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Clinical gait analysis provides great contributions to the understanding of gait patterns. However, a complete distribution of
muscle forces throughout the gait cycle is a current challenge for many researchers. Two techniques are often used to
estimate muscle forces: inverse dynamics with static optimization and computer muscle control that uses forward dynamics
to minimize tracking. The first method often involves limitations due to changing muscle dynamics and possible signal
artefacts that depend on day-to-day variation in the position of electromyographic (EMG) electrodes. Nevertheless, in
clinical gait analysis, the method of inverse dynamics is a fundamental and commonly used computational procedure to
calculate the force and torque reactions at various body joints. Our aim was to develop a generic musculoskeletal model that
could be able to be applied in the clinical setting. The musculoskeletal model of the lower limb presents a simulation for the
EMG data to address the common limitations of these techniques. This model presents a new point of view from the inverse
dynamics used on clinical gait analysis, including the EMG information, and shows a similar performance to another model
available in the OpenSim software. The main problem of these methods to achieve a correct muscle coordination is the lack
of complete EMG data for all muscles modelled. We present a technique that simulates the EMG activity and presents a
good correlation with the muscle forces throughout the gait cycle. Also, this method showed great similarities whit the real
EMG data recorded from the subjects doing the same movement.

Keywords: musculoskeletal model; muscle forces; clinical decision-making; gait analysis; electromyography

1. Introduction

Clinical gait analysis, through inverse dynamic models

and electromyographic (EMG) data, provides great

contributions to the understanding of gait disorders and

also provides a means for a more comprehensive treatment

plan (Wren et al. 2011; de Morais Filho et al. 2012).

However, a complete distribution of dynamic muscle

forces while walking is a challenge for many researchers

(Erdemir et al. 2007; Amarantini et al. 2010; van der Krogt

et al. 2012). Direct measures of muscle forces are difficult

to obtain in clinical settings because it requires generally

invasive techniques. Computational models that represent

the human locomotor system are being proposed at present

to sort out those limitations (Erdemir et al. 2007). So, it is

possible to develop tools that help improving the clinical

gait analysis and treatment of gait abnormalities, providing

more effective strategies for therapeutic management

(Arnold and Delp 2004).

A musculoskeletal model represents a numeric set of

anatomical parameters to quantify their interaction. Hence,

the muscles are described as a simple line between patches

of origin and insertion, while the joints are represented as

fixed centres of rotation (Kaufman et al. 1991a; Arnold

et al. 2010). Estimation of muscle forces using

musculoskeletal models usually requires solving an

optimization problem regardless of the method used to

solve the equations that describe the dynamics muscu-

loskeletal system, inverse or forward dynamics (Erdemir

et al. 2007). At this point, static optimization has proven to

be more useful in problems related to gait analysis because

it is more computationally efficient as it does not require

multiple integrations, and provides similar solutions as

dynamic optimization (Anderson and Pandy 2001).

Gait data combined with inverse dynamics and static

optimization have been used for more than 30 years,

commonly applied to estimate muscle forces in the lower

limbs. Another approach that exploits gait data to estimate

muscle forces is forward dynamics assisted by data

tracking. However, this technique proved to be computa-

tionally expensive due to the multiple integrations needed

to obtain optimal joint kinematics (Erdemir et al. 2007).

Thelen et al. (2003) have implemented an effective

technique of forward dynamics to minimize tracking

errors in joint kinematics during cycling into a feedback

control system. Recently, computed muscle control

(Thelen and Anderson 2006) was used to calculate the

optimal muscle activation pattern that generates the

necessary net joint moments to produce the observed
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kinematics and so evaluate the effect of weak muscles

during walking with relatively little computer-processing

time (van der Krogt et al. 2012).

However, low accuracy showed by inverse dynamics

analysis, and high computational cost of forward dynamics

have directed many researchers to search for some

alternative strategies to estimate muscle forces on clinical

applications (Erdemir et al. 2007).

