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A B S T R A C T

This work shows possibilities and limitations of the refined zigzag theory (RZT) that has been used in different
structural (beam, plate and shell) finite elements. The refined zigzag theory can deal with composite laminates,
adding only one nodal degree of freedom per spatial dimension of the laminate, obtaining very good accuracy. It
assumes that the in-plane displacements have a piece-wise linear shape across the thickness depending on the
shear stiffness of each composite layer. This paper presents the main aspects of a beam/shell of revolution
element used for the numerical simulations. The details of the refined zigzag theory are given also in order to
discuss some limitations that occur when dealing with the non-linear phenomenon of delamination. Two ex-
amples are presented and discussed, including different inhomogeneities that show the limitations of the RZT for
the treatment of partially delaminated beams.

1. Introduction

The refined zigzag theory (RZT), oriented to the treatment of
composite laminates, is an evolution of the zigzag theories proposed
from the 80 s (an historical review of these theories can be seen in [2]).
The RZT [18]) enhances the first order shear deformation theory
(FSDT), that includes 5 degrees of freedom (three displacements of the
middle surface of the shell plus the two in-plane components of the
normal rotation) and the hypothesis of linear in-plane displacements
across the thickness, adding only two degrees of freedom corresponding
to the amplitudes of hierarchical in-plane displacements over the linear
approach. This theory leads to constant transverse shear stresses in each
layer (and therefore discontinuous in the thickness of the laminate), but
allows to treat clamped boundary conditions that was a limitation
presented by the initial zigzag theories. The transverse shear stresses
computed directly from shear strains and using the constitutive re-
lationship at each point of the thickness show in many cases a poor
approximation. An accurate recovery of the shear stresses requires the
integration across the laminate thickness of the in-plane equilibrium
equations of the beam or shell, that involve the computation of stress
derivatives between finite elements. To avoid this, mixed versions of
the RZT have been developed [13,17] where other improvements in the
definition of additional displacements were also included. The RZT has

been implemented, in all cases with linear kinematics, in beam finite
elements [10,15,3,14], in flat plate elements [18,4,12,21,1] and in
double curvature elements [20]. It has also been implemented in-
cluding non-linear kinematics restricted to small elastic strains in
double-curved shell elements [8] and in a solid-shell element [9]. For
homogeneous laminates, i.e. whose topology is maintained throughout
the domain, the published results show a very good approximation to
in-plane axial stresses in different types of sections but mainly of the
sandwich type. This allows to obtain the transverse shear stresses by
integration in the transverse direction of the in-plane equilibrium
equations. Naturally a very good approximation to the axial stresses is
associated with an even better approximation to the in-plane dis-
placements. In general, the approximations do not include variation
across the thickness of the normal displacement except in reference [1]
and collaterally in reference [9]. Besides that, in several of the works
cited, a very good approximation to frequencies and vibration modes in
beams and flat plates has been reported. The use of non-linear kine-
matics has allowed to compare, in a few cases, buckling loads with very
good accuracy. Another interesting aspect is the possibility of using this
theory (RZT) for delamination problems. The difficulties that appear
then are the lack of homogeneity and the need to update the transverse
interpolation function during the delamination process [5,6]. More
recently Groh and Tessler [11] evaluate the behavior of a partially
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delaminated beam (without following the delamination process) using
the mixed version of the RZT.

In the present work an implementation of the RZT in a beam/shell
of revolution finite element is shown. Initially, the shell theory used and
the basic formulation (FSDT) of the beam/shell element are summar-
ized. Next, two variants of the RZT are introduced, how it is im-
plemented in the described element, and how the formulation of the
element is modified for the case in which there are more than one
defined sections. Then numerical simulations are presented that show a
good correlation in comparisons with solid models and the limitations
that appears when trying to simulate discontinuities due to delamina-
tions. Finally, some conclusions are summarized.

2. Standard beam/shell finite element (FSDT)

2.1. Summary of the shell theory

The shell theory considered is a restriction to the two-dimensional
case of the three-dimensional shell theory developed by Simo et al.
[16]. The configuration of the shell in R2 is defined by (see Fig. 1):

a) the middle surface φ defined by the mapping

�⟶φ R: 2 (1)

b) the director field t defined by the mapping

�⟶St: .2 (2)

The vector t defines the direction of a fiber across the thickness that
remains straight during the deformation (generalized Kirchhoff hy-
pothesis). The domain S ⊂ R is supposed compact with points char-
acterized by S⊂ξ .

