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A B S T R A C T

We propose a simple generalization of the box fractal dimension in images by considering the curve obtained
from its value as a function of the binarization threshold. This curve can be used to partially describe ordinary
images, textures, static and dynamic speckle patterns. We show some examples of different applications of this
approach in some cases of interest.

1. Introduction

Rough surfaces illuminated by coherent laser light show a grainy ap-
pearance called speckle [1–2]. Speckle techniques have been applied to
study different experimental situations. According to the problems to be
solved, different algorithms are required, for example, speckle correla-
tion to study surface roughness [3] and digital speckle pattern interfer-
ometry (DSPI) for the study of displacements, deformations and cracks
[4].

When the surface changes, its speckle pattern also changes and it is
called dynamic speckle [5]. Some properties of the surface changes can
be inferred from the time dynamics of its irradiance. Several applica-
tions of the measurement of dynamic speckle activity have been found
in medicine, biology, industry, agriculture, etc. [see 5 and references
therein]. Also, some algorithms have been developed for different appli-
cations. In general, the algorithms used in these techniques are useful
to solve some situations but cannot be applied to others. For example,
when we try to describe static or dynamic speckle patterns it is very dif-
ficult to find a single algorithm to analyze both situations.

In a recent work we performed an exhaustive comparative analysis
of the descriptors most often used in different applications [6].

Also, we have proposed and shown the possibility to apply the box
fractal dimension to characterize speckle patterns in some restricted sit-
uations [7]. In that case, we showed numerical simulations and a con-
trolled experiment.

Fractal dimensions, introduced by B. Mandelbrot [8], have been
found as useful descriptions in mathematics, in many images such as
those that can be found in natural landscapes, patterns, sequences,
biological tissues, simple life

forms, organic systems, complex life forms, environments and many
other branches of the natural sciences.

In this paper, we propose to extend the use of the box fractal algo-
rithm to characterize both static and dynamic speckle patterns in sev-
eral experimental situations, but it can also be applied to other types of
images. It is possible, with a single algorithm and small adaptations, to
apply it to very different problems.

We present the results on laser static speckle patterns in an exam-
ple of roughness and on dynamic speckle quantitative measurements
for free propagation geometry in controlled experimental conditions, in
the evolution process of polymers (drying of paint) and in ultrasound
speckle images.

2. Theory

2.1. Box fractal dimension

The box fractal dimension (BFD), also named the box counting di-
mension or similarity dimension, is a method of characterizing data,
for example, curves or binary images, by decomposing the subject into
boxes (usually squared) of different sizes and measuring how the data
cover the plane at different scales [8]. If the image is not binary, it must
binarized using some threshold U⁠0 so that every pixel of the image is set
to 0 if its value is smaller than U⁠0 and to 255 in other cases.

The box fractal dimension for that threshold is obtained using the
expression:

(1)
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where s is the size of the side of each square box, B is a constant, N(s) is
the number of boxes with side s required to cover the image and BFD is
the box fractal dimension. In the limit s → 0.

As images are only accessible as discrete integer numbers, the limits
s→0 cannot be reached. Then, in practice, the BFD is estimated as the
slope of the straight line best fitting (least square error) a log–log graph:

(2)

for a series of different values of s.
We are going to use an example to illustrate the procedure:

a) A grid is overlaid on the two-dimensional binary image of an object
with grid size= s × s as shown in Fig. 1.

b) Then N(s), the number of cells containing at least one white point of
the object, is counted and stored. The number of cells containing at
least one dark point could alternatively be used.

c) Next, the size of the grid s × s is changed and the process repeated.
d) With the obtained results, log (N (s)) is plotted versus log (s). See

Fig. 2.
e) The best fitting straight line is determined by using minimum

squares. Its slope with reversed sign is, by definition, the box fractal
dimension (BFD) estimation for every chosen binarization threshold
U.

The original image is again binarized with a new U threshold value.
The BFD measurement is then repeated on the result.