Lloyd and Besier have presented an EMG-driven

musculoskeletal model of the knee to predict its net

moments using inverse dynamics, being their approach a

good way to estimate in vivo muscle forces during

movement tasks (Lloyd and Besier 2003). Amarantini and

Martin (2004) have included EMG data in inverse dynamics

with static optimization model to find the muscle forces and

presented a dynamics analysis as a 2D model during half

squats. Nevertheless, their approaches leave open the scope

to generate ‘real’ 3D musculoskeletal models for a more

comprehensive clinical assessment including additional

EMG (Amarantini et al. 2010). At this point, these methods

are limited due to the changing muscle dynamics and also

due to possible signal artefacts, but their major limitation is

the limited number of muscles that could be measured

through surface EMG in the clinical setting and protocols.

Moreover, the tissue underlying the EMG electrodes show a

filter effect upon the muscle action potentials. Also day-to-

day variation in the position of EMG electrodes, skin

preparation, ambient temperature and electrical impedance

could affect the data (Farina and Negro 2012).

The goal of this study was to propose a new generic

musculoskeletal model of the lower limb that represents a

new point of view from the inverse dynamics used on

clinical gait analysis by including a simulation of the

smoothed EMG data. We propose a complete represen-

tation of the EMG signal information of all modelled

muscles through the linear combination of different

Gaussian bells to model the smoothed EMG data. As our

aim was to find the muscle forces on patients commonly

treated in clinical settings, such as patients with cerebral

palsy, we used a standard subject-specific anthropometric

data to scale our model and used a nonlinear regression for

adjusting the body segment parameters. Then, as a great

number of patients treated in clinical gait laboratories are

children with cerebral palsy, the performance of the

proposed model was compared against the real EMG data

and with other generic musculoskeletal model included in

the OpenSim software that use forward dynamics

approach to find the muscle forces in children.

2. Method

2.1. Participants and procedures

The study included a group of five healthy subjects that

were examined by the team from Gait and Movement

Laboratory at FLENI Institute for Neurological Research

(Escobar, Argentina) and showed normal gait patterns, 7–

11 years of age, 1.24–1.67m in height and 22–53 kg in

weight (Table 1).

The Hospital Research Ethics Committee reviewed and

approved this study. The protocol was explained to each

subject and an informed consent was signed by their

careers. Kinematic data were recorded by a motion capture

system (Elite 2002 BTS Bioengineerin, Milan, Italy) with

eight cameras (100Hz) and two force plates (Kistler 9281E,

Kistler Group, Winterthur, Switzerland). Twenty-two

retro-reflective skin markers were placed over bony

landmarks (as indicated by the Davis protocol; Davis

et al. 1991). After measurement, all data were imported into

MATLAB (MathWorks, Natick, MA, USA). Marker

trajectories were filtered with a zero-lagged Butterworth

filter with a cut-off frequency of 10 Hz and order 2.

Electrical muscle activity data were recorded from the

rectus femoris, semimembranosus, gastrocnemius and

tibialis anterior muscle using surface dynamic EMG

(Teleemg BTS Bioengineering, Milan, Italy) (Hermens

et al. 1999). The eight channels of acquisition, half for each

limb, were used with a sampling frequency of 2000Hz.

The multi-segment model used in this study was based

on a simple rescaling method, by adjusting the parameters

using subject-specific anthropometric data. Height,

weight, leg length, knee joint width and distance between

anterior superior iliac spines for each participant were

recorded by an experienced physiotherapist. A generic

musculoskeletal model (3DGaitModel2392) with 23

degrees of freedom (DoF), 3 DoF for the hip, 1 DoF for

the knee and 1 DoF for the ankle, available on the

OpenSim software (Delp et al. 2007) was used for

comparing the performance of our model.

2.2. Dynamics muscle force estimation algorithm

Our approach proposes a musculoskeletal model of the

lower limb that simulates the EMG data (EMGsim) of all

muscles modelled. The model used both inverse dynamics

and static optimization to estimate the muscle forces

Table 1. Description of participants, age, height, weight and
spatiotemporal gait parameters, all presented as mean (min–
max).

Participants (n ¼ 10 trials)

Age (years) 9.8 (7–14)
Height (m) 1.42 (1.24–1.67)
Weight (Kg) 36.60 (22–53)
Velocity (m/seg) 1.10 (0.97–1.28)
Stride length (m) 1.11 (1.07–1.18)
Cadence (steps/min) 117.2 (105–133)
Stance phase (%) 58.5 (57.5–59.5)

E.P. Ravera et al.2
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throughout the gait cycle, and the algorithm comprised six

stages (Figure 1).

