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Bending rigidity and higher-order curvature terms for the hard-sphere fluid near a curved wall
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In this work I derive analytic expressions for the curvature-dependent fluid-substrate surface tension of a
hard-sphere fluid on a hard curved wall. In the first step, the curvature thermodynamic properties are found as
truncated power series in the activity in terms of the exactly known second- and third-order cluster integrals of the
hard-sphere fluid near spherical and cylindrical walls. These results are then expressed as packing fraction power
series and transformed to different reference regions, which is equivalent to considering different positions of
the dividing surface. Based on the truncated series it is shown that the bending rigidity of the system is non-null
and that higher-order terms in the curvature also exist. In the second step, approximate analytic expressions for
the surface tension, the Tolman length, the bending rigidity, and the Gaussian rigidity as functions of the packing
fraction are found by considering the known terms of the series expansion complemented with a simple fitting
approach. It is found that the obtained formulas accurately describe the curvature thermodynamic properties of
the system; further, they are more accurate than any previously published expressions.
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I. INTRODUCTION

The relation between the thermodynamic properties of
a confined fluid and the shape of the vessel where it is
confined has become a topic of current interest. Recently,
inhomogeneous fluid cluster expansion was revisited and
applied to a hard-sphere (HS) fluid near a hard planar wall
[1]. Moreover, the HS system near spherical and cylindrical
hard walls was studied, focusing on analysis of the curvature-
dependent fluid-wall surface tension using both molecular
dynamics (MD) and the density functional theory [2–4].

Studies of the local dependence of the surface tension or
surface free energy on the curvature (for membranes, for two
fluid-phases, and also for fluid/wall systems) rely on one of the
two following expressions. The first one, derived by Helfrich
[5], is

γ (J,K) = γ − δγ J + k

2
J 2 + k̄K + · · · , (1)

where the truncation to order K is frequently assumed. The
second expression, proposed by König et al. and based on the
Hadwiger theorem [6], is

γ (J,K) = γ − δγ J + k̄K. (2)

In Eqs. (1) and (2) J = R−1
1 + R−1

2 is the total curvature,
K = R−1

1 R−1
2 is the Gaussian curvature, and R1 and R2

are the local principal radii of the surface. The fluid-wall
surface tension (or surface free energy) for the case of a
planar wall is indicated by γ , while the curvature coefficients
are the Tolman’s length δ, the bending rigidity k, and the
Gaussian-curvature rigidity k̄. Both Eq. (1) and Eq. (2) were
successfully utilized to describe, on approximate grounds, the
properties of interfaces. Furthermore, it was conjectured that
Eq. (2) is complete for a HS fluid in contact with hard curved
walls [7–9].
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Analysis of the curvature-dependent surface tension is
particularly simple in the context of constant curvature surfaces
like cylindrical and spherical wall/fluid interfaces. In the last
decade, different studies on HSs under these geometrical
constraints were dedicated to evaluation of the bending
rigidity, k. In the framework of the fundamental measure theory
(FMT) of Rosenfeld, and based on the numerical analysis
of the free energy, bending rigidity values compatible with
k = 0 were found [7–9]. On the other hand, in the framework
of a similar FMT an integral expression for k was derived,
providing k �= 0 and suggesting that Eq. (2) is not complete for
this system. A second line of evidence supporting k �= 0 results
from the re-examination of MD results [3,4]. Unfortunately,
the smallness of the maximum values obtained for k at a
moderately low packing fraction η (<0.3)—k(η = 0.2) =
0.000742 using FMT and k (η = 0.25) = 0.001 ± 0.0008
using MD, makes it necessary to take them with caution
(here k is in units of kBT , T being the temperature and kB

the Boltzmann constant). The main reason is that the method
used to extract the curvature terms from MD depends on a
fit which is very sensible in the adopted procedure. Second,
FMT is an approximate theory that produces reliable results
but not necessarily to this higher degree of accuracy.

