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ABSTRACT
The solid-shells are an attractive kind of element for the
simulation of forming processes, due to the fact that any kind
of generic 3D constitutive law can be employed without any kind
of additionalmodification, besides the thermomechanic problem
is formulated without additional assumptions. Additionally, this
type of element allows the three-dimensional description of the
deformable body, thus contact on both sides of the element can
be treated easily. The present work consists in the development
of a triangular prism element as a solid-shell, for the analysis
of thin/thick shell, undergoing large deformations. The element
is formulated in total Lagrangian formulation, and employs the
neighbour (adjacent) elements to perform a local patch to enrich
the displacement field. In the original formulation by Flores, a
modified right Cauchy-Green deformation tensor (C̄) is obtained;
in the present work a modified deformation gradient (F̄) is
obtained,which allows togeneralise themethodology and allows
to employ awide range of constitutive laws. The element is based
in three modifications: (a) a classical assumed strain approach
for transverse shear strains (b) an assumed strain approach for
the in-plane components using information from neighbour
elements and (c) an averaging of the volumetric strain over the
element. The objective is to use this type of elements for the
simulation of shells avoiding transverse shear locking, improving
the membrane behaviour of the in-plane triangle and to handle
quasi-incompressible materials or materials with isochoric plastic
flow. Some examples have been evaluated to show the good
performance of the element and results.
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1. Introduction

Solid-shellshavebeenduring the last 15 years (de Sousa,Cardoso,Valente, Yoon,
Grácio, & Jorge, 2005; Dvorkin & Bathe, 1984; Hauptmann, Doll, Harnau, &
Schweizerhof, 2001; Hauptmann& Schweizerhof, 1998; Hauptmann, Schweizer-
hof, & Doll, 2000; Klinkel, Gruttmann, &Wagner, 2006; Parente, Valente, Jorge,

CONTACT Vicente Mataix vmataix@cimne.upc.edu

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17797179.2017.1340013&domain=pdf
http://orcid.org/0000-0002-6512-0009
http://orcid.org/0000-0002-7567-2691
http://orcid.org/0000-0003-0528-7074
http://orcid.org/0000-0002-0804-7095


2 V. MATAIX ET AL.

Cardoso, & de Sousa, 2006) an important improvement in the shells simulations,
providing a reliable simulations and avoiding the problematic that are associated
to the kinematics hypothesis and plane stress constitutive laws related to the
use of the shell element (or any kind of bidimensional elements as plates and
membranes). The main advantages when using solid-shell elements are: (a)
general 3D constitutive relations; (b) large transverse shear can be considered,
and considering additional elements along the thickness improve this behaviour;
(c) there is no need to consider transitions between solid and shell elements
(all the elements are solids); (d) contact forces can be introduced directly in
the geometry and in a realistic way without any additional technique, which is
especially important for the consideration of friction; (e) the element is rotation-
free, avoiding the storage and computation of this variables; (f) in the case where
we have non-parallel boundaries this can be modelled correctly.

For the consideration of strongly non-linear problems, problems where the
contact-friction, large deformations and complex constitutive laws are con-
sidered, the use of low interpolation order elements is preferred. Most of the
existing solid-shells are linear hexahedron (Abed-Meraim&Combescure, 2009;
de Sousa et al., 2005; Dvorkin & Bathe, 1984; Hauptmann & Schweizerhof, 1998;
Hauptmann et al., 2000, 2001; Klinkel, Gruttmann, & Wagner, 2006; Parente
et al., 2006; Schwarze & Reese, 2011; Schwarze, Vladimirov, & Reese, 2011;
Sena, Alves de Sousa, & Valente, 2011; Sena et al., 2016) (usually tri-linear 8-
node brick), which have two main disadvantages; the first one is the hourglass
effect, which is called this way due to the characteristics shapes adopted in the
proper modes and a stabilisation is required to reduce this problems; the second
problematic is themeshing of the plane, due to the fact thatmeshing quadrilateral
is less performant than triangles. For this reasons, the triangular prisms (wedges)
could be considered an interesting alternative (Flores, 2013a, 2013b), specially
for the second problem mentioned, but this kind of geometry is not exempt
of problematic, owing to the low order of interpolation of the geometry, when
a linear triangular prism is considered. This last problem can be solved with
the consideration of the neighbours elements,1 in consequence the element
becomes quadratic in the plane solving this last problem. Additionally some
recent works (Wang, Chalal, & Abed-Meraim, 2016) consider both quadratic
wedge and hexaedron in order to tackle the locking problems that appear in the
linear elements, but these kind of elements carry their own discussion between
accuracy and computational cost, among practical reasons.

In addition to this, it is well know that low interpolation order elements in
the standard displacement formulation (in contract to themixed formulation) in
the consideration of slender structures and incompressiblematerials suffer severe
locking effects. The transverse shear locking provokes problems in the bending
behaviour, especially when more slender is the element. The membrane locking
appears especially in the initially curved shells when bending is preponderant
without middle surface stretching. A curvature thickness locking can appear in
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problems with initially curved geometry due to artificial transverse strains and
stresses under pure bending. Finally, the volumetric locking can appear when the
material present an incompressible, nearly incompressible behaviour or elastic–
plastic materials with isochoric plastic flow (typical in metals).

The content of this proceeding will be the following one: (1) The theory
concerning to the element is presented, (2) Some test cases are presented to
show the good performance of the element, (3) complementary information is
presented in the Appendix 1 for a better understanding of the theory.

The element has been implemented into Kratos (Dadvand, Rossi, Oñate,
2010), the in-home FEM-Multiphysics open-source code, implemented in C++
with parallelization capabilities. The pre/post-process of allthe presented ex-
amples haven been processed with GiD (Ribó, Pasenau, Escolano, Ronda, user
manual), the CIMNE software for pre- and post-processing.

2. Theory

2.1. Basic kinematics of the standard element

We can found the standard isoparametric interpolations for the linear 6-node
triangular prism (or wedge) in (1), where XI , xI and uI correspond with the
original coordinates (or undeformed configuration), the current coordinates (or
deformed configuration) and the displacements in the node I respectively.