2.2.1. Inverse dynamics

A traditional Newton–Euler inverse dynamics method

was proposed to find the net joint torque at the ankle, knee

and hip throughout the gait cycle (Vaughan et al. 1992,

Winter 2009). The main contributors to uncertainties of

inverse dynamics solutions are the models for the

estimation of body segment parameters due to their

influence and sensitivity over the net joint torque (Rao

et al. 2006). So, a nonlinear approach to estimate the

segmental moments of inertia from anthropometric

measurements was used in order to obtain the best

estimation even when the anthropometric measurements

lie outside the sample range (Yeadon and Morlock 1989).

2.2.2. Musculoskeletal model

A musculoskeletal model of the lower limbs was proposed

in this paper. The model consists of nine segments

(1 pelvis, 2 femurs, 2 patellas, 2 tibia-perone and 2 feet),

36muscle elements representing 24 individual muscles and

14 DoF (3 DoF for each hip, 1 DoF for each knee and 3

DoF for each ankle).

As every other model, ours represents a simplification

of the complete human locomotor system. So, the selection

criteria used to choose the muscles were as follows:

. Muscles with greater physiological cross-section

area (PCSA), in relation to the isometric muscle

forces developed.
. Muscles with greater mass, in relation to the energy

consumed by the muscle.

Under these criteria, the muscles modelled are

represented in Table 2.

Cadaveric reference patches of origin and insertion

(Horsman et al. 2007) and axis systems embedded and

linked to the movement for each segment representing the

lower limb were used. To calculate the time-varying

muscle force vectors, the model assumed that the force

transmitted by the muscle acts along a straight line

Figure 1. The dynamics muscle force estimation algorithm. Stage 1 is a set of tridimensional net joint torques was calculated from joint
kinematics and ground reaction force data. Stage 2 is a tridimensional musculoskeletal model of the lower limbs was generated. This
model represents the behaviour of the most representative muscles from the limbs. Stage 3 is the first EMG data were estimated, so a set of
Gaussian functions was generated to find the optimal temporal positions of EMGsim (Stage 5). Stage 4 is the static optimization model.
Stages 5 and 6 are an iterative process where the EMGsim estimated the real EMG, with the aim to achieve the major approximation of the
net moment joints found in Stage 1.

Table 2. Musculoskeletal morphological parameters.

Muscle PCSA ðcm2Þ Mass (g) No. of elements

Adductor longus 21.23 237.83 3
Biceps femoris 19.50 179.50 1
Gluteus medius 49.35 219.75 3
Gluteus maximus 36.10 494.5 2
Iliopsoas 16.25 137.75 1
Rectus femoris 28.9 239.00 1
Semimembranosus 15.75 183.00 1
Vastus medialis 19.97 166.67 1
Vastus lateralis 34.85 308.00 1
Gastrocnemius 33.9 211.00 2
Soleus 90.1 238.5 1
Tibialis anterior 26.6 129 1

Computer Methods in Biomechanics and Biomedical Engineering 3
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connecting the points of origin and insertion (Kaufman

et al. 1991b).

A single straight-line model between the anatomical

origin and insertion is not adequate for the rectus femoris,

vastus medialis and vastus lateralis because the patella acts

as an important lever in the knee joint. In this case, the

action direction in the insertions was recalculated as the

difference between a vector fixed for the tibia and another

fixed for the femur (Yamaguchi and Zajac 1989).

Mathematically, the direction of real action of these

muscles was calculated as (Ravera et al. 2012)

~rpatella ¼ ~rtibia þ ~rfemur

~rtibia þ ~rfemur

: ð1Þ

2.2.2.1. Modelled of muscle tissue. The muscle–tendon

unit can be described by a lumped parameter (Zajac 1989).

A contractile element was estimated using a Hill-type

model with generic force–length f lðlmÞ and force–velocity

f vðvmÞ functions and a parallel passive element represented

by the force–length relationship f pðlmÞ (Buchanan et al.

