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ABSTRACT 
 

The photophysical behavior of two xanthene dyes, Eosin Y and Phloxine B, included in 

microcrystalline cellulose particles is studied in a wide concentration range, with emphasis on 

the effect of dye concentration on fluorescence and triplet quantum yields. Absolute 

fluorescence quantum yields in the solid-state were determined by means of diffuse 

reflectance and steady-state fluorescence measurements, whereas absolute triplet quantum 

yields were obtained by laser-induced optoacoustic spectroscopy and their dependence on 

dye concentration was confirmed by diffuse reflectance laser flash photolysis and time-

resolved phosphorescence measurements. When both quantum yields are corrected for 

reabsorption and reemission of radiation, ΦF values decrease strongly on increasing dye 

concentration, while a less pronounced decay is observed for ΦT. Fluorescence concentration 

quenching is attributed to the formation of dye aggregates or virtual traps resulting from 

molecular crowding. Dimeric traps are however able to generate triplet states. A mechanism 

based on the intermediacy of charge-transfer states is proposed and discussed. Calculation of 

parameters for photoinduced electron transfer between dye molecules within the traps 

evidences the feasibility of the proposed mechanism. Results demonstrate that photoactive 

energy traps, capable of yielding dye triplet states, can be formed even in highly-concentrated 

systems with random dye distributions. 
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INTRODUCTION 
 

Results concerning the formulation of photoactive materials obtained by our research group during 

the last years show that concentration quenching (CQ) precludes the achievement of efficient 

materials at not quite high dye concentrations. In particular, for xanthenes and similar dyes, we 

demonstrated that, even in the absence of spectroscopically detectable aggregation, dye pairs with 

molecules separated by less than 1.5 nm behave as virtual traps for the excitation energy (1). 

Beddard and Porter concluded long ago that, to prevent trap formation by orbital overlap, the 

minimum distance between chlorophyll molecules should be 1 nm when averaged over all 

orientations at random (2). Thus, even if interactions do not lead to the formation of stable ground 

state dimers, when dyes are distributed at random over a solid volume, their effective concentration 

should be lower than 5 mM for CQ to be ineffective (3,4). In the recent literature, this effect is 

usually referred to as aggregation-caused quenching (ACQ) but it is preferable to preserve this 

terminology to the cases in which stable ground state aggregates are formed. 

The effect of concentration on the photophysical properties of dyes has been addressed in the 

fifties (5-6) but it attracted recently renewed attention, leading to the discovery of effects which, in 

contrast to CQ, favor emission at high concentrations. Among them aggregation induced emission 

(AIE) or aggregation induced emission enhancement (AIEE) (7), crystallization induced emission (CIE) 

or crystallization induced emission enhancement (CIEE) (8), and related phenomena (9) can be cited. 

Even, aggregation induced intersystem crossing (AI-ISC) arising from matching of singlet and triplet 

energies on aggregation has been reported (10). 

Conventional dyes like xanthenes, prototypical molecules showing CQ, undergo π-π stacking both 

in solution of poor solvents and in the solid state. Other molecules, generally showing crowded 

phenyl substitution like tetraphenylethylene, suffer from rapid internal conversion owing to coupling 

of the electronic wave function to phenyl twisting or internal rotation, which is hindered upon 

aggregation, in the solid state or through binding to other molecules, leading to AIE (11). We 
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demonstrated that a fluorescein derivative, the neutral form of 9-[1-(2-Methyl-4-methoxyphenyl)]-6-

hydroxy-3H-xanthen-3-one, enhances its fluorescence quantum yield, ΦF = 0.01 in water, nearly 30 

times when included into microcrystalline cellulose (12). Immobilization of the phenyl group of the 

dye may be responsible for this behavior, though inhibition of intramolecular charge transfer leading 

to de-excitation cannot be ruled out in this case owing to the low polarity of cellulose. Applications 

like optoelectronics, chemosensing and biological probes would benefit from the above-mentioned 

fluorescence enhancing effects. 

Charge transfer cannot be excluded at short distances between chemically linked species or 

independent molecules brought together at high concentrations. Under appropriate conditions, 

geminate radical anion − radical cation recombination may lead to the formation of dye triplet 

states, as it has been found in the reaction center of photosystem II. The 1(P680+Ph−) (Ph: 

pheophytin) radical pair formed by excitation of P680 and subsequent electron transfer to Ph reverts 

to 3(P680+Ph−), decaying finally to the P680 triplet state. Energy transfer from the triplet radical pair 

to molecular oxygen has been recognized as an important source of 1O2 in photosynthesis (13). The 

same mechanism has been also reported in solution involving different moieties of the same 

molecule (14) and under aggregation of different dyes (15). In the context of photovoltaic materials 

this reaction pathway represents an important channel leading to efficiency loss and efforts have 

been made in order to suppress it (16, 17). 

Previous studies were carried out by us on the photophysics of two xanthene dyes, Eosin Y (EoY) 

(18) and Phloxine B (PhB) (19) included into microcrystalline cellulose particles (see structures in 

Scheme I). The concentration dependence of their absorption and fluorescence spectra was studied, 

their aggregation tendency was analyzed and the decay of singlet and triplet states was investigated. 