Changing the value of U generally produces a different value for the
BFD. There seems to be no unique criterion for the choice of the opti-
mum threshold value in all cases. In digital image processing there are
several thresholding techniques used to binarize images. Two popular
thresholding criteria are to use the middle value of the dynamic range
and the Otsu method [9].

It is possible that for some unfortunate choice of the threshold two
or more experimental situations result in the same or close value for
the fractal dimension, making it impossible to distinguish between them
(see for example Figs. 12a and 13a below). For these cases, it is conve-
nient to use more than one threshold value.

B. Chaudhuri and N. Sarkar [10] proposed an improved method
for the calculation of the fractal dimension, named Differential Box
Counting. In it, although there was no explicit use of a threshold,
the dynamic range inside each box was used to count the number
of occupied ones for the calculation of the FD. That procedure was
used, for example, for segmentation of textures [11]

Fig. 1. A red wine drop on paper and how it is covered with three different grids.

Fig. 2. log (N (s)) plotted versus log (s).

and several improvements were proposed afterward [12–14]. The use of
all possible thresholds was not contemplated because for very high val-
ues of the threshold very few points are left and the adjustment of the
calculation is very poor.

Nevertheless, complex textures could include different structures
with different fractal dimensions in different ranges of the image's dy-
namic range.

In the Chaudhuri and Sarkar method, the image is considered as a
surface in a 3D space divided into boxes, with the intensity at each pixel
as the third coordinate. Boxes are counted considering the maximum
and the minimum value of intensity in the contained volume. This so de-
fined dimension is then a single value between 2 and 3. No other thresh-
old is considered.

In this work, we propose the use of all possible values of U so that in-
formation on structures with different gray levels can be preserved. We
call this result the box fractal dimension curve (BFDC).

In this approach, each thresholded image is equivalent to a level
cut of the surface defined in Sarkar's method and projected on the x, y
plane. So, when every possible threshold is considered, a set of numbers
between 0 and 2 are obtained. By continuously changing the threshold,
the obtained box fractal dimension describes a curve that is characteris-
tic of the distribution of gray levels in the image.

Theoretically, the curve should start with the value 2. In practice,
nevertheless, when the curve is numerically adjusted, the result may be
slightly higher or lower than the theoretical value. This is due to the er-
ror committed when the image is quantized. By increasing the number
of bits this undesired effect can be alleviated.

2.2. Box fractal dimension curve (BFDC) in an image example

As a first step to illustrate the use of the BFDC algorithm, in this sec-
tion we show its application to the well-known case of the mandrill im-
age.

A digital image in incoherent light is an array of integer values,
named gray levels, distributed on a bidimensional frame. Each value
represents the irradiance registered on the sensitive plane of a camera.
As irradiance is usually a continuous function of the position, a quan-
tization of its values and a spatial sampling are inherent to the regis-
ter [15]. The distribution of the gray levels can be visualized by its his-
togram.

One frequent operation in image processing is binarization. It con-
sists in segmenting the image according to comparison of the gray lev-
els with a threshold value. If the gray level of a pixel is higher than
the threshold, the binarized image is assigned the highest value (usually
255) and the rest is assigned to be zero. The binarization operation gen-
erates a sharp, usually irregular, edge between the bright and the dark
regions.

In this work we explore the use of the fractal dimension of that bina-
rized image as a function of the chosen binarization threshold. It is evi-
dent that if the threshold is very low, most of the pixels in the binarized
image are going to be bright and cover a substantial area of the image. It
is to be expected that in that case the fractal dimension will be near the
value 2. Conversely, when the threshold value is higher than the highest
irradiance pixel value, all the binarized image will be uniformly black
and the fractal dimension will be zero. Between these extreme situa-
tions, the fractal dimension as a function of the threshold will describe
a curve that we name the box fractal dimension curve (BFDC).