2004). In general, the equation that describes the muscle

force produced by a unit muscle-tendon is

Fmax
i ¼ PCSAismax f li ðlmi

Þ f viðvmi
Þ aiðtÞ

�
þ f piðlmi

Þ� cos ðwiðtÞÞ;
ð2Þ

where PCSA is the physiological cross-section area, smax is

the maximal stress in a muscle fibre (Horsman 2007), aðtÞ is
the time-varying function of the muscle activation and wðtÞ
is the pennation angle (Lloyd and Besier 2003). As walking

is a movement that develops near to optimal velocity of

muscle shortening, it was assumed that f vðvmÞ ¼ 1

(Horsman 2007). The following equation was used to

represent the force–length function of the muscle:

f lðlmÞ ¼ 12 12
lm

l0m

� �����
����

l0m ¼ median ðlmÞ:
ð3Þ

We used the following recurrence equation to model muscle

excitation from the rectified and low-pass filtered EMG data

(Lloyd and Besier 2003):

uðtÞ ¼ aeðt2 tactÞ2 b1uðt2 1Þ2 b2uðt2 2Þ
a2 b1 2 b2 ¼ 1

b1 ¼ g1 þ g2

b2 ¼ g1g2

g1j j , 1

g2j j , 1

: ð4Þ

Finally, we quantified the nonlinear relationship

between neural excitation uðtÞ and the time-varying

function of the muscle activity aðtÞ (Potvin et al. 1996) as

aðtÞ ¼ eAuðtÞ 2 1

eA 2 1
2 3 , A , 0; ð5Þ

where tact ¼ 40 ms, g1 ¼ g2 ¼ 20:5 and A ¼ 20:1
(Buchanan et al. 2004).

2.2.3. Simulating the smoothed EMG signal: EMGsim

AGaussian function (Equation (6))was used to simulate the

smoothed EMG signals. The reasons behind this choice

were as follows: (1) these functions present good agreement

with the theoretical morphology of smoothed EMG that is

shown in the literature (Winter 2009); (2) only two

parameters (m and s) and the use of linear combinations of

these functions are needed to find an estimation of EMG

patterns (Figure 2) (Farina and Negro 2012):

f ðtÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e ððt2mÞ2Þ=ð2s 2Þ: ð6Þ

The parameter m is the mean of theoretical time–

area for each Gaussian function and s is the sixth of

the theoretical time–area length. Theoretical infor-

mation (Winter 2009), such as the time when the

muscles reach their maximum activations and the

number of maximum activation shown on the EMG

throughout the gait cycle, was used to generate a

complete template of signals for all muscles modelled

(Figure 3). Thus, some muscles such as biceps

femoris, gluteus medialis, gluteus maximus, iliopsoas,

semimembranosus, vastus lateralis, vastus medialis,

soleus and gastrocnemius that presented only one peak

of activation were modelled with only one Gaussian

function, and the remainder muscles were modelled

with two Gaussian functions because they present two

areas of muscle activations. All simulated smoothed

EMG signals were normalized to their maximum, with

the objective of representing the theoretical muscles

activation in a range from 0 to 1. The simulation of

EMG data was further developed. The description of

the process is completed in Sections 2.2.5 and 2.2.6

(Stages 5 and 6, respectively).

2.2.4. Static optimization

Wedefinemuscle force dynamics as the force developed by

the individual muscles throughout the gait cycle.

A nonlinear mathematical problem was used to calculate

the individual muscle forces for each sample independently

(Equation (7)).

E.P. Ravera et al.4
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Min
f

G f ðmÞi

� �
subject to :

P12
i¼1 f

ðmÞ
i ri

! £ ti
!	 


k
¼ Mk

!
; k ¼ 1; 2; 3:

0 # f ðmÞi # Fmax
i ; i ¼ 1; 2; . . . ; 12:

ð7Þ

whereG f ðmÞi

� �
represents the cost function,Mk

!
the net joint

moments (obtained in Stage 1), f ðmÞi the norm of the ith

muscle, ð~r £ ~tÞ the time-varying muscle moments

(Kaufman et al. 1991b) and Fmax
i the maximal force that

the muscles may develop (Equation (2)). Optimizations

were performed using the sequential quadratic program-

ming (SQP) algorithm and the Broyden–Fletcher–Gold-

farb–Shanno method to approximate the Hessian matrix

(Nocedal and Wright 1999).

