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ABSTRACT 

Cubic spinel LiMn2O4 has been studied for the reversible extraction of Li+ from natural 

brine after the application of suitable electrode potentials.  In this work we report on the 

insertion/extraction of Li+ from natural brine of Olaroz salt flat (Jujuy, Argentina) and 

aqueous LiCl solutions into/from Li1-xMn2O4 (0 < x ≤1) to determine changes in the 

crystal structure and surface composition upon electrochemical polarization.  In 

agreement with the behavior in organic electrolytes, we found that the insertion and 

extraction of Li+ proceeds via a two stage process and that the crystal structure 

undergoes two cubic phase transitions as the lattice is expanded or contracted.  Contrary 

to the behavior in organic solvents, no decomposition layer is formed on the electrode 

surface and the surface composition can be controlled with the electrode potential.  We 

also found that sodium cations present in natural brine are not inserted into the crystal 

lattice in the potential window explored, however they are adsorbed on the oxide 

surface blocking Li+ adsorption sites and decreasing the rate of Li+ exchange. 
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1. INTRODUCTION 

Since its birth several decades ago, lithium-ion batteries have become the leading 

energy storage technology in portable electronics and electric vehicles.  Different 

lithium intercalation compounds have been used as cathode materials during its 

development [1,2]. Cubic spinel lithium manganese oxide (LiMn2O4) has proven to be 

one of the most promising cathode materials given its high theoretical energy density 

compared to other intercalation compounds, low toxicity and low cost [3,4]. 

LiMn2O4 is a stable phase with half lithium content in the discharge curve from λ-MnO2 

to Li2Mn2O4 [5].  Its crystal structure is an A[B2]O4 spinel [6] from where lithium ions 

can be reversibly extracted and inserted either chemically or electrochemically without 

changing the symmetry of the lattice [7,8]. Nonetheless, a significant capacity fading 

during cycling has been reported and attributed to several factors. The abundance of 

Mn(III) within the structure in deeply discharged electrodes could cause a cubic to 

tetragonal transition phase due to Jahn-Teller distortion, also Mn(III) has a high 

tendency to dismutate to Mn (IV) and soluble Mn (II) in certain non-aqueous 

electrolytes [4,9–12]. The loss of crystallinity and lack of homogeneity of the material 

are also major problems [13]. 

The behaviour of LiMn2O4 electrodes in aqueous solutions has been studied to a lesser 

extent than in non-aqueous electrolyte. However, considerable research has been 

conducted in the recent past when intercalation compounds began to be used for lithium 

recovery from brines or seawater [14–19]. Lithium ions in aqueous media can be 

inserted and extracted topotactically into and from the Li1-xMn2O4 crystal lattice upon 

application of an electrode potential with no decomposition of the electrolyte upon 

cycling [20]. We have earlier provided structural evidence confirming electrochemical 

Li+ ion exchange between the solid host and the solution after total charge of LiMn2O4 
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and total discharge of Li1-xMn2O4 (x→0) spinel oxides in aqueous LiCl electrolytes and 

in natural brine.  We have also shown that while the fully charged electrode surface only 

has Mn(IV) exposed to the aqueous solution, the fully discharged electrode surface 

contains equal amounts of Mn(IV) and unstable Mn(III). This could make the material 

more prone to dissolution as no protective surface layer is formed in aqueous solutions. 

This is in contrast to the behaviour in organic electrolytes where a surface stabilization 

layer of decomposition products is formed at the electrode/electrolyte interface upon 

cycling [21,22]. 

Driven by the need of a faster, more efficient and environmentally friendly process for 

lithium recovery from natural brines, we have developed an electrochemical method to 

extract LiCl from aqueous solutions in an electrochemical reactor containing a lithium-

deficient Li1-xMn2O4 cathode, which exhibited high selectivity for lithium ions and 

stability of the system upon over 200 cycles [23,24] . The electrochemical recovery of 

lithium from natural brines involves the insertion or extraction of lithium ions to or 

from Li1-xMn2O4 in the presence of large amounts of sodium ions.  This opens up the 

question of the potential Na+ insertion into the lattice which could form a spinel-type 