It is worth noting that in this matrix the dyes are protected from quenching by molecular oxygen due 

to the highly reduced mobility of this species in dry cellulose (20), allowing the study of triplet states 

without the need of degassing. In the present work, we present a natural continuation of those 

studies, focusing on the effect of dye concentration on fluorescence and triplet quantum yields.  We 
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apply a battery of complementary techniques and show that generation of triplet states due to 

charge recombination is possible at concentrations at which CQ prevents fluorescent emission. We 

also explain the reasons for this behavior. This finding is relevant if photosensitization reactions 

involving the triplet state are the target objective. 

 

MATERIALS AND METHODS 
 

Materials and sample preparation. EoY disodium salt (90%), PhB (89%), and Brilliant Blue 

G (BBG, pure), used as calorimetric reference for laser-induced optoacoustic spectroscopy 

(LIOAS) measurements, were purchased from Sigma-Aldrich and used without further 

purification. Dye purity was checked spectroscopically. Ethanol (Cicarelli, ACS grade) and 

microcrystalline cellulose powder (Aldrich, pH 5-7, average particle size 20 μm) were also 

used as received. 

Dyed-cellulose samples were prepared by suspending weighed amounts of cellulose (1.5 g, 

previously dried under vacuum at 40 °C during 48 h) in dye stock solutions (30 cm3) in ethanol. The 

suspensions were shaken for 5 minutes, the solvent evaporated at low pressure in a rotavap at 40°C, 

adjusting vacuum to attain total solvent evaporation in ca. 15 minutes, and the solids were dried in a 

vacuum at 40°C for 48 h and maintained in the dark. Samples spanned two orders of magnitude in 

dye concentration, from ca. 0.04 to 5 μmol dye/g microcrystalline cellulose. All measurements were 

performed at room temperature on optically thick and thin layers of particles. A layer depth of 0.2 

cm ensures optical thickness (no light transmission). Optically thick layers were prepared by packing 

the samples into a suitable holder with a Plexiglas stab, releasing pressure before measurements. 

Thin layers were prepared by spreading a small amount of the sample on a double-sided sticky tape 

fixed to a glass support. 
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Reflectance and emission measurements. Total and diffuse reflectance spectra of optically thick solid 

layers were measured in a Shimadzu UV-3600 scanning spectrophotometer equipped with an 

integrating sphere, using barium sulfate as the 100% reflectance reference. As samples are in 

general highly fluorescent, reflectance spectra are strongly distorted. Therefore, the procedure 

reported in ref. (21) was used. Accordingly, reflectance spectra were obtained with and without a 

suitable optical filter, BG38 (Schott, 0.2 cm thickness), placed before the detector located below the 

integrating sphere, capable of absorbing a substantial fraction of the fluorescence. This procedure 

allows the absolute determination of observed fluorescence quantum yields (ФF,obs) together with 

true reflectance spectra. These quantum yields are affected by reabsorption and reemission of 

fluorescence (see below). Remission function spectra were calculated from true diffuse reflectances, 

R, as F(R) = (1 – R)2 ⁄ 2R (22). 

Steady-state emission spectra (λexc. = 500-505 nm) of optically thick layers were recorded on a PTI 

model QM-4 spectrofluorometer. Measurements were performed in front face, placing an optical 

filter, OG530 (Schott, 0.2 cm thickness), in front of the emission monochromator to block excitation 

light. All spectra were corrected according to the dependence of the detection channel responsivity 

on wavelength (obtained from the manufacturer and checked in our laboratory) and considering 

filter transmittance. Emission spectra of optically thick layers show distortions due to fluorescence 

reabsorption and reemission. To obtain fluorescence spectra devoid of these effects, front face 

emission measurements were also performed on thin layers of particles. For that sake, a small 

amount of the solid was spread on a sticky-tape and the excess of material was scraped until a 

constant shape in the emission spectra was attained. 

LIOAS measurement of triplet quantum yields. To determine observed triplet quantum yields (ФT,obs), 

LIOAS measurements were performed on optically thick layers containing the dyes under study and 

compared with those on BBG, used as a calorimetric reference, included in microcrystalline cellulose 

at different concentrations (23). To ensure reproducibility, optically thick layers were prepared in 

this case loading a specially designed aluminum holder with 60 mg of dry solid, pressing with 25.5 
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bar for 120 s and allowing relaxation in a desiccator at atmospheric pressure for 24 h. This procedure 

renders a probe with a diameter of 1 cm and a thickness of 0.2 cm. The LIOAS setup used was 

described in detail elsewhere (24). The probe was excited from above with a pulsed Nd-YAG laser 

(Spectron, 8 ns @ 532 nm). A set of three IR filters (Schott KG5, 0.2 cm thickness) was used to avoid 

unwanted heating and spurious LIOAS signals, whereas a gray wedge filter was used to obtain 

variable excitation energies from 30 to 130 μJ. Using the protocol described in the previous 

reference, LIOAS signals are reproducible within ±10%. The energy of the laser pulse exciting the 

sample was measured using a Lab Master (Coherent, Ultima, Mod LM-P2) energy meter. Observed 

triplet quantum yields are affected by reabsorption and reemission of fluorescence, similar to ФF,obs. 