2.2.4.1. Cost function. The muscle forces distribution

problem is then solved for each instant in time, minimizing

an objective function subject to constraints. A variety of

optimization criteria have been used in the literature to

solve this problem. Some of the criteria have been selected

arbitrarily, whereas others have been based on various

physiological reasons (Prilutsky and Zatsiorsky 2002).

Among the latter are versions of minimum muscle fatigue,

minimum muscle stress and minimum metabolic energy

expenditure.

The cost function used in model (Equation (8))

represents the two major consumption of energy on the

muscle, the detachment of the cross bridges and the

reuptake of calcium (Praagman et al. 2006):

Figure 2. Example of the linear combination of Gaussian functions to generate the EMGsim for the tibialis anterior into the
complete template of all muscles modelled. A1 and A2 are the weight constants that form the linear combination, so
EMGsim ¼ A1f 1ðtÞ þ A2f 2ðtÞ.

Figure 3. Template of EMGsim for adductor longus (Add),
biceps femoris (Bf), gluteus medius (Gm), gluteus maximus
(GM), iliopsoas (I), rectus femoris (Rec), semimembranosus
(Sem), vastus medialis (Vm), vastus lateralis (Vl), gastrocnemius
(Gas), soleus (Sol) and tibialis anterior (TA). All muscles
modelled were normalized with their maximum, representing the
theoretical muscles activation in the range of 0–1.

Computer Methods in Biomechanics and Biomedical Engineering 5
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G f ðmÞi

� � ¼ f ðmÞi lmi
þ mic1

� f ðmÞi

PCSAismax f liðlmi
Þ þ c2

f ðmÞi

PCSAismax f liðlmi
Þ

 !2
8<
:

9=
;;

ð8Þ

where c1 ¼ 100ðm=sÞ2, c2 ¼ 4, smax ¼ 27N=cm2

(Horsman 2007), m is the muscle mass and f lðlmÞ is the

force–length relationship of the muscle.

2.2.5. Temporal variations of EMGsim

Human gait implies complex movements that require a

correct synchronism of all muscles of the lower limbs

(Winter 2009). In complex tasks, with several active

muscles, the neural input to different muscles is not

independent. For example, a common drive in the oscillation

of discharge rates of motor units has been observed across

synergistic muscles, indicating a common input to these

muscles. These results suggest that motor control by the

central nervous system may be organized by a relatively

small number of signals that act onmotormodules, activated

by descending neurons and combined to produce a wide

range of movements (Farina and Negro 2012).

Despite this fact and in order to achieve a best

computational performance of this musculoskeletal model,

we assumed independency between the different muscle

patterns activations. Hence, to find the temporal position of

each Gaussian function, we assumed that each EMGsim

was independent. Our approach to find the optimal

temporal position of each Gaussian function that represents

the EMGsim was based on obtaining the solution of the

static optimization problem (Stage 4) for different temporal

positions of EMGsim. For each iteration, we found a new

estimation of the net joint moments using estimations of

dynamic muscle forces f ðmÞi

� �
and time-varying muscles

moment ð~r £ ~tÞ as follows:

~M ¼
X12
i¼1

f ðmÞi ri
! £ ti

!	 

: ð9Þ

At the start time, the Gaussian functions of all

EMGsim were temporarily positioned in the areas that

presented their more important activations according to

the literature (Winter 2009). Later, the EMGsim had some

DoF to shift its temporal positions, changing the m
parameter. In our model, this parameter can take five time

steps at 10%, around its initial position, equally spaced

(Figure 4A). Then, the optimal temporal position achieved

when the minimum error joints (Equation (10)) between

the net moments (Mk, obtained by the inverse dynamics in

Stage 1) and the net moments recalculated (Equation (9))

was found:

et ¼
XR
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Mkij 2 ~Mij

� �2
;

vuut ð10Þ

Figure 4. Example of the simulated smoothed EMG signal of the tibialis anterior. (A) Temporal variations of EMGsim (Stage 5). (B) Six
of 24 steps of morphological variations of EMGsim (Stage 6). (C) The optimal EMGsim at the end of the algorithm.

