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Summary

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically 

diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 

332 yeast species, including 220 newly sequenced ones, which represent nearly a third of all 

known budding yeast diversity. Here we establish a robust genus-level phylogeny comprised of 12 

major clades, infer the timescale of diversification from the Devonian Period to the present, 

quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and 

the metabolic toolkit of the Budding Yeast Common Ancestor (BYCA). We infer that BYCA was 

metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution 

across the subphylum, which is characterized by very low HGT levels and widespread losses of 

traits and the genes that control them. More generally, our results argue that reductive evolution is 

a major mode of evolutionary diversification.

In brief

An integrated phylogeny of over 300 budding yeast species encompasses the natural diversity and 

history of diversification of Saccharomycotina with insights into a metabolically-complex 

common ancestor and common reductive evolution leading to metabolic specialization.

Graphical Abstract

Introduction

Yeasts - unicellular fungi that lack fruiting bodies - have evolved multiple times across fungi 

(Stajich et al., 2009), but most known yeast species belong to the subphylum 

Saccharomycotina, hereafter referred to as budding yeasts or simply yeasts. This diverse 

group, whose genetic diversity is on par with the plant and animal lineages (Figure 1), 
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includes the baker’s yeast and premier eukaryotic model system Saccharomyces cerevisiae 
(Peter et al., 2018), the common human commensal and opportunistic pathogen Candida 
albicans, and over 1,000 other known species with more continuing to be discovered (Dujon 

and Louis, 2017; Hittinger et al., 2015; Kurtzman et al., 2011).

Yeasts exhibit remarkably diverse heterotrophic metabolisms, which have allowed them to 

successfully partition nutrients and ecosystems to inhabit every continent and every major 

aquatic and terrestrial biome (Kurtzman et al., 2011; Opulente et al., 2018). Comparative 

genomic investigations have served as the launching pads into the evolution of budding yeast 

metabolism and ecological specialization in numerous clades, including the clade of S. 
cerevisiae and its close relatives (Hittinger, 2013), the genus Lachancea (Vakirlis et al., 

2016), the C. albicans/Candida tropicalis clade (Butler et al., 2009), and the Candida 
glabrata/Nakaseomyces clade (Gabaldon et al., 2013). Although these investigations have 

shaped our understanding of budding yeast evolution, they have either focused on small 

slices of biodiversity or have been very broad investigations using collections of taxa skewed 

toward biomedically or industrially relevant yeasts (Gabaldón et al., 2013; Génolevures 

Consortium et al., 2009; Riley et al., 2016).

This sparse and sporadic sampling of genome sequences has forestalled efforts to examine 

the impact of different evolutionary processes or to identify major evolutionary trends across 

the entire subphylum. For example, several illustrative studies have shown how the presence 

of specific genes and pathways correlates with phenotypes, including clear cases of gains 

(Gonsalves et al., 2018; Hall and Dietrich, 2007) and losses (Hittinger et al., 2004; Riley et 

al., 2016; Slot and Rokas, 2010; Wolfe et al., 2015), but the frequency and generality of 

these observations remain unclear. Collectively, the use of a relatively small subset of 

distantly related budding yeast genomes has prevented the state-of-the-art quantification and 

statistical analyses that would be required to understand the tempo and mode of genomic 

and metabolic evolution across the subphylum.

To address this gap, we sequenced the genomes of 220 budding yeast species and coupled 

them with the published genomes of an additional 112 species to investigate the evolution of 

biodiversity of the subphylum Saccharomycotina. By interrogating genomic and metabolic 

trait variation, we reconstructed a robust genome-wide phylogeny, established the geological 

timeline of budding yeast diversification, quantified HGT in budding yeast genomes, and 

inferred the evolution of 45 metabolic traits and their underlying genetic toolkit from the 

~400 million-year-old budding yeast common ancestor (BYCA) to the present.

Results and Discussion

332 yeast genomes spanning the diversity of the yeast subphylum

We sampled the genomes of 332 budding yeast species representing 79 / 92 genera across 

the subphylum Saccharomycotina (STAR Methods). Of the 332 yeast genomes, 112 were 

publicly available and previously published, 24 sequenced by RIKEN were publicly 

available (http://www.icm.riken.ip/cgi-bin/nbrp/nbrplist.cgi) but are described here for the 

first time, and 196 were newly sequenced by the Y1000+ Project (http://

www.y1000plus.org) (Figures 2 and S1; Table S1). 195 / 196 newly sequenced Y1000+ 
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Project genomes were from type strains (the other was from an authentic strain), as were at 

least 81 / 136 publicly available ones; in addition, 72 / 79 included genera were represented 

by their type species (Table S1).