X(ξ) =
6∑

I=1

NI(ξ)XI (1a)

x(ξ) =
6∑

I=1

NI(ξ)xI =
6∑

I=1

(
XI + uI

)
(1b)

The shape functions NI(ξ) from (2) are defined in function of the local
coordinates (ξ , η, ζ ), where the two first define the position in the plane of
the triangular base and the third one corresponds with the coordinate along the
prism axis.

N1 = zL1,N2 = ξL1,N3 = ηL1

N4 = zL2,N5 = ξL2,N3 = ηL2
(2a)

In this definition the third triangular coordinate and the axis interpolation is
defined as:

z = 1 − ξ − η, L1 = 1
2(1 − ζ ), L2 = 1

2(1 + ζ ) (2b)

We can define following the standard formulation the Jacobian matrix at
each integration point as (7a), in consequence we can compute the Cartesian
derivatives of the shape functions. At each element centre a local Cartesian triad
can be defined as in (3b), that allows to compute the Cartesian derivatives with
respect to this local system following the orthotropy directions.
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J = ∂X
∂ξ

→ NI
X = J−1NI

ξ (3a)

R = [
t1, t2, t3

] → NI
Y = RTNI

X (3b)

As itwill be shown in the following section, the leftCauchy tensorC ismodified
into the C̄ using the assumed strain techniques that in one case includes an
additional internal degree of freedom α, leading to the improved tensor C̄. The
balance equation to solve in the strong form for a Total Lagrangian2 framework
in large strain hypothesis is (4). Where S is the second Piola-Kirchoff stress
tensor (PK2). {

g1(u,α) = ∫
V0

1
2S(C̄) : δuC̄dV0 + gext = 0

g2(u,α) = ∫
V0

1
2S(C̄) : δαC̄dV0 + gext = 0

(4)

2.2. Modifications of the standard element

The prism presented in the previous lines corresponds with the standard, and it
need to be modified for the sake of large strain elastic–plastic analysis of shells.
For this purpose, different modifications are introduced in the metric tensor C.
The discretisation to be introduced in the prism solid-shell can be defined in first
place with the discretisation of the triangular middle surface and in second place
with the discretisation along the thickness. We will assume that the upper and
lower face are almost parallel and thus the normal direction can be defined in
function of ζ . In (5), the right Cauchy-Green tensor is decomposed according to
the different behaviours that define classically the shells elements, this means we
decompose in-plane (membrane and bending behaviour), transverse shear and
normal components. The calculation of each one of the different components
will be detailed in the next sections.

C =
⎡
⎣Cm

11 C
m
12 C

s
13

Cm
21 C

m
22 C

s
23

Cm
31 C

m
32 C

n
33

⎤
⎦ (5a)

where the index m, s and n mean membrane, shear and normal behaviour,
respectively. In consequence, this tensor canbedecomposed in three components
as detailed in (5b).

C = C1 (in-plane) + C2 (shear behaviour) + C3 (normal) (5b)

where this components can be defined as:
⎧⎪⎨
⎪⎩
C1 = C11t1 ⊗ t1 + C22t2 ⊗ t2 + C12(t1 ⊗ t2 + t2 ⊗ t1)
C2 = C13(t1 ⊗ t3 + t3 ⊗ t1) + C23(t2 ⊗ t3 + t3 ⊗ t2)
C2 = C33t3 ⊗ t3

(5c)
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Figure 1. Patch performed in the element considering the neighbour elements.

Table 1. Derivatives of the shape functions from (6).

1 2 3 7 8 9

NIξ −1 + η 1 − η z − ξ 1
2 − z ξ − 1

2 0

NIη −1 + ξ z − η 1 − ξ 1
2 − z 0 η − 1

2

2.2.1. In-plane behaviour
The improvement in the in-plane behaviour is the same considered for the EBST
(Flores and Oñate, 2011, 2005; Oñate & Flores, 2005) element, a rotation-free
shell element, where a four-element patch is considered (Figure 1), and the
neighbour nodes allows us to work with a quadratic element in the in-plane
behaviour; for more information about this element we address the reader to
Oñate and Flores (2005), Flores and Oñate (2005). The same computations from
the EBST element can be considered in the upper and lower face as we can see
in the quadratic shape functions from (6) and it derivatives in Table 1.

N1 = (z + ξη),N7 = z
2
(z − 1),

N2 = (ξ + ηz),N8 = ξ

2
(ξ − 1),

N3 = (η + zξ),N9 = η

2
(η − 1) (6)

We define a local system of coordinates from (3b) taking as reference the
components f1 and f2 in the tangent plane and f3 in the normal. In eachmid-side
point of the element we compute the in-plane Jacobian as shown in (7a).

J =
[
Xξ · t1 Xη · t1
Xξ · t2 Xη · t2

]
(7a)
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And in combination of the shape function derivatives we can compute the
Cartesian derivatives in (7b).

[
NI
1

NI
2

]K
= J−1

K

[
NI

ξ

NI
η

]K
(7b)

With the Cartesian derivatives we can calculate the in-plane deformation gra-
dient components fK1 and fK2 , and with it CK

ij which are averaged over each
integration point along the thickness with (8a). As with the rotation-free shells,
when a neighbour is missing the values from the central node of the face are used
for the averaging.

C̄ij(ξ) = L1C̄1
ij + L2C̄2

ij (8a)

The variations are computed as (8b).

δ

⎡
⎣ 1

2 C̄11
1
2 C̄22
C̄12

⎤
⎦ = δ

⎡
⎣ 1

2 C̄
1
11

1
2 C̄

1
22

C̄1
12

⎤
⎦ L1 + δ

⎡
⎣ 1

2 C̄
2
11

1
2 C̄

2
22

C̄2
12

⎤
⎦ L2 = δ

⎡
⎣ Ē11

Ē22
2Ē12

⎤
⎦ (8b)

At each face a modified tangent matrix B̄f relating the incremental tensor
components with the incremental displacements δu can be written as shown in
(9), where just the nodes from the face and it opposite neighbour is considered.