E.P. Ravera et al.6
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where R is the DoF and N the number of data time. It was

assumed that while one muscle changes its temporal

position, the other muscles are motionless remaining in

their theoretical positions. Once this process was repeated

for all muscles modelled, we found the optimal temporal

position for all EMGsim. We used a computer cluster

(48 PCs Intel Pentium 4–3GHz and 2GB of memory

RAM) to compare the hypothesis of the temporal

independency of the EMGsim proposed.

2.2.6. Morphological variations of EMGsim

Once the EMGsim was temporarily positioned, it was

necessary to fit the Gaussian function to find the optimal

morphological condition. When s is the sixth of the

theoretical activation time–area length (condition of Stage

5 and initial condition of Stage 6) in the static optimization

problem, Stage 4, the estimation of the net joint moments

through Equation (9) produced a suboptimal solution.

The problem arises from the rigidity of the upper

boundary conditions shown in Equation (7), for which the

optimal solutions derived from the SQP algorithm were

f ðmÞi ¼ Fmax
i and ~M , Mk. The rigidity of the upper

boundary conditions was due to the fact that EMGsim

played an important role in the modulation of the possible

maximum amplitudes of each muscle forces through aðtÞ,
see Equation (2). Hence, we adjusted the Gaussian

function at the optimal morphological condition of the

smoothed EMG using the s parameter. So, s was

increased on each step by 12.5% of its start condition to

relax the upper boundary condition (Figure 4B). This

iterative process was continued until the recalculated net

joint moments using the dynamics muscle forces

(Equation (9)), estimated at Stage 4, were similar to the

net joint torques found at Stage 1. We used two methods to

determine the end of morphological adjustment, visual and

numerical error feedback:

ejoin ¼
XR
i¼1

Mki 2 ~Mi

� ��� ��
1; ð11Þ

where R is the DoF, Mk are the net joint moments

obtained in Stage 1 and ~M are the recalculated net joint

moments.

3. Results

One assumption made was the temporal independency of

the EMGsim (Stage 5). Table 3 shows the mean and SD of

the minimum errors (Equation (10)) for both independency

of EMGsim and dependency of EMGsim studied using a

computer cluster due to its high computational cost. The

comparison between the approaches shows no statistically

significant differences, so we considered the EMGsim as

part of our model (Stages 3 and 5) to be temporarily

independent.

The net joint moments of normal subjects obtained

from our link model segment and generic musculoskeletal

model of OpenSim (Delp et al. 2007) are both within the

values shown in the literature (Winter 2009). Figure 5

represents the net joint moments of all DoF for both

musculoskeletal models.

The main differences between both inverse dynamics

models are present during the swing phase because the

model used from OpenSim was scaled from adult models,

whereas our model used a nonlinear regression (Yeadon

and Morlock 1989) to scale it.

The static optimization problem finds the optimal

muscle forces throughout the gait cycle that best represents

the net joint moments. Figure 6 shows the differences

between the inverse kinematic and static optimization

results calculated using Equation (11) for each DoF

modelled for both musculoskeletal models.

Figure 7 shows the mean and SD of the dynamic

muscle forces throughout the gait cycle for all muscles

modelled with both models (OpenSim and our model).

Both generic musculoskeletal models present similarities

in the muscle forces behaviour. They show the peaks of

muscle forces around the same areas of the gait cycle and

an equivalent scale of muscle forces.

We showed that the more important differences

between both models were given on the stance phase for

the biceps femoris, semimembranosus and rectus femoris.

The differences may be attributed to the increase in some

muscle forces, resulting in an increase in the other

muscles by their antagonistic behaviour. Tibialis anterior

and gastrocnemius also show differences in the stance

phase, but we assume that they are probably because our

model has three DoF in the ankle joint and these muscles

not only play an important role in the flexion–extension

of the ankle joint but also in the abduction–adduction and

Table 3. A Student’s t-test (p , 5%) on the temporal behaviour of EMGsim.