Fig. 3a) shows a typical example image of a mandrill used in many
image processing examples. Fig. 3b) shows the histogram of the image.
Fig. 3c) shows the result of applying the concept of the box fractal di-
mension curve (BFDC) to the image of the mandrill. Notice that it starts
at 2, that is, for small thresholds the binarized image covers all of the
plane. This is so until the threshold reaches the smallest occupied value
of the histogram (22 in Fig. 3b). Then, it decreases, in this case almost
monotonically, to 0 for the highest occupied level and over. Between
these two values, the particular behavior of the curve depends on the
characteristics of the image.

This is so when the image has a histogram where all possible gray
levels are occupied between the minimum and the maximum.

2



UN
CO

RR
EC

TE
D

PR
OO

F

H. Rabal et al. Optics and Lasers in Engineering xxx (2018) xxx-xxx

Fig. 3. a) Image of mandrill, b) histogram, c) box fractal curve.

Alternatively, images are often compressed for transmission or stor-
age of only the visually relevant features. That is, only some gray levels
are present, intending to preserve the visual quality. Fig. 4a) shows a
compressed version of the mandrill image and Fig. 4b) its discrete his-
togram, which shows that only some gray levels are present in the com-
pressed image. Fig. 4c) shows the box fractal dimension curve (BFDC)
of the compressed image of the mandrill. The change of the threshold in
the absent intervals does not change the value of the measured dimen-
sion and the curve then shows a stepped aspect.

Something similar occurs if the image contains saturated regions.
The curve is horizontal in these regions.

One advantage of the curve is the following: As two different im-
ages may lead to different BFDCs, they eventually cross and this fact
makes evident that the wrong choice of a single threshold can induce
the wrong conclusion that both images bear the same fractal properties.
After the two BFDCs are compared, regions of thresholds where discrim-
ination is better can be apparent.

2.3. Box fractal dimension curve (BFDC) in speckle pattern images

When the images are obtained using coherent illumination and the
scene is optically rough, a speckle phenomenon is present. It appears
mostly as a multiplicative high contrast granular noise with statistically
almost random distribution that degrades the image quality. This is due
to the interference between scattered wavelets in the roughness height
variations with random optical path differences. When the scattering
centers present in the object are mutually independent and their phases
are uniformly distributed in the [−π, π] interval, the contrast of the
speckle pattern is 1 and it is said to be “well developed” [16].

Next, we are going to consider the box fractal dimension curve
method in speckle patterns images for several situations.

When speckle images are obtained by free lensless propagation from
the object to the detector, this is named objective speckle and, in prin-
ciple, every pixel of the image receives contributions from all the points
of the object. As the irradiance in all points of the image is representa-
tive of the statistical properties of the diffusing object, then a BFDC can
be obtained as described before.

Fig. 5 shows an image of a) an objective speckle pattern and b)
a threshold binary image obtained from it. Fig. 5c) shows the BFDC
of the speckle pattern.

The BFDC in this case represents a quantitative description of how the
gray levels are distributed and cover the image plane.

As the histogram of a well-developed speckle pattern contains a con-
tinuous distribution of gray levels, the curve does not show steps but is
also a continuous curve.

It starts near the value 2 for low thresholds and then decreases at
a rate that depends on the surface roughness of the illuminated sample
and finishes near zero for high values of the threshold. Theoretically, it
should start exactly at the value 2. Actual calculations usually show a
small difference. Notice that for high values of the threshold the curve
shows an irregular behavior. So, when the threshold is very high, the
number of points with intensity higher than that value is very small and
the box counting procedure becomes erratic and not reliable. Those val-
ues were not taken into account for the calculations in the rest of this
work.

