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Abstract In this paper, type V intermittency is stud-
ied using the M function methodology developed in
the last years. This methodology is applied on two dif-
ferent maps to evaluate the reinjection probability den-
sity function (RPD), the probability density of laminar
lengths and the characteristic relation. We have found
that the RPD can be written as an exponential function,
where the uniform reinjection is only a singular case.
Also, the probability density of laminar lengths can be
a nondifferentiable function when the local map has a
nondifferentiable point inside the laminar interval. On
the other hand, the characteristic relation is not unique,
and it depends on the localmap.Therefore, the behavior
of the reinjection processes and the statistical proper-
ties for type V intermittency is wider than the previous
studies have described. Finally, it is noted that the M
function methodology is a suitable tool to analyze type
V intermittency.
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1 Introduction

Chaotic intermittency is a route to deterministic chaos,
where dynamical systems show transitions between
regular phases and chaotic bursts. The regular or lami-
nar phases can be regions of pseudo-equilibrium and/or
pseudo-periodic solutions, while at the bursts ones the
evolution is chaotic [1–4]. Intermittency was classified
in three types called I, II and III, in accordance with
the Floquet multipliers of the system or to the eigenval-
ues in the local Poincaré map [5,6]. Later studies have
included other types of chaotic intermittencies: type
V, X, on–off (in–out), eyelet and ring [7–13]. Distinct
physical phenomena have shown chaotic intermittency
[14–22]. Additionally, it has been observed in econom-
ical andmedical systems [23–25].Wenote that a deeper
understanding about chaotic intermittency can improve
the knowledge of these phenomena.

The local map and the reinjection mechanism deter-
mine the chaotic intermittency for one-dimensional
maps [1,2,4]. The local map specifies the intermittency
type (I, II or III), and the reinjectionmechanism returns
the system trajectories from the chaotic zone to the
laminar one. The reinjection probability density (RPD)
function represents this mechanism. The RPD estab-
lishes the probability that trajectories are reinjected
inside the regular zone. Therefore, to calculate accu-
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rately the chaotic intermittency phenomenon, the cor-
rect determination of the RPD function is significant.
It is important to note there was not a general method-
ology to calculate the RPD. Then, different approaches
were implemented, where the most common one have
been to consider an uniform RPD [1–3,5,6].

In the last years, a more general methodology to
evaluate the RPD has been developed, which is called
here the M function methodology. This new method-
ology has shown to work accurately for several maps
exhibiting type I, II and III intermittencies [4,26–37]. In
this paper, we implement this methodology to describe
typeV intermittency.We show thismethodologyworks
accurately for type V intermittency, and the reinjec-
tion processes may include RPD functions other than
the uniform one. Also, we show that the characteristic
relations can acquire other forms than those previously
published.

The rest of the paper is organized as follows. In
Sect. 2, we describe the type V intermittency charac-
teristics, the M function methodology and two piece-
wise maps with type V intermittency. The reinjection
probability density, the probability density of the lam-
inar lengths and the characteristic relation are given in
Sect. 3. Finally, Sect. 4 presents the analysis and con-
clusions.

2 Models and methods

In this section, the description of type V intermittency,
the M function methodology and the studied maps are
introduced.

2.1 Type V intermittency

The concept of type V intermittency was, for the first
time, introduced in Refs. [38–40]. However, in this sec-
tion we closely follow the description made in [4].

Type I, II and III intermittencies are characterized by
continuous local map. However, type V intermittency
appears in maps with nondifferentiable, even discon-
tinuous, local maps.

Type I intermittency begins when one eigenvalue of
the fixed point reaches +1 and a channel between the
bisector line and the local map appears (tangent bifur-
cation). On the other hand, type V intermittency occurs
when a nondifferentiable point (NDP) and a fixed point

collide also forming a channel between the bisector line
and the map. But here, there is not a tangent bifurcation
because the local map is nondifferentiable or discon-
tinuous at this point.

For type V intermittency, the local map is composed
of two maps with different slopes: one for the left side
of the NDP and the other one for the right side. These
maps describe a “V” [38,39].

Some maps exhibiting type V intermittency were
studied in Refs. [38,39]. One of them can be written
as:

F(x) =
{

F1(x) = (x − a)2 + b for x ≥ xd
F2(x) = A rnd(x) + B for x < xd

(1)

where xd is the discontinuous point and rnd(x) is a
random number in [0, 1]. The parameters A and B ver-
ify that the reinjection occurs below the intersection
between the bisector line (xn+1 = xn) and the curve
xn+1 = F1(x). a and b adjust the variation of function
F1(x) with the control parameter ε = F1(xd) − xd .
The value F1(xd) moves toward the bisector line for
decreasing ε. xd is a fixed point for ε = 0 (F1(xd) =
xd ). The slope of F1(x) at the discontinuity point is
dF1(xd)/dx = s, which is considered independent of
ε. The variation of a and b with s and ε is:

a = 4ε − s

2

b = ε − s2

4

(2)

With random reinjection in an interval around a
point, for s �= 0 and s �= 1 when ε → 0, the aver-
age laminar length l̄ results:

l̄ = log(ε)

log(s)
+ β(s) (3)

where β(s) does not depend on ε. For s = 1:

l̄ = a

ε
+ β(s) (4)