(
B̄f
m

)
3x18

δuf = δ

⎡
⎢⎣

1
2 C̄

f
11

1
2 C̄

f
22

C̄f
12

⎤
⎥⎦ = 1

3

3∑
K=1

δ

⎡
⎣ 1

2 C̄
K
11

1
2 C̄

K
22

C̄K
12

⎤
⎦

= 1
3

3∑
K=1

4∑
J=1

⎡
⎢⎣ fK1 N

J(K)
1

fK2 N
J(K)
2

(fK1 N
J(K)
2 + fK2 N

J(K)
1 )

⎤
⎥⎦ δuJ(K)

(9)

Once the upper and lower in-plane deformation matrices have been computed
we can obtain the deformation matrix corresponding to the integration point by
interpolating (10). [

B̄m
]
3x36 = [

L1B̄1
m L2B̄2

m
]

(10)

We can obtain the equivalent nodal force vector from the integral (11), with∫ 1
−1 SijL

f Jdξ = S̄fij.

rTmδu =
∫ 1

−1

⎡
⎣ S11
S22
S12

⎤
⎦
T [

L1B̄1
m L2B̄2

m
]
Jdξ

=

⎧⎪⎨
⎪⎩
⎡
⎣ S̄111
S̄122
S̄112

⎤
⎦
T

B̄1
m,

⎡
⎣ S̄211
S̄222
S̄212

⎤
⎦
T

B̄2
m

⎫⎪⎬
⎪⎭ δu

(11)
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In (12) the calculation of geometric stiffness for the membrane behaviour is
presented, where we sum the contribution of the nG integrations points along
the direction ζ .

δuTKmG�u =
∫
V

∂

∂u

⎛
⎝δ

⎡
⎣ 1

2 C̄11
1
2 C̄22
C̄12

⎤
⎦
⎞
⎠

T ⎡
⎣ S11
S22
S12

⎤
⎦�udv

=
nG∑
G=1

VolG
3

2∑
f=1

Lf
3∑

K=1

4∑
J=1

{
δuI

[
NI
1 N

I
2
] [ S11 S12

S21 S22

] [
NI
1

NI
2

]}K (12a)

In (12b) the expression is simplified considering the already integrated stresses
from (11).

δuTKmG�u → Considering
∫ 1

−1
SijLf Jdξ = S̄fij

=
2∑

f=1

3∑
K=1

4∑
J=1

{
δuI

[
NI
1 N

I
2
]K [ nG∑

G=1

VG

3
Lf
[
S̄11 S̄12
S̄21 S̄22

]][
NI
1

NI
2

]K
�uJ

}

=
2∑

f=1

⎧⎨
⎩

3∑
K=1

4∑
J=1

{
δuI

[
NI
1 N

I
2
]K [ S̄f11 S̄

f
12

S̄f21 S̄
f
22

][
NI
1

NI
2

]K
�uJ

}⎫⎬
⎭

f

(12b)

2.2.2. Transverse shear behaviour
To avoid the transverse shear locking, we introduce an interpolation in natural
coordinates of mixed tensorial components, a very common practice in the
literature. We consider a linear variation of the transverse shear strain tangent
to the side. Here, we compute a mixed components of the right Cauchy-Green
tensor as (13), where the components relatives to the transverse shear Cη3 and
Cξ3 are written with respect to a mixed coordinate system that includes the in-
plane natural coordinates (η, ξ ) and the spatial local coordinate in the transverse
direction (y3). The components are written in terms of the transverse shear strain
tangent to the side computed in each mid-side point, as seen in Figure 2. Besides
that, the numerical integration is performed along the axis, whichmeansP( 13 ,

1
3).

[
Cξ3
Cη3

]
=
[−η −η 1 − η

ξ ξ − 1 ξ

]⎡⎢⎣
√
2C1

t3
−C2

η3
C3

ξ3

⎤
⎥⎦ = P(ξ , η)

⎡
⎣

√
2f1t · f13

−f2η · f23
f3η · f33

⎤
⎦ (13)

The deformation gradient components are ft (natural coordinate derivative) and
f3 (local Cartesian coordinate derivative), these are expressed in (14a), where j−T

3
are third column of the inverse of the transverse of the Jacobian.
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Figure 2. Nodes considered in the computation of the transverse shear strains.

[
C̄12
C̄23

]
= J−1

p

[
Cξ3
Cη3

]
= J−1

p Pa

⎡
⎣ f1t · f13

−f2η · f23
f3ξ · f33

⎤
⎦ (14a)

f3 =
6∑

I=1

NI
3x

I = [
fξ fη fζ

]⎡⎢⎣
∂ξ
∂y3
∂η
∂y3
∂η
∂y3

⎤
⎥⎦ = ∇ξ (x)j−T

3 (14b)

Themodified transverse shearCartesian components canbe obtained from (14c),
interpolating these values the components from the right Cauchy-Green tensor
can be obtained (14d).

⎡
⎣

√
2f1t

−f2η
f3ξ

⎤
⎦
1

=
⎡
⎣ x3 − x2

x1 − x3

x2 − x1

⎤
⎦ ,

⎡
⎣

√
2f1t

−f2η
f3ξ

⎤
⎦
2

=
⎡
⎣ x6 − x5

x4 − x6

x5 − x4

⎤
⎦ (14c)

[
C̄13
C̄23

]
(ζ ) =

[
C̄12
C̄23

]1
L1 +

[
C̄13
C̄23

]2
L2 =

[
2E13
2E23

]
(ζ ) (14d)

The tangent matrix B̄s is also obtained by interpolating from both faces (15a). In
a similar way to the in-plane behaviour, the internal forces can be obtained from
(15c). Finally, the geometric stiffness matrix can be obtained from (15e).