2.4. Effect of the number of boxes employed

Due to limited resolution, in Nature there are no patterns that are
fully fractal. They may exhibit only an approximate fractal behavior for
certain intervals of the scaling. To check if an image can be described
as quasi fractal, we show here (Fig. 6) the goodness of the fit for its r⁠2

of the log–log plot to a straight line for a speckle pattern. This graph
shows that value for a speckle pattern as a function of the binarization
threshold for five and nine boxes. In this case, it can be seen that up to
the threshold value of 75 the fit is very accurate for both five and nine
boxes. Then, for the threshold value up to 150 the fit is good for five
boxes but decreases to about 0.9 for nine boxes. This value is an indica-
tion of the range within which the pattern behaves as an approximate
fractal within a chosen tolerance.

2.5. Approximation with the Fermi–Dirac (FD) distribution

Even if the following approximation is not true for the general
case, the BFDC is often a sigmoidal accumulative function. For some
cases of dynamic speckle images, it can be successfully fitted with
the function of the threshold

Fig. 4. a) Compressed image of mandrill, b) histogram, c) box fractal curve.
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Fig. 5. a) Speckle pattern, b) binarization of a), c) box fractal curve.

Fig. 6. Goodness of the fit r⁠2. a) Five boxes, b) nine boxes.

U:

(3)

This expression is similar to the Fermi–Dirac (FD) statistical distrib-
ution of fermions [17] as shown in Fig. 7, but with A=2 instead of 1 as
in FD.

The units of the temperature T* are the same as those for thresholds,
that is, gray levels.

Fig. 7. Plot of Eq. (3), similar to the Fermi–Dirac statistical distribution of fermions, but
for A=2. (a) T*=28, (b) T*=16, (c) T*=0.

In our case, for each speckle pattern image we numerically adjust
the curve with this expression. A is a constant (A=2) determining the
upper asymptote and U⁠0 a constant that depends on the mean value of
the speckle pattern intensity. It corresponds to the Fermi level in quan-
tum statistics and the function value there is A/2. T* is a parameter that
plays the same role as the absolute temperature and that describes the
rate of change of BF by varying the binarization threshold U. This “frac-
tal temperature” T* is zero if the original image is binary and the curve
is a step function that resembles the zero degree Kelvin plot for fermi-
ons. When the fractal temperature T* is high, the curve tends to be sim-
ilar to the Boltzmann distribution [18].

For limited but broad intervals of threshold, this fitting is highly ac-
curate. Out of those intervals, for high values of the threshold this ap-
proximation breaks and the curve behaves erratically. This is due to the
fact that the BFDC is not accurately determined as the log–log plot can-
not be successfully fitted to a straight line.

For speckle phenomena behaving in this FD-like way, they can be
described in terms of the temperature T* (named so by analogy). The
temperature is measured in the same units as the irradiance in the im-
age.

Now, we are going to find the derivative of the FD curve (Eq. (3))
with respect to the threshold values.

(4)

The derivative is in the shape of a negative lump as shown in Fig. 8
for two different temperatures ((a) T*=28, and (b) T*=16). Its width
is proportional to the temperature T*.

Fig. 8. Plot of the derivative of Eq. (3), the Fermi–Dirac statistical distribution of fermions
for two temperatures ((a) T*=28, and (b) T*=16).
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Then we look for its minimum value that occurs at U=U⁠0:

(5)

(6)

We are going to estimate the half of the minimum value of the de-
rivative. It is found as

(7)

and it is reached at

(8)

(9)

So that the full width at half minimum results in

(10)

That is, the temperature analog can be found as the full width at half
minimum (FWHM) times a constant. In the limit when T* tends to zero,
a delta distribution is obtained and it corresponds to binary images.

When the fractal curve is the sum of two FD distributions, thus in-
dicating the presence of two phenomena, the derivatives of the curve
show it as bumps if the components are fully resolved and overlapped
otherwise.

In Fig. 9a) we show the result of numerically adding two FDs after
normalization to the 0–2 interval. In Fig. 9b) we show its derivative. In
this case the parameters U⁠0 have been chosen so that the lumps in the
derivatives are well resolved.