With these notation, the geometry of the shell can be written as

≔ ∈ = + ∈ − +φ z z h hΦ x R x t{ / , [ , ]}2 (3)

where − +h h[ , ] defines the shell thickness. Using a Cartesian basis
e e{ , }1 2 in R2 we can write

=
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Denoting geometrical variables in the original configuration Φ0 by
()0 and defining a convective system on both the original and deformed
configurations:

≡

≡
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where the coordinate ξ is associated with convective direction 1. The
following surface measures can be defined over the middle surface

=
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with
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and ζ the coordinate in the out-of-paper direction, that for the usual 2D
cases, i.e. plane stress, plane strain or shell of revolution leads to

=′φ eζ 3. It is useful to define also:

=J ȷ /ȷ0 (8)

The deformation gradient at the middle surface ( =z 0) that can be
written as

≔ ⊗ + ⊗ + ⊗′ ′φ φF a t a eξ ζ
1(0) 2(0) 3 (9)

allows to compute the Lagrange strains = −E F F 1( )T1
2 leading to

= −′ ′ ′ ′φ φ φ φε 1
2

[ · · ]ξ ξ ξ ξ1
(0) (0)

(10)

= −′ ′φ φγ t t· ·ξ ξ
(0) (0)

(11)

= −′ ′ ′ ′φ φχ t t· ·ξ ξ ξ ξ1
(0) (0)

(12)

For shells of revolution, the axial strain along the parallel and a
second principal curvature must also be considered

⎜ ⎟= ⎡

⎣
⎢

⎛
⎝

⎞
⎠

− ⎤

⎦
⎥ε x

x
1
2

13
1

1
(0)

2

(13)

= −χ α
x

x α
x

sin sin
( )3

(0)

1
(0)

1

1
(0) 2 (14)

The stress resultants can be computed in terms of stress measures
defined on the present or the original configurations
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where = ∂ ∂ = ∂ ∂ξ zg x g x/ , /1 2 , and g g,1 2 are the associated contra-
variant vectors. σ and P are the Cauchy and first Piola-Kirchhoff stress
tensors respectively. Besides n1 and m1 are the resultant stress and
bending moment along the line =ξ cte, while l is the across-the-
thickness stress resultant. The vector ∼m1 is denoted “director bending
moment” and allows to define the following “effective stress resultant”

= −
= −

∼
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∼
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1 1
1
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13
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1 (18)

where λi are obtained from the relation

= +′ ′φλ λt t1 1 1 2 (19)

For shells of revolution the following stress resultants must also be
considered
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Fig. 1. Basic definition of the geometry.

F.G. Flores et al. Composite Structures 204 (2018) 791–802

792



∫
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Using the expressions of internal power per unit length, it can be shown
that the effective stress resultants defined above ((18)–(21)) are con-
jugated of the generalized Lagrangian strains ((10)–(14)).

∫
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Assuming the existence of an internal energy function w, resorting to
the Clausius-Duhem inequality and following standard arguments, hy-
perelastic constitutive equations can be formulated in the form
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with

∫=
−

+
ρ ρj dξ1

ȷ h

h

(24)

2.2. Implemented finite elements

The beam/shell model defined above, that implies C0 continuity and
that can be associated with a first order shear deformation theory
(FSDT), was implemented in a simple isoparametric finite element [7],
of two and three nodes with three degrees of freedom per node (both in-
plane displacements and the rotation of the director). To avoid trans-
verse shear locking reduced integration is used, with one integration
point for the 2-node element and two integration points for the quad-
ratic 3-node element that can discretize curved surfaces in more detail.

3. The refined zigzag theory RZT and the RZT3

The refined zigzag theory (RZT), proposed and developed by Tessler
and coworkers [18], has been implemented in multiple structural finite
elements. The objective is to substantially improve the FSDT when la-
minated sections are considered, particularly sandwich sections, i.e.
those composed of two stiff external layers and a flexible core.

In the FSDT the transverse shear strain γ z( ) is constant across the
thickness therefore the shear stress τ z( ) is discontinuous between two
layers with different shear modulus. To reduce this discontinuity the
transverse shear strains are modified including (hierarchical) additional
in-plane displacements ψ with a zigzag transverse profile ϕ z( ) that has
constant derivative =

′
β ϕk

z
k at each layer k:

= +u z u z ψϕ z( ) ( ) ( )FSDT
1 1 (25)

The total shear strain can now be seen as the sum of two components:
one constant η and one discontinuous that lead to two transverse shear
stress components: a discontinuous one and a constant one respectively.
The constant strain component η can be seen as a modification of the
constant strain component of the Reissner-Mindling plate theory

= −η γ ψ (26)

which as before leads to a discontinuity of transverse shear stress be-
tween layers. The definition of the profile function ϕ z( ) from the shear
modules of each layer Gk ( = …k N1 with N the number of layers) is
based on the idea that shear stresses are written as the sum of two parts

= + +
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= + +
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[(1 )]
( )
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z
k
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and to enforce the continuity of the component τ z( )k at each interface
between layers (there are −N 1 interfaces), that leads to

+ =

= −

G β G

β

[(1 )]

1

k k

k G
Gk (28)

where G results from the condition ∫ =−
+ βdz 0h

h (with h2 the total
thickness and hk the thickness of each layer)
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k

N
h
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k
k
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This original version of the RZT leads to a stress τ z( ) that is the sum of a
discontinuous term (associated with η) and a constant term τ , which
makes it impossible to simultaneously satisfy continuity and boundary
conditions. The achievement of the RZT is to go from a FSDT with
constant γ z( ) and where the shearing force is taken only by the stiff
layers (in a sandwich section) to a major contribution of the core to
support the shearing force due to the component τ . The main advantage
of the RZT is that the profile ϕ z( ) makes it possible to better fit the axial
stresses σ z( )x . This leads to a more realistic bending stiffness, which in
turn allows to obtain a transverse shear stress profile with very good
accuracy if it is computed by integration across the thickness of the in-
plane equilibrium equations and not through the usual way of kine-
matics relations plus constitutive equations.