NaMn2O4 phase known to be thermodynamically unstable [25].  Indeed, spinel-type Li1-

xMm2O4 (x →0) structures serve as a host for Na+ ions that can be inserted 

electrochemically in organic-based electrolytes [26]. However, sodium insertion brings 

along a total structural change (from spinel to a layered phase) which has later been 

proven to be irreversible [27].  We have previously demonstrated that Na+ ions are not 

inserted into Li1-xMm2O4 (x → 0) lattice in the potential window used for Li+ insertion 

in aqueous electrolytes [28].  Furthermore, cyclic voltammetry (CV) and 

chronoamperommetry demonstrated that the presence of Na+ has a negative effect on  

the kinetics of lithium intercalation in Li1-xMn2O4 electrodes [23,28]. This is in 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

agreement with our recent electrochemical impedance spectroscopy study carried out 

during lithium insertion and extraction in aqueous media [29].  

In the present work, we have studied the surface composition and structural changes of 

Li 1-xMn2O4 (0<x≤1) electrodes when lithium ions are inserted or extracted in aqueous 

media as a function of lithium loading (i.e. electrode potential or charge) using 

electrochemical, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) 

measurements.  We have studied the effect of the electrode potential on the surface 

composition and crystal structure of Li1-xMn2O4 electrodes in the absence and presence 

of sodium ions in solution during the insertion and extraction of lithium ions.  

 

2. EXPERIMENTAL 

Natural brine from Olaroz, Jujuy (Argentina) has been employed with a chemical 

composition analyzed by ICP: Na+ 115.600 ppm (5 M NaCl), K+ 10.780 ppm (0.28 M 

KCl), Mg2+ 2.618 ppm, Li+ 975–1280 ppm (0.18 M LiCl), and  B 1.440 ppm. 

LiMn2O4/Pt electrodes were prepared by thermal decomposition of a LiNO3 and 

Mn(NO3)3 mixed solution (Sigma Aldrich, Li : Mn molar ratio of 0.5) on a Pt sheet. The 

Pt substrate was coated with a thin layer of the solution which was first evaporated at 

70°C, further heated in air at 650°C for 12 hs and finally cooled down to room 

temperature, yielding a thin layer of polycrystalline single phase LiMn2O4 characterized 

by XRD and SEM. 

The electrodes used in XRD experiments were prepared by casting a slurry of 80% w/w 

LiMn2O4 (Sigma Aldrich, battery grade), 10% PVDF (Sigma Aldrich) and 10% Carbon 

Vulcan X-72 (Cabot Corp.) suspended in N-methyl pyrrolidone (Sigma Aldrich) onto 

flat 1.3 cm2 stainless steel plates and are labelled LiMn2O4/SS.  The chloride reversible 

polypyrrole counter electrode was obtained by electrochemical polymerization of an 
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aqueous solution of 0.1 M pyrrole/1.2 M HCl on large surface area platinum mesh 

(Goodfellow PT008710) under potential control at 1V during 1 hour. Aqueous solutions 

of natural brine, 0.1 M LiCl (Sigma Aldrich) and 0.1 M NaCl (Sigma Aldrich) were 

used as electrolytes.  

Electrochemical experiments were carried out in a three-electrode undivided cell with a 

LiMn2O4 working electrode, a Polypyrrole/Pt counter electrode and an Ag/AgCl (in 

KCl 3 M) reference electrode (all potentials herein are quoted with respect to that 

reference), using an Autolab PGSTAT 30 potentiostat (Autolab, Ecochemie, Holland) 

equipped with Nova 1.10 software.  Different states of charge were achieved by partial 

delithiation of LiMn2O4 (or partial lithiation of λ−MnO2) by applying a constant 

potential until the current was well below 1µA. In all cases, a meniscus was formed 

with the electrode surface touching the aqueous electrolyte solution. After the 

electrochemical treatment, the corresponding Li1-xMn2O4 (0 ≤ x ≤ 1) electrode was 

rinsed with MilliQ water, dried with constant flow of pure N2 and finally examined ex 

situ using either X-ray photoelectron spectroscopy (XPS) or X-ray diffraction (XRD).  