Finally, for s = 0:

l̄ = a log
[− log(ε)

] + β(s) (5)
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In [39,40], other two maps were analyzed. The right
side of one map, regarding the NDP, can be written as:

xn+1 = F2(xn) = xn − a sin(xn) − ε (6)

The parameter a verifies: 0 < a < 1, and the control
parameter is ε ≥ 0. When ε = 0, type V intermittency
appears. The laminar length is:

l =
∣∣∣∣
∫ xout

x

dx

a sin(x) + ε

∣∣∣∣ = | ln(ε)|
a

+ �(x) (7)

where x is the reinjected point, xout = ε/(1− a) is the
lower end of the laminar interval and �(x) is:

�(x) = 1

a
ln

(
2a(1 − a) sin(x)

1 + cos(x)

)
(8)

In [39], a random RPD with probability φ(x) between
the entrance at point c and the exit point xout was
considered. Accordingly, the average laminar length
results:

l̄ =
∫ c

xout
�(x)φ(x)dx + 1

a
| ln(ε)| (9)

The right part of the second map studied in [39,40]
was:

xn+1 = F2(xn) = ζ xn − δx2n − ε (10)

This map is a generalization of Eq. (1). Following a
similar procedure, the average laminar length is:

l̄ = | ln(ε)|
1 − ζ

+
∫ c

0

1

1 − ζ
ln

(
(1 − ζ )2ζ x

|xδ + ζ − 1|
)

φ(x)dx

(11)

Equations (3), (9) and (11) show that the character-
istic relation for type V can be written: l̄ ∝ ln(ε).

Type V intermittency has been observed in real sys-
tems. Intermittent chaotic bursting in Hindmarsh–Rose
(HR) model had been identified to display type V inter-
mittency characteristics in a nonsmooth map. Near of
the period-3 bursting, the intermittent chaotic behav-
ior showed the alternation between phases close to
the period-3 bursting and irregular bursting. The scale
law of bursting was similar to those of type V inter-
mittent chaos generated in a nonsmooth map [41].

In [42,43], a exhaustive research of the intermittent
chaotic bursting and spiking from theoretical mod-
els and biological experiments was carried out, and
the difference between chaotic spiking and intermit-
tent chaotic bursting was studied. The authors inves-
tigated and compared the intermittent chaotic spiking
with smooth characteristics and the intermittent chaotic
burstingwith nonsmooth-like characteristics. The scale
law of the averaged length of periodic phase (charac-
teristic relation) for intermittent chaotic bursting was
similar to those of type V intermittency generated in
nonsmooth systems and type I intermittency simulated
in smooth system, while the intermittent chaotic spik-
ing was only classified as type I.

2.2 Evaluation of the RPD function: the M function
methodology

The description of the theoretical framework that
accounts for a wide class of maps and dynamical
systems exhibiting intermittency, called M function
methodology, is briefly presented.

Let us to take account of a general one-dimensional
map: xn+1 = F(xn). The RPD function, denoted here
by φ(x), determines the probability that trajectories
are reinjected into a point x inside the laminar interval.
Then, theRPDestablishes the statistical behavior of the
reinjection trajectories, which depends on the specific
form of F(x) [1,2,4].

In this methodology, developed to deal with inter-
mittency, the RPD function is not directly obtained
from the numerical or experimental data. A new func-
tion, M(x), is previously calculated [4,26–31]:

M(x) =

⎧⎪⎨
⎪⎩

∫ x
x̂ τφ(τ) dτ∫ x
x̂ φ(τ) dτ

, if
∫ x
x̂ φ(τ) dτ �= 0,

0, otherwise,
(12)

where τ represents the reinjected points around the
unstable fixed point and x̂ is the lower boundary of
reinjection point (LBR).

M(x) is an auxiliary function used to evaluate the
RPD, and it is a quotient between two integrals which
softens the fluctuations of the experimental or numer-
ical data used to construct it [26–33]. On the other
hand, M(x) corresponds to the average over the rein-
jection points in the interval [x̂, x]; hence, its numer-
ical estimation is more robust than the direct eval-
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uation of the function φ(x). In addition, the calcu-
lation of M(x) from the data series is very simple:
M(x) ∼= 1

N

∑N
j=1 x j , where the data set (reinjection

points) {x j }Nj=1 must be sorted from the lowest to the
highest, i.e., x j ≤ x j+1.

In previous papers, we found that M(x) satisfies a
linear approximation for a wide class of maps exhibit-
ing type I, II and III intermittencies [26–29,31]:

M(x) =
{
m

(
x − x̂

) + x̂, if x̂ ≤ x ≤ c,
0, otherwise,

(13)

where the slope m ∈ (0, 1) is a free parameter—
determined by the nonlinear map—that governs the
reinjection process. Introducing Eq. (13) in Eq. (12),
the corresponding RPD function results [26,27,29]:

φ(x) = b(α)
(
x − x̂

)α
, with α = 2m − 1

1 − m
, (14)

where b(α) is a normalization parameter, b(α) =
(α + 1)/(c − x̂)α+1. The usually considered uniform
RPD is recovered for m = 1/2 (α = 0), i.e., uniform
reinjection is obtained as a particular case of the new
theoretical formulation. Note thatφ(x) can depart from
a uniform reinjection, e.g., limx→0 φ(x) tends toward
infinity when 0 < m < 1/2 (α < 0) and zero, when
1/2 < m < 1 (α > 0).