This point will be addressed later. 

Diffuse reflectance laser flash-photolysis (DRLFP) and laser-induced luminescence (LIL). These 

experiments were performed using the same laser employed for LIOAS measurements in order to 

obtain independent, although relative, measurements of observed triplet quantum yields, ФT,obs. 

Optically thick layers were placed in a diffuse reflectance accessory inside a LP920 laser flash 

photolysis compartment (Edinburgh Instruments). Phosphorescence was detected by LIL 

measurements. For DRLFP measurements, a horizontally driven Xe lamp (Osram XBO 150 W/1 OFR) 

produced the analysis beam. Phosphorescence (LIL) or diffusely reflected light (DRLFP) were focused 

onto the slit of a computer controlled high throughput 1/4 m f/2.5 monochromator (Sciencetech 

9055F) with dual 1200 l/mm diffraction gratings blazed at 450 and 700 nm. The output beam was 

detected on a PMT (Hamamatsu R929). According to ref. 25, for small reflectance changes the 

number of triplet molecules detected by DRLFP is proportional to R0 / [R0 – R(t)], where R0 is the 

reflectance before the laser pulse and R(t) is the reflectance at time t after the pulse. Reflectances 

are proportional to the voltage across the PMT anode. 

Cut-off filters were placed in DRLFP measurements in front of the sample to block wavelengths of 

the analysis beam below 400 nm to avoid sample degradation and, in both kinds of measurements, 

between the sample and the detector to block reflected laser light. Before exciting the samples, the 
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laser beam was passed through different filters and solutions of BBG in ethanol in order to obtain 

the desired excitation energies, in the range from 2 to 400 μJ for DRLFP and from 5 to 50 μJ for LIL 

experiments. The excitation energy was measured with the same energy meter as before. The laser 

fluence at the sample surface was calculated considering a spot area of 0.14 cm2. The DRLFP or LIL 

signals extrapolated to t = 0 were plotted as a function of the laser energy and the slope at the origin 

was calculated. The ratio of this value to the fraction of absorbed excitation light is proportional to 

ΦT,obs, Only relative triplet quantum yields are obtained as the proportionality constant is unknown. 

For principles and details see ref. 26. The setup allows the detection of triplet-triplet absorption 

between 600 and 700 nm and phosphorescence between 650 and 750 nm. The sharp decrease of 

the PMT responsivity at longer wavelengths prevented full spectral characterization. Furthermore, 

analysis wavelengths for studying the corresponding signals as a function of the laser energy were 

selected considering the compromise between signal-to-noise ratio, interference of the laser beam 

and sample degradation. In all cases, 64 traces were averaged. The possibility of a small contribution 

of phosphorescence to the DRLFP signal was taken into account (see below). 

Correction of quantum yields for reabsorption and reemission. The determination of quantum yields 

described so far involves the quotient between the number of photons emerging (fluorescence) or 

triplet molecules formed and the number of photons absorbed by the sample, i.e., a technical or 

experimentally observed quantity (ΦF,obs or ΦT,obs). Fluorescence reabsorption and reemission, 

particularly relevant at high dye concentrations for overlapping absorption and emission spectra, 

generally obscures the evaluation of other CQ mechanisms. In the case of fluorescence, reabsorption 

and reemission cause distortions in emission spectra and reduces the total emission intensity 

emerging from the sample, thus leading to lower fluorescence quantum yields. On the other hand, 

reabsorption injects fluorescence back into the system, favoring the population of triplet states, and 

therefore, increasing ΦT,obs. Correction of quantum yields by reabsorption and reemission is 

therefore mandatory to evaluate the effects of dye concentration. 
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As reported in refs. 27 and 28, corrected fluorescence quantum yields, ΦF, can be calculated as: 

αΦα
Φ

Φ
PP obsF,0

obsF,
F )1( +−

=  (1) 

where α0 is the fraction of the excitation light absorbed by the dye, and P and Pα are the probabilities 

of fluorescence reabsorption by all the constituents in the sample and the dye, respectively (Pα = P if 

the dye is the only absorber). These parameters can be calculated from reflectance and emission 

data, considering any residual absorption by cellulose. Following similar arguments as used for the 

derivation of Eq. 1, corrected triplet quantum yields, ΦT, can be calculated as: 

( )
0

FobsT,
T

1

α
ΦΦ

Φ αP−
=  (2) 

The essentials of the correction methods and their applicability to light scattering solid samples, such 

as dyed cellulose, were reviewed elsewhere (29). 