Fig. 9. Box fractal curves obtained as the addition of two FD and their derivatives: Resolved a) and b) and not resolved cases c) and d).
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In Fig. 9c) we show a similar profile calculated when the values of
U⁠0 were chosen so that the lumps were not fully resolved, as can be seen
in its derivative in Fig. 9d). The term resolved is used here in a similar
way as in diffraction and spectroscopy.

It can be seen that when both components are well resolved, their
temperatures can be approximated using Eq. (10).

We are going to show a numerical simulated example in the next
section.

2.6. Numerical simulated example

We have seen how the width of the derivative of the fractal curve
permits the estimation of the temperature of a Fermi–Dirac-like distrib-
ution (Eq. (3)).

We have also shown how the sum of two FD in the well resolved
case shows two separate lumps in its derivative. Eq. (4) then permits an
estimation of their temperatures with a small error if the lumps do not
appreciably overlap.

We are going to describe now how this situation can be simulated
and shown in practice.

For the simulation, one possibility is to take two frames of different
(dynamic or not) situations but with different fractal curves. In what fol-
lows we take two different drying states of paint: wet and dry.

We build a synthetic image in the following way: Each pixel of the
first frame is assigned the value 0 if it belongs to the right half of its
histogram and kept unaltered otherwise. Then this operation is repeated
for the second frame, but assigning the value 0 if it belongs to the left
half of its histogram and kept unaltered otherwise. Finally we add the
obtained images.

In this way we obtain a result where we have forced the fractal curve
to show the behavior of one state for low values of the threshold and a
different one for the higher values (see Fig. 10). The derivative of this
fractal curve then shows a secondary lump as shown before in Fig. 9(a)
and (b).

This situation can also be found in some experimental situations. We
show an actual experiment in Section 3.2.3.

3. Experimental result

3.1. BFDC on speckle pattern images

The speckle phenomenon, both static and dynamic, has given rise to
numerous applications [3–5]. We are going to apply the box fractal di-
mension curve method developed in Section 2.3 in images of both static
and dynamic speckle experiments.

3.1.1. Static speckle pattern: algorithm repeatability test
In this section we are going to apply the proposed algorithm to the

most simple speckle situation, such as a single fully developed speckle
pattern obtained by free propagation from a plane diffuser to the obser-
vation plane.

To standardize the diffuser characteristics, we use a sample with a
normalized roughness surface. We tested the BFDC algorithm on still
free propagation speckle patterns obtained by illumination of Rugotest
Roughness Comparison Specimens. This is a set of metal samples for tac-
tile and visual comparison of a workpiece surface finish according to
various machining processes. The specimen sets are made according to
individual machining processes (ISO 2632-1 and 2632-2).

Its roughness steps were too big to follow the BFCD performance as a
function of some roughness parameters and this was not the main aim of
this work. Exploiting the fact that the surface had homogeneous rough-
ness (according to Norm) and it did not change with time, we could test
if the BFCD was repetitive using a stable, deterministic and reproducible
situation.

The parameters indicated by the Rugotest specifications of the sam-
ple used (N1) are:

Ra (arithmetic average roughness) Ra=0.025µm.
Rp (geometric average roughness or RMS: root mean square)
Rp=0.05µm
Rz (mean peak-to-valley height) Rz=0.16µm.

We registered images of the speckle patterns generated by illumi-
nating a Rugotest standard plate with the unexpanded He–Ne laser,
recorded using a lensless camera.

We tested the BFDC in two perpendicular directions according to the
directions of the grooves on the sample: longitudinal and transversal.

Five images on different points of the N1 section were registered by
displacing the sample in the direction transversal to the machining of
the sample, and five more images in the same direction as the machin-
ing.

We calculated the BFDC algorithm for each speckle image and then
we used Eq. (3) to calculate the best numerical fit function using the
Fermi–Dirac equation. Each fit was characterized by a “fractal tempera-
ture” T* equivalent that describes the rate of change of the box fractal
curve.