B̄s(ζ ) = B̄1
s L

1 + B̄2
s L

2 (15a)

where B̄f
s is defined the following way:

B̄f
s =

(
Jfp
)−1

PaB̃
f
s and B̃sδue =

⎡
⎣ δf1t · f13 + f1t · δf13

−δf2η · f23 − f2η · δf23
δf3ξ · f33 + f3ξ · δf33

⎤
⎦ (15b)
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rTs =
∫
V

[
S̄12
S̄23

] [
B̄s
]
2x18 dv = Q̄T

4x1

[
B̄1
s

B̄2
s

]
4x18

(15c)

where Q̄T
4x1 corresponds with the shear internal forces and can be defined as:

Q̄T
4x1 =

∫ 1

−1

⎡
⎢⎢⎣
[
S̄12
S̄23

]
L1[

S̄12
S̄23

]
L2

⎤
⎥⎥⎦ Jdζ (15d)

δuTKsG�u = �

{[
B̄1

B2
s

]
δu
}T

Q̄ → [
Q̄1 Q̄2

]
�
(
B̄1s δu

)

= 1
3

⎛
⎜⎜⎜⎝
(
−Q̄

′
1 + Q̄

′
2

) (√
2δf1t · �f13 + √

2�f1t · δf13
)

(
−Q̄

′
1 − 2Q̄

′
2

) (
−δf2η · �f23 + �f2t · δf23

)
(
2Q̄

′
1 + Q̄

′
2

) (
δf3ξ · �f33 + �f3ξ · δf33

)
⎞
⎟⎟⎟⎠

(15e)

With
[
Q̄

′
1 Q̄

′
2

]
= [

Q̄1 Q̄2
]
J−1
p

2.2.3. Transverse normal behaviour
As introduced previously, to avoid locking (volumetric locking) in quasi-
incompressible problems due to the Poisson effect the EAS (Enhanced Assumed
Strain) formulation is considered. With this formulation we obtain a modified
C3 component.

2.2.3.1. EAS formulation. In the standard EAS method, the convective strain
components are interpolated, in our case as we just want to improve C3 and
some modifications as presented below are considered. At the element centre
(ξ = η = 1

3 and ζ = 0) the Cartesian deformation gradient, and in consequence
the right Cauchy tensor, can be enhanced as shown in (16). So, in this EAS the
changes will affect just to the C33 component, and the C13 and C23 are computed
as presented in the previous section.

fC3 =
6∑

I=1

NIC
3 XI → f̄3 = fC3 e

αζ → C̄33 = f̄3 · f̄3 = C2
33e

2αζ (16)

With this enhancement the deformation matrix, internal forces and geometric
stiffness can be calculated as shown in (17).

δĒ33 = 1
2
δC̄33 = δfC3 · f −C

3 e2αζ + C̄33ζ δα

=
( 6∑

I=1

NIC
3 δuI

)
· fC3 e2αζ + C̄33ζ δα = e2αζBC

3 δue + C̄33ζ δα

(17a)
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rTn =
∫
V
B3S33dv =

∫ 1

−1
e2αζBC

3 S33Jdζ = BC
3 S̄33 (17b)

With the normal enhanced stress S̄33 = ∫ 1
−1 e

2αζ S33Jdζ .

δuTKGn�u = δfC3 · �fC3 S̄33 =
6∑

I=1

(δuI)T
6∑

J=1

NIC
3 NJC

3 S̄33A�uJ (17c)

where the assembling matrix A =
⎡
⎣1

1
1

⎤
⎦

2.2.3.2. Balance equation. In the following lines we will introduce the balance
equation which allows us to obtain the implicit solution of the problem. Because
we will focus in the implicit solution of the problem we will address the reader
to Flores (2013a, 2013b, 2013c) where the explicit solution of the problem is
presented too.

The balance equation related with α DOF from (4) can be expressed as (18a),
where we can obtain the residue and approximating the solution with aNewton-
Raphson technique the residual can be nullified (18b).

δα

∫ 1

−1
S33C̄33ζ Jdζ = 0 → rα =

∫ 1

−1
S33C̄33ζ Jdζ (18a)

∫ 1

−1

[
∂S33C̄33

∂u
�u + ∂S33C̄33

∂α
�α

]
ζ Jdζ + rα = 0 (18b)

With the derivatives ∂S33C̄33
∂u and ∂S33C̄33

∂α
being defined as:

{
∂S33C̄33

∂u = C̄33D3B̄ + 2S33B̄3
∂S33C̄33

∂α
= C̄33

(
D33C̄33ζ + 2S33ζ

) (18c)

Substituting (18c) into (18b) the expression (19a), from which we can deduce
the �α necessary to obtain the equilibrium.
∫ 1

−1

[(
C̄33D3B̄ + 2S33B̄3

)
�u + C̄33

(
D33C̄33ζ + 2S33ζ

)
�α�α

]
ζ Jdζ + rα = 0

(19a)
The previous expression can be condensed in the following expression(19b),
where after integrate the operatorsH and kα are obtained (19c).

H1x18�u + kα�α + rα = 0 then �α = rα
kα

− 1
kα

H�u (19b)
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The full definition ofH1x18 and kα is detailed below:{
H = ∫ 1

−1
(
C̄33D3B̄ + 2S33B̄

)
ζ Jdζ

kα = ∫ 1
−1 C̄33

(
D33C̄33 + 2S33

)
ζ 2Jdζ

(19c)

If the expression is introduced in the balance equation associated with the
displacement in (4) we can obtain (20a).

δuT
∫
V
B̄TSdv − δuTGext = δuTr(u,α) (20a)

From the balance equation the usual finite element matrix system can be ob-
tained, first (20a) can be linearised in the expression (20b).
∫ 1

−1

[
B̄T

(
∂S
∂u

�u + ∂S
∂α

�α

)
+
(

∂B̄T

∂u
�u + ∂B̄T

∂α
�α

)
S
]
Jdζ + r(u) = 0

(20b)
Substituting in (20b) with the standard finite element expressions and (18c).∫ 1

−1

[
B̄T

(
DB̄�u + DT

3 C̄33ζ�α
)

+ SG�u + 2S33B̄T
3 ζ�α

]
Jdζ + r(u) = 0

(20c)
Reordering (20c) we can obtain (20d).∫ 1

−1

[(
BTDB̄SG

)
�u +

(
B̄TDT

3 C̄33 + 2S33B̄T
3

)
ζ�α

]
Jdζ + r(u) = 0 (20d)

The system can be expressed as a fully integrated matrix system (20e), where
KT = KM + KG = ∫ 1

−1 B̄
TDB̄Jdζ + ∫ 1

−1 SGJdζ .
(
KT�u + HT�α

)
+ r(u) = 0 (20e)

Substituting in the last expression with (19b).