 

Results and Discussion 

 

Remission function and fluorescence spectra of optically thick layers are shown for selected samples 

in Figure 1. The complete set of spectra, with the exception of remission function spectra for the 

most dilute samples, which are too noisy, are given in the Supporting Information (Figures S1a and 

S1b). Remission functions were calculated from true – corrected for fluorescence – diffuse 

reflectances (see Materials and Methods). Absorption maxima were located at (531 ± 2) and (548 ± 

1) nm for EoY and PhB, respectively. Within experimental error, very small changes in spectral shape 

and linearity of F(R) with dye concentration were observed for EoY in the whole concentration 

range, whereas noticeable changes in the ratio of band maxima and marked hypochromism (see 

Figure S2 in the SI) are observed for the most concentrated PhB samples. These spectral changes 

point to PhB dye-to-dye interactions in the ground state caused by molecular crowding at the 

highest concentrations, whereas interactions are much weaker for EoY. In a previous work (19), 
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similar spectral changes on increasing dye concentration were found for PhB included in 

microcrystalline cellulose, but no hypochromism was found in that case in a similar concentration 

range. The difference can be ascribed to the sample preparation procedure, particularly in the 

solvent evaporation step (see Materials and Methods). Whereas in the mentioned work the samples 

were dried overnight (at least 24 h) by slow evaporation, in the present case a rapid evaporation of 

the solvent (ca. 15 min) in a rotavap system was used. Considering that the swelling of cellulose in 

the solvent (ethanol) depends on time, a rapid evaporation precludes deep penetration of the dye, 

leading to dye molecular crowding at the surface of cellulose. 

 

 

Fluorescence spectra of EoY and PhB at the lowest concentration show maxima at (559 ± 1) and 

(576 ± 1) nm, respectively. Accordingly, both dyes show similar Stokes shifts of around 28 nm (i.e. 

943 cm−1 for EoY and 887 cm−1 for PhB). A pronounced shoulder is observed for PhB. Spectra show 

marked changes with concentration, which are compatible with fluorescence reabsorption: red shift 

(both dyes) and growing of the shoulder relative to the main maximum (for PhB) on increasing 

concentration. 

Normalized fluorescence spectra of thin layers of particles are shown in the SI (Figures S3a and 

S3b). For both dyes, below ca. 2 μmol g-1 thin layer spectra are coincident with thick layer spectra 

corrected by reabsorption. See for example Figure S4 in the SI. Even at concentrations for which 

reabsorption is negligible, red shifts still persist on increasing dye concentration. Concentration-

dependent Stokes shifts, found generally in dyed materials at high concentrations, are attributed to 

long-range interactions (at distances higher than 10 nm) between excited dye molecules and 

neighboring molecules in the ground state (29). At the highest concentrations, spectra are still 

affected by reabsorption, though to a lesser extent than for thick layers. 
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In summary, for EoY remission functions at maximum are proportional to the concentration of the 

dye and only light changes in the shoulder at lower wavelengths are observed at the highest 

concentrations, pointing to very small ground-state interactions in the whole concentration range. 

The tendency to form aggregates is somewhat higher for PhB. Aside from variable Stokes shifts 

leading to the displacement of fluorescence maxima to the red as concentration increases, both dyes 

show similar fluorescence spectra at all concentrations. In other words, no distinct fluorescence 

features are observed at the highest concentrations. Absorption and corrected fluorescence spectra 

for both dyes in cellulose, aside from a small red-shift, resemble those of the dianionic form of the 

dyes in basic ethanol (3, 30). 

Absolute fluorescence quantum yields were obtained from reflectance spectra (see Materials and 

Methods). ΦF,obs and ΦF values found for EoY and PhB are quoted in the SI (Table S2). As ΦF is lower 

than one, fluorescence reemitted in successive reabsorption-reemission steps does not compensate 

the loss produced by radiationless decay. As a consequence, ΦF,obs decreases with concentration. On 

correction for reabsorption and reemission, an increase up to 35 % for EoY and 30 % for PhB is 

obtained at the highest concentrations but a strong decrease persists. The correction is obtained 

using Eq. 1, whose relevant parameters can be calculated from absorption and emission spectra. 

Values corrected for reabsorption and reemission are shown in Figure 2 for both dyes as a function 

of dye concentration. Results may be fitted by a simple exponential, ΦF = ΦF0 exp(−[dye]/c), where 

ΦF0 is the quantum yield at [dye] = 0. This function, though not bearing any physical meaning, allows 

extrapolation at infinite dilution and an empirical characterization of the fall off region. Parameters 

found are ΦF0 = 0.70 and c = 1.43 μmol g−1 for EoY and ΦF0 = 0.82 and c = 1.05 μmol g−1 for PhB. The 

values of ΦF found in basic ethanol, where the dyes remain dianionic, are 0.68 for EoY (30) and 0.76 

for PhB (3). For xanthene dyes, ΦF values expected in cellulose have to be somewhat larger than 

those found in alcohols (23). Therefore, the experimental values found for ΦF0 seem to be 

reasonable. The method used to obtain fluorescence quantum yields from reflectance spectra yields 

ΦF,obs and ΦF as a function of the excitation wavelength. Error bars quoted in Figure 2 correspond to 
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twice the standard deviation in the excitation interval 500-540 nm for EoY and 535-555 nm for PhB. 

The remaining decrease has to be attributed to mechanisms other than reabsorption and 

reemission, namely static quenching due to the absorption of aggregates or virtual traps and to 

dynamic quenching produced by excitation energy migration to those entities (29). 