XPS measurements were performed within an ultrahigh vacuum chamber (UHV) with a 

base pressure below 5.10-10 mbar. The analysis chamber is equipped with a SPECS 

UHV spectrometer system which consists of a 150 mm mean radius hemispherical 

electron energy analyzer and a nine channeltron detector. XP spectra were acquired on 

grounded conducting substrates at a constant pass energy of 20 eV using a Mg Kα 

(1253.6 eV) source operated at 12.5 kV and 20 mA at a detection angle of 30° with 

respect to the sample normal. No charge compensation was necessary. Atomic ratios 

were calculated from the integrated intensities of core levels after instrumental and 

photoionization cross-section corrections. XPS spectra were fitted using CasaXPS 

processing software. 
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The x-ray diffraction patterns were obtained on a SIEMENS D5000 powder 

diffractometer, Cu-Kα radiation λ=1.54056 Å. The spectra were recorded over a 2θ 

range from 15° to 90° with a step of 0.02° and a count time of 1 s/point. 

 

 

3. RESULTS AND DISCUSSION 

The morphology of the LiMn2O4 crystallites and their particle size distribution in the 

LiMn2O4/SS electrode was inspected by SEM. Figure 1a shows the SEM micrograph of 

a stainless steel electrode casted with the LiMn2O4 slurry. The particles corresponding 

to LiMn2O4 crystals are distributed in a carbon and PVDF darker background. 

Crystallites present an average size of 700 nm diameter and a size distribution going 

from 300 nm up to 1500 nm. The degree of crystallinity of the LiMn2O4 electrodes was 

examined by X-ray diffraction (XRD) measurements. Figure 1c shows XRD diffraction 

patterns corresponding to (i) the LiMn2O4/SS electrode, (ii) the LiMn2O4/Pt electrode 

and (iii) a Pt sheet substrate.  XRD peaks in diffraction patterns (i) and (ii) were indexed 

as a cubic spinel structure (F3dm space group) with a lattice parameter a = 8.24 Å 

obtained from the 2θ position of a (h k l) diffraction peak using the Bragg’s law: 

a = 	 λ	
����	���		�

	
	�� θ
. 

The calculated lattice parameters from (511) reflection resulted, confirming the 

presence of a single crystalline phase without any observable residual impurities for the 

synthesized oxide. LiMn2O4 crystallizes in a stable spinel structure having the general 

formula A[B2]X4 which can be described as a cubic closed-packed framework of 

oxygen anions located in the 32e positions of the F3dm space group, with lithium 

cations occupying the 8a tetrahedral sites and Mn(III)/Mn(IV) cations in the 16d 
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octahedral interstices, as shown in the polyhedral representation of the structure in 

Figure 1b [30].  

 

FIGURE 1 HERE 

 

The surface chemical composition of the LiMn2O4/Pt electrode has been characterized 

by X-ray photoelectron spectroscopy (XPS). Manganese is often measured by XPS 

following the Mn 2p signal as it presents a higher sensitivity owing to its larger 

photoionization cross section.  However Mn 2p is a complex signal with multiple 

splitting of the core lines and a small chemical shift as a function of the manganese 

oxidation state [31]. The manganese oxidation state in mixed valence oxides is also 

measured with XPS following the Mn 3s photoelectron signal.  In this case, the core 

level line shows multiple splitting and the binding energy difference between the high- 

and low-spin components can be correlated to the relative content of Mn(III) ions. 

Notwithstanding, when different Mn(III)/Mn(IV) ratios are present a broadening of the 

low-spin component is observed, making it difficult to determine accurately the 

multiple splitting binding energy difference [32].  Therefore, it is more convenient to 

measure the changes in the manganese oxidation state following the Mn 3p core line 

[31].  Given that the binding energy position of the 3p peak changes with oxidation state 

and that the 3p3/2 and 3p1/2 doublet is not resolved then the Mn(III) and Mn(IV) 

components could each be fitted with a single peak [31] 

 

FIGURE 2 HERE 
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Figure 2a shows the XPS broad scan of a LiMn2O4/Pt electrode.  The main signals are 

due to Li, Mn and O as expected, however we can also observe signals due to the Pt 

substrate and to a low content of adventitious C.  Note that there is no evidence of Cl or 

Na on the surface.  Figure 2b shows the Mn 3p and Li 1s regions of the spectrum. In the 

spinel environment the Li 1s signal appears at 54 eV whereas Mn3p presents a broad 

peak centred at 49 eV. The low sensitivity factor for Li 1s (25 times smaller than the 

Mn 3p factor) hindered the determination of the lithium surface content in Li1-xMn2O4 

cathodes at different values of x. As shown in Figure 2b Li was only observed in the as 

prepared electrodes whose surfaces are lithium rich as it has been reported elsewhere 

[33]. As discussed above the Mn3p signal was fitted with two components 

corresponding to Mn(III) and Mn(IV) centered at 48.4eV and 50.3 eV respectively 

[31,33,34]. This resulted in a surface composition with 49% of Mn (III) and 51% of 

Mn(IV) in excellent agreement with the expected Mn(III):Mn(IV) 1:1 stoichiometry in 

LiMn2O4. 