Fig. 2 shows what happens in an asymmetrical sandwich section
with a very flexible core and a bottom layer with a transverse modulus
of elasticity three times that of the top layer. The example corresponds
to a cantilever beam with a constant shearing force (see Fig. 3 and
Table 1). The stress profile corresponds to half length where the in-
fluence of the boundary conditions is quite low. For the FSDT, where
the profile shows strong discontinuities, all the shearing force is held in
equilibrium by the stiff layers proportionally to each shear modulus Gk.
Two profiles are shown for the RZT, one corresponding to the continuos
part τ (RZT-c) and the total one (RZT). Clearly it does no satisfies the
null stress boundary conditions at the external surfaces but in contrast
with the FSDT the core contributes substantially to equilibrate the
shearing force.

A very interesting aspect presented in [13] is the definition of a new
zigzag function. In that work the continuous part τ z( )k is improved such
that besides being continuous is variable and nullifies at the external
surfaces. In that way if ≅η 0 a more accurate approximation is obtained
and, for sections far from boundary restrictions, a direct computation
(i.e. without integration of equilibrium equation) of the shear stresses
can be found reliable.

Obtaining the new function ϕ z( ), which we will denote as RZT3,
begins from proposing for the additional displacement the form:

= + + =u z z χ z ω v z ψ ϕ z ψ( ) [ ( )] ( )a
k2

0
3

0 (31)

where v z( ) is piece-wise linear (zigzag), and is just a part of the new
ϕ z( ). Two terms than influences all the thickness have been added: one
quadratic z χ2

0 and the other cubic z ω3
0. The shear stresses are written in

the same form as in the original RZT (with = −η γ ψ)

= + + ′ + +
= +

τ z G η G v ψ zχ ψ z ω ψ
G η τ z

( ) [(1 ) 2 3 ]
( )

k k k
z

k k
0

2
0

(32)

To redefine the zigzag function ϕ z( ) the following additional con-
ditions are enforced: at the external surfaces is asked (2 new conditions
with respect to the original version)

= ± =τ z h( ) 0k (33)
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(Note that component τ z( )k is nullified, but the total shear stress there
= ± = −τ z h G η( )k N1 is only zero if =η 0) then

+ ′ + + =v hχ h ω(1 ) 2 3 0z
N

0
2

0 (34)

+ ′ − + =v hχ h ω(1 ) 2 3 0z
1

0
2

0 (35)

alternatively adding and subtracting, two uncoupled expressions are
obtained for χ0 and ω0

+ ′ + ′ + =v v h ω(2 ) 6 0z
N

z
1 2

0 (36)

′ −+ ′ + =v v hχ( ) 4 0z
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z
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0 (37)
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z
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Introducing this new definition of the additional displacements in (25)
the shear stress is written as:

= + + ′ − −
= +

τ z G η G v zχ z ω ψ
G η τ z

( ) [(1 ) 2 3 ]
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k k k
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2
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Similarly to the original RZT at each interface ( −N 1 conditions) the
continuity of component τ is imposed
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Note that this condition of continuity can not be enforced in this way if
the shear modulus of the adjacent layers is the same. In that case the
condition can be written simple as

′ − ′ =+v v 0z
k

z
k 1 (42)

Finally the condition that the additional displacement is zero at each
external surface (with = = −v v z h( )0 )

= − = = =ϕ z h ϕ z h( ) ( ) 0 (43)

= − = − +ϕ z h h χ h ω v( ) 2
0

3
0 0 (44)

= = + +ϕ z h h χ h ω v( ) 2
0

3
0 0 (45)

Thus +N 3 conditions are enforced, where the unknowns are χ ω,0 0,
the ′v z

k ( = …k N1 ) and v0.
Fig. 2b also shows the shear stress profile using this approach. It can

be seen that in the stiff external layers the stress begins practically from
zero at the external surfaces (η is very low at the second part of the
beam) and grows until a value that is practically constant in the core.
Fig. 2d shows the functions ϕ z( ) for both versions of the RZT. Although
they look as the same function, the quadratic and cubic terms allow to
adjust the null stress conditions at the external surfaces. Additionally,
note that the ϕ z( ) of the original RZT is null for one layer sections (one
single material) or when there is no change in the value of Gk between
layers, as can be deduced from the expressions (28) and (30). For such
cases a special technique has been proposed in [19] to obtain a non-
zero ϕ z( ). In contrast the RZT3 leads for one material sections to a
parabolic variation of the continuous τ without resorting to any special
technique.