In this work I study the higher-order curvature dependence
of the surface tension for an HS fluid confined by spherical
and cylindrical hard walls. The curvature-thermodynamic
properties are obtained as power series in the activity and
packing fraction and its coefficients to order 2 (for k and
k̄) or to order 3 [for δγ , 2k + k̄, and terms of order R−3 in
Eq. (1)] are obtained exactly. An important finding presented
here is that k �= 0 on exact grounds and thus Eq. (2) is
an approximated expression for the studied system. The
effect that a change in the reference region (RR) produces
on the system properties is revisited. The low-order series
expansions of curvature-thermodynamic properties are also
found by adopting a dividing surface typical of the scaled
particle theory (SPT). Using the known terms in the series
expansions complemented with the fitting of available data,
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simple and accurate analytic expressions are presented for δγ

and 2k + k̄ and, for the first time, for k and k̄. These expressions
transformed to different RRs are verified by comparison with
available data and it is concluded that they are the most accurate
description of the analyzed properties developed at present.

II. EXPANSION IN THE ACTIVITY

The grand potential of a fluid of point particles confined in
a region A by a hard wall (not necessarily a planar wall) can
be expressed in power series form as

β� = −
∑
i�1

τi

i!
zi, (3)

with τi the i-particle cluster integral of the fluid-in-A system,
β = 1/kBT its inverse temperature, and z = �−3 exp (−βμ)
its activity. Other magnitudes are the chemical potential μ,
the de Broglie thermal length �, and β� = − ln 	, 	 being
the grand canonical partition function. For both spherical and
cylindrical hard walls with a large enough radii R, the cluster
integrals can be written as

τi

i!
= biV − aiA + ci,1

A

R
+ ci,2

A

R2
+ ci,3

A

R3
+ · · · , (4)

where V is the volume of the system, A is its surface area,
and R its radius. At a constant temperature the coefficients
bi , ai , and ci,j , with j � 1, are constant. Coefficients bi and
ai are universal and correspond to the bulk cluster integrals
[10] and to the planar-wall surface cluster integrals [11,12],
respectively. On the other hand, ci,j may depend on the shape
of the region where the fluid is confined. Naturally, if the wall
is planar, ci,j = 0 for all j . Note that V , A, R, bi , ai , and ci,j

refer to a given RR, B, that follows the spherical/cylindrical
symmetry of the one-body distribution function. Once B is
fixed [through its radius R = R (B)] the description given in
Eq. (4) is unique. Equations (3) and (4) suggest that

� = −PV + γA + C1
A

R
+ C2

A

R2
+ C3

A

R3
+ · · · (5)

or, equivalently,

� = −PV + γ (R) A, (6)

γ (R) = γ + C1/R + C2/R
2 + C3/R

3 + · · · , (7)

with P = ∑
i�1 biz

i the pressure of the bulk system (at the
same z and T ) and

γ =
∑
i�1

aiz
i, Cj = −

∑
i�1

ci,j z
i, (8)

γ (R) =
∑
i�1

⎛
⎝ai −

∑
j�1

ci,jR
−j

⎞
⎠ zi . (9)

Here, γ (R) is the curvature-dependent fluid-wall surface
tension and the functions Cj are thermodynamic curvature
coefficients. The fluid-wall hard potential induces the forma-
tion of a surface with radius Rd where the one-body density
distribution, ρ (r), drops discontinuously to 0. The pressure on
this zero-density surface, Po, is given by the ideal-gas-like
relation Po/kBT = ρ (Rd), which is known as the wall or

contact theorem. Given that Po = − dR
dV

∂
∂R

�, one finds

Po = P + γ
2

R
+ C1

1

R2
− C3

1

R4
+ · · · (sphere), (10)

Po = P + γ
1

R
− C2

1

R3
− C3

2

R4
+ · · · (cylinder), (11)

where P = −∂�/∂V , γ = ∂�/∂A, Cj = ∂�/∂(AR−j ), and
it was assumed that R − Rd is a constant length. The mean
number of particles N = −z ∂

∂z
�
kT

= ∑
i�1 i τi

i! z
i can also be

decomposed as Eqs. (5)–(9), resulting in expressions like N =
ρV + �A + �(1)A/R + · · · and N = ρV + � (R) A, where
the density of the bulk system at the same z and T is

ρ =
∑
i�1

ibiz
i, (12)

� is the adsorption on a planar wall, �(1) is the first pure
curvature adsorption, etc. In fact, the same method applies to
higher-order derivatives too, for example, to the fluctuation in
the number of particles 〈N2〉 − N2 = z ∂N

∂z
= ∑

i�1 i2 τi

i! z
i .