 

Absolute triplet quantum yields obtained by LIOAS, ΦT,obs, are given in the SI (Table S3) for both 

dyes as a function of dye concentration together with values corrected by reabsorption of 

fluorescence using Eq. 2, ΦT. As expected from Eq. 2, ΦT is lower than ΦT,obs. The difference is greater 

at the lowest concentrations and its absolute value seldom exceeds 20 %, vanishing at the highest 

concentrations. ΦT values are also displayed in Figure 3 together with those obtained by DRLFP and 

LIL, scaled to match values obtained by LIOAS. Before discussing the observed trends, DRLFP and LIL 

measurements will be addressed. 

 

Figure 4 shows the DRLFP signals obtained for EoY (upper panel) and PhB (lower panel). For both 

dyes, decays are independent of dye concentration. DRLFP and LIL signals are compared in the 

corresponding figure insets. The coincidence between DRLFP and LIL decays demonstrates that the 

species followed by DRLFP is effectively the triplet state for both dyes. In the case of EoY, both 

signals are analyzed at the same wavelength (680 nm) and, therefore, the DRLFP signal may be 

contaminated with some phosphorescence. However, this fact does not constitute any error source 

as both signals decay in the same way. On the contrary, for PhB phosphorescence is negligible at the 

analysis wavelength of DRLFP (610 nm). 

 

The average of DRLFP and LIL signals normalized to unity at t = 0 can be fitted for EoY by a 

triexponential function: Signal = 0.08 exp(−t/0.30 ms) + 0.43 exp(−t/1.62 ms) + 0.49 exp(−t/3.80 ms). 

A more detailed study on the triplet decay was performed earlier (18), reporting a bimodal lifetime 

distribution with maxima peaking at ca. 0.75 and 3.00 ms. Similar results were obtained for PhB (see 
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Figure 4, lower panel), with average DRLFP and LIL signals fitted also by a triexponential function: 

Signal = 0.19 exp(−t/0.25 ms) + 0.71 exp(−t/1.52 ms) + 0.10 exp(−t/3.70 ms). A bimodal triplet 

lifetime distribution with maxima peaking at ca. 0.5 and 1.8 ms was reported earlier for PhB included 

in microcrystalline cellulose (19). In both cases, the complex behavior of triplet decays was 

attributed to dye triplets sensing two different environments of cellulose, i.e., crystalline and 

amorphous. These facts demonstrate that triexponential decays are only an approximation for a 

more complex situation. 

The DRLFP signals extrapolated to t = 0 were plotted as a function of the laser pulse energy (as an 

example see Figure S5 in the SI). Relative ΦT,obs were calculated from the slope at the origin of these 

plots divided by the fraction of excitation light absorbed by the sample (see Materials and Methods). 

LIL signals could be measured accurately at lower laser pulse energies (< 50 μJ) and the slope at the 

origin was calculated from linear fittings. DRLFP measurements were noisier, and the number of 

points in the low-energy linear regime scarce, so that slopes were calculated using the fitting 

hyperbolic equation: signal(t = 0) = aE/(b + E) + cE, where E is the laser pulse energy. This fitting 

equation has no physical meaning; however, it was demonstrated in a previous work that it is a good 

extrapolation function (26). 

Relative triplet quantum yields obtained from DRLFP and LIL measurements follow the same trend 

on increasing dye concentration, within the experimental error, compared with the absolute triplet 

quantum yields obtained from LIOAS (see Figure 3). This fact demonstrates that LIOAS signals arise in 

fact from the triplet state and confirms the concentration dependence found for ΦT. 

The trends in ΦF and ΦT with dye concentration are compared in Figure 5. The decrease of ΦF with 

concentration is steeper than the decrease of ΦT, being the difference more evident for PhB. Energy 

traps (dye aggregates and/or virtual statistical traps), which are responsible for fluorescence CQ, are 

at the same time an unexpected source of triplet states. This behavior will be explained in what 

follows. 
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Fluorescence quenching on aggregation followed by triplet formation may be evaluated 

considering the exciton theory (31). In the strong coupling limit, exciton splitting in H-type 

aggregates leaves an optically allowed upper singlet excited state and a forbidden lower one. After 

excitation to the upper exciton state, rapid internal conversion takes place to the lower exciton 

state, thus preventing aggregate fluorescence. If the latter state is higher in energy than the triplet 

state of the dye, then triplet formation would be a possible deactivation pathway, favored by a 

reduction in the singlet-triplet energy gap. However, absorption spectroscopic results are consistent 

with weak or intermediate coupling, as slight spectral changes are observed for EoY on increasing 

concentration, while only small changes in band ratio and hypochromism are observed for PhB (32). 

As more significant spectroscopic changes would be expected in the case of strong coupling, 

particularly blue-shifts for H-type aggregates, exciton theory is not able to explain the observed 

behavior. 

In a previous work on PhB included into microcrystalline cellulose (19), negligible changes in 

fluorescence lifetimes were observed on increasing dye concentration. An explanation of 

fluorescence quenching with triplet formation in the traps as a result of relative changes in radiative 

and non-radiative deactivation rate constants is not plausible because, in that case, changes in 

fluorescence lifetimes would have been expected on increasing dye concentration. Thus, it is 

reasonable to consider the presence of a new non-fluorescent excited state in the traps, populated 

via a very efficient pathway from the singlet excited state, capable of yielding the triplet state at the 

expense of fluorescence and eventually internal conversion. 