Fig. 2. (a) Section, (b) Profile of τ and (c) function ϕ in FSDT, RZT and RZT3.

Fig. 3. Analyzed beam.

Table 1
Properties of the materials involved.

Mat E[GPa] G[GPa]

1 730 292
2 0.73 0.292
2d × −0.73 10 6 × −0.292 10 6

3 219 87.6
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4. Implementation of the RZT3 in a beam/shell element

In the convective system the configuration (3) can now be written
as:

≔ ∈ = + + ∈ − +φ z ψϕ z z h hΦ x R x t a{ / ( ) , [ , ]}2
1 (46)

and, in order to keep the implementation simple, small strains are as-
sumed, in such a way that the contributions of the base element (FSDT)
can be added directly with those resulting from the additional dis-
placements (ψϕ z a( ) 1).

4.1. Model with a geometrically and mechanically constant section in the
beam span

The strains involved are

̂=
⎡
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⎢
⎢

′

⎤

⎦
⎥
⎥

= εε z ϕ
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γ
ψ S[1, ]z

k k
t t1 (48)

The internal strain energy per unit length of the beam, associated
with the stresses in the cross section normal to a1, results from in-
tegrating in the area of the cross section:
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and
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Thus the expression of the internal strain energy can be written

̂ ̂ ̂ ̂= +ε ε ε εw D D1
2

( )p
T

p p t
T
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that allows to define the stress resultants

̂ ̂
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4.2. Finite element models for non-homogeneous laminates

The implementation of the RZT is based on the idea of hierarchical
degrees of freedom ψ associated with shape functions ϕ. That is to say
that the nodal hierarchical degrees of freedom ψi are on the one hand
associated with nodal-shaped functions N ξ( )i in the plane of the lami-
nate (or axial direction of the beam) and on the other hand to the
function ϕ z( ) in the transverse direction. When a single laminate exists,
i.e. when the section is the same along the beam or shell (homogeneous
laminate), the function ϕ z( ) is unique throughout the domain.

When the properties of the laminate change along the beam or shell,
the function ϕ z( ) is no longer the same for the entire model. Since the
nodal unknowns are the amplitudes ψi and they multiply to the ϕ z( ), if
the latter are not the same at both elements sharing the node, the finite
element model is not conforming any longer, that is to say, the con-
tinuity is lost, since the displacements cease to be the same on both
sides of the interface between elements. A “non-conforming” model, in
this case, leads to inconsistent results.

It is then necessary to modify the transverse interpolation in order
to maintain a continuous model. A case where the properties of the
section change is when it presents some kind of damage. For example,
to simulate the delamination of an interlaminar section, a scalar da-
mage model has been used [5], which involves degrading the (long-
itudinal and transverse) modulus of elasticity of the material of a very
thin layer. This change in the properties of a layer requires modifying
the associated function ϕ z( ).

A distinctive aspect of the FEM is that in each element e there is a
single “material” or a single “section” and as we have seen the function
ϕ defined by the RZT depends on the properties of the materials. Thus,
it can be said, that each element has a function ϕe associated with the
corresponding laminate. Then, to deal with this case, two conceptually
simple options are proposed, which consist in supposing that in the
interface between elements the function ϕ associated with node n re-
sults from:

a) the average of the properties of the sections associated with the
elements adjacent to the node =ϕ f G( )n .
b) the average of the functions associated with the elements ad-
jacent to the node

In this way it can be assumed that the in-plane additional displacements
result from the interpolation (for a two-node element)

= +u ξ z N ξ ϕ z ψ N ξ ϕ z ψ( , ) ( ) ( ) ( ) ( )a
1 1 1 2 2 2 (54)

where the N ξ( )n are the linear Lagrange polynomials

= −

= +

N ξ ξ

N ξ ξ

( ) (1 )

( ) (1 )

1 1
2

2 1
2 (55)

whereas the transverse interpolation functions will be, for case a)

= +

= +

( )
( )

ϕ z f G z G z

ϕ z f G z G z

( ) [ ( ) ( )]

( ) [ ( ) ( )]

l r

l r

1 1
2

1 1

2 1
2

2 2
(56)

where G z( )lI and G z( )rI are the mechanical properties of the sections on
the left (l) and on the right (r) of node I.

While for case b) they are

= +

= +

ϕ z ϕ z ϕ z

ϕ z ϕ z ϕ z

( ) ( ( ) ( ))

( ) ( ( ) ( ))

l r

l r

1 1
2

1 1

2 1
2

2 2
(57)

with ϕlI and ϕrI the profile functions computed with the properties or
the sections of element to the left and to the right of node I.