The Helfrich expansion given in Eq. (1) was originally
derived for closed vesicles [5]. Vesicles are symmetric in the
sense that the substances inside and outside are the same,
therefore in this case the sign of J is fixed and can be chosen
by convention. To apply Eq. (1) to the unsymmetrical system
of a fluid in contact with a constant curvature hard wall, I
adopt the usual convention, taking the curvature radius Rl as
positive for the fluid outside of the spherical or cylindrical
body. Therefore, in this work Eq. (1) reduces to

γ (R) = γ − 2
δγ

R
+ 2k + k̄

R2
+ · · · (sphere), (13)

γ (R) = γ − δγ

R
+ k

2R2
+ · · · (cylinder), (14)

where higher-order terms like C3(sph) and C3(cyl) are included.
These relations can be compared with Eq. (7) to obtain

δγ(sph) = − 1
2C1(sph), ck(sph) = C2(sph),

(15)
δγ(cyl) = −C1(cyl), k(cyl) = 2C2(cyl),

where the combined rigidity in short notation, ck = 2k + k̄,
has been introduced. Based on Helfrich’s expression, none of
the magnitudes γ , δ, k, or k̄ depend on the geometry and thus
(sph) and (cyl) labels should be unnecessary.

To prevent any question about the nonconvergence of the
utilized virial-like power series I simply assume that �(z,R)
is a well-behaved function of z ∈ C and R ∈ C at z = 0 and
R = ∞. This ensures that all the series from Eqs. (3) to (14)
converge for real-positive values z < zconv and R > Rconv,
zconv and Rconv being the convergence radii of the β�(z,R)
power series (note that both zconv > 0 and Rconv > 0 exist but
are unknown). Furthermore, the convergence readily extends
to the series in powers of η given in Secs. III and IV. This
well-behaved β�(z,R) is guaranteed for a diluted gas (low
enough density and high enough temperature) and for a large
enough R. On the contrary, the grand potential β�(z,R) be-
comes a nonanalytic function near the two-phase coexistence
region both in bulk and under wetting-drying phenomena
[13–15], which suggests that the above-utilized power series
representations in z and R−1 cannot be used in these cases.
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TABLE I. Bulk and surface (planar-wall) coefficients of the
cluster integral τi up to i = 5. bi and ai have units of σ 3 and σ 4,
respectively.

i = 2 i = 3 i = 4 i = 5

bi −2π/3 3π 2/4 −32.650 6 . . . 162.949 882 2 (5)

ai −π/8 137
560 π 2 −14.387 1 (6) 88.053 (10)

III. THE HARD-SPHERE FLUID

For the fluid of an HS with hard repulsion distance σ

(henceforth σ = 1, for simplicity) in contact with an HS wall,
τ2 and τ3 were evaluated in Refs. [16] and [17]. In addition,
for the case of a hard cylindrical wall the expression of τ2

was found in Ref. [18]. Instead, the cluster integrals τi for
i > 3 are only partially known from the values of bi and ai

[19]. The coefficients bi and ai for i = 2, 3, 4, and 5 are
listed in Table I.1 Table II summarizes the known curvature
coefficients of τi for spherical and cylindrical hard walls up to
j = 3. These coefficients correspond to a choice of the RR, B,
that coincides with the available region for the center of each
HS, A, with ρ (r /∈ A) = 0. Thus, under this density-based
RR (d-RR), R = Rd, which determines the position of the
surface of tension, with A = Ad = 4πRd and V = Vd =
4πRd/3. d-RR makes the evaluation of τi easy (e.g., in d-RR
τ1 = V ). Although using Eqs. (8) and (15) it is possible to
explicitly write the curvature-thermodynamic properties as
series expansion in powers of z, it is customary to show
the results as functions of the packing fraction η = ρσ 3π/6.
Therefore, it is necessary to invert the series of Eq. (12) to
find the series of z (η) and then compose series to obtain the
series expansion of each property in powers of η. Pressure and
surface tension series reproduce the well-known virial series
results, e.g., βγ = − 9η2