Compared to the 136 publicly available genomes, the 196 newly sequenced genomes 

(Y1000+ Project genomes) had generally smaller average N50 values (new = 417.2 kb vs. 

public = 1,235.4 kb), but they had comparable degrees of genome assembly completeness 

(new = 91.3% vs. public = 94.0%), GC contents (new = 40.3% vs. public = 41.1%), and 

average numbers of predicted genes (new = 5,822.4 genes vs. public = 5,525.7 genes), 

suggesting that they are suitable for most evolutionary genomic analyses.

A robust phylogeny for the subphylum Saccharomycotina

To infer the budding yeast phylogeny, we assembled two full data matrices (2408OG data 

matrix and 1292BUSCO data matrix) and 7 additional ones (by subsampling subsets of 

genes in the 2408OG data matrix) and analyzed them using three phylogenetic strategies 

(concatenation under a single partition, concatenation under gene-based partitioning, and 

coalescence). These analyses produced a strongly supported and largely concordant 

phylogeny (Figure 2); only 32 / 331 yeast internodes were not recovered by all 27 

phylogenies, with most instances of incongruence being due to whether the data matrix was 

analyzed by concatenation or coalescence (Figure S2).

Surprisingly, one of the resolved internodes concerned the placement of the CUG-Ser2 

clade, which was equivocal in previous phylogenomic studies (Riley et al., 2016; Shen et al., 

2016a, 2017). For example, the most recent phylogenomic analysis, in which the CUG-Ser2 

clade was represented by a single taxon, showed that the clade’s placement was unduly 

influenced by inclusion of the DPMI (in S. cerevisieae) gene (Shen et al., 2017). However, 

our sampling of three additional representative taxa from the CUG-Ser2 clade eliminated the 

gene’s disproportionate influence and resolved this clade’s placement in the budding yeast 

phylogeny (Figure S3).

The new phylogeny divides the subphylum into 12 major clades (Figure 2), at least two and 

up to eight more than previously recognized (Dujon and Louis, 2017; Hittinger et al., 2015; 

Kurtzman and Boekhout, 2017; Kurtzman et al., 2011; Shen et al., 2016a). Several families 

are now well circumscribed (e.g., Pichiaceae), while other families are not reciprocally 

monophyletic (e.g., Dipodascaceae/Trichomonascaceae), leading us to consider them as 

major clades comprised of multiple known families. One major reorganization stems from 

the recognition that the split between the genus Sporopachydermia and other budding yeasts 

is very deep. Although previous authors had recognized affinities to the families 

Dipodascaceae and Trichomonascaceae, our analyses placed the genus Sporopachydermia 
on its own long branch with deep affinities to the family Alloascoideaceae in most analyses 

(Figure 2). A second major reorganization stems from the placement of a group of species 

that all translate the CUG codon as alanine (the CUG-Ala clade) (Krassowski et al., 2018; 

Riley et al., 2016) as a lineage that is separate from and sister to the Pichiaceae clade. In 

previous studies, some members of these two clades were placed together, while the 

taxonomic placements of taxa in the genera Nakazawaea, Pachysolen, and Peterozyma were 
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still unclear (Kurtzman and Boekhout, 2017; Kurtzman et al., 2011). Our results suggest that 

the CUG-Ala clade represents a new, yet-to-be-described taxonomic family.

A timescale for budding yeast diversification

To estimate divergence times of the budding yeast subphylum, we employed Bayesian 

relaxed clock approach (Yang, 2007) with four generally accepted calibration points (STAR 

Methods) on the 2408OG data matrix. We estimated the origin of the subphylum at 317–523 

(95% credibility interval; posterior mean date: 404) million years ago (MYA); the origin of 

the CUG-Ser1 clade, which contains the major opportunistic pathogen C. albicans, at 178–

248 (210) MYA, the origin of the whole genome duplication (WGD) clade at 82–105 (93) 

MYA, and the divergence of S. cerevisiae and C. albicans from their sister species 

(Saccharomycesparadoxus and Candida dubliniensis) at 4.0–5.8 (4.9) MYA and 5.0–14.0 

(8.7) MYA, respectively (Figure 2; Table S2).