Lithium  ions can be gradually inserted from brine  into the Li1-xMm2O4 (x → 0) spinel 

by applying a constant current or potential to form Li1-xMn2O4 (0 < x ≤1). This process 

can be reversed extracting Li+ ions from Li1-xMn2O4 into a LiCl recovery electrolyte by 

reversing the current. The lithiation process can be represented by the following 

reaction: 

2λ–Mn��O
 	+ �	e�	 + �	Li� → Li�Mn����Mn(
��)
�� O 		(0 < � ≤ 1) 

Further lithium insertion into LiMn2O4 is known to cause Jahn-Teller distortion due to 

the presence of unstable Mn(III) (electronic configuration d4) in octahedral 

environments, which leads to an irreversible first order transition phase from cubic to 

tetragonal to form Li2Mn2O4 by displacing the Li ions from the tetrahedral to the vacant 

16c octahedral sites [3,35,36]. 
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FIGURE 3 HERE 

 

Figure 3a shows a cyclic voltammetry (CV) of this oxide performed in natural brine 

containing 0.18 M LiCl and in 0.2 M LiCl at a scan rate of 2mV/s using LiMn2O4/Pt 

electrodes. In agreement with the measurements obtained using organic electrolytes 

[3,6,36,37], the CV in aqueous media also exhibits two anodic peaks (at 0.90 V and 

0.75 V) and their corresponding cathodic counterparts (0.71 V and 0.85 V), which are 

assigned to two stages in the Li+ extraction/insertion processes [6].  Notice the smaller 

charge and shift towards higher potential in natural brine with respect to LiCl solution 

of similar Li+ concentration. Figure 4 shows that the integrated charge for surface the 

MnIV/MnIII  redox couple decreases as the NaCl concentration increases in LiCl+NaCl 

solutions with a minimum value for natural brine. This will be further discussed in 

terms of sodium adsorption and blocking of lithium adsorption sites as it resulted from 

kinetic measurements [29].  The shift to higher potentials is due to the activity of LiCl 

in natural brine. 

FIGURE 4 HERE 

Figure 3b exhibits the evolution of potential during one cycle of Li+ extraction/insertion 

(black/red curve, respectively) of Li1-xMn2O4 in brine at a constant current of + 500 µA. 

As expected the charge corresponding to the extraction and the charge corresponding to 

the insertion, depends on the initial state of charge. Furthermore, the galvanostatic 

curves of charge and discharge of Li1-xMn2O4 show two plateaux in the 0.95 < x < 0.63 

and 0.41 < x < 0.19 composition ranges.  Topotactic lithium extraction from Li1-xMn2O4 

(or insertion into λ-MnO2 i.e. x→0) takes place with isotropic shrinkage (or expansion) 
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of the crystal lattice retaining the original cubic symmetry. Nevertheless, while 

extracting or inserting Li+, the crystal structure undergoes several phase transitions 

between different cubic structures depending on the lithium content [38]. In-situ X-ray 

studies demonstrated that two phase transitions occur between three cubic phases [39]. 

One phase is present at x=1 while two phases coexist in the range 0.65< x<1. The 

second phase is unique for 0.55< x< 0.65, while a third phase emerges and coexists with 

the second phase in the range of 0.27< x < 0.55. The third phase at the end of lithium 

extraction corresponds to the fully delithiated Li1-xMm2O4 (x → 0) crystal structure. 

When homogeneous lithium extraction takes place, a change in the free energy of the 

solid should be observed causing the electrode potential to vary. On the other hand, 

when two different phases coexist, the potential is expected to remain constant as the 

composition changes giving a flat voltage plateau in the charge/discharge galvanostatic 

curves [40]. In Fig. 3b two stages are observed for composition ranges 0.95 < x < 0.63 

and 0.41 < x < 0.19 with sloped plateaux due to non-ideality in the solid solution which 

arise form interactions. 