2π
(1 + 149

35 η) + O(η3). For a spherical
wall the series expansions of the curvature-thermodynamic
properties give

β δγ(sph) = − 9

64π2
(9

√
3 + 16π )η3 + O(η4), (16)

β ck(sph) = η2

4π
− 109η3

168π
+ O(η4), (17)

and βC3(sph) = 9
√

3
160π2 η

3 + O
(
η4

)
. On the other hand, for a

cylindrical wall the series expansions are

β δγ(cyl) = O(η3), βk(cyl) = 3η2

16π
+ O(η3), (18)

and βC3(cyl) = O(η3). Note that δγ(sph) and δγ(cyl) are con-
sistent with the Helfrich’s expansion at least up to the
highest order for which both are known; i.e., δγ(sph) =
δγ(cyl) = δγ up to O(η3). Now, following Helfrich’s expansion

1The coefficient b4 is known exactly, its value being −π 2(876
√

2 +
94243π + 8262 ArcCsc3)/90720, while b5 is evaluated using data
from Ref. [19]. Both a4 and a5 are evaluated using a2, a3, and data
taken from Ref. [1].

TABLE II. Curvature coefficients of the cluster integral τ2 and
τ3. Known terms for spherical and cylindrical hard walls up to j = 3.
ci,j has units of σ 4+j .

i = 2 (sph) i = 3 (sph) i = 2 (cyl)

ci,1 0 − π

768 (9
√

3 + 16π ) 0

ci,2 − π

144
781

36288 π 2 − π

384

ci,3 0 − π

1280
√

3
0

one finds

β δγ = − 9

64π2
(9

√
3 + 16π )η3 + O(η4) (d-RR), (19)

β ck = η2

4π
− 109η3

168π
+ O(η4) (d-RR), (20)

while the rigidity coefficients are

βk = 3η2

16π
+ O(η3), βk̄ = − η2

8π
+ O(η3) (d-RR).

(21)

Moreover, ci,1(cyl) = ci,1(sph)/2, showing that the unknown co-
efficient c3,1(cyl) (see Table II) is indeed c3,1(cyl) = − π

384 (9
√

3 +
16π ).

IV. DIFFERENT REFERENCE REGIONS

There are at least two RRs adopted in the literature. In the
context of FMT it is usual refer the measures to the d-RR
with radius R = Rd, discussed in Sec. III [4]. On the opposite,
in the SPT the focus is usually on the empty region (e-RR),
which has a shifted radius of R = Re = Rd − 1/2 (henceforth,
magnitudes referring to the e-RR will be labeled with an e).
Given that both e-RR and d-RR are widely utilized in the
literature, it is interesting to transform the expressions found
in the d-RR to obtain the series expansions in the e-RR.

No matter which reference is adopted, τi and � remain
invariant because the system remains unmodified. To discuss
a change of reference it is convenient to write Eq. (4) in matrix
notation as

τi/i! = (bi)r Mr , (22)

where up to O(AR−4) the vector of coefficients is bi = (bi, −
ai,ci,1,ci,2,ci,3) and the column matrix of measures is M =
(V,A,AR−1,AR−2,AR−3). In fact, both bi and M are relative
to the adopted RR, and thus, I have introduced the generic label
r to make it explicit. In Sec. III, the system is described on
the basis of measures Md = (Vd,Ad,AdR

−1
d ,AdR

−2
d ,AdR

−3
d )

and the corresponding vector of coefficients (bi)d. Measures
taken with different RRs are related by a linear transformation,
while the inverse transformation relates the corresponding
coefficients. Here, the procedure is described for an RR with
shifted radius R = Ru = Rd − u that corresponds to measures
Mu = (Vu,Au,AuR

−1
u ,AuR

−2
u ,AuR

−3
u ), with the obvious def-

inition for the volume and surface area of the sphere and the
cylinder. In matrix form one finds