Horizontal gene transfer (HGT) into budding yeasts

To identify the tempo and mode of HGT into the budding yeast gene lineage, we 

investigated all 1,538,912 genes that reside in the 8,792 contigs > 100 kb using a robust and 

conservative phylogeny-based approach (STAR Methods). We found that 878 genes in 186 

yeast genomes were likely acquired via 365 distinct HGT events from non-fungal (mostly 

bacterial) sources (Figures 3A and S4; Table S3). Gene Ontology enrichment analysis of the 

878 genes shows that most are associated with metabolism-related terms (Figure S5; Table 

S3). Furthermore, 616 / 878 genes (~70%) were significantly supported with the 

approximately unbiased (AU) test (Shimodaira, 2002), a value quite similar to the 

percentage supported by AU tests among previously described HGT-acquired genes (15 / 21, 

or ~71%; Table S3). Although precisely quantifying the fraction of HGT events is 

challenging, the approximately 0.04% (616 / 1,538,912) to 0.06% (878 / 1,538,912) of genes 

identified to have been putatively acquired via HGT suggests that the process is a very small 

contributor to overall yeast genome diversification.

From the 878 HGT-acquired genes, 333 were present in the genomes of the six 

representative species from the W/S clade (Figure 3A; Table S3). In contrast, the genomes of 

57 / 103 species in the CUG group, whose genetic codes deviate from the universal one, did 

not contain any HGT-acquired genes (Figure 3A). The fraction of HGT-acquired genes was 

significantly higher in the 226 yeast genomes that use the universal genetic code than in the 

103 CUG group genomes (0.071% of 1,054,747 genes vs. 0.025% of 484,165 genes; 

Fisher’s exact test; P-value = 2.2e-16; which remained significant even after exclusion of the 

W/S clade species at 0.041% of 1,027,319 genes vs. 0.025% of 484,165 genes; Fisher’s 

exact test; P-value = 2.5e-05), supporting the hypothesis that altered genetic codes serve as 

barriers to HGT (Richards et al., 2011; Woese, 2000).

Finally, our dense genome sampling also facilitated the identification of cases involving the 

independent acquisition of genes participating in the same metabolic pathway into the same 

yeast lineage, as well as the independent acquisition of the same gene in two distantly 

related yeast lineages (Figures 3B and3C). Specifically, an ancestor of Wickerhamiella 
(Candida) versatilis and Wickerhamiella domercqiae, two highly osmotolerant species, 
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acquired a choline oxidase associated with the production of the osmoprotectant betaine 

from choline; remarkably, that same ancestor appears to have also independently acquired a 

choline sulfatase involved in the conversion of choline-O-sulfate into choline (Figure 3B). 

W. versatilis and W. domercqiae also horizontally acquired a nitronate monooxygenase 

likely associated with resistance to propionate 3-nitronate (P3N; a plant and fungal toxin) 

from genus Pseudomonas bacteria (Figure 3C).

Evolution of metabolic traits across budding yeasts

To examine the evolution of budding yeast metabolism, we used Bayesian inference to 

estimate rates of gain and loss for a compilation of 45 discrete metabolic traits in 274 / 332 

budding yeasts across the subphylum (Kurtzman et al., 2011; Opulente et al., 2018) (STAR 

Methods; Table S4). We found that 39 / 45 traits experienced higher rates of loss, whereas 

the remaining 6 experienced higher rates of gain (Table 1; Figure S6). These trends were 

statistically significant for 16 / 39 traits where the rate of loss was higher than the rate of 

gain and for 1 / 6 traits where the rate of gain was higher than the rate of loss (Table 1). As 

the metabolic trait data came from multiple sources and the strains tested sometimes differed 

from the strains sequenced, we also experimentally determined the growth on 13 / 45 

metabolic traits and a control trait (glucose) (Table S4) for 328 / 332 strains of the budding 

yeast species whose genomes we analyzed. We found that the average consistency of the 

character states shared between the compilation of available metabolic trait data and our 

experimental measurements was 94% (Table S4), suggesting that our inferences are based on 

accurate data.