The M(x) function is determined by the parameters
m and x̂ ; also it is easier to obtain than the complete
RPD function. Note that M satisfies M(x̂) = x̂ ; then,
it allows to evaluate the LBR. As the slope m deter-
mines the value of the exponent α in the RPD function
(see Eq. 14), it rules the reinjection mechanism and has
direct influence on the probability density of the lam-
inar length, on the average laminar length and on the
characteristic relation.

For intermittency without noise, the M(x) function
is determined by the nonlinearmap; eachmap produces
a different M(x) function, defined by the parameters
m and x̂ . Then, the M(x) function stores the nonlinear
information of the map [4,35,36].

2.3 Piecewise maps

Maps defined on intervals of the real line have interest
in nonlinear dynamics and chaos [44]. In this paper, we
study piecewise maps, F(x):

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(x), y0 ≤ x < y1,
f2(x), y1 ≤ x < y2,
.

.

.

fm(x), ym−1 ≤ x ≤ ym,

(15)

where y1, y2, . . . , ym are real numbers.
To analyze the behavior of the M function method-

ology in type V intermittency, two piecewise one-
dimensional maps with type V intermittency are stud-
ied (called here Map1 andMap2). It must be noted that
the Map2 is a generalization of the map introduced in
[39,40].

2.3.1 Map1

TheMap1 is built with three functions: linear, quadratic
and reinjection. We have selected this map because it
is defined by simple functions, but, at the same time, it
shows interesting reinjection processes. The map can
be written as:

F(x) =

⎧⎪⎨
⎪⎩

F1(x) = a1x + ε, x̃ ≤ x < 0,
F2(x) = ε + x + a2x

2, 0 ≤ x < xm ,

F3(x) = x̃ + (ym−x̃)(ym−x)γ

(ym−xm )γ
, xm ≤ x ≤ ym ,

(16)

where ym = F(xm) = 1, x̃ is the lower boundary of
return [4], 0 < a1 < 1 is the slope of the straight line,
a2 is the coefficient of the quadratic term in F2(x) and
finally ε is the control parameter. If x̃ = 0, the map
is defined inside the interval [0, 1]. Note that F1(x) is
a straight line and F2(x) is the local map for type I
intermittency. The function F3(x) produces the rein-
jection process, and it depends on γ . Therefore, this
map allows us to analyze different types of reinjection
mechanisms using different values of γ . Figure 1 shows
this map and one reinjection trajectory.

Map (16) has three fixed points:

x1 = ε
1−a1

,

x2 =
(−ε

a2

)0.5
,

x3 = x̃ + (ym−x̃)(ym−x3)γ

(ym−xm )γ
,

(17)

If ε < 0, the fixed points x1 and x2 exist, and x1 is
less than zero. They are equal zero if ε = 0, and they
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disappear for ε > 0. Accordingly, for ε = 0, the fixed
points x1 and x2 collide in one fixed point x0 = 0.

Also map (16) possesses a discontinuous point at
x = 0, which collides with the fixed point x0 for
ε = 0. The fixed point vanishes, and type V inter-
mittency can appear for 0 < ε 	 1. The iteration
procedure—governed by a1, a2 and ε—gives increas-
ing values of xn generated from an initial one, close to
F(x̃). A chaotic burst—govern by F2(x) and F3(x)—
occurs when x > 0, which ends when the trajectory is
reinjected into a point in the laminar zone. Then, a new
iterative process—governed by ε, a1 and a2—will be
developed producing larger values of the new succes-
sive iterative points.

This map can generate two reinjection mechanisms.
The first one from points x < x0 − c, where F1(x)
returns the iterative process inside the laminar interval.
The second mechanism is from x > x0 + c, where
F3(x) maps points inside the laminar interval as it is
indicated in Fig. 1. x0 − c and x0 + c are the lower and
upper ends of the laminar interval, respectively. Note
that 2c is the length of the laminar interval.

In this paper, only the second mechanism is consid-
ered. It must be noted that the firstmechanism produces
discontinuous RPD—this phenomenon will be studied
in a following paper.

Therefore, the reinjection mechanism is given by
F3(x); then γ drives it, whereas a1, a2 and ε determine
the laminar phase duration.

2.3.2 Map2

The Map2 is given by Eqs. (18) and (19). When γ = 1
system (18) reduces to those presented in a seminal
paper about type V intermittency [40]. This map is
shown in Fig. 2.