τi/i! = (bi)dY
−1YMd = (bi)uMu, (23)
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where Mu = Y Md and (bi)u = (bi)d Y−1. To build the matrix
Y , each measure in the u-RR frame is written as a linear
function of the measures in the d-RR; for example, Vu = Vd +
uAd − u2AdR

−1 + u3

3 AdR
−2. Therefore, Y(sph) and Y(cyl) are

given by

⎛
⎜⎜⎜⎝

1 u −u2 u3/3 0
0 1 −2u u2 0
0 0 1 −u 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

1 u −u2/2 0 0
0 1 −u 0 0
0 0 1 0 0
0 0 0 1 u

0 0 0 0 1

⎞
⎟⎟⎟⎠ , (24)

respectively [where terms of order O(AdR
−4) are depreciated].

The relation between (bi)u and (bi)d directly implies the
relation for the intensive properties: (−P,γ,C1,C2,C3)u =
(−P,γ,C1,C2,C3)dY

−1. In particular, taking u = 1/2 it is
possible to derive the properties in the e-RR for both the sphere
and the cylinder cases. Thus, adopting the Helfrich expansion
one finds, up to O(η4),

β δγ = − 3η

4π

[
1 + η +

(
8

35
+ 27

√
3

16π

)
η2

]
(e-RR), (25)

β ck = η

4π

[
1 + η

2
+

(
81

√
3

16π
− 289

105

)
η2

]
(e-RR), (26)

while the rigidity constants up to O(η3) take the form

βk = 3η2

16π
, βk̄ = η

4π
(1 − η) (e-RR). (27)

In addition, the next terms of higher order in R−1 are βC3(sph) =
9
√

3η3

160π2 + O(η4) and βC3(cyl) = 3η2

64π
+ O(η3). It is noteworthy

that βk (βC3(sph)) is independent of the chosen radius of the
RR to any order in η because the fourth (fifth) column of
Y(cyl) (Y(sph)) is equal to the respective column of the identity
matrix.

V. DEPENDENCE OF THE EQUATION
OF STATE (EOS) ON η

Approximate expressions for γ , δγ , and ck as functions of
η in the e-RR were obtained previously by Reiss et al. using the
SPT [20] and, more recently, by Hansen-Goos and Roth [21],
who combined an FMT approach known as WBII with Eq. (2).
Both sets of approximate results were only utilized in the e-RR,
while their accuracy under the adoption of a different RR was
not verified. Therefore, in this section I transform SPT and
WBII results to verify their accuracy in the d-RR. Yet, here
I present a third set of expressions for the η dependence of
γ , δγ , and ck based on the obtained first terms of their power
series in η. Each of these three sets of functions, complemented
with the bulk pressure EOS to build (P,γ,δγ,ck), is compared
with FMT and MD results to evaluate their performance and
self-consistence in both the d-RR and the e-RR. Furthermore,

using the same approach I found, for the first time, expressions
for k and k̄ as functions of η.

In the present proposal the functional dependence on η

for each property will be obtained using the known exact
low-order series terms and including one fitting parameter. To
ensure that the thermodynamic properties are well described
regardless of the adopted RR, the fitting is done in the
framework of the d-RR and after transformed to the e-RR.
In making the transformation between different RRs small
inaccuracies in the EOSs may be magnified. Therefore, to
transform consistently one must ensure that the pressure and
the surface tension are accurately described. For βP (η) one can
adopt the very accurate Kolafa-Malijevsky low-density EOS
[22]; however, I verified that the use of the Carnahan-Starling
(CS) EOS instead of the Kolafa-Malijevsky low-density
EOS introduces very small changes, and thus the simple
and quasiexact CS, βP (η)/ρ = (1 + η + η2 − η3)/(1 − η)3,
is utilized. On the other hand, there is not a sufficiently accurate
EOS for the surface tension at present. Here, following the CS
rational expression for P , I propose

βγ = −9η2

2π

1 + 44
35η + 1

38η2 − 3(1 − η)η3

(1 − η)3 (d-RR), (28)

where the parameter is obtained by fitting and then transformed
to the fraction 1

