-Chamley 

et al. (2005), the formation of the locular tissue in tomato requires the transduction of auxin signal 

that coordinates the enlargement of locular cells. Likewise, in cucumber fruits, CsGID1a (a GA 

receptor) would act as regulator of auxin synthesis and transport during the development of 

placental tissue (Liu et al. 2016a). 

We also asked whether the lack of GA signal repression by PRO/DELLA dysfunction was able to 

rescue dgt responsiveness to exogenous auxin. For this purpose, we analysed the effect of 4-CPA in 

pro and in the double mutant dgt/pro. Mock-treated pro/dgt ovaries showed a certain level of 

spontaneous fruit growth, indicating that the dgt mutation does not block GA responses in fruits 

(Fig. 2A). Nevertheless, the presence of dgt seems to reduce the response to GAs (Fig. 1B) 

independently from DELLA protein (Fig 2B). Differently from 4-CPA-treated dgt fruits, 4-CPA-

treated dgt/pro fruits grew significantly more than mock-treated ones (Fig. 2A, B) and their locular 

cavities were filled with placental tissue (Fig. 2A). These data suggest that GAs could partially 

overcome the dgt restriction on fruit development, through the release of PRO/DELLA constraint 

(Murase et al. 2008). 

In order to determine whether PRO/DELLA integrates the DGT/Cyp1 route of auxin signal 

regulation, we analysed the expression levels of some auxin-related genes in 4-CPA-treated AC, 

dgt, pro and dgt/pro fruits (Fig. 3). In dgt/pro the expression levels of SlIAA2, SlIAA14 and SlARF9 

genes were higher than in dgt after 1, 4 and 8 days, and exhibited a similar expression pattern in the 

pro mutant (Fig. 3A, B and E). These genes have been previously reported to be up-regulated 

following pollination (Vriezen et al. 2008) or 2,4-D treatments (Serrani et al. 2008). SlARF9 has 

been reported to be a repressor of fruit growth and its up-regulation in growing fruits should be 

considered part of a negative feedback mechanism (de Jong et al. 2015). SlARF7 is a negative 

modulator of auxin and GA response (de Jong et al. 2011) whose transcription is positively 

regulated by SlDELLA (Carrera et al. 2012). Our data showed that spontaneous parthenocarpy is 

probably associated with down-regulation of SlARF7 in both mock-treated pro and dgt/pro but not 

in mock-treated AC or dgt (Fig. 3C), which suggests that the SlARF7 expression is controlled by 
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PRO/DELLA but probably not dependent on DGT/Cyp1. Although gene induction was similar in 

pro and dgt/pro fruits after auxin treatment, pro fruits grew significantly more than dgt/pro fruits, 

which could indicate that dgt may reduce GA response downstream of DELLA. Taken together, 

these data suggest that the regulation of SlIAA2, SlIAA14, SlARF9 and SlARF7 gene expression by 

PRO/DELLA prevails over DGT/Cyp1-dependent signalling, possibly acting as downstream 

regulator in the same pathway. Conversely, SlARF8, which negatively affects fruit development 

(Goetz et al. 2007), was up-regulated only in 4-CPA-treated dgt and dgt/pro fruits, indicating that 

DGT/Cyp1 may directly control this gene without the participation of PRO/DELLA.  

Following, we investigated whether GA3 is able to modulate auxin responsive gene expression 

bypassing dgt constraint. Surprisingly, SlIAA2 and SlIAA14 were more up-regulated in GA3- than in 

mock- and 4-CPA-treated dgt fruits (Fig. 4A and B). The fact that GA3 induced the expression of 

auxin signalling genes in dgt could mean that GA-modulated auxin response in fruits overrides the 

control imposed by DGT. Liu et al. (2016b) reported that several ARFs in the tomato pericarp are 

targeted by miRNAs in response to GA treatment when the auxin signal is blocked. These data 

strengthen the idea that genes shared by auxin and GA signalling allows one hormone to induce 

growth and development when the other one is absent or deficient (Björklund et al. 2007). A shared 

signalling pathway between auxin and GAs could contribute to finely tune plant responses to 

changing environments (Gallego-Bartolomé et al. 2011). 