The additional axial strain results

= − +ε
L

ϕ z ψ
L

ϕ z ψ1 ( ) 1 ( )ϕ1
1 1 2 2

While the additional shear strain at the element center is

= ∂
∂

= +γ u
z

β z ψ β z ψ1
2

( ) 1
2

( )ϕ
a 1 1 2 2

(58)

Then the total strains can be written as
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Some differences appear with respect to the formulation with
homogeneous section, since now, for practical implementation pur-
poses, the contributions of each node, and therefore of each function of
transverse interpolation ϕ, are split.

The relevant stress components can be written in the form

= = εσ E ε E Sk k k k p p
1 1 (61)

= = ετ G γ G Sz
k k

z
k k t t

1 1 (62)

That replaced into the internal strain energy per unit length, allows to
integrate in the section (compare with Eq. (49)):

∫
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Then the expression of internal strain energy per unit length can be
written as

= +ε ε ε εw D D1
2

( )pT p p tT t t
1 (64)

where the following matrices have been defined
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∫=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

G
β β

β β β β
β β β β

dAD
1

( )
( )

t
A

k

1 2

1 1 2 1 2

2 1 2 2 2 (66)

That allows to define the stress resultants
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where now
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from which additional stress resultants are the average of the values in
σ and the associated strains result from adding the contributions in ε ;
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This proposal ensures continuity of the displacements, that is to say
a C0 conforming approach, but uses within a element a function ϕ that
depends on the mechanical properties of the adjacent element.
Individually in each element a function ϕ z( )e is defined dependent on
the mechanical properties of the section (which are a function of the
level of damage in the case of delamination) that satisfies the continuity
of the component τ z( )e . But this property disappears when combining
the functions of two elements with different properties (Eq. (31)) or
using properties that are not strictly those of the element (Eq. (56)).
This is what happens in the case of an element with contiguous ele-
ments (left and/or right) with different mechanical properties. It must
then be pointed out that:

• That in such element e the profile functions have to be combined
using (56) or (57) that depend in a non-linear way on the properties
of the material

• That the properties of the material associated with the element (and
its level of damage) are kept

• And consequently that combination of ϕ between elements and the
use of the element material will lead to a discontinuous τ function
and the properties used in its definition will be lost.

5. Examples

In the examples presented below, comparisons will be made be-
tween the 2D beam/shell element described in Section 2 (of two nodes
B2) including the refined zigzag theory (RZT3) and results obtained
using a two-dimensional solid element (four-node quadrilateral Q4).
The objective is to use the simplest possible configurations (one-di-
mensional in the case of the beam) so that the comparisons and the
aspects that are intended to be shown are easy to visualize. We intend
to compare two things: a) Overall structural behavior, including dis-
placements, vibration frequency and buckling loads and b) Local stress
states, including axial stress and shear stress profiles. On the other
hand, we seek to evaluate the behavior of the RZT in case of an abrupt
change in the properties of the section, which is what happens on the
delamination front. Examples with some similar characteristics have
been studied in reference [11] to evaluate possibilities of the mixed RZT
for the study of delamination. Here some of their conclusions will be
contrasted with present results.

5.1. Cantilever beam with constant shear

The first example considered is a cantilever beam with a load at its
free end, i.e. with a constant shearing force, as outlined in the Fig. 3. A
width =b 20mm has been assumed. The section is an asymmetric
sandwich composed of isotropic materials. The properties of the ma-
terials are indicated in the Table 1 while the laminate stacking se-
quences with the thickness of each layer and the corresponding mate-
rial are indicated in Table 2. Two sections are described, in the second
case a thin layer (0.01 mm) in the union between the core and the upper
layer is replaced by a damaged material (2d) with very low rigidity in
order to simulate a total or partial delamination.

For the comparison a load =F 20.01 N is considered, that is a
shearing force per unit width =T 1.0005 kN/m and an average shear
stress over the cross-section of =τ 0.05ave MPa. As reference a model
with 4-noded solid elements (Q4) was used, including 400 divisions
along the beam span and 37 across the thickness, 12 in each external
layer and 12 in 16mm of the thickness of the core plus 1 element in the
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sublayer of thickness 0.01mm. To avoid an “ad hoc” distribution of the
load over the nodes at the free edge, the vertical displacements of those
nodes are prescribed to have a single value. For the beam element (B2)
a fine mesh of 400 elements was considered, with the same axial dis-
tribution as the mesh of solids, although a much coarser mesh leads to
the same results. To compare the results obtained with both models,
four sections have been selected, indicated in Fig. 3, designated by 1–4
and located respectively at 1: L

16
, 2: L

8
, 3: L

4
and 4: L

2
of the fixed support.

5.1.1. Original undamaged beam
For the beam model (B2) the vertical displacement of the center of

the free edge results =u 0.01805z
B2 mm and for the solid model

=u 0.01808z
Q4 mm, with a difference of only 0.2 %. For a uniform

density = ×δ 4 103 kg/m3 and maintaining the condition that all the
nodes at the free edge move the same vertical value, the fundamental
period obtained are =T 3.0982B2 ms and =T 3.1042Q4 ms respectively,
also with a difference of 0.2% which is congruent with the slightly
lower stiffness of the solid model.