KT�u − HT
(
rα
kα

+ 1
kα

H�u
)

+ r(u) = 0 (20f )

Finally all this can be expressed (20g) as a modification of the elemental tangent
stiffness matrix and the internal forces.(

KT − HT 1
kα

H
)

�u − HT rα
kα

+ r(u) = 0 (20g)

Reordering (20g), (20h) can be obtained.{
K̄T = KT − HT 1

kα
H

r̄ = r − HT rα
kα

(20h)
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2.2.3.3. Pull-Back and Push-Forward (Extension of the formulation). The for-
mulation presented until now is broadly the formulation already presented in
the works of Flores (2013a, 2013b, 2013c), the main step forward of this work
is the extension of the formulation. As we have seen the formulation presented
allows us to obtain a modified left Cauchy tensor C̄. With this tensor we are
able to obtain strains in a traditional way, g.e with Green-Lagrange, but we are
unable to work with the Pull-Back and Push-Forward operations, these are
furthermore the underlying operations in the constitutive operations in Kratos.
The fundamental concepts for this are presented in the Appendix 1.

In order to perform these operations we need the deformation gradient
F, or in our case F̄ owing to we are working with a modified right Cauchy
tensor C̄. Obtain one from another is not a trivial operation, and we must
consider additional assumptions to obtain our modified deformation gradient.
In a standard formulation to obtain the deformation gradient Fwe compute (21)
from the material displacement gradient tensor ∇Xu, C can be obtained easily
from here.

F = ∇Xu + I → C = FTF (21)

We will present now (22a) the polar decomposition of F, which will be the
key idea considered to obtain F̄. In this decomposition R represents the proper
orthogonal tensor and U is the right stretch tensor. The right stretch tensor can
be computed from the square root of the right Cauchy tensor (22b). The only
remaining component needed to compute the F̄ will be the modified proper
orthogonal tensor where we will take the assumption of R̄ = R. The computation
of this F̄ is summarized in (22c).

F = RU thus F̄ = R̄Ū (22a)

U = √
C thus Ū =

√
C̄ (22b)

F̄ = RŪ

{
C = FTF → U = √

C → R = F · U−1

Ū =
√
C̄

(22c)

3. Test cases

First of all, we consider as reference the results obtained with previous imple-
mentations of the element by Flores (2013a, 2013b), as well as the results from
Sze, Liu, and Lo (2004), Klinkel et al. (2006). In the following, when ‘Ref.’ is
displayed will refer to this; meanwhile when ‘Cal.’3 is displayed the simulation
will have been performed with the in-home implementation in Kratos.



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 13

Figure 3. Patch test geometry.

3.1. Patch test

The first step in the implementation of an element into a FEM code is the verifica-
tion of the kinematics, for this reason the patch test is understood as a necessary
condition for the convergence of the element. In the case of solid elements it
is expected that when nodal displacements corresponding to a constant strain
gradient (membrane patch test) are imposed, constant efforts are obtained in all
the elements; so in owing to the SPRISM is in fact a solid element this is the
behaviour we should expect. In the case of a solid-shell element clearly this must
satisfy at least the membrane patch test and, although it may not be necessary,
it is highly desirable that the element satisfies the bending patch test as this will
lead to a more robust and reliable element.

Figure 3 shows a patch of elements that has been widely used to access
quadrilateral shell elements and hexahedral solid shell elements, like where are
working with prisms (wedges), we should split in two these elements. The size of
the largest sides is a = 0.24mm and the size of the shortest side is b = 0.12mm,
while the thickness considered is t = 0.001mm. The lower surface has been
located at coordinate z = −t/2. The mechanical properties of the material are:
Young’smodulus E = 106 MPa and Poisson ratio ν = 0.25. Because the problem
considered is linear just 2 integration points across the thickness are used located
in the usual Gauss quadrature positions (ζ = ±1/

√
3).

3.2. Membrane patch test

The prescribed nodal displacements (on the boundary nodes) are defined by the
linear functions (23), and uz = 0 only on the nodes in the lower face to allow
contraction due to Poisson effect. Due to the pure membrane strains developed
in this test, the internalDOF α obtained is zero and constant in all the elements.{

ux = (
x + y

2
) · 10−3

uy = (
y + x

2
) · 10−3 (23)

Using present element SPRISM the correct results are obtained for both the
displacements of the interior nodes according to (23) and the element stresses
(σxx = σyy = 1333.3MPa and σ = 400Mpa).
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Figure 4. Cantilever with point load.

3.3. Bending patch test

In this case, the displacement field associated with a constant bending stress state
is given by (24), that is prescribed on the exterior nodes of both shell faces.

⎧⎪⎨
⎪⎩
ux = (

x + y
2
) · z

2 · 10−3

uy = (
y + x

2
) · z

2 · 10−3

uz = (
x2 + xy + y2

) · 1
2 · 10−3

(24)

We obtain a value for the internal DOF α constant in all elements and equal
to: α = 0.3333 · 10−8. The bending stresses at the integration points are σxx =
σyy = ±0.3849 Mpa,4 and σxy± = 0.1155Mpa5 while the displacements at the
interior nodes correspond exactly with expression (24). So in consequence the
element satisfies this test too.

3.4. Cantilever

A cantilever plate strip of length L = 10mmwidth b = 1mm and thickness t1 =
0.1mm is subjected to a transverse load F = 40N (Figure 4). For the selected
Young’s modulus E = 106MPa, the behaviour is one with large displacements
but small strains. Using different values of Poisson ratio (ν = 0.0, ν = 0.3, ν =
0.49, ν = 0.499 and ν = 0.4999 (quasi-incompresible)) it can be assessed if the
proposed assumed strain techniques allow to avoid, respectively, the transverse
shear locking, the Poisson effect locking and the volumetric locking. At the
same time, different geometries, with different number of divisions in length have
been considered (8, 16, 24, and 32 divisions), one in the width and one across
the thickness with two integration points. The final deformed configurations
(vertical displacement is 70% of the length) is achieved considering small load
steps.