The effect of auxin on raising GA biosynthesis in tomato fruits as well as in other species has been 

previously studied (Mariotti et al. 2011, Dorcey et al. 2009, Ozga et al. 2003). The content of GAs 

from the early 13-hydroxylation pathway, which is considered the most representative in tomato 

fruits (Fos et al. 2000), were lower in 4-CPA-treated dgt fruits (Table 1). In particular, levels of 

bioactive GA3 were significantly below those of AC. Although the content of active GA1 did not 

differ between AC and dgt, the lower amount of GA19, GA20 and GA8 in dgt suggests a reduced 

metabolic flux through GA1 in the mutant. Interestingly, analysis of GA metabolism genes showed 

that SlGA20ox1 transcripts were dramatically low in auxin-treated dgt fruits with respect to AC 

(Fig. 5). In tomato fruits, GA 20-oxidase activity is generally considered as a regulatory step for 

bioactive GAs production (Rebers et al. 1999, Olimpieri et al. 2007, Mariotti et al. 2011). It is then 

possible that higher induction of SlGA3ox1, which encodes the last step of active GA synthesis, in 

4-CPA-treated dgt fruits (Fig. 5) is the result of up-regulation imposed by the reduction of the GA 

20-oxidase activity. It is noteworthy that SlGA20ox1 expression is likely to be controlled by auxin 

and by its signalling components (Martí et al. 2010, Mignolli et al. 2015). This supports the 

hypothesis that auxin-induced GA biosynthesis is largely, yet not completely, regulated by 

DGT/Cyp1 through the action of SlGA20ox1. According to a widely accepted model, active GAs 
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induce a conformational change in the GA receptor (GID1) allowing GID1-DELLA molecular 

interaction. GA-GID1-DELLA complex stimulates the degradation of DELLAs and release, in this 

way, the repressive effect of these proteins on GA-regulated gene expression (Davièr and Achard 

2013). Transcription of SlDELLA was not affected in dgt ovaries (Fig. S2); therefore, DGT may 

indirectly control SlDELLA abundance by regulating GAs content which in turn would promote 

SlDELLA degradation (Fig. 6).  

It is worth to note, that pollinated dgt fruits accumulate more GAs (GA1 and GA3 early after 

pollination) (Fig. S3) than AC and the expression of main GA biosynthesis genes is similar 

(SlGA20ox1) or higher (SlGA3ox1) than AC (Fig. S4). This strengthens the idea that signals other 

than auxin could be responsible for GA metabolism activation in tomato and they are able to 

circumvent the block imposed by dgt. In this respect, relatively recent publications have shown that 

hormones such as ethylene and cytokinins are able to control GA metabolism on its own (Ding et al. 

2013, Shinozaki et al. 2015). 

In conclusion, the increase of auxin (e.g. mainly IAA) content, that derived from pollination 

(Mariotti et al. 2011), would prompt the transduction of auxin signal through DGT/Cyp1 which 

regulates the expression of some auxin signalling genes (Fig. 6). These, in turn, would induce the 

expression of GA biosynthesis genes (e.g. SlGA20ox1) leading to an accumulation of active GA 

(mainly GA1 and GA3). The increase in active GAs promotes GA-dependent PRO/DELLA 

proteasomal degradation. The loss of PRO/DELLA constraint, besides promoting GA- responsive 

genes, alters the expression of a subset of auxin signalling genes modulating, in this way, the 

DGT/Cyp1-dependent auxin regulated route and resulting in fruit growth. We also hypothesized 

that DGT/Cyp1 could affect the response to GA downstream DELLA protein. This model would 

also explain previous findings which showed that in presence of mutated dgt, auxin signal is only 

activated in pollinated fruits but not after exogenous auxin treatment (Mignolli et al. 2012). Based 

on those and on present results, we suggest that after pollination auxin-independent GA 

biosynthesis could also contribute to the auxin signal activation. 
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Supporting information 

Additional supporting information may be found in the online version of this article: 

Fig. S1: Phenotypical characteristics of the dgt/pro double mutant and its monogenic mutant parents 

dgt and pro. 

Fig. S2: Relative expression of SlDELLA in AC and dgt pre-anthesis ovaries. 