Fig. 4 shows the profiles of horizontal displacements and axial
stresses for the four sections mentioned. The displacement profiles of
the solid model are slightly curved in the zone closest to the support
where some discrepancies with the beam model can be seen. These
differences disappear as one moves away from the support. With re-
spect to the axial stresses they are practically coincident between both
models at the four sections analyzed. This is very important because it
allows us to think that it is possible to evaluate shear stresses by in-
tegration in the z-direction of the axial equilibrium equation. Besides,
the profiles closest to the support indicate a local bending of the lower
layer with a sign change in the stresses, while in the more distant
sections there are only tensile stresses in the lower layer.

Fig. 5a shows the profiles of transverse shear stresses for the four
mentioned sections obtained with the solid model and with the beam

model by integration of the axial equilibrium equation using the com-
puted axial stresses. The profile changes a lot in the first half of the
beam then remains practically constant. In the vicinity of the support
the shearing force is taken mainly by the rigid layers, where the highest
shear stresses τxz

max occurs. Near the support the results are coincident in
the core area but the reference model (Q4) indicates that the lower layer
takes less shear than what the beam model indicates (and vice versa for
the upper layer). An excellent agreement from =x

L
1
8 on can be seen,

and as one moves towards the free edge, the shearing force is mainly
taken by the flexible core.

Fig. 5b shows the profiles of transverse shear stresses computed
using the finite element standard based on displacements, that is, ob-
taining strains from the displacements and using the constitutive
equations. In this figure there are two sets of curves, “k + c” indicates
kinematic plus constitutive and “c” is the continuous part of the RZT3,
that is, without including the strain measure η. From this graph it can
be concluded that:

• For all profiles, in the core zone the τxz computed by the RZT3 is
almost independent of η and coincide with the solid model

• The influence of η decreases markedly when moving away from the
fixed support and is almost null at half the beam.

• the total shear stress (k + c) gives an average value over the outer
layers but does not approximate correctly the variation in those
layers.

It can be said that the warping restriction imposed by the fixed support
is what precludes the flexible central part from contributing to support
the shearing force. In the section closest to the support, the shearing
force is taken by the rigid outer layers, where a parabolic variation of
the shear stresses similar to what occurs in a section of homogeneous
material is observed for both layers. For the sections away from the
support, shear strains can develop in the central part.

For the case of the undamaged beam, an example with the same
ratios between dimensions and between properties of the materials has
been analyzed in reference [11] with identical shear stress profiles.

5.1.2. Damaged beam along its entire length
In this case the vertical displacement of the center of the free edge

results =u 0.18027z
B2 mm for the beam model and =u 0.18794z

Q4 mm for
the solid model, with a difference above 4% that is explained below.
The fundamental period now results =T 8.470B2 ms and =T 8.704Q4 ms
and a difference of 2.7%.

Fig. 6 shows the profiles of horizontal displacements and axial
stresses for the four sections mentioned. The displacement profiles are
very similar in both models, slightly displaced to the left in the case of
the beam model due to its larger stiffness. The RZT allows capturing the
discontinuity in the weak layer, dividing the section into two parts

Table 2
Stacking sequence (a) undamaged laminate (b)
damaged laminate.

Mat Thickness [mm]

(a)

3 2.00
2 16.01
1 2.00

(b)

3 2.00
2d 0.01
2 16.00
1 2.00

Fig. 4. Profiles of horizontal displacements and axial stresses.
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where a linear approximation of the horizontal displacements seems
appropriate. Regarding the axial stresses, although they look similar,
there are some differences especially in the part closest to the support.
This is important because it implies that when computing shear stresses
by integration of the equilibrium equation, differences between both
models will be found. Clearly all the profiles indicate a local bending,
with almost identical values of tensiles and compression stresses, of
each stiff layer “independent” one of the other.

Fig. 7.a shows the profiles of transverse shear stresses for the four
mentioned sections obtained with the solid model and with the beam
model by integration of the equilibrium equations from the axial
stresses. Naturally shear stresses not only cancel out on the external
surfaces but also on the weak layer. In the solid model it can be seen
that the shearing force is mainly taken by the rigid layers with a low
contribution of the core, that is even smaller in the vicinity of the
support. The beam model in contrast predicts the same profile for all
sections, so just one curve is included in the plot. This is because the
RZT function ϕ has spent its potential in predicting the discontinuity
and does not have the additional possibility to correctly approximate
the distribution of axial stresses in the area near the fixed support. This
is also seen in Fig. 7.b where now the continuous component of the
shear stress is practically zero (not shown) and only the part associated
with the strain measure η is relevant (just Section 1 shown).

This also explains the larger stiffness of the beam model. In a section
with a very weak layer the RZT leads to a practically constant shear
strain across the thickness, just as it happens with the FSDT in an un-
damaged section where it is necessary to use a shear correction factor
(SCF). The RZT does not use SCF, so in this case it is stiffer (4%) than
the solid model.