As mentioned in the Introduction, under appropriate conditions triplet formation may result from 

charge recombination of geminate radical anion – radical cation pairs formed via electron transfer 

from close lying excited molecules. The short distances in molecular aggregates or virtual traps favor 

electron transfer, insofar the energy of the charge-transfer (CT) state lies below the energy of the 

dye pair excited singlet. Thus, a radical pair recombination mechanism involving charge transfer 
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quenching of the singlet state by neighboring dye molecules with subsequent spin flip may account 

for the observed behavior. A similar mechanism explains the formation of the P680 triplet state in 

the reaction center of PSII (13). The CT state should be more energetic than the dye pair triplet state. 

The postulated mechanism is shown in Scheme II.  

 

<Scheme II. Proposed mechanism of triplet formation in dimeric traps (M: monomer)> 

 

The singlet excited state of the pair 1(M−M)*, produced by direct light absorption or energy 

transfer from dye monomers, undergoes rapid charge transfer with the formation of a radical anion 

– radical cation pair in the singlet state 1(M+−M–). Spin-orbit coupling leads to the triplet state 

3(M+−M–). The energy of the singlet and triplet radical ion pairs may be similar due to negligible spin 

correlation. As an example, according to experimental results and calculations in electron donor (D) 

– bridge – acceptor (A) dyads, at D-A separations between 1 to 1.5 nm, this energy gap is in the 

order of a few cm-1 and a rapid interconversion between 1(M+−M–) and 3(M+−M–) is expected (33). 

Charge recombination in 3(M+−M–) leads to the pair triplet state 3(M−M)* under appropriate 

energetic conditions. Additionally, 3(M−M)* may be formed directly from 1(M−M)* (regular triplet 

state formation, see Scheme II). As excitonic interactions depend on the square of the transition 

moment, negligible for triplet dye pairs, the pair behaves as an isolated, monomeric triplet, decaying 

therefore with the same lifetime as 3M. 

To test the feasibility of the CT-assisted mechanism, the energetics of the dye radical ion pair is 

considered through the estimation of the standard Gibbs energy of photoinduced electron transfer 

(34): 

[ ]{ } 0,0CT0,0
000

ET ΔΔ)DA()AD()A/A()D/D(  Δ EEEwwEEeNG A −=−−+−= •−•+•−•+  (3) 

where e is the elementary charge, NA is the Avogadro constant, E0(D+●/D) and E0(A/A–●) are the redox 

potentials of the dye acting as electron donor and acceptor, respectively (both relative to the same 

reference electrode), ΔE0,0 is the vibrational zero electronic energy of the excited dye, and w(D+● A–●) 
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and w(DA) are electrostatic work terms, calculated as: 

)   4( )A( )D()DA(

)   4( )A( )D()AD(

r0
2

r0
2

aezzw

aezzw

εεπ
εεπ

=

= •−•+•−•+

 (4) 

where z(X) is the charge of species X, a is the distance between dyes within the pair, ε0 is the vacuum 

permittivity and εr is the relative medium static permittivity. From Eq. 3 the energy of the radical 

ionic pair, ECT, is calculated. Relevant parameters and estimations are shown in Table 1. ΔE0,0 was 

estimated by computing the lowest excited singlet energies (ES) from the cross point of normalized 

absorption and emission spectra, thus disregarding any entropic contribution (35). The triplet 

energies (ET) were estimated from phosphorescence maxima reported in cellulose (18,19). The value 

of εr for cellulose was approximated as that in methanol. 

 

 

Photoinduced electron transfer within close-lying dye molecules is a thermodynamically allowed 

process for both EoY and PhB, assuming redox potentials for RB apply to PhB (see Table 1). In both 

cases the energy of the charge transfer state lies above the energy of the dye triplet state (ET), 

fulfilling the energetic conditions for CT-assisted triplet formation. Photoinduced electron transfer 

could be a very fast process (sub-nanosecond time scale) at the molecular distances within an 

aggregate or virtual trap (< 1.5 nm), competitive with or even faster than fluorescence decays in the 

ns range, thus resulting in fluorescence quenching (39,40). The energy gap estimated between 

1(M−M)* and 1(M+−M–) is ca. 0.5 eV for both dyes. Typical total reorganization energies for 

molecular dyads in organic solvents, comprising molecules with π-extended systems such as 

porphyrins, are about 1 eV (41,42). Similar values were obtained for charge transfer reactions in 

proteins (43), whereas smaller values were reported for fullerene-containing dyads (44). According 

to the estimated driving force, in our case charge separation is expected to be in the normal Marcus 

region and probably not so far from the optimal conditions, thus leading to fast singlet state 

deactivation (45). Charge recombination to the ground state is expected to be in the sub-μs time 
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scale due to the large value of ECT ca. 1.8 eV, being most probably in the inverted Marcus region (46). 