Metabolic trait reconstruction also allowed us to infer the ancestral state at each node in the 

budding yeast phylogeny (STAR Methods). For example, we inferred that BYCA was most 

likely a metabolically complex organism capable of assimilating 27 / 45 of the carbon- and 

nitrogen-containing compounds analyzed (average posterior probability of trait presence = 

0.64; average posterior probability of trait absence = 0.36) (Figure 4A; Table 1). Using a 

stricter cutoff (posterior probability > 0.9), we found 21 traits that were most likely present 

in BYCA (e.g., nitrate, xylose, and galactose assimilation), and 8 that were most likely 

absent (e.g., glucose fermentation and methanol, ribose, and hexadecane assimilation) (Table 

1).

Although the genetic bases for many of these metabolic traits remain unknown, the genes 

involved in a handful of metabolic pathways are well characterized, allowing us to not only 

reconstruct characterized genetic pathways, but to also use the co-occurrence of traits and 

genes across the budding yeast phylogeny to identify novel connections and functions. To 

this end, we used a mutual information-based approach to analyze the phylogenetic 

distribution of functional annotations of genes in yeast species, together with the metabolic 

trait values of those species (STAR Methods). We then overlaid our gene-to-trait scores onto 

a network of trait-to-trait ecological associations among 784 budding yeast species 

(Opulente et al., 2018). These analyses recovered multiple positive gene-to-trait associations 

for gene-trait pairs that are established in model systems, such as genes encoding beta-

galactosidases (e.g., LAC4) with growth on lactose; alcohol oxidases (e.g., MOX) with 

growth on methanol; and the GAL1, GAL7, and GAL10 genes with growth on galactose 
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(Figure 4B; Table S5) (Riley et al., 2016). These examples validate the utility of this 

analytical approach for elucidating the genetic underpinnings of metabolic trait variation.

As expected from our analyses showing a strong trend toward metabolic trait loss (Table 1) 

and previous studies on the losses of iconic genetic pathways (Hittinger et al., 2004; Riley et 

al., 2016; Slot and Rokas, 2010; Wolfe et al., 2015), the distributions of many of the genes 

involved in these metabolic processes (e.g., the genes required to assimilate D-glucosamine 

and A-acetyl-D-glucosamine and the genes required for L-rhamnose assimilation) were 

consistent with widespread losses, which included both ancient losses deep within major 

clades and more recent losses differentiating closely related taxa.

Complex interactions between metabolic pathways affect gene retention

By analyzing these gene and trait networks, we also identified genes whose associations 

with specific metabolic traits has heretofore received only limited attention in select budding 

yeasts. For example, although the model yeast S. cerevisiae cannot assimilate nitrate or 

nitrite (Kurtzman et al., 2011), we found that the genomes of 50 budding yeasts that could 

assimilate either of these nitrogen sources were generally predicted to encode nitrate/nitrite 

transporters (YNTs, 39/50), nitrate reductases (YNRs, 40/50), and nitrite reductases (YNIs, 

47/50) (Figures 4C and5). These proteins are homologs of a pathway commonly deployed in 

filamentous fungi to import nitrate (YNTs), reduce nitrate into nitrite (YNRs), and reduce 

nitrite into ammonia (YNIs) for central metabolism (Slot and Hibbett, 2007), strongly 

suggesting that the same pathway is deployed across many budding yeasts (Perez et al., 

1997). As with most other metabolic traits (Figure 4), nitrate assimilation genes were 

frequently lost, both anciently (e.g., in the CUG-Ser1 clade) and more recently (e.g., in the 

genus Cyberlindnera).

Our network-based approach also enabled us to use the phylogenetic distribution of the 

nitrate assimilation pathway to identify additional metabolic genes, pathways, and traits that 

co-varied but lacked obvious ecological connections. For example, we uncovered several 

significant associations with the gene encoding gephyrin (Figure 4C; Table S5), an enzyme 

involved in the biosynthesis of the molybdenum cofactor (Moco) used by the nitrate 

reductase enzyme (Schwarz and Mendel, 2006). When we examined secondary associations 

(genes associated with genes that are in turn associated with traits), we identified genes 

predicted to encode the full Moco biosynthesis pathway (Figures 4C inset and 5; Table S6).