From these plots it can be concluded that for a section that includes
a very weak layer:

• The RZT substantially improves the FSDT capturing the dis-
continuity, but it is stiffer than the solid model

• The shear stresses away from the kinematic restriction (fixed sup-
port) can be accurately determined by integration of the equilibrium
equation.

• The RZT predicts a constant profile of shear stresses along the beam,
controlled exclusively by the strain measure η and therefore dis-
continuous

In the paper by Groh and Tessler, a beam clamped at both ends with a
normal traction load of sinusoidal variation and a shear traction load of
cosinusoidal variation applied on the external surfaces with different
value, whose resultant is an axial component and a moment is studied.
The cross-section is asymmetric with a much weaker thin central layer
(h/100). In this example, on one hand, the maximum relationship be-
tween modules is of the order of −10 3 (in this work is −10 9), on the other
hand the geometric configuration (bi-clamped) and loads (variable
shear) do not allow to observe the aspects described here.

5.1.3. Partially damaged beam
Finally we consider the case in which the first half of the beam is

undamaged and that in the second half the union between the core and
the upper layer is damaged. For the beam model the point of union of
the two sections is critical. Three formulations to model the change of
section in the beam are used, the two conforming models mentioned in
the previous section and the non-conforming model. Fig. 8a shows the

Fig. 5. Profiles of shear stresses for the undamaged beam.

Fig. 6. Profiles of horizontal displacements and axial stresses in the damaged beam.
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vertical displacement of the beam axis with the three beam models plus
those obtained with a solid model used as reference results. It can be
seen that the non-conforming model leads to unacceptable results,
while the two conforming models give almost identical results and
show a stiffer behavior than expected. This larger stiffness is associated
with the important restriction imposed by the continuity of the addi-
tional variable ψ. The isolated point on the curve “Undamaged” denotes
the vertical displacement of the original undamaged beam axis at =x L

2
. It can be seen in the reference solid model, that the damage of the
second half implies a stress redistribution and a greater displacement at
half of the beam than in the undamaged case. In contrast in the con-
forming beam models this displacement is smaller. Fig. 8b shows the
additional displacement =ϕ z ψ( 8.005) that occurs at the top border of
the core. In the case of the reference model (Q4) this value is obtained
by subtracting from the displacement of the point the weighted average
of the bottom and top surface displacements of the section. The strong
discontinuity that appears in the non-conforming model can be ob-
served.

The other aspect that must be considered is that, in the case of a
delamination process, on the delamination front or tip of crack there is
a stress concentration that can hardly be captured with a beam model.
It was shown above that for a discontinuity in the section the RZT leads,
using kinematic equations, to a constant shear strain in the section and,
using the constitutive equations, to constant shear stress in each layer.
Fig. 9 compares the stress profiles at two sections located symmetrically
with respect to the section change, at a distance =d L

160 . The references
“Q” indicates results obtained with solid elements and “B” obtained

with beam elements, while “U” (undamaged section) indicates the
section to the left of the section change and “D” (section Damaged)
indicates the section to the right of the section change. Fig. 9.a com-
pares the profiles of axial stresses. It can be seen that the solid model
has, as expected, a gradual change between one section and the other,
while the beam model indicates extremely abrupt changes with inver-
sion of the sign of the stresses. The results with the solid model are
much more alike the fully damaged beam that can not transmit shear
stresses between the lower and upper part. In the Fig. 9b the profiles of
shear stresses are shown. Again, few changes between profiles in the
solid model are seen, with a strong concentration (in the undamaged
part) at the coordinate z of the layer where damage exists. While in the
beam model the shear stresses (obtained by integration of the equili-
brium equations) show a parabolic distribution in each stiff layer and
very low values in the core and is not able to predict the stress con-
centration present in the solid model.

In the work of Groh and Tessler the same beam above mentioned is
studied, but now the thin weaker layer includes a partial delamination
in 1/10 of its length. The original elastic modulus of the material is
roughly 1/10 of the modulus of the rest of the layers in the laminate,
while for the degraded material its elastic properties are reduced to 1/
100 of the pristine ones. The results presented are very good compared
to the reference solution obtained with solid elements. However, the
stress profiles do not correspond strictly to the points along the beam
where section changes, so it can not be assured that in those points the
stresses will be obtained accurately with the RZT. Besided, they men-
tion modeling problems involved due to the discontinuity in cross

Fig. 7. Transverse shear stress profiles in the damaged beam.

Fig. 8. Partially damaged beam (a) transverse displacement of the axis (b) additional displacement in the upper border of the core.
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sections and the need to employ strategies to handle it. For this reason,
in this paper raises the requirement to enrich the formulation in order
to be able to assess with some precision the stresses on the delamination
front in order to establish a strategy to follow a delamination process.