On the other hand, the energy gap for charge recombination in the triplet state is estimated as 0.04 

eV for EoY and 0.15 eV for PhB (see Table 1), which lies in the normal Marcus region but far from the 

optimal conditions. Thus, triplet formation by traps would result from the competition between the 

different charge-recombination pathways of the intermediate CT state. Back electron transfer from 

the triplet to the CT state is probably precluded by a kinetic barrier, as no changes in triplet lifetimes 

were observed on increasing concentration for both dyes. These arguments demonstrate the 

feasibility of the proposed mechanism. Aside from the example in photosynthesis mentioned above, 

similar mechanisms have also been proposed for several molecular dyads (15,33,44,47,48) and even 

for conjugated polymer aggregates (49). 

According to Scheme II and neglecting charge recombination to the ground state, the fluorescence 

and triplet state quantum yields for dimeric traps can be expressed as: 

CTISCICF

F
Fd kkkk

k

+++
=Φ           (5) 

CTISCICF

CTISC
Td kkkk

kk

+++
+

=Φ           (6) 

where kF and kIC have the usual meaning, kISC is the rate constant for regular triplet state formation, 

and kCT is the overall rate constant for CT-assisted triplet state formation. It is clear from Eqs. (5) and 

(6) that, assuming that kF, kIC and kISC are the same for dye monomers and dimeric traps, ΦF will be 

lower and ΦT will be higher as the concentration of traps increases. However, our experience 

involving different dyes in various solid environments shows that, as dye concentration further 

increases, oligomeric traps are formed, leading finally to extinction of fluorescence and triplet 

formation. 

Triplet formation by dye aggregates was previously suggested for RB included in microcrystalline 

cellulose (26) and confirmed for the same dye included in poly(2-hydroxyethyl methacrylate) 

(pHEMA) thin films (4). In both cases, fluorescent dimers capable of rendering triplet states were 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

observed, whereas higher-order aggregates were dark and photochemically inactive. Fluorescence 

and triplet (or singlet oxygen) quantum yields followed similar trends on increasing dye 

concentration, with a slightly different ratio between fluorescence and singlet oxygen quantum 

yields for monomers and dimers. Fluorescent dimers were also observed earlier for RB included in 

cellulose (28). However, in spite of these results, a situation similar to that shown in Fig. 5 was never 

observed for RB, though estimations in Table 1 predicts CT-assisted triplet state formation also in 

this case. A possible explanation is as follows. The presence of iodine in the RB structure is 

responsible for a high ΦT value, leading to low fluorescence quantum yields – ΦF = 0.09 in methanol 

(36), 0.018 in water (50), 0.12 in cellulose (28) and 0.05 in pHEMA (4) – and short fluorescence 

lifetimes – τF = 0.6 ns in methanol and 0.095 ns in water (36, 50) –. Therefore, it is expected that kCT 

has a low weight in Eqs. (5) and (6). If this is the case, ΦF / ΦT ≈ kF / kISC would be similar for 

monomers and dimeric traps. Fluorescence lifetimes in ethanol are substantially longer for EoY, 3.47 

ns (30), and PhB, 3.65 ns (51), therefore allowing fluorescence quenching by charge transfer. 

According to the proposed mechanism, the photophysics of dye traps depends on the energy of 

the CT intermediate state and the fluorescence lifetime. The energy depends in turn on the 

environment (mainly through the medium permittivity). Thus, changes in the supporting material 

may have strong influence on the photophysical behavior. Recently, we studied the photophysics of 

PhB included in pHEMA thin films as a function of dye concentration (3). Fluorescence and singlet 

oxygen quantum yields follow the same trend on increasing dye concentration. This behavior 

contrasts with the evidence found in cellulose. If the same mechanism is still operative, the change 

in molecular environment may be responsible for charge-transfer state stabilization below the triplet 

level, thus precluding triplet formation by PhB traps in pHEMA. On the contrary, changes in the 

molecular environment are not expected to have major influence on RB dimeric traps because, as 

mentioned earlier, the CT-assisted mechanism should not be relevant as a deactivation pathway in 

this case, irrespective of the supporting material (cellulose or pHEMA). 
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Conclusions  

Interactions resulting from molecular crowding at high concentrations lead generally to energy 

trapping, this being one of the main factors in lowering the efficiency of heterogeneous 

photosensitizers. The formation of dye aggregates or virtual traps is responsible for fluorescence 

quenching. In this work we demonstrate that energy traps may lead to the formation of dye triplet 

states at concentrations at which fluorescence is already almost extinguished. A mechanism 

including the intermediacy of CT states within the trap is proposed and calculations demonstrate its 

feasibility. The capability of traps to produce triplet states results from the balance between the 

energies of the excited states and the intermediate CT states, which strongly depends on molecular 

structure, intermolecular distances and the environment. On the other hand, the formation of 

spectroscopically evidenced ground-state molecular aggregates (dimers and/or oligomers) may open 

new non-radiative deactivation pathways competing with charge transfer or intersystem crossing, 

leading to the formation of inactive traps. The control over the deactivation pathways that regulate 

the photophysical behavior of dye aggregates requires tuning redox potentials, intermolecular 

distances and eventually orientations within the aggregates. The present work demonstrates that 

photoactive energy traps, capable of producing triplet states of the dye, can be formed even in 

highly-concentrated systems with dyes distributed at random. This may configure a strategy to 

surpass limitations posed by concentration quenching in various applications, including 

photosensitization and photocatalysis. 
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Supporting Information  

Additional Supporting Information may be found in the online version of this article:  

Table S1. Sample concentrations (μmol g−1) and sample color convention. 