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F1(x) =
[
f 1/γ (b0)− f 1/γ (b1)

b0 − b1
(x − b1) + f 1/γ (b1)

]γ

, − 0.8π ≤ x < − 0.5π,

F2(x) = 0.8π − g+ F3(xout)
xout + 0.5π x + 0.5π [F3(xout) − g]− 0.8πxout

xout + 0.5π , − 0.5π ≤ x < xout,

F3(x) = x − a sin(x) − ε, xout ≤ x < 23π
20 ,

F4(x) = 20[0.8π + F3(xout)]
π

x − 19.2π − 23F3(xout), 23π
20 ≤ x ≤ 6π

5 ,

(18)

where b0 = − 0.8π , b1 = − 0.5π , xout = ε/(1 − a),
g is the gap between F2(xout) and F3(xout) and the
function f (x) is:

-0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1
F(x)

x

Fig. 1 Map1 for γ = 2, ε = 0.001, a1 = 0.5, a2 = 1

-2 -1 0 1 2 3

-2

-1

0

1

2

3

x =c0

F(x)

x

Fig. 2 Map2 for γ = 0.5, ε = 0.001, a = 0.25. The upper
end of the laminar interval, x0 = c, is indicated by the vertical
dashed-dot line
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f (x) = 10[1.2π − F3(xout)]
3π

x + 3.2π − 5F3(xout)

3
(19)

Equations (18) and (19) allow us to obtain several
reinjection processes, being the case studied in [40]
only one process (γ = 1).

TheMap2, for ε �= 0, has one fixed point: x0 = π +
arcsin(ε/a). In [40], the laminar interval is xout ≤ x ≤
x0 = c;where xout = ε/(1−a).Note that the amplitude
of the laminar interval is as large as the turbulent regime
amplitude. However, to compare the new results with
the previous ones given in [40],weuse the same laminar
interval (see Fig. 2). Then, F1(x) returns the trajectories
from the chaotic interval to the laminar one.

3 Results

In this section, the intermittency behavior forMap1 and
Map2 is analyzed. To study the reinjection processes
for these maps, we shall carry out several numerical
experiments or tests considering different reinjection
processes.

3.1 Reinjection process for Map1

The first test considers γ = 1, ε = 0.001, a1 = 0.9,
a2 = 1, N j = 30,000, c = 0.1 and x̃ = x0 − c where
N j is the number of reinjected points. Note that the
lower boundary of return is the lower limit of the lami-
nar interval; then there is no reinjection frompoints x <

x0−c. The reinjected points inside the laminar interval,
� = [x0−c, x0+c], are mapped by F3(x) from points
placed inside the interval�0(x) = F−1

3 [x0−c, x0+c].
The theoretical and numerical M(x) functions are

shown in Fig. 3. Red points are the numerical data, and
the blue line is the minimum square approximation.
TheM(x) function is a straight line with slopem ≈ 0.5
(α ≈ 0.0). Therefore, by Eq. (14), the theoretical RPD
can be written as: φ(x) = (2c)−1. Figure 4 shows the
numerical and theoretical RPDs. From the figure, we
can observe that the reinjection process produces an
uniformRPD; also the numerical and theoretical results
have a very good agreement.

Other important function to describe the intermit-
tency is the probability density of the laminar lengths,
ψ(l), which is a global property of the map [1,4]. The
laminar length, l(x, c), is defined as the number of

Fig. 3 M(x) function for map (16) with γ = 1, ε = 0.001,
a1 = 0.9, a2 = 1, N j = 30,000, c = 0.1. Red line is the
numerical data, and the solid line represents the theoreticalM(x)
function. The slope m ∼= 0.5030 and α ∼= 0.0121. (Color figure
online)

Fig. 4 RPD for map (16) with γ = 1, ε = 0.001, a1 = 0.9,
a2 = 1, N j = 30,000, c = 0.1. Points are numerical results, and
the solid line represents the theoretical RPD

iterations that a trajectory carries out inside the lam-
inar interval, and the probability density of the laminar
lengths determines the probability of finding laminar
lengths between l and l + dl, and it is given by [1,4]:

ψ(l, c) = φ[X (l, c)]
∣∣∣∣dX (l, c)

dl

∣∣∣∣ , (20)

where X (l, c) is the inverse of l(x, c). For map (16),
dX (l,c)

dl is given by:

dX (l,c)
dl = ε + x(a1 − 1), x < 0,

dX (l,c)
dl = ε + a2x2, x ≥ 0,

(21)

We highlight that dX (l,c)
dl is a discontinuous function.

From these last equations, we can evaluate l(x, c):

l(x, c) = ln(ε) − ln((a1−1)x + ε)
a1−1 + arctan

(
c

√
a2√
ε

)
√
a2ε

, x < 0,

l(x, c) = arctan
(
c

√
a2√
ε

)
− arctan

(
x

√
a2√
ε

)
√
a2ε

, x ≥ 0,

(22)
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Fig. 5 ψ(l) for map (16) with γ = 1, ε = 0.001, a1 = 0.9,
a2 = 1, N j = 30,000, c = 0.1. Red points are numerical results,
and the blue line represents the theoretical probability density of
the laminar lengths. (Color figure online)

Figure 5 shows the numerical and theoretical proba-
bility density of the laminar lengths for the sameparam-
eters of Figs. 3 and 4. The theoretical ψ(l) was eval-
uated using Eq. (20), and it is shown as a blue line,
whereas the points are the numerical results. There is a
very good accuracy between the theoretical evaluation
and the numerical data. The probability density of the
laminar lengths has two behaviors: one for 0 < l ≤ 40,
in whichψ(l) is a decreasing function and corresponds
to points reinjected inside [x0, x0 + c]; the other one
appears for l > 40 and it is given by points reinjected
in [x0 − c, x0).