The Figure 5 shows the maximum vertical displacement vs. the load factor
(from 0 to 1) for 5 different values of the Poisson ratio, for the geometry of the
32 divisions in length. The case ν = 0 allows to compare with the reference
value (uz = 7.08mm) and to see if the approach used to cure transverse shear
locking is adequate. The result obtained uz = 7.06mm indicates that effectively
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Figure 5. Evolution of displacement with load factor.

Figure 6. Comparison of results respect ν and the number of longitudinal divisions.

the element is free of transverse shear locking. The second value of Poisson
ratio (ν = 0.30) is used to assess if the EAS technique avoids the appearance
of locking due to Poisson’s effect. In this case, the computed displacement is
uz = 7.03mm that although is not exactly the same value obtained for ν = 0
shows that the proposed method avoids the Poisson’s effect locking allowing
a proper gradation of the transverse normal strain. Finally, the last three values
of Poisson ratio (0.49, 0.499 and 0.4999) allow to observe if the performance of
the element deteriorates significantly in the quasi-incompressible range. It can
be seen that although differences grow with Poisson ratio, this are below 4% for
the higher value considered.

Besides, Figure 6 plots the tip displacement as a function of the mesh density
(number of divisions along the length) for four different Poisson’s ratio. From the
reference results obtained by Fernando G. Flores, it can be seen that convergence
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Figure 7. Cantilever subjected to end bending moment.

Figure 8. Solution for multiple configurations.

deteriorates for Poisson’s ratio larger than 0.499; as it happens in our in-home
implementation, but slightly less significant in this case.

3.5. Cantilever subjected to end bendingmoment

Figure 7 shows a cantilever subjected to end moment M. The problem has
been considered in from the reference Sze et al. (2004). The cantilever forms a
circular arc with its radius R given by the classical flexural formula R = EI = M.
Using the formula, the analytical normalized deflections can be derived to be
(25) where M0 = EI = L. The maximum end moment Mmax is taken to be
M0 at which the beam will be bent into a circle. Figure 8 plots the end moment
against the vertical and horizontal tip deflections for different configurations of
the geometry (8, 16 and 32 subdivisions).

U
L

= M0

M
sin

(
M
M0

− 1
)

,
W
L

= M0

M

(
1 − cos

(
M
M0

))
(25)

3.6. Frequencies test

This example (extracted from Flores (2013a), Olovsson, Unosson, & Simonsson,
2004) considers the dynamic behaviour of a cantilever beam with length, width
and thickness L = 1; b = 0.1 and t = 0.01 respectively. The mechanical
properties are Young ’s modulus E = 100GPa, Poisson’s ratio μ = 0 and mass
density ρ = 1000 kg/m3. The point load applied at the free side (Figure 4) has a
value of 100N with aHeaviside step time function. As the problem is elastic with
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Figure 9. Frequencies behaviour test.

Figure 10. Cook’s membrane geometry.

μ = 0 there is no Poisson’s effect across the thickness nor volumetric locking.
The behaviour is purely bending and it is useful to evaluate the shear locking and
assess the proposed cure. The discretisation includes eight uniform divisions
along the length, one in the width and one element through the thickness. The
solution shown in Figure 9 is a very close behaviour to the reference Flores
(2013a), both for lumped and consistent mass matrix.

3.7. Cookmembrane

This example (see Figure 10) involves a large amount of shear energy and is
commonly used to assess in-plane bending performance. Plane strain condi-
tion will be considered here with two different material behavior: (a) a quasi-
incompressible elastic material with G = 80.1938GPa and K = 40.1 · 104 GPa
corresponding with a Poisson ratioμ = 0.4999 and (b) an elastic-plastic material



18 V. MATAIX ET AL.

Table 2. Isotropic-kinematic hardening law constans.

Yiled stress σy 0.45 GPa
Kinematic hardening modulus h 0.12924 GPa
Reference hardening modulus σ0 0.45 GPa
Infinity hardening modulus σ∞ 0.715 GPa
Hardeningexponent η 16.93
Pure isotropic hardening θ 1

Figure 11. Displacement vs. number of elements for the elastic case.

with elastic propertiesG = 80.1938GPa andK = 164.21GPa implying aPoisson
ratio μ = 0.29 and J2 plasticity with isotropic hardening as a function of the
effective plastic strain ep defined by (26) and the values of the Table 2.

σ ∗
y = Linear hardening + Exponential hardening (26a)

{
Linear hardening = σy + ep · θ · h
Exponential hardening = (σ0 − σ∞) · (1 − e−η·ep)

(26b)

The applied load is 100 kN for the elastic case and 5 kN for the elastic-plastic
material. The plane strain condition implies coefficient C33 = 1 at all points
(α = 0), thus the version without ANS for the in-plane components locks
due to the almost incompressibility constraint in the same way that a constant
strain triangle does. Because of that this example is intended to assess how the
improvement in the membrane field collaborates to cure the volumetric locking.

Figures 11 and 12 show a convergence analysis as the mesh is refined, where
the vertical displacement of point C has been plotted vs. the number of divisions
per side. The results have been compared with the reference Flores (2013b),
and other results presented in the same article, where the results that we have
obtained present a very good convergence in comparison.
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Figure 12. Displacement vs. number of elements for the elastic-plastic case.

Figure 13. Geometry of the scoordelis cylindrical roof.

Figure 14. Scoordelis solution. Displacement vs. number of elements.
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Figure 15. Geometry of a semi-spherical shell with a hole, both original and deformed geometry.

Figure 16. Displacement vs. load for R/t = 250.

3.8. Scoordelis cylindrical roof test

In this example, we proceed with a linear analysis of a cylindrical shell under self
weight, which is free along the one side as can be seen in the Figure 13 and it has
been simplified in one quarter of the original size with additional consideration
of the symmetry conditions of the problem. We have considered five different
geometric configurations, with a different number of elements across the side,
until the convergence of the solution have been archived. As we have mentioned
previously, the problem is linear, therefore it is possible to solve the problem
considering just two Gauss points across the thickness.