38 . Figure 1 shows a plot of the regularized
difference between the fluid-wall surface tension γ taken
from different sources and that given by Eq. (28), where the
regularized version of a magnitude X (reg.X) is obtained
by dividing X by the first term of its power series in η

[e.g., reg.γ = γ /(−9η2/2π )]. Plotted symbols are as follows:
open and filled (green) circles represent MD results, taken
from Refs. [2] and [3], respectively; (red) squares and (blue)
diamonds correspond to density functional FMT results from
Refs. [4] and [7], respectively; and points are Monte Carlo
results. It is evident that Eq. (28) accurately describes the data,
while other expressions for γ (η) (which are shown as different
curves) deviate at η � 0.25. For the curvature-thermodynamic
properties I also utilized fitting functions that combine rational

FIG. 1. (Color online) Difference among several results for the
surface tension and the proposed analytic expression, Eq. (28) (in
units of kBT/σ 2), using the d-RR. Plotted is the regularized magnitude
γ (see text). Circles [open and filled (green)] are MD results from
Refs. [2] and [3], (red) squares and (blue) diamonds correspond to
FMT results from Refs. [7] and [4], and points are Monte Carlo results.
The dot-dashed (red) line is the SPT result, the dashed (green) line is
the WBII result, the long-dashed (magenta) line corresponds to the
Henderson and Plischke [23] expression, and the dotted black line
was obtained by Yang et al. [1].
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FIG. 2. (Color online) (a) The Tolman length times the surface
tension in the d-RR (in units of kBT/σ ). (b) Regularized Tolman
length. The (red) squares are FMT results of Bryk et al. [7], (blue)
diamonds are FMT results of Blokhuis [4], and (green) circles and
black crosses are MD results of Laird et al. [3]. The solid (light blue)
line is the proposed expression, the dot-dashed (red) line is the SPT
result, the dashed (green) line is the WBII result, and the dotted line
is the exact series expansion truncated at the last known term.

and polynomial forms with one free parameter. They are

βδγ = −
(

9

4π
+ 81

√
3

64π2

)
η3 (1 + 1.2η)

(1 − η)2 (d-RR), (29)

βck = η2

4π

1 − 193η

42

(1 − η)2 − 0.54 η4 (1 + 3η) (d-RR), (30)

where 1.2 and −0.54 are fitting coefficients. In Fig. 2(a) the
different symbols show the same behavior with increasing η,
which is well described by WBII and fitted lines, while the
SPT curve is slightly higher. Reg.δγ is presented in Fig. 2(b).
There, the FMT data are slightly separated from the MD
data, showing some degree of discrepancy between them,
and also, the SPT curve does not reproduce MD and FMT
data with sufficient accuracy. On the other hand, the WBII
curve correctly describes the data, the fitted curve being the
most accurate. Given that the first non-null coefficient of δγ

as a power series in η is wrong for the SPT formula in the
d-RR, its failure is not surprising. It is interesting to compare
the FMT results found by Blokhuis and the WBII curve,
based on slightly different FMT approaches. At η = 0.3 the
difference between the two values of reg.δγ is ∼0.15. This
small difference is relevant because both methods are accurate
in the sense that both involve negligible absolute errors and
thus this disagreement is produced by minimal differences in
the involved approximations. In this and subsequent figures
I include results from a third-order polynomial fit in the
reciprocal radius of the MD results [3] for the curvature-
dependent surface tension of spherical and cylindrical hard
walls. These results, plotted using crosses, were obtained by

FIG. 3. (Color online) The Tolman length times the surface ten-
sion in the e-RR (in units of kBT/σ ). Lines and symbols are as
described for Fig. 2.