We study a second test which considers the same
parameters used in the previous test, with the excep-
tion of the exponent γ , which now is γ = 2; i.e., F3(x)
becomes a nonlinear function. The M(x) function is
shown in Fig. 6. The red and blue lines show the numer-
ical data and minimum square approach, respectively.
From this figure, we can note that the M(x) function
can be considered as a linear function. From the mini-
mum square approach, we have obtained m ∼= 0.3348
and α ≈ − 0.5. The theoretical RPD results as (see Eq.
14):

φ(x) ∼= 1.118 (x + 0.1)−0.5 (23)

Figure 7 shows the numerical and theoretical RPDs.
The theoretical RPD is evaluated using the linear
approximation for the M(x) function. The red points
are the numerical RPD, and the solid blue line rep-
resents the theoretical RPD which is very accurate
approximation to the numerical data. The RPD is a
decreasing function with a high concentration of rein-
jection trajectories close to lower limit of the laminar

Fig. 6 M(x) function for map (16) with γ = 2, ε = 0.001,
a1 = 0.9, a2 = 1, N j = 30,000, c = 0.1. Red line is the
numerical data, and the solid line represents the theoreticalM(x)
function. The slope m ∼= 0.348 and α ∼= −0.466. (Color figure
online)

Fig. 7 RPD for map (16) with γ = 2, ε = 0.001, a1 = 0.9,
a2 = 1, N j = 30,000, c = 0.1. Points are numerical results, and
the solid line represents the theoretical RPD

interval, x0 − c. Similar results have been documented
for other types of intermittency [26,27,30], and there
is theoretical studies about it [4,35].

The third numerical case uses the same parameters
of the first test, but in this case γ = 0.5, i.e., F3(x)
is again a nonlinear function, but different those used
in Test 2. Figure 8 shows the numerical and theoreti-
cal M(x) functions, which result lineal functions with
slope m ∼= 0.6639 (α ∼= 1). Then the RPD results:

φ(x) ∼= 50.0 (x + 0.1) (24)

Note that theRPD is not uniform, and it is an increas-
ing function with high concentration of reinjection
points close to the upper end of the laminar interval,
x0+c. The theoretical φ(x) function increases linearly
as x increases (Fig. 9).

Figure 10 shows the numerical and theoretical prob-
abilities density of the laminar lengths. The solid line
shows the theoretical results, and it was calculated by
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Fig. 8 M(x) function for map (16) with γ = 0.5, ε = 0.001,
a1 = 0.9, a2 = 1, N j = 30,000, c = 0.1. Red line is the
numerical data, and the solid line represents the theoreticalM(x)
function. The slope m ∼= 0.6639 and α ∼= 0.975. (Color figure
online)

Fig. 9 RPD for map (16) with γ = 0.5, ε = 0.001, a1 = 0.9,
a2 = 1, N j = 30,000, c = 0.1. Points are numerical results, and
the solid line represents the theoretical RPD

Fig. 10 ψ(l) for map (16) with γ = 0.5, ε = 0.001, a1 = 0.9,
a2 = 1, N j = 30,000, c = 0.1. Points are numerical results, and
the solid line represents the theoretical probability density of the
laminar lengths

Eq. (20). Red points represent the numerical data. The
theoretical result shows high accuracy regarding the
numerical data.

To evaluate the “duration” of the laminar phases, we
also consider the average laminar length, which can be
evaluated as [1,2,4]:

l̄ =
∫ lm

0
ψ(l, c) l dl =

∫ c

−c
φ(x) l(x, c) dx (25)

where lm is the highest laminar length.
From the numerical data and the theoretical results

shown in Figs. 5 and 10, we can evaluate the first inte-
gral in (25).

On the other hand, by Eqs. (14), (22) and (25), we
can obtain the average laminar length and the charac-
teristic relation:

l̄ =
∫ 0

−c
φ(x)l(x, c)|x<0dx +

∫ c

0
φ(x)l(x, c)|x>0dx

(26)

We have found that for γ = 1, the exponent α ∼= 0. For
α = 0, we can integrate analytically Eq. (25); then, the
average laminar length results:

l̄ =
(
1 − ε

c(a1−1)

)
ln(ε)

2(a1−1) + (ε−(a1−1)c) ln(ε−(a1−1)c)
2c(a1−1)2

+ 1
2(a1−1) + arctan

(
c

√
a2√
ε

)
2
√
a2ε

+
ln

(
1+ a2c

2

ε

)

4a2c

(27)

Figure 11 shows the average laminar length as func-
tion of the control parameter ε for γ = 1—then, it
shows the characteristic relation. The blue line repre-
sents Eq. (27), and the red points are numerical results.
From this figure, the characteristic relation, for ε → 0,
can be approximated as:

l̄ ∝ ε−β (28)

Fig. 11 ln(l̄) as function of ln(ε) formap (16)withγ = 1. Points
are numerical data, and the solid line represents the theoretical
results, Eq. (27)
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Fig. 12 Variation of ln(l̄) as function of ln(ε) for map (16) with
γ = 0.5. Points are numerical results, and the solid line repre-
sents the theoretical approximation, Eq. (29)