Figure S1. (a) Normalized remission function ([dye] > 0.1 μmol g-1) and fluorescence (all, 

λex = 505 nm) spectra of optically thick layers of EoY. Arrows indicate increasing concentrations. Data 

was adapted from [Rodríguez, H. B., E. San Román, P. Duarte, I. Ferreira Machado, and L. F. Vieira 

Ferreira (2012) Eosin Y triplet state as a probe of spatial heterogeneity in microcrystalline cellulose. 

Photochem. Photobiol. 88, 831-839]. (b) Normalized remission function ([dye] > 0.1 μmol g-1) and 

fluorescence (all, λex = 500 nm) spectra of optically thick layers of PhB. Arrows indicate increasing 

concentrations. 

Figure S2. Remission function at maximum for PhB as a function of dye concentration. 

Figure S3 (a) Normalized fluorescence spectra of thin layers of EoY (all, λex = 505 nm). Arrows 

indicate increasing concentrations. Data was adapted from [Rodríguez, H. B., E. San Román, P. 

Duarte, I. Ferreira Machado, and L. F. Vieira Ferreira (2012) Eosin Y triplet state as a probe of spatial 

heterogeneity in microcrystalline cellulose. Photochem. Photobiol. 88, 831-839]. (b) Normalized 

fluorescence spectra of thin layers of PhB (all, λex = 500 nm). Arrows indicate increasing 

concentrations. 

Figure S4. Normalized fluorescence spectra of thin layer (hollow circles), thick layer (filled circles) 

and thick layer corrected by reabsorption (full line) for EoY 0.32 μmol g-1 (λex = 500 nm). Corrections 

are performed according to ref. [Lagorio, M. G., L. E. Dicelio, M. I. Litter, and E. San Román (1998) 

Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on 

cellulose. J. Chem. Soc. Faraday Trans. 94, 419-425]. 
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Table S2. Observed and corrected fluorescence quantum yields. 

Table S3. Observed and corrected triplet quantum yields obtained by LIOAS. 

Figure S5. DRLFP signals extrapolated at t = 0 as a function of the laser pulse energy for selected 

samples of EoY (left panel) and PhB (right panel). Full lines are fits to a hyperbolic equation without 

physical meaning. 
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Table 1. Relevant parameters and estimations for photoinduced electron transfer. 

  E0(D+●/D) / V E0(A/A–●) / V ES / eV ET / eV ΔETG0 / eV ECT / eV 3 

Eosin Y1 0.76 -1.09 2.29 1.77 -0.48 1.81 

Phloxine B2 (0.90) (-0.99) 2.22 1.70 -0.37 1.85 

Rose Bengal2 0.90 -0.99 2.18 1.68 -0.33 1.85 

1 Redox potentials in methanol (vs Ag/AgCl) (36). 

2 Redox potentials in methanol (vs Ag/AgCl) estimated for PhB from values reported for Rose Bengal 

(RB) (37,38). 

3 Calculated considering a distance of 1 nm between molecules within the trap and the permittivity of 

methanol. 

 

Figure legends 

Figure 1. Absorption (blue) and emission (red) spectra of selected samples of EoY (upper panel, λex = 

505 nm) and PhB (lower panel, λex = 500 nm). Dye concentrations are 0.16 and 4.2 μmol g−1 for both 

dyes. Arrows show increasing concentrations. EoY data was adapted with permission from ref. 18. 

 

Figure 2. Corrected fluorescence quantum yields as a function of dye concentration for EoY (upper 

panel) and PhB (lower panel). See text for the meaning of error bars. Broken lines are exponential 

fitting functions without any physical meaning (see text). 

 

Figure 3. Corrected triplet quantum yields as a function of dye concentration for EoY (upper panel) 

and PhB (lower panel). Black circles correspond to LIOAS absolute determinations, while grey and 

white circles refer to scaled DRLFP and LIL relative determinations, respectively. Error bars for LIOAS 

data arise from 4 independent measurements. 
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Figure 4. DRLFP decays for EoY (upper panel) and PhB (lower panel), for all samples (gray points 

scatter), average (black line) and triexponential fit (red line). Insets: DRLFP average (black) and LIL 

average (green). For EoY, both decays are analyzed at 680 nm, while for PhB DRLFP decays are 

analyzed at 610 nm and LIL decays at 695 nm. 

 

Figure 5. Effect of concentration on ΦF and ΦT for EoY (upper panel) and PhB (lower panel). Full lines 

are exponential fittings for ΦT and broken lines are exponential fittings for ΦF shown in Figure 2. 

These fittings have no physical meaning and are given only for comparison of the effect of 

concentration on quantum yields. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 