Non-temporal
independency of EMGsim

Temporal independency
of EMGsim p-value

Error hip (Nm) 4.8979^ 2.5662 6.8470^ 3.1088 0.1930
Error knee (Nm) 0.0792^ 0.0506 0.0792^ 0.0506 0.9999
Error ankle (Nm) 5.8010^ 5.5316 7.0478^ 7.0318 0.6994

Note: Errors of Stage 5 under the assumption of the temporal and non-temporal independency of EMGsim are presented as mean ^ SD.

Computer Methods in Biomechanics and Biomedical Engineering 7
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the internal–external rotation. Also, in our model, the

soleus muscle provides movement in the flexion–

extension of the joint ankle alone, in accordance with

3DGaitModel2392.

We compared the final configuration and position

of the EMGsim with the real EMG recorded in clinical

setting for each subjects, as shown in Figure 8. This model

shows good agreement between the data of EMG activity

in different muscle groups and the EMGsim.

4. Discussion

Inverse dynamics with static optimization and computer

muscle control using a forward dynamic to minimize

Figure 5. Mean and SD of moments of hip, knee and ankle joints of our model (black) and OpenSim (blue). Solid lines represent the
inverse dynamics and dashed lines show the static optimization results of both models.

Figure 6. Infinity norm of the difference between the net joint moments found from the inverse dynamics and static optimization. Bars
represent the confidence interval at 95% from each DoF of OpenSim (grey) and our model (black).

E.P. Ravera et al.8
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tracking (Thelen et al. 2003) are two techniques used to

estimate muscle forces. However, inadequate kinematic

models to represent the motion of interest and inaccuracies

of experimental data have been identified as weaknesses of

the methodology (Erdemir et al. 2007). Inverse dynamics

with static optimization has limitations due to changing

muscle dynamics and possible signal artefacts that depend

on day-to-day variation in the position of EMG electrodes,

skin preparation, ambient temperature, electrical impe-

dance, the number of muscles EMG signal possible to

measure in the clinical setting and protocols. Nevertheless,

in clinical gait analysis, the method of inverse dynamics

is a fundamental and commonly used computational

procedure to calculate the force and torque reactions at

various body joints (Whittle 1996, Winter 2009).

Our aimwas to develop a genericmusculoskeletalmodel

that could be able to be applied in clinical settings. Our

musculoskeletal model of the lower limb presents a

simulated smoothed EMG data to address the limitations

of these techniques.Wepropose a complete representationof

the EMG signal of all modelled muscles, simulating

the smoothed EMG data through the linear combination of

different Gaussian bells. The use of inverse dynamic and

static optimization with EMGsim enables to estimate the

muscle forces produced during walking; however, there are

also limitations to this method. To calculate the muscle

Figure 7. Mean and SD of muscle forces throughout the gait cycle normalized by bodyweight (BW) for healthy subjects, using OpenSim
(blue) and our model (black).

Figure 8. Mean and SD of the smoothed real EMG data (grey) and EMGsim data (black).

Computer Methods in Biomechanics and Biomedical Engineering 9
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forces, an objective function should be minimized.

Especially for sub-maximal activities, it is often assumed

that movements are performed by minimizing energy

consumption (Prilutsky andZatsiorsky 2002); yet, only a few

energetic cost functions are assumed to be related to

physiological costs such as energy consumption or fatigue

and their relationships have not been clearly proven. In our

musculoskeletal model, we used an objective function that

showed to be a better measure for muscle energy

consumption, which leads to more realistic predictions of

muscle activation and have a validationwith an indication of

muscle energy consumption in vivo (Praagman et al. 2006).

Moreover, static optimization used to decompose the

net joint moments into the individual muscle forces has a

long history, but has problemswhen it is applied to study the

muscle coordination because the optimization criteria

inherent in this approach present low confidence (Zajac

et al. 2002). However, a scaled generic musculoskeletal

model may assist clinicians in the diagnosis and treatment

of individuals with gait abnormalities, due to their accuracy

and low cost (Correa et al. 2011). So, we use a set of

equations to scale the body segment parameters of the

musculoskeletal model based on a nonlinear regression and

this approach provides a reasonable estimation of the

moments of inertia of the segments outside the sample range

(Yeadon and Morlock 1989). This approach is more useful

in a clinical setting due to the heterogeneous population of

patients. In addition, we modelled the knee mechanics

through a single joint in accordance to other authors (Delp

et al. 2007) and used a planar model of joint because this

essentially replicates the same mechanical process as the

more complex model (Yamaguchi and Zajac 1989).