Table 1 Values of α,
Eq. (14), for different values
of ε. γ = 0.75

ε α

1 × 10−3 0.3320

1 × 10−4 0.3322

1 × 10−5 0.3232

1 × 10−6 0.3244

1 × 10−7 0.3376

1 × 10−8 0.3332

where β ∼= 0.5.
For γ = 0.5, we have calculated α ∼= 1. Then,

the RPD can be written as: φ(x) = b(x + c), and we
can obtain the theoretical expression for the average
laminar length, which is given by Eq. (29).

l̄ = 2c2(a1 − 1)2
√

(a2ε)
(
c
√
a2/ε

) + a2ε
(
(a1 − 1)c(3c(a1 − 1) − 2ε) + 2(ε − (a1 − 1)c)2 (ln(ε) − ln (ε − (a1 − 1)))

)
8a2c2ε(a1 − 1)3

+
2c

(
1 − ln(ε) + ln(ε + a2c2)

) − 2
√

ε√
a2

(
c
√
a2/ε

)
8a2c2

(29)

Figure 12 shows the characteristic relation for γ =
0.5. The blue line represents Eq. (29), and the red points
are numerical evaluations. When ε → 0, the character-
istic relation can be again expressed by Eq. (28) with
β ∼= 0.5.

From the previous tests, we have found there are a
high accuracy between numerical and theoretical aver-
age laminar lengths.

We also carried out several numerical experiments
using γ = 0.75. We have considered ε = 1 × 10−3 −
1 × 10−8. For all these tests, α ∼= 1/3 (see Table 1).

Fig. 13 Numerical variation of ln(l̄) as function of ln(ε) for map
(16) with γ = 0.75

Table 2 Variation of exponent α for different a1 and γ

a1 − γ γ = 0.5 γ = 0.75 γ = 1

a1 = 0.25 1.0202 0.3378 0.0145

a1 = 0.50 1.0036 0.3320 0.0113

a1 = 0.90 0.9750 0.3320 0.0121

Figure 13 shows ln(l̄) as function of ln(ε) for γ =
0.75. The relation can be represented by a straight line
with slope≈ − 0.5; then, the characteristic relation can
be written as l̄ ∝ ε−0.5.

To study the sensibility of the reinjection process
regarding the slope a1, we evaluate theoretical and
numerically the exponent α for different values of a1.
The theoretical α for different values of a1 and γ is
given in Table 2.

We have found a very good accuracy between them,
and we have obtained that a1 does not influence the
reinjection process. The reinjection is mainly ruled by
the exponent γ . Therefore, for small c, the local map
does not influence the reinjection mechanism.

In previous works, the following relation was ana-
lytically found [4,26,35]:

α = 1

γ
− 1 (30)
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It was applied successfully for maps with continuous
local maps [4,35]. However, Eq. (30) has also been
valid for all the tests here studied. FromTable 2, forγ =
1 we have obtained α ∼= 0 (see also Figs. 3, 4); for γ =
0.5, we have calculated α ∼= 1 (see Figs. 8, 9), and for
γ = 0.75 we have found α ∼= 1/3. On the other hand,
for γ = 2 we have obtained α ∼= − 0.5 (see Figs. 6, 7).

All previous tests verify x̃ = x0 − c, which does not
allow reinjections from points x < x0 − c. However,
the RPDs functions show different behaviors depend-
ing on theγ value.Wehave found three different behav-
iors:

– For γ = 1. there is uniform reinjection.
– For γ > 1, the RPD is a decreasing function with
a high concentration of reinjection points close to
the lower boundary of reinjection.

– For γ < 1, the RPD is an increasing function with
a high concentration of reinjection points close to
upper end of the laminar interval.

We highlight that M(x) functions are lineal for all
tests, and the M function methodology has captured
accurately the numerical results.

On the other hand, we have found that the character-
istic relation can be written as: l̄ ∝ ε−0.5 for different
reinjection processes.

3.2 Reinjection process for Map2

For all tests, to obtain the statistical variables of the
reinjection processes the M function methodology is
applied.

Three different tests are analyzed: γ = 1, γ = 0.5
and γ = 1.5; each one of them produces a different
reinjection mechanism.

3.2.1 Test 1

The first test corresponds to those analyzed in [40],
then γ = 1, and the laminar interval is xout ≤ x ≤ x0.
Figure 14 shows the numerical M(x) function (red),
and its minimum square approximation (blue) for ε =
0.0001, a = 0.25, γ = 1, N j = 50,000. M(x) can be
represented by a linear functionwith slopem ∼= 0.4845
(α ∼= − 0.06). Accordingly, the RPD function results:

φ(x) ∼= (x − xout)α

x0 − xout
∼= 1

x0 − xout
(31)

Note that Eq. (30) is verified: α ∼= 0.

Fig. 14 M(x) functions for Eq. (18). Red: numerical. Blue:
minimum square. Parameters: ε = 0.0001, a = 0.25, γ = 1,
N j = 50,000. (Color figure online)

Fig. 15 Theoretical and numerical RPDs functions for Eq. (18).
Red: numerical. Blue: theoretical. Parameters: ε = 0.0001, a =
0.25, γ = 1, N j = 50,000. (Color figure online)

The comparison between numerical and theoretical
RPDs is shown in Fig. 15. The blue line is the theoret-
ical function, which is evaluated using Eq. (31).