The problem is membrane dominant, that is why could be interesting to
observe the relevance of the ANS for in-plane components in non-isochoric
problems. The results obtained are shown in the Figure 14, where the results are
compared with our reference Flores (2013a), having a very close convergence to
the reference solution.
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Figure 17. Displacement vs. load for R/t = 1000.

3.9. Sphere test

Some interesting kind of problem to check the suitability of the element is the
problems where an initially double curved geometry. This problem (Figure 15)
is analysed and solved recurrently in the context of large elastic displacements.
The Figure 15 presents the geometry considered in the resolution of the problem,
where once again the symmetry has been considered to simplify the resolution
of the problem. This problem is mainly an inextensional bending problemwhere
Poisson effect has an important role in the behaviour of the structure, in contrast
with the membrane effect that is less significant in this problem. Additionally,
themembrane locking and the curvature-thickness looking canmanifest. Several
meshes have been considered, with 8, 16, 24 and 32 elements by side respectively,
with a middle radius of R = 10mm and thickness of t = 0.04mm (R/t = 250).
The more coarsed is the element, the more it could suffer the looking effect due
to the initial curvature, considering this when solution more differs more than
the 5% from the target values. We are considering the following mechanical
properties, E = 6.825 · 104 GPa and ν = 0.3 (Figures 16 and 17).

3.10. Pull-out of an open-ended cylindrical shell

Figure 18 shows an open-ended cylinder being pulled by a pair of radial forces
P, this problem can be challenging owing to the fact that it involves large
displacements. The problem has been considered in the Reference
Sze et al. (2004), among others. Owing to symmetry, just one-eighth of the
shell is modelled. As can be seen in Figure 18, the parameters considered are
a Young modulus of E = 10.5MPa, Poisson ratio ν = 0.3125, dimensions of
R = 4.953m, L = 10.35m, h = 0.094m andmaximum load of Pmax = 40000N.

The Figure 19 presents the convergence of the solution considering a different
number of elements, having a converged solution for 16 elements per side very
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Figure 18. The open-end cylindrical shell subjected to radial pulling forces.

Figure 19. Open-ended cylindrical shell problem load-deflection curves.

Figure 20. The semi-cylindrical shell subjected to an end pinching force.

close to the reference one (Sze et al., 2004), which employs a standard shell
element.

3.11. Pinched semi-cylindrical

Figure 20 shows the semi-cylindrical shell (Sze et al., 2004) subjected to an end
pinching force at the middle of the free-hanging circumferential periphery. The
other circumferential periphery is fully clamped. Along its longitudinal edges,
the vertical deflection and the rotation about the Y-axis are restrained.
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Figure 21. Semi-cylindrical shell load-deflection curves.

Figure 22. Slit annular plate deformation solution.

The solution obtained is shown in Figure 21 presents the load-deflection
curve, in our solution the behaviour obtained is slightly different from the one
presented in the reference Sze et al. (2004), this can be due to the fact that we are
taking the displacement in the point where the load is applied, meanwhile the
reference solutions corresponds to a shell and the solution corresponds with the
displacement in the middle surface; thus to improve our solution a possible way
to tackle this problematic is add an additional layer and plot the solution in the
point belonging to the middle surface.

3.12. Slit test

The present problem consists in an annular plate which presents a large dis-
placement due to a load applied in one face while the other face is constrained.
This problem is a common benchmark considered to study the behaviour of
shells under large rotations, in or case owing to we are considering a solid-shell
we do not have rotations in our element and it could be considered as large
displacement problem. The solution looks like the solution expected Figure 22.
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Figure 23. Slit annular plate displacement-load solution.

Figure 24. Geometry of the hinged cylindrical panel.

A comparison of the results for the coarse mesh (Figure 23) allows to observe
the influence of the ANS for membrane part that for the maximum load factor
indicate a difference in displacements larger than 4%. The results for the fine
mesh are in excellent agreement with those provided in Flores (2013b).

3.13. Cylindrical panel test

This example Sze et al. (2004), Flores (2013b) considers a rectangular cylindrical
panel simple supported along the straight sides and free along the curved sides,
that is subjected to a vertical point load in its centre (see Figure 24). The middle
surface geometry is defined by the length of the panel L = 508mm, the radius
of the cylinder R = 2540mm and the half angle θ = 0.1 rad. The behaviour of
the panel presents a limit point, followed by a strong loss of strength and a final
stiffening once the curvature is inverted. Two different thicknesses for the same
mid-surface geometry have been considered t = 12.7mm and t = 6.35mm
that for the thin case leads to a snap back of the loaded point. This example
has been widely used to assess the performance of shell elements and non-linear
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Figure 25. Thin geometry displacement-load.

Figure 26. Thick geometry displacement-load.

Figure 27. Initial geometry.

path-following techniques, like the arc-length. For this problem twomeshes have
been considered with 8 and 16 elements per side. In this case, 2 elements in the
thickness direction have been used that allows to introduce the hinge in the
middle surface and then to compare with solutions obtained with shell elements.
The vertical displacement of the loaded point C. Figures 25 and 26 show the
evolution of the load-deflection compared with the reference Sze et al. (2004).
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Figure 28. Load-deflection curves.

3.14. Conical shell test

This example is selected to demonstrate the ability of the developed finite element
to deal with strongly non-linear situations. The geometrical data are taken from
Klinkel et al. (2006). Here, elastic–plastic material behaviour is assumed. All
necessary material and geometrical data are depicted in Figure 27. The non-
linear behaviour is computed using an arc-length algorithm with displacement
control. The constitutive law considered is a J2 hyperelastic-plastic model with
isotropic hardening as a function of the effective plastic strain ep defined again
by (26) and the values of the Table 2.

The results are depicted in Figure 28, where w denotes the vertical displace-
ment of the upper edge. The load deflection diagramdemonstrates that our result
is close in the order of magnitude to the reference, thus some improvements are
needed in the modelisation, in special the relative to the relative to the arc-length
strategy.