Structural changes due to topotactic lithium extraction/insertion from/into Li1-xMn2O4 (0 

≤ x ≤ 1) crystal lattice are evidenced as a shift in XRD peaks due to the contraction / 

expansion of the unit cell. Figure 5a shows the ex-situ XRD diffraction pattern in the 2θ 

region from 57° to 61° (Cu-Kα) corresponding to the (511) diffraction peak. Peaks a, b 

and c correspond to a Li1-xMn2O4 electrode with compositions x=1, x=0.5 and x→0 

respectively. The Li composition was modified after 1 hour polarization in 0.1 M LiCl 

(Fig. 5a) or natural brine (Fig. 5b) at different potentials (0.6 V for peak a, 0.85V for 

peak b and 1.1 V for peak c). As expected, the higher the lithium content in the spinel, 

the more shifted the peak towards higher 2θ values the peak is, confirming the insertion 

of Li+ ions within the bulk structure of the oxide.  We can calculate the LiMn2O4 unit 
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cell lattice parameter from the 2θ position of the (511) diffraction peak.  The calculated 

lattice parameters are 8.24 Å for the fully lithiated structure (x=1), 8.16 Å for the spinel 

with half lithium content (x=0.5) and 8.04 Å for the Li1-xMm2O4 (x → 0) phase. These 

values are in close agreement with the reported values for the three cubic phases 

observed in Li1-xMn2O4 electrodes in organic electrolytes [13,39].  The lattice parameter 

cannot be varied continuously as the Li content is modified, instead the spinel crystal 

undergoes two first order cubic phase transitions during charge and discharge. 

Therefore, the determined lattice parameters can be assigned to the three different cubic 

phases [41]. 

 

FIGURE 5 HERE 

 

Lithium rich natural brines have a Li content up to 25 times smaller than the sodium 

content. Therefore, the possibility of Na+ ion insertion into the oxide structure must be 

considered. We have attempted to insert Na+ by polarizing a fully delithiated Li1-

xMm2O4 (x → 0) electrode at 0.6V for 1 hour in a 0.1 M NaCl electrolyte. The resulting 

XRD measurement is shown in Figure 5 (peak d).  The position of the (511) diffraction 

peak does not exhibit any change with respect to the peak due to the lithium free spinel 

(peak c). Clearly, no structural changes take place after cathodic polarization in a NaCl 

solution and therefore no Na+ insertion into the crystal occurred at the potential of Li+ 

insertion. 

 

FIGURE 6 HERE 
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The lack of Na+ insertion into the spinel crystal was also observed electrochemically. 

Figure 6 shows CVs of a fresh LiMn2O4 cycled in a NaCl 1 M solution. The two typical 

anodic peaks are only observed during the first cycle, indicating Mn(III) oxidation to 

Mn(IV) and the consequent lithium leach from the crystal lattice. In cycle 2 the anodic 

peaks decrease in intensity and shift towards lower potentials, whereas in cycle 3 they 

completely disappear. Most of the lithium content of the spinel that was extracted 

during the first cycle diffused into the solution far from the electrode and cannot be 

reinserted back due to a very low concentration. But a small fraction of the lithium 

extracted in the first cycle remained in the double layer and was reinserted within the 

crystal in the following cycle, yielding one small cathodic peak around 0.70 V, which 

disappears in the subsequent potential sweeps. Since the Na+ ions in solution cannot be 

inserted in the crystal structure as we have shown above no redox activity for Mn ions 

in the oxide is observed after cycle 2 resulting in a flat CV. 

 

FIGURE 7 HERE 

 

Li+ insertion into the crystal is accompanied by the reduction of Mn(IV) to Mn(III) 

which could be reflected on the surface composition of the spinel. Therefore, we have 

performed XPS measurements to determine the Mn(III) and Mn(IV) surface 

composition as a function of Li composition in the Li 1-xMn2O4 crystal.  Figure 7a shows 

the Mn 3p XPS spectra of LixMn2O4/Pt electrodes after 1 h polarization at different 

potentials in 0.1 M LiCl solutions. Specifically, polarization was carried out at 0.6 V 

(fully discharged), 0.75 V, 0.85 V and 1.1 V (fully charged) which correspond to x=1, 

0.7, 0.4 and 0 respectively.  Initially the electrode was fully discharged (x=1) and the 

surface contained around 49% Mn(III).  Subsequent electrochemical lithium extraction 
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obtained by increasing the electrode potential resulted in a continuous decrease in the 

Mn(III) component of Mn3p XPS signal until it complete vanishes when the electrode is 

fully charged (x=0). At this point all Mn(III) is oxidized to Mn(IV).  Complementary 

the Mn(IV) component increases linearly with electrode potential during the charge 

process as shown in Figure 7b.  The above results show that the Mn(III):Mn(IV) surface 

composition can be controlled with the electrode potential and that there is no 

preferential surface segregation of any of the oxidation states of Mn.  We should note 

that the Li1-xMn2O4 electrode surface composition was retained after opening the circuit 

once the electrochemical treatment was finished and removing the electrode from the 

aqueous electrolyte for ex-situ measurements in UHV. 