Figure 16 shows the comparison between numeri-
cal and theoretical probability density of the laminar
lengths, ψ(l, c), which is calculated using Eq. (20)
where

dX (l, c)

dl
= − (a sin(x) + ε) (32)

Integrating this equation, we can obtain the relation
between the laminar length and the reinjection point
(see Eq. 33).

l(x, xout) = 1√
a2 − ε2

×
[
ln

∣∣∣∣∣
ε tan(x/2) + a − √

a2 − ε2

ε tan(x/2) + a + √
a2 − ε2

∣∣∣∣∣
− ln

∣∣∣∣∣
ε tan(xout/2) + a − √

a2 − ε2

ε tan(xout/2) + a + √
a2 − ε2

∣∣∣∣∣
]

(33)
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Fig. 16 Theoretical andnumericalψ(l, c) functions forEq. (18).
Red: numerical. Blue: theoretical. Parameters: ε = 0.0001, a =
0.25, γ = 1, N j = 50,000. (Color figure online)

The previous results are in agreement with those
included in [40]. But, other reinjection processes did
not study previously can appear for Map2. Therefore,
we will analyze system (18)–(19) for different values
of the parameter γ .

3.2.2 Test 2

The second test uses the same parameters of the first
test, but γ = 0.5. Then, the main parameters are:
ε = 0.0001, a = 0.25, γ = 0.5, N j = 50,000. The
laminar interval is xout ≤ x ≤ x0. Figure 17 shows the
numerical M function (red) and its minimum square
approximation (blue). M(x) can be approached by a
linear function with slopem ∼= 0.66 (α ∼= 0.94). Then,
by Eq. (14), the RPD is:

φ(x) ∼= 1.94(x − xout)0.94

(x0 − xout)1.94
(34)

Theoretical and numerical RPDs are displayed in
Fig. 18. The theoretical prediction, Eq. (30), establishes
α = 1. Therefore, the error in the evaluation of the α

exponent is 6/100, which is low considering the large
laminar interval (the laminar iterations can reach the
same length that the turbulent ones).

Figure 19 shows the theoretical and numerical prob-
ability density of the laminar lengths, ψ(l, c), which is
calculated using Eqs. (20) and (33). Red points rep-
resent numerical data, and the theoretical result is the
blue line. All the figures show a good accuracy between
numerical data and theoretical predictions although the
large laminar interval.

Fig. 17 M(x) functions for Eq. (18). Red: numerical. Blue:min-
imum square. Parameters: ε = 0.0001, a = 0.25, γ = 0.5,
N j = 50,000. (Color figure online)

Fig. 18 Theoretical and numerical RPD functions for Eq. (18).
Red: numerical. Blue: theoretical. Parameters: ε = 0.0001, a =
0.25, γ = 0.5, N j = 50,000. (Color figure online)

Fig. 19 Theoretical andnumericalψ(l, c) functions forEq. (18).
Red: numerical. Blue: theoretical. Parameters: ε = 0.0001, a =
0.25, γ = 0.5, N j = 50,000. (Color figure online)

It must be noted that M function methodology can
capture accurately the RPD. In this test, φ(x) increases
with x . There is a high concentration of reinjection
points close to the upper end of the laminar interval x0.
Again the M function methodology has been a suitable
tool to describe the reinjection process.
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3.2.3 Test 3

This test has the same parameters that Test 1, but
γ = 1.5. The laminar interval is xout ≤ x ≤ x0. The
numericalM(x) function (red) and itsminimum square
approach are shown in Fig. 20. Note that a straight line
is a good approach for M(x) function (m ∼= 0.3878
and α ∼= − 0.3772).

TheRPD is calculated using theM functionmethod-
ology:

φ(x) ∼= 0.6228(x − xout)−0.3772

(x0 − xout)0.6228
(35)

The results calculated with Eq. (35) are compared
with numerical data in Fig. 21. The RPD is again a
nonlinear function, which decreases with increasing x .
Note the high concentration of reinjected points close
to the lower limit of the laminar interval xout.

Fig. 20 M functions for Eq. (18). Red: numerical. Blue: min-
imum square. Parameters: ε = 0.0001, a = 0.25, γ = 1.5,
N j = 50,000. (Color figure online)

Fig. 21 Theoretical and numerical RPD functions for Eq. (18).
Red: numerical. Blue: theoretical. Parameters: ε = 0.0001, a =
0.25, γ = 1.5, N j = 50,000. (Color figure online)

Fig. 22 Theoretical and numerical ψ(l) functions for Eq. (18).
Red: numerical. Blue: theoretical. Parameters: ε = 0.0001, a =
0.25, γ = 1.5, N j = 50,000. (Color figure online)

Finally, the probability density of the laminar lengths
is shown in Fig. 22. The theoretical φ(x) andψ(l) have
good accuracy with regard the numerical results.

3.2.4 Characteristic relation

Equation (33) establishes the relation between the lam-
inar length, l, and the reinjection point, x . For ε → 0,
this equation can be can be approximated by [40]:

l(x, xout) ∼= | ln(ε)| + ln(2a(1 − a)) + ln[tan(x/2)]
a

(36)

Therefore, using Eqs. (14) and (36), the average lami-
nar length results:

l̄ =
∫ x0

xout

b(x − xout)α
[| ln(ε)| + ln

(
2a(1 − a) tan

( x
2

))]
a

dx

(37)

where b = (α + 1)
[
(x0 − xout)−α−1

]
. Then, the aver-

age laminar length can be approximated by:

l̄ ≈ | ln(ε)|
a

+ k (38)

where k is a constant. To obtain this equation, we have
considered that xout does not depend on ε in the last
term of Eq. (37).