The curves obtained in the ten measurements and the corresponding
temperatures T* are shown in Fig. 11. It can be seen that the procedure
gives different results for the two considered directions. However, no-
tice that in both separate cases, the five curves mostly overlap, showing
that the method is fairly repetitive.

3.2. Dynamic speckle patterns

3.2.1. Stepping motor experiment
In this section we explore a more complex situation. In this case, we

consider speckle patterns evolving in time.
To verify the performance of the BFDC algorithm applied to dynamic

speckle patterns, we tested a case with a controlled experiment in trans-
lation condition [18–19].

The optical set-up was described in the references. An attenuated
10mW He–Ne laser was used to illuminate the object plane. A CCD
camera Pulnix

Fig. 10. a) Synthetic image, b) box fractal curves of the synthetic image, c) derivative of BFDC of b). The circles indicate the two lumps (negative).
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Fig. 11. BFDC and the corresponding “fractal temperatures” T* for Rugotest experiment:
a) five curves in the longitudinal direction; b) five curves in the transversal direction. No-
tice that in both cases the curves mostly overlap.

TM-6CN (CCIR Standard, interlaced scanning, pixel size
8.6µm×8.3µm), connected to a personal computer with a frame grab-
ber was used to record the images, which were digitized to 256 inten-
sity levels. The speckles were well resolved by the CCD sensor and the
average intensity of the laser was maintained constant. The displace-
ment of a ground glass diffuser was performed by using an Aerotech
ARS 302MM stepping motor (2µm per step).

As the image of each step of the motor is a static frame, the dynamic
case is simulated by adding and averaging pairs of frames. The different
velocities of dynamic speckles were simulated using pairs of frames sep-
arated by different numbers of steps.

The BFD method was applied and then we used Eq. (3) to calculate
the best numerical fit function using the Fermi–Dirac equation. Each fit
was characterized by a “fractal temperature” equivalent that describes
the rate of change of the box fractal curve.

Fig. 12a) shows the results of the controlled step motor experi-
ments in translation condition (in dot symbols) and the theoretical
curve obtained using the Fermi–Dirac equation in a continuous line.
We presented two examples, for frames separated by 35 steps (curve
(a)) and for frames separated by 90 steps

(curve (b)) Also in this case, it can be seen that the points can be suit-
ably adjusted, with the fractal curve showing a very good agreement be-
tween them (r⁠2⁠=0.99752 for curve (a) and r⁠2⁠=0.99547 for curve (b)).

Fractal temperature T* follows a continuous decreasing behavior as
shown in Fig. 12b) for experimental measurements, and is stabilized af-
ter reaching a high enough activity value. In the experimental curve it
can be seen that the temperature initially changes slowly with increased
activity. Then a fast change region follows where the temperature di-
minishes until a stabilization region is reached at the lower temperature
value. The increase in activity appears as a lowering in the temperature
T*.

3.2.2. Drying of paint experiment
We tested the BFDC algorithm in a well-known dynamic speckle ex-

periment, the process of drying of paint [20].
In this case, an attenuated unexpanded 10mW He–Ne laser was used

to illuminate the sample. A lensless CCD camera (Pulnix TM-6CN), con-
nected to a personal computer with a frame grabber was used to record
the images, which were digitized to 256 intensity levels (8 bits). The
speckles were well resolved by the CCD sensor and the average intensity
of the laser was maintained constant.

Paint was applied horizontally in a 75µm thick film. The film was
prepared on 4×4 cm⁠2 glass substrate using a standard drawdown stain-
less steel applicator onto a flat substrate. In this way, a film with a flat
level surface was obtained.

We registered eight series of 400 images of dynamic objective speck-
les of 200×200 pixels size with 30min drying lapses between them.
Each one of these series was assumed to represent a different state of
drying. We labeled them with a number that indicates the time in min-
utes at which they were registered. Time 0 (t=0) is the instant of appli-
cation of the paint.