3.15. Wrinkling test

The problem consists Alexander, Sleight, and Wang (2005), Flores (2013a) of
a square membrane (see Figure 29) with side a = 229mm made of a thin film
of Mylar with thickness t = 0.0762mm. The Mylar mechanical properties are
E = 3790MPa and μ = 0.38. The top and bottom edges are clamped and
the lateral edges are free. The top edge is subjected to a uniform horizontal
displacement � = 1mm along the edge.

Two uniform structured mesh with 26 − 26 and 51 − 51 nodes, with 1250
and 5000 elements respectively have been considered. Figures 30 and 31 plots
two out-of-plane displacement profiles along the centre of the square in both
Cartesian directions, as well as the deformation obtained. The solution that we
obtain are very close to those obtained in the reference Flores (2013a).
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Figure 29.Wrinkling test.

Figure 30. Transverse displacement profiles along the centre of the square: y = a/2.

3.16. FSI-Vein test

Anadditional test that has beenperformed to check the robustness of the element,
which consists in a simple FSI (Fluid-Structure Interaction) simulation of an
elastic vein. This element has clear advantages from the common approaches
performed nowadays, which consist normally in the consideration of multiple
layers of solid elements (usually hexahedron), despite the vein is under shell
stresses. This owing to the need of having a proper and correct definition of the
irregular geometry and thickness that a real vein can show, besides a correct
definition of the interface for a proper FSI simulation, which cannot correctly
modelled with a conventional shell element. So this element has advantages of
the solid element, and like the element is clearly created to compute shell stresses
there is no need to consider additional layers of solid to enrich the behaviour of
the solid.
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Figure 31. Transverse displacement profiles along the centre of the square: x = a/2.

This problemwas originally proposed inNobile (XXXX) and later reproduced
in Valdés, Miquel, & Oñate (2009). Its aim is to simulate the FSI arising in the
modelling of blood flow in human cardiovascular system. As described in Valdés
et al. (2009), the problem consists of a thin elastic vessel, which in this case has
beenmodelled with the current element considering an hyperelastic constitutive
law, conveying the blood flow, which is modelled as an incompressible fluid
using the Navier-Stokes equations.

Regarding the geometry, it consists in a straight cylinder of radius r0 =
0.005m which length and thickness are L = 0.05m and t = 0.001m. The
blood physical parameters are ρf = 1000 kg/m3 and dynamic viscosity μf =
0.003 kg/ms, yielding a kinematic viscosity νf = 3e − 06m2/s. Regarding the
solid parameters, the density is ρs = 1200 kg/m3 while the Poisson ratio and
Young modulus are νs = 0.3 and E = 3e05Pa. Regarding the boundary condi-
tions, both sides of the vein are clamped (radial displacements allowed) and an
overpressure of p = 1333.2Pa (see (27)) is imposed at the inlet boundary for
3ms.

p =

⎧⎪⎪⎨
⎪⎪⎩
1333.2 sin

(
2π t

)
if t ≤ 0.25ms

1333.2 if 0.00025 < t ≤ 0.275ms
1333.2

(
1 − sin

(
2π(t − 0.275)

))
if 0.275ms < t ≤ 0.3ms

0.0 otherwise

(27)

Figures 32 and 33 collects a comparison between the results inValdés et al. (2009)
and the obtained ones for three control points placed at 0.25, 0.5 and 0.75 l, being
l the tube length. Regarding the radial displacements (Figure 32), it can be seen
that the obtained results are similar to the reference ones. The major differences
appear after the peak value when the vein section is recovering its shape. Besides,
this vein retraction is much clear in the presented solution and can be clearly
noted by the negative radial displacements. This behaviour ismore similar to real
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Figure 32. Radial displacement.

Figure 33. Pressure.

hemodynamics and has been also observed in similar problems in the literature
(Calvo Plaza, 2006).

On the other hand, the pressure evolution is also assessed in Figure 33. As can
be noted, the pressure trendmatches the radial displacements evolution but some
oscillations appear in the solution. Regarding the nature of these oscillations, it
can be asserted that they are not numeric, since one oscillation is developed
in several time steps, and this is done due to the fact that any non-reflecting
boundary has been considered.

Notes

1. Like in the EBST (Flores &Oñate, 2011, 2005; Oñate & Flores, 2005) elements created
by Eugenio Oñate Ibañez de Navarra and Fernando G. Flores.
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2. The formulation can be extended to Updated Lagrangian following the standard
notation, for more information you can look among others (Belytschko, Liu, Moran,
& Elkhodary, 2014; de Borst, Crisfield, Remmers, & Verhoosel, 2012).

3. Or nothing more added.
4. If we interpolate the values to the external faces we get σxx = σyy = ±0.6666Mpa.
5. Interpolated to the most external faces σxy± = 0.2000Mpa.
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Appendix 1. Pull-back, push-forward fundamental concepts
In this appendix, we introduce the concepts of pull-back and push-forward necessaries to
understand the concepts introduced previously, the main reference for this has been taken
fromBelytschko et al. (2014). These operations allowus tohave anunifieddescriptionbetween
the Eulerian and Lagrangian tensors. In (A1) we can appreciate some examples.

A push-forward by F of the Lagrangian vector dX to the current configuration gives the
Eulerian vector dx:

dx = F · dX ≡ φ∗dX (A1a)

The pull-back by F−1 of the Eulerian vector dx to the reference configuration gives dX.

dX = F−1 · dx ≡ φ∗dx (A1b)

where φ∗ and φ∗ represent the push-forward and pull-back operations respectively.
If we extend these operations, we can consider thepull-back and push-forward operations

on second-order tensors to obtain the relationships between these tensors in the deformed and
undeformed configurations. These concepts provide us a mathematically consistent method
for defining the time derivatives of the tensors, called Lie-derivatives. Considering all this,
the operations can be considered for example to obtain a formulation of hyperelastic-plastic
constitutive model based on the multiplicative decomposition of the deformation gradient,
for more information consult (Belytschko et al., 2014).
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