Figure 23 shows l̄ as function of ln(ε) for uniform
reinjection (γ = 1 and α = 0). Numerical data are
shown as red points and the blue line is evaluated
using minimum square, which has a slope |hn| ∼= 3.4.
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Fig. 23 Characteristic relation for Eq. (18) when a = 0.25,
γ = 1.0, N j = 50,000, c = 0.1. Red: numerical data. Blue:
minimum square approach. (Color figure online)

Table 3 Values of α,
Eq. (14), for different values
of ε. γ = 1.5

ε α

1 × 10−3 − 0.3185

5 × 10−4 − 0.3145

3 × 10−4 − 0.323

2 × 10−4 − 0.322

1.5 × 10−4 − 0.32

1 × 10−4 − 0.332

5 × 10−5 − 0.333

3 × 10−5 − 0.343

Remember that Eq. (38) is an approximated equation
which predicts a slope |h| = 1/a = 4.

To analyze nonuniform reinjection process, we eval-
uate several tests for γ = 1.5 and different values of ε.
Table 3 shows the exponent α calculated using the M
function methodology for ε = 1 × 10−3 − 3 × 10−5.
The theoretical prediction, Eq. (30), is verified (α ∼=
− 1/3).

On the other hand, Fig. 24 shows l̄ as function of
ln(ε) for γ = 1.5 and α ∼= −1/3. Red points are the
numerical data, and the blue line is theminimum square
approach.As in the uniform reinjection test, the relation
l̄ = l̄(ln ε)) is a straight line, but the numerical slope is
smaller, |hn| ∼= 3.1. It must be noted that the assump-
tions used to obtain Eq. (38) introduce errors in the
slope evaluation. However, Eq. (38) captures the linear
relation between l̄ and ln(ε) for uniform and nonuni-
form RPDs.

Fig. 24 Characteristic relation for Eq. (18) when a = 0.25,
γ = 1.5, N j = 30,000, c = 0.1. Red: numerical data. Blue:
minimum square approach. (Color figure online)

4 Analysis and conclusions

In this work, we have applied the M function method-
ology to describe the reinjection process for type V
intermittency, which occurs when the local map has a
nondifferentiable or discontinuous point. This method-
ology had worked accurately for type I, II and III inter-
mittencies, where the local map is continuous. Here,
we have shown that this methodology also works accu-
rately for type V intermittency. It can capture very well
the RPD function, and other intermittency statistical
properties (probability density of the laminar lengths
and average laminar length), for different maps and
different reinjection mechanisms.

We have studied two maps. The local map for the
first one, Eq. (16), is composed of two simple func-
tions, one is linear and the other one is quadratic. How-
ever, the local part of the second piecewise map, Eqs.
(18)–(19), is given by a sine function. Also, the used
laminar intervals were very dissimilar for both maps.
For map (16), it was small (c 	 1) and symmetrical
around the vanished fixed point, but for map (18), the
laminar interval only considered positive values and it
was large (c ≈ π ). But, in spite of these differences the
M function methodology produced accurate results.

We have shown that the RPD can be a nonuniform
function. It is described by an exponential functionwith
exponent α. To obtain the analytical RPD is only nec-
essary to evaluate the slope m of the M(x) function
(α depends on m). The uniform reinjection is only a
singular case when m = 1/2 (α = 0).

Also, we have obtained that the local map does not
influence the reinjection process when c 	 1. How-
ever, if the local map is nondifferentiable, the laminar
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length, l(x, c), and the probability density of the lami-
nar lengths, ψ(l), are nondifferentiable too.

For Map1, the probability density of the laminar
lengths, ψ(l), has two behaviors: the first one for rein-
jected points inside the interval − c ≤ x ≤ x0, which
need more than ≈ 40 iterations to leave the lami-
nar interval; the second one for reinjected points in
x0 < x ≤ c which need less than ≈ 40 iterations to
leave the laminar interval. Then, ψ(l) is nondifferen-
tiable function for l ≈ 40 (see Figs. 5, 10). For Map2,
ψ(l) is a differentiable function with a high concentra-
tion between 20 < l < 40 (see Figs. 16, 19, 22). ψ(l)
is a differentiable function because the laminar inter-
val only contains points verifying x > 0; then, it is not
symmetrical around the vanished fixed point.

The average laminar length, l̄, acquires different
form for each map. The Map1 verifies l̄ ∝ ε−β ; how-
ever, the characteristic relation for Map2 is l̄ ∝ ln(ε).
Therefore, there is not only one characteristic relation
for type V intermittency, and it depends on the local
map.

Finally, we highlight that the reinjection mechanism
for type V intermittency has a wide behavior, and the
uniform reinjection is only a particular case. The rein-
jection depends, mainly, on the global part of the map.
Also, itmust be highlighted thatwe have not considered
the reinjection process from points adjacent to the lam-
inar interval, which can produce discontinuous RPDs.
This phenomenonwill be analyzed in a followingpaper.
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