Estimation of muscle forces using static optimizations,

regardless of inverse or forward dynamics, to solve the

equations of movement of the musculoskeletal system

depends on the behaviour of the net joint moments. Both

generic musculoskeletal models (3DGaitModel2392 and

our model) have similar performances, showing little

differences in joint moments mainly during the swing

phase. Rao et al. (2006) and Riemer et al. (2008) observed

that deviations in the estimations of net joint forces and

torques are especially due to the effect of varying

simultaneously the mass, moments of inertia and the

centre of mass location values, according to the underlying

relationship of interdependency linking each component.

So, the main contributors to these uncertainties were

identified to be the inaccuracies in estimated body segment

parameters.

On the other hand, the hip joint flexion/extension

moment during the swing phase is highly sensitive to the

model used in the estimation of body segment parameter

(Rao et al. 2006). Hereby, we believe that these differences

exist because these musculoskeletal models do not use the

same estimation of body segment parameters. Further

investigations remain necessary to clarify the impact that

the estimation of body segment parameters has on the

estimation of muscle forces; and so to improve the models,

while simultaneously improving the rigor and objectivity

of clinical interpretations. Also, both musculoskeletal

models used a different cost function in static

optimization.

The main problem of these methods to achieve correct

muscle coordination is the lack of a complete inclusion of

EMG data for all muscles modelled. We present a new

technique that simulates the EMG activity and presents a

good correlation with the muscle forces during walking.

We present a clear way to simulate the EMG data of all

muscles modelled and assume that this way presents a

temporal independence, improving the timing for the

numerical solution. To demonstrate the independency of

EMGsim, a statistical analysis was performed and showed

no statistically significant differences with the dependent

approach. However, further studies with a larger number

of subjects are needed to generalize the results. Despite the

relatively small sample size used in this study, we consider

it sufficient to outline the trend. Also, this method showed

great similarities with the real EMG data recorded from

the subjects doing the same movement.

Changes in model parameters of one muscle can

change the predicted forces for the same muscle and other

muscles by several times and can also change the number

of non-zero forces in the optimal solution and the set of

muscles with active states (Raikova and Prilutsky 2001).

Only a few differences between the two models are shown.

It was on the forces of the muscles that cross the ankle

joint. We believe that the differences are because our

model has more DoF than the OpenSim one. In addition,

the estimation of muscle forces is more sensitive to

changes in moment arms than to changes in PCSA, and

changes in model parameters have stronger effects on the

magnitude of predicted forces than on their patterns

(Raikova and Prilutsky 2001). Given that the goal of our

model is to be used in the clinical settings and for the

major number of gait abnormalities, we think that

abnormal patterns found on frontal and coronal planes

have the same relevance that in the sagittal plane.

In conclusion, this paper presents a generic muscu-

loskeletal model of the lower limb that uses only subject-

specific anthropometric data, commonly recorded in the

clinical setting. Our model uses inverse dynamic and static

optimization to find the muscle forces throughout the gait

cycle. We proposed a new method that includes the EMG

information and showed how to simulate the smoothed

EMG data through the sum of different Gaussian bells.

Taking into account the history of musculoskeletal

modelling in biomechanics, we think that the use of

musculoskeletal models in the clinical setting is changing

its paradigms, becoming a challenge for the clinical teams

that may start to include them in the process for decision-

making in the treatment of patients with abnormal gait.

E.P. Ravera et al.10
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Disselhorst-Klug C, Hägg G. 1999. Surface electromyogra-
phy for the non-invasive assessment of muscles. Available
from: www.seniam.org

Horsman MDK. 2007. The twente lower extremity model.
Doctor of science thesis, University of Twente, Nether-
land.

Horsman MD, Koopman HFJM, van der Helm FCT, Prosé LP,
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