The exposure of surface Mn(III) to aqueous solutions represents a potential problem.  

When non-aqueous electrolytes are employed a surface layer of decomposition products 

is formed.  These passivation films are an essential component for the successful 

cycling of Li-ion batteries as they are a good Li+ ion conductor which prevents surface 

Mn(III) from getting in contact with the electrolyte avoiding dismutation into Mn(IV) 

and soluble Mn(II) [42].  However, our XPS measurements indicate that no surface 

layer is formed when cycling LiMn2O4 in aqueous media.  Thus, Mn(III) rich surfaces 

in contact with an aqueous electrolyte could result in the unwanted loss of Mn.  We 

have therefore discharged and charged LiMn2O4 in aqueous solutions 55 times in 72 

hours and found that only 0.17 % of the initial Mn in the electrode is lost to the solution. 

This result is in good agreement with the loss of capacity with the number of cycles 

shown in Figure 8. The electrode losses 15% of the initial capacity in the first 20 cycles 

and then the capacity remains approximately constant. This is, capacity fading is not 

due to the very small loss of Mn into the solution and could be due to changes in the 

morphology of the film that modifies the electroactive area. 
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FIGURE 8 HERE 

 

We have shown above that Na+ ions are not inserted into the bulk structure of Li1-

xMn2O4 however they could still adsorb on the electrode surface blocking Li adsorption 

surface tetrahedral sites. The integrated charge in the cyclic voltammetry (Figure 4) 

decreases with the increase in NaCl concentration. Figures 9a and 9b show Mn 3p and 

Na 1s XPS spectra of a Li1-xMn2O4 electrode surface before and after 1 hour 

polarization in a 0.1 M NaCl electrolyte at 0.6 V. Initially, the fully delithiated electrode 

contains only Mn(IV) and has no sodium adsorbed. After the electrochemical treatment 

Na is adsorbed on the surface. Here we should note that no chloride anions are observed 

on the surface, thus ruling out a non-properly rinsed electrode surface as the source of 

sodium cations. 

 

FIGURE 9 HERE 

 

Furthermore, the appearance of sodium cations on the surface is accompanied by the 

appearance of Mn (III) due to the electrochemical reduction of the surface due to the 

applied potential. Therefore, we conclude that Na+ ions at the surface compensate the 

positive charge in the surface Mn(IV) to Mn(III) reduction. 

 

FIGURE 10 HERE 

 

The above results indicate that Na+ ions could compete with Li+ ions for surface 

adsorption sites and this could also decrease the rate of lithium intercalation in LiCl 

solutions.  Figure 10 shows CVs of a LiMn2O4 electrode in a 0.1M LiCl electrolyte 
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carried out before (dash line) and after (full line) cycling the electrode in a 0.1 M NaCl 

electrolyte. The charge calculated from the CV integrated current after cycling in 0.1 M 

NaCl dropped by 50% with respect to the initial charge. Here we should note that the 

initial charge could not be recovered even after 10 cycles in 0.1 M LiCl.  These results 

could be rationalized as discussed above, sodium cations irreversibly block lithium 

adsorption sites lowering the rate of Li+ intercalation. Furthermore, peak separation for 

both the anodic and cathodic peak pairs increased also in line with slower kinetics. This 

agrees with our recent electrochemical impedance spectroscopy results which show that 

the charge transfer resistance increases with increasing the NaCl concentration in the 

electrolyte [29].  