first writing the γ (R) data in each of the d-RR and e-RR
and then fitting it. Figure 3 shows that Eq. (29) (found in
the d-RR and then transformed to the e-RR) describes the
behavior of the plotted symbols better than the other functional
expressions and, also, that the series in η truncated to order
η3 follows the symbols in the e-RR much better than in the
d-RR. The latter advantage of the e-RR with respect to the
d-RR is confirmed in the subsequent figures. The results for
the combined curvature term ck are presented in Figs. 4 and
5. In Figs. 4(a) and 4(b) it is clear that the best description of
the behavior of MD and FMT data is given by Eq. (30), the
WBII curve being slightly worse, while the worst of the three
is the SPT curve. Figure 5 shows that in the e-RR the SPT
and WBII produce nearly identical results which deviate from
the symbols at large η. Instead, the order 3 series truncation
given by Eq. (26) accurately describes the symbols. Again,
one can verify that in the e-RR the best curve is provided
by the present proposal. The difference between the Blokhuis

FIG. 4. (Color online) (a) Combined curvature rigidity ck =
2k + k̄ in the d-RR (in units of kBT ). (b) The magnitude plotted
in (a), but in its regularized form. Lines and symbols are as described
for Fig. 2.
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FIG. 5. (Color online) Combined curvature rigidity in the e-RR
(in units of kBT ). Lines and symbols are as described for Fig. 2.

FMT results and the WBII curve in Figs. 4(a), 4(b), and 5
is apparent and grows with increasing packing fraction. On
general grounds, the WBII describes the behavior of δγ and
ck in both the d-RR and the e-RR better than SPT, while the
proposed expressions describes it still better. In addition, the
observed discrepancies between FMT and WBII data suggest
that one or both FMT-based results might not be reliable.

Expressions for the bending rigidity k and the Gaussian-
curvature rigidity k̄ have, to my best knowledge, never been
presented in the literature. Now, for the bending rigidity the
simple dependence

βk = 3η2

16π
(1 − 3η) (e + d − RR) (31)

is proposed, based on Eqs. (21) and (27) and the overall
analysis of the data on regularized k. There the adjusted
coefficient is −3. Figure 6 shows results for k in both the
d-RR and the e-RR, which should be identical. In Fig. 6(a)
the scale on the ordinate axes shows that k is of a very small
magnitude. There, one can observe a large spread of the data.
Moreover, the MD results show some degree of inconsistency
in the values obtained adopting the d-RR (crosses) and the
e-RR (circles with crosses), while the largest error bars cover
the complete range of variation of k with η. All these features
might indicate that the MD + fit procedure used to extract
the k values is not completely reliable. In addition, the three
FMT values suggest a nearly cubical behavior with a root at
η ∼ 0.28. The FMT approach is free of fitting uncertainties and
has a high degree of self-consistence, which enables estimation
of absolute errors that are very small, e.g., �k 	 10−8 for
η = 0.1. However, a critical revision of the FMT adopted in
Ref. [4] suggests that the values for k may be biased by the
inaccuracy of the FMT itself at the high degree of detail shown
in Fig. 6(a), where the diameter of the circles is 2 × 10−4 (in
units of kBT ). This makes unclear the confidence that one
should assign to the ability of these results to describe by
themselves the subtle behavior of k (η) for a true HS system. In
particular, one source of inaccuracy in the adopted FMT is the
use of the Percus-Yevick pressure EOS [24], which fails with
increasing η. Based on Fig. 6(b) one notes that the FMT results
suggest an overall linear behavior for the regularized form of
k. Turning to the MD results, at low densities it is clear that
neither set of data (which correspond to the d-RR and e-RR)
points to the correct limiting value reg.k → 1 with η → 0 and,
also, that the degree of inconsistency between them makes

FIG. 6. (Color online) (a) Bending constant k for both the d-RR
and the e-RR (in units of kBT ). (b) The magnitude plotted in (a), but
in its regularized form. Diamonds (blue) are FMT results of Blokhuis
[4]; crosses and circled crosses are MD results obtained by Laird
et al.[3]. The solid (light-blue) line is the proposed expression, while
the dotted black line is the exact series expansion truncated at the last
known term.

them unreliable at low η. On the other hand, for η � 0.22 the
decrease in k (η) and its nearly zero value is well established
by the approximate coincidence of the MD and FMT results.
Thus, I do not consider the MD results for η � 0.22, but
I assume a simple linear behavior of the regularized k and
make a crude estimate of the slope by considering the FMT
value at the lower density (η = 0.1) and the MD results for

FIG. 7. (Color online) (a) Bending constant k̄ (in units of kBT )
in the framework of the d-RR. (b) The magnitude plotted in (a), but
in its regularized form. Lines and symbols are as described for Fig. 6,
except for the dashed (magenta) line, obtained from Eqs. (30) and
(31) as ck − 2k.
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FIG. 8. (Color online) Bending constant k̄ (in units of kBT ) in the
framework of the e-RR. Lines and symbols are as described in Fig. 6.