Fig. S3: Endogenous GA levels of in pollinated AC and dgt ovaries/fruits. 

Fig. S4: Relative expression levels of GA metabolism genes in AC and dgt pollinated ovaries/fruits. 

Table S1: Gene accessions and sequences of primers used for quantitative PCR analysis. 

 

Legends 

 

Fig. 1. Sections of AC and dgt fruits after 10 days from mock, 4-CPA, GA3 and 4-CPA+GA3 

treatment (A) Pt = placental tissue, P= pericarp. Bars indicate 2 mm. Fresh weights of 10 days old 

AC and dgt fruits after hormonal application (B). Values are the mean of 10-20 fruits ± SEM. 

Different letters indicate statistical differences between treatments within genotypes, ANOVA 

analysis of variance with Tuckey’s post-test (P < 0.05). Asterisks indicate statistical differences 

between genotypes within treatments (Student’s t-test). 

Fig. 2. Fruits of AC, dgt, pro, and dgt/pro after 30 days from mock and 4-CPA treatment (A), bars 

indicate 1 cm. Fresh weight of fruits after 30 days from mock and 4-CPA treatment (B). Values are 

the means of 10-20 fruits ± SEM. Different letters indicate statistical differences between genotypes 

within treatments, ANOVA analysis of variance with Tuckey’s post-test (P < 0.05). Asterisks 

indicate statistical differences between treatments within genotypes (Student’s t-test). 

Fig. 3. Relative expression levels of SlIAA2 (A), SlIAA14 (B), SlARF7 (C), SlARF8 (D) and SlARF9 

(E) in AC, dgt, pro and dgt/pro fruits at the moment of treatment (0) and after 1, 4 and 8 days from 

mock and 4-CPA application. For each gene, expression of AC ovaries at pre-anthesis stage (0) was 

set to one. Values are the means of 3 replicates ± SD.  
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Fig. 4. Relative expression of SlIAA2 (A), SlIAA14 (B), SlARF7 (C) and SlARF9 (D) in AC and dgt 

fruits at 0, 1, 4 and 10 days from mock (white circles), 4-CPA (black circles) and GA3 (grey circles) 

application. For each gene, expression of AC ovaries at pre-anthesis stage (0) was set to one. Each 

point represents means of 3 replicates ± SD. 

Fig. 5. Relative expression levels of GA biosynthesis (SlGA20ox1 and SlGA3ox1, A and B 

respectively) and catabolism (SlGA2ox2, C) genes in AC and dgt fruits, at 0, 1, 4 and 8 days after 

the treatment with mock and 4-CPA. Values are the means of 3 replicates ± SD.  

Fig. 6. Proposed model for auxin and GA crosstalk during tomato fruit development. The increase 

in auxin levels after pollination initiates the auxin signalling pathway via DGT/Cyp1, which results 

in the accumulation of active GAs and the consequent PRO/DELLA degradation. The removal of 

DELLA leads to GA response and a modulated auxin signalling, both of which induce fruit growth 

and development. The dashed line indicates a possible effect of DGT on GA responsive genes, 

whereas the dotted line indicates an alternative auxin signalling pathway not controlled by DGT. 
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Table 1. Endogenous levels of the main GAs from the early 13-hydroxylation pathway in mock- and 4-CPA-treated fruits. Analysis was performed 

in AC and dgt fruits after 10 days from the treatments. Values are the mean of 3 replicates ± SEM. *indicate significant differences (P < 0.05, 

Student’s t test) between AC and dgt for each GA within treatments. 

 

Treatment Genotype GA19 GA20 GA1 GA8 GA5 GA3 GA29 

Mock 

AC nd 3.75 ± 0.3 nd 5.69 ± 0.1 nd nd nd 

dgt nd 1.9 ± 0.2 nd 3.3± 0.1 nd nd nd 

4-CPA 

AC 12.2 ± 0.2 7.8 ± 0.3 1.9 ± 0.4 11.1 ± 0.1 0.6 ± 0.1 9.9 ± 0.6 4.5 ± 0.7 

dgt 6.4 ± 0.1* 2.7 ± 0.1* 1.1 ± 0.1 4.3 ± 0.1* nd 4.5 ± 0.3* 2.7 ± 0.2* 
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