 

4. CONCLUSIONS 

Li+ ions in aqueous solution can be reversibly inserted/extracted into/from Li1-xMn2O4 

(0≤x≤1) electrodes upon the application of suitable electrode potential.  The 

insertion/extraction of Li+ from natural brine or LiCl solutions proceeds via a two stage 

process and the cubic spinel undergoes two reversible phase transitions as the lattice is 

contracted/expanded.  In agreement with the behavior in organic electrolytes three cubic 

phases with 8.24 Å, 8.16 Å and 8.04 Å lattice parameters are observed.  Contrary to the 

behavior in organic electrolytes, no surface decomposition layer is formed. The 

electrode potential controls the surface Mn(III):Mn(IV) composition. There is no 

preferential surface segregation of one particular Mn oxidation state instead the Mn(IV) 

concentration increases linearly with electrode potential (Li+ extraction).  

Electrochemical polarization in the presence of Na+ in solution does not result in the 

insertion of Na+ into the crystal structure.  However, Na+ adsorbs at the electrode 

surface blocking Li+ adsorption sites and thus lowering the rate of Li+ insertion into the 
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lattice.  Repetitive insertion/extraction cycles resulted in the small loss of Mn into the 

electrolyte solution (0.17 % after 72 hours).  Therefore, practical use of LiMn2O4 to 

extract Li+ from seawater or natural brines would require addressing this small loss of 

Mn upon cycling. 
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Figure 1. (a) Scanning electron micrography of the stainless steel electrode casted with 

the LiMn2O4 slurry. (b) Polyhedral representation of spinel LiMn2O4 crystal structure. 

(c) X-ray diffractograms of (i) the stainless steel electrode cast with the LiMn2O4 slurry, 

(ii) the LiMn2O4/Pt electrode and (iii) a Pt sheet substrate. 
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Figure 2. XPS analysis on the as prepared LiMn2O4/Pt electrode. (a) XPS broad scan 

exhibiting the expected signals and a small signal from adventitious C. (b) Mn 3p and 

Li 1s XPS signals. Mn 3p has been fitted with two components due to Mn(III) (blue) 

and Mn(IV) (red). 
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Figure 3. (a) Cyclic voltammetry of LiMn2O4/Pt electrode in 0.1 M LiCl (black) and 
natural brine (red) at a scan rate of 2 mV·s−1. (b) Galvanostatic charge (red) and 
discharge (black) curves of a LiMn2O4/Pt electrode in natural brine at a constant current 
density of ± 50 µA/cm2 in natural brine. The areal loading obtained by weight 
difference was typically 15 mg.cm-2. 
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Figure 4: Normalized voltammetry charge to the charge in the absence of sodium ions 
in the electrolyte vs. concentration of sodium in the LiCl + NaCl electrolyte. 
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Figure 5. X-ray diffraction patterns of a stainless steel electrode cast with the LixMn2O4 

slurry in the 2θ region from 57° to 61° (Cu-Kα), where (511) peak appears. Peaks 

indicated as (a), (b) and (c) correspond to different states of charge represented with the 

x value and reached after 1 hour polarization at different potentials: 0.6 V for peak (a), 

0.85V for peak (b) and 1.1V for peak (c), in LiCl 0.1 M. Peak (d) corresponds to the 

resulting pattern after 1 hour polarization of the delithiated structure of peak (c) at 0.6 V 

in 0.1 M NaCl. Right: Lithium insertion from natural brine. 
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Figure 6. Cyclic voltammetry (3 cycles) of a LiMn2O4/Pt electrode in a 1 M NaCl 

solution at a scan rate of 2 mV·s−1. 
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Figure 7. (a) Mn 3p XPS signals of a LiMn2O4/Pt electrode at different states of charge 

represented with the x value and reached after 1hour polarization at the indicated 

potentials in 0.1 M LiCl. Mn 3p has been fitted with two components corresponding to 

Mn(III) (blue) and Mn(IV) (red).  (b) Surface Mn (IV) percent vs. applied potential. 
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Figure 8. Capacity fading of LixMn2O4/SS electrode cycled in 0.1 M LiCl between 0.5 

V and 1.05 V at a constant current of + 500 µA. 
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Figure 9. (a) Mn 3p and (b) Na 1s XPS signals of an initially fully delithiated λ-

Mn2O4/Pt electrode (i) before and (ii) after 1hour polarization at 0.6V in 0.1M NaCl. No 

evidence of chloride anions on the surface was found. 
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Figure 10. Cyclic voltammetry of a LiMn2O4/Pt electrode in 0.1 M LiCl at a scan rate 

of 2 mV·s−1 after cycling in 0.1M NaCl (solid line) or in the absence of sodium (dashed 

line). 
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