η � 0.22. Based on this analysis, I found a slope of −3, which
corresponds to Eq. (31) and is plotted in the figure. For the
Gaussian-curvature rigidity I propose

βk̄ = − η2

8π

1 − 4.2 (1 − 6η) η

(1 − η)2 (d-RR), (32)

where −4.2 was found by fitting. In Fig. 7(a) it is plotted k̄ in
d-RR. There, one can verify the accurate fitting of Eq. (32) to
the MD and FMT data, as well as the consistence between the
fitted k̄ and that found from Eqs. (30) and (31) as ck − 2k.
In Fig. 7(b) it is apparent that for η � 0.2, the MD data
do not show the correct behavior because they do not go
to unity when η → 0; this inconsistency is clearly related
to that found in Fig. 6(b) and makes the MD data for this
range of η unreliable. Therefore, Eq. (32) is obtained by
fitting the three FMT points and those of MD for η � 0.2.
The consistency of the approach is verified by the coincidence
with the alternative route to k̄ plotted by the dashed line. The
expression in Eq. (32) transformed to the e-RR is plotted in
Fig. 8. Again, the curve fits the data very well, which validates
the obtained description.

VI. FINAL REMARKS

In this work the series expansions for the Tolman length
and for the combination of curvature terms 2k + k̄ were
evaluated up to order 3 in the packing fraction. Furthermore,
the dependences of both the bending rigidity and the rigidity
constant associated with the Gaussian curvature were found
up to order 2 in the packing fraction. All these findings are
absolute in the sense that they do not imply the assumption of a
nonexact EOS, are based on the exact value of the coefficients,
and can be readily transformed on exact grounds to any

RR. Moreover, the functional dependence of these curvature-
thermodynamic properties on the packing fraction away from
η � 0 was established on the basis of an approximate and
accurate fitting procedure.

Based on the truncated power series in the packing fraction,
definitive evidence is presented showing that for an HS
fluid in contact with hard-curved walls k �= 0 and, then, that
Eq. (2) proposed by König et al. [8,9] based on the Hadwiger
theorem [6,25] is not a complete expression for γ (J,K), at
least for the studied system. The same conclusion extends to
the complete morphological thermodynamic approach, which
may be considered a good approximate theory, but not an
exact one. This result is in good agreement with that found
previously using FMT [4]. However, it must be remarked that
the use of free energy density functional theories like FMT
for the evaluation of small and sensible quantities should
be done with caution. FMT is an approximate theory for
inhomogeneous fluids, and thus, the boundaries of reliability of
the involved approximations are a priori unclear. Particularly,
its capability to describe the subtle behavior of k and its degree
of confidence should be studied further.

Moreover, it is shown that the order O(AR−4) terms in
γ (R) are non-null and, thus, that the truncation up to order
J 2 and K of the Helfrich expansion is also incomplete and
does not enable accurate description of the known properties
of the HS inhomogeneous system. Notably, the expressions
for τ2(cyl) (R) and τ3(sph) (R), which in this work were truncated
to order A/R3, enable us to readily extend the results to any
order in powers of R−1, showing that the Helfrich expression
is also approximate if one truncates it to any finite order in
R−1. The accuracy of the obtained analytic expressions for γ ,
δγ , ck, k, and k̄ based on data fitting is largely restricted by the
small discrepancies between the different theoretical methods
utilized to obtain the data. In this sense, the development of
a direct Monte Carlo–based method to evaluate the curvature-
thermodynamic properties might be necessary to improve the
reliability and accuracy of numerical results.
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