The BFDC algorithm was applied to the frames in different drying
paint states processed using 5 boxes.

Then, we calculated the best numerical fit function using the
Fermi–Dirac equation (Eq. (3)). Each fit was characterized by a “fractal
temperature” T* equivalent that describes the rate of change of the box
fractal curve.

Fig. 13a) shows the experimental results (in dot symbols) and the
theoretical curve obtained using the Fermi–Dirac equation in a contin-
uous line. It can be seen that the experimental points show the fractal
curves in the extreme cases: a) wet paint at the initial time (t=0) and
b) dry paint at the end of the process (t=210min). Experimental points
can be suitably adjusted, with the fractal curve showing a very good
agreement between them: a) r⁠2=0.999055, b) r⁠2=999,565.

Fig. 12. Experimental step motor: a) in dots measured values and in continuous line the Fermi–Dirac calculated value; (a) frames separated by 35 steps, (b) frames separated by 90 steps.
b) “fractal temperatures” T*.
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Fig. 13. In a) paint drying process: in dots measured values and in continuous line the Fermi–Dirac calculated value; a) wet paint; b) dry paint. In b) paint drying process: “fractal tem-
perature” T*.

The fractal temperatures T* obtained from the numerical fit of the
former are shown in Fig. 13b) for every state of drying. Note that, unlike
the step motor cases, the temperature curve must be growing as the dry-
ing progresses. In this case, the speckle pattern activity diminished with
time. In the final stage of the process (dry paint) there is no activity. As
expected, we obtain a monotonically increasing curve showing the pro-
gressive drying process from the wettest to the dry paint situation where
it stabilizes when the drying is complete. Experimental points can be
linearly fitted, showing a very good agreement (r⁠2=0.99788).

3.2.3. Speckle in ultrasound images
Ultrasound images show speckle phenomena. We tested the BFDC

and its derivative in two ultrasound images of thyroids (downloaded
from the web) classified as healthy and pathologic.

Fig. 14 shows the fractal curves: a) healthy case, b) pathologic case.
Fig. 15 shows the derivatives for: a) healthy case, b) pathologic

case. In the first case the derivative shows a single broad noisy lump.
In the second case,

Fig. 14. BFDC of ultrasound images of thyroids: a) healthy case, b) pathologic case.

the minimum of the lump is reduced by about a half and for higher
thresholds there appears a noticeable structure in the derivative of the
fractal curve, showing the presence of a different texture.

These results are shown as purely illustrative examples and do not
imply its possible use as a diagnostic tool. In that case, a systematic sta-
tistical validation procedure would be required.

4. Conclusions

We propose a box fractal dimension algorithm that, unlike other al-
gorithms, can be used in a wide set of applications, such as in incoher-
ent illuminated ordinary images and in controlled, static and dynamic
speckle cases.

We have shown that the procedure to calculate the BFD can be ex-
tended to obtain a curve that is versatile and useful for the characteri-
zation of some aspects of the dynamics of speckle. Nevertheless, as the
fractal dimension has been found useful for different types of textures,
the concept could be adapted for treating other types of images. In prin-
ciple, the procedure could be tested in many of the numerous applica-
tions that have been found for fractal dimensions in general.

As an example, we showed how the proposed approach was applied
to the classic mandrill image.

It was found that in some cases the BFDC could be approximated
by a mathematical expression and an analogue to temperature used to
characterize its time evolution. Then we presented a formalism of the
fractal box dimension curve as a descriptor of the speckle pattern im-
ages in both static and dynamic cases. We showed its potential useful-
ness using some examples such as controlled experiments, industrial ap-
plications (surface roughness and polymer drying) and a biological case
(ultrasound images).

Other applications are currently being investigated, but the results
are still preliminary and a careful validation is needed for any cases.
Work is continuing to refine the research methodology and to perform
comparative studies with other algorithms.

Application of the box fractal to segment activity speckle images in
several situations will be reported elsewhere.
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