5.2. Buckling of a cylinder under axial load

In this example, the behavior of a cylinder clamped at both ends and
subjected to axial load is studied. The radius of the cylinder is =R 10 m
and the total length =L 20 m while the thickness is =t 250 mm with a
section defined by a symmetric sandwich laminate with the material
properties indicated in the Table 3 and the stacking sequence in Table 4
where the principal direction of the laminate is the direction tangent to
the parallel.

Only the lower half of the cylinder has been modeled by imposing
symmetry conditions at middle length. This arbitrarily restricts the bi-
furcation mode to such symmetry but this is irrelevant for the purposes
of the comparison. The discretization with one-dimensional 2-node
elements B2 includes meshes of 100, 200 and 400 elements, while
meshes with two-dimensional elements Q4 include 20 elements in the
thickness (6 in each outer layer and 8 for the core) and 100, 200, 400,
800, 1600 and 3200 divisions in the axial direction in order to obtain a
converged solution for comparison.

Fig. 10 shows the convergence in the critical load and the number of
half waves as a function of the discretization in the axial direction. The
shell of revolution element converges very fast and even with the
coarsest discretization of 100 elements the results are very good. Also
with the coarsest discretization but with 50 3-noded elements, the same
results as those obtained with the finest discretization using 2-node
elements are found (6.974 [MN/m] and 13 half waves). Besides, as
expected, the two-dimensional element converges much more slowly
but does to a lower critical load value (6.761 [MN/ m]) and the same
number of half waves. This result shows three aspects:

• A well known one, which indicates that a solid model requires a very
fine discretization (a very high number of elements) to obtain a
converged solution. Notice that in this case the discretization is 2D

and therefore easy to use, but that in general most of the problems
require a 3D discretization.

• The shell model including the RZT converges much faster, that is,
with discretizations that are 1 order of magnitude smaller in the
length, and in addition is 1D, so that the amount of degrees of
freedom involved is at least 2 orders of magnitude less.

• The FSDT+RZT model can not capture all the details of the be-
havior through thickness, which leads to slightly stiffer results but
with values representative of the structural behavior.

Fig. 11 shows the buckling mode of the cylinder for solid and shell
models. The figure also includes the buckling mode that occurs in a
cylinder where the inner layer and the core have been separated

Fig. 9. Partially damaged beam. Profiles of σx and τxz.

Table 3
Material Properties (EI and GIJ en GPa) for buckling problem.

Mat. E1 E2 E3 ν ν,12 13 ν23 G G G, ,12 13 13

1 50 10 10 0.05 0.25 5
2 0.01 0.01 0.07585 0.01 0.01 0.0225

Table 4
Laminate stacking sequence for buckling problem.

Mat. Thick. [mm] Orient. [degrees]

1 12.5 0
1 12.5 90
2 200.0 0
1 12.5 90
1 12.5 0

Fig. 10. Convergence in buckling load and mode.
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(delaminated) along 1
20

of their length L in the central zone (in this case
due to the characteristics of the element in axisymmetric form, that is to
say along all the parallel). The buckling mode in such case is local,
which can not be captured by the shell model including the RZT which
can only capture discontinuities in the displacements in the plane of the
shell.

6. Conclusions

The objective of this paper is to study the influence of dis-
continuities of the cross section in the behavior of the refined zigzag
theory (RZT). For this purpose, a two-dimensional shell element
(curved beam and shell of revolution) and the basic aspects of the RZT
are initially presented. Then an example with and without dis-
continuities is detailed analyzed. Besides the performance of the RZT in
a buckling problem is studied. The conclusions that are obtained from
the study for sandwich sections are:

• For beams without discontinuities in the section:
-The stress states obtained in the usual FEM way (kinematics plus
constitutive equations) are very good in areas away from those
points with kinematic restrictions (supports).
Even at such points the axial stresses are obtained with very good
accuracy, which allows computing the shear stresses by integra-
tion in the transverse direction of the equation of equilibrium in
the axial direction

• For beams with discontinuities in the section:
-The RZT allows to represent the discontinuity in the in-plane
displacement (not in the normal direction).
-The RZT loses the ability to correctly represent the axial strain
across the section, so that the precision in computing the shear
stresses by integration and the bending stiffness decreases.
-The strain measure = −η γ ψ is dominant, leading to a stiffer
model than expected with uniform states of transverse strain and
therefore discontinuous shear stresses.

• For beams with an abrupt change of the properties of the section
(beam partially damaged):
-A “non-conforming” approach leads to inconsistent behavior.

-The conforming approaches introduce a significant restriction so
the behavior becomes stiffer. Then in the case that is of particular
interest here, i.e. when a thin layer has a very low modulus of
elasticity associated with a degradation or damage process, none
of the described conforming options leads to acceptable results.
-The axial stresses are not determined correctly in the dis-
continuity so they can not be used to obtain a reasonable ap-
proximation for shear stresses.
-It is not possible to capture the stress concentration that occurs in
a discontinuity.

• Shell buckling
-The models with beam/shell elements converge rapidly and lead
to very good results.
-For partially damaged sections it is not possible to predict that
the results will be correct.
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