Surprisingly, the phylogenetic distribution of various components of the Moco biosynthesis 

and nitrate assimilation pathways revealed that YNRs were never present in the absence of 

the Moco biosynthesis pathway, but the reverse was often the case (Figure 5). Furthermore, 

most of the organisms that harbored the Moco biosynthesis pathway but lacked the nitrate 

assimilation genes also contained the genes encoding xanthine dehydrogenases (XDHs) 

(Figure 5). In filamentous fungi, XDH is responsible for the assimilation of xanthine and 

hypoxanthine and requires a thiolated form of Moco, which is created during an additional 

processing step performed by a specialized Moco sulfurtransferase (MS) (Bittner et al., 

2001). The phylogenetic distributions of the genes encoding XDHs and MSs were strongly 

correlated; of the 83 species with either gene, 78 (or 94%) were predicted to have both 
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genes, illustrating how the underlying metabolic architecture of genetic pathways can lead to 

remarkable evolutionary linkages between traits that may seem unconnected at first.

Conclusion

Genome sequencing and analyses of 332 metabolically diverse species allowed us to infer 

that the last common ancestor of budding yeasts, BYCA, was metabolically complex, that 

very few genes were acquired via HGT, and that the observed metabolic diversity of extant 

budding yeasts was largely achieved through repeated, extensive losses of metabolic traits 

through reductions in their underlying genetic toolkit (Figure 6). Thus, the portrait of BYCA 

that emerges is similar to an archetypal member of its sister subphylum, Pezizomycotina, 

which contains iconic filamentous fungi, such as Aspergillus and Neurospora. These 

filamentous fungi have much larger genomes (~30–80 Mb) and gene sets (~10,000 - ~13,000 

genes, including metabolic genes). Consequently, they exhibit a broader appetite and 

consume a wide array of nitrogen and carbon sources by deploying many genes not present 

in S. cerevisiae (Wisecaver et al., 2014).

How have budding yeasts survived and even thrived while undergoing this reductive 

evolution? Although the arc of budding yeast evolution bends strongly toward reduced 

genomes and metabolisms across history, among both extant and inferred ancestral yeasts, 

plenty of taxa have much broader metabolic capabilities than the mean (Figures 6 and S7). 

One attractive hypothesis, whose testing will require even denser taxon sampling, is that 

generalist lineages with less reduced genomes and more metabolic capabilities are more 

likely to produce new species and less likely to go extinct. Evolutionary dynamics favoring 

generalists over specialists could conceivably play out over geological time through some 

form of clade selection (Stanley, 1975; Williams, 1992), by drawing from the considerable 

genetic variation segregating within species (Hittinger et al., 2010; Peter et al., 2018), or 

both.

The observed pattern of widespread metabolic trait and gene losses complements the well-

established losses or reductions of several flagship eukaryotic genomic and molecular 

features in many budding yeasts, such as introns, the molecular machinery for RNA 

interference, and H3K9me2/3 heterochromatin (Dujon and Louis, 2017). Evolution by loss 

is well documented for parasitic and symbiotic lineages (Dujon et al., 2004; Katinka et al., 

2001; Spanu et al., 2010; Vogel and Moran, 2013; Wolfe et al., 1992) and in the aftermath of 

the whole genome duplication events where most second copies are lost (Soltis et al., 2015;

Wolfe et al., 2015). Nonetheless, the magnitude and pervasiveness of metabolic trait and 

gene loss across 400 million years of budding yeast evolution in organisms with widely 

divergent, free-living lifestyles provides unexpectedly broad support for the argument that 

reductive evolution is a major contributor to genome evolution (Albalat and Canestro, 2016; 

Wolf and Koonin, 2013), in general, and not simply associated with specific lifestyles and 

genomic events.

STAR ★ METHODS

KEY RESOURCES TABLE

Shen et al. Page 8

Cell. Author manuscript; available in PMC 2019 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Phenol:Chloroform:Isoamyl Alcohol Sigma Cat#P2069

Critical Commercial Assays

NEBNext Ultra DNA Library Prep NEB Cat#E7370L

TruSeq DNA PCR-free Library 
Preparation Kit

Illumina Cat#20015963

Nextera Mate Pair Sample 
Preparation Kit Illumina Cat#FC-132–1001

Quant-iT PicoGreen ds DNA Assay 
Kit Quant-iT Cat#P11496

Deposited Data

De novo assemblies DDBJ/ENA/GenBank See Table S1

Genome annotations This study Figshare data repository: 10.6084/m9.figshare.5854692

Data matrices This study Figshare data repository: 10.6084/m9.figshare.5854692

Phylogenetic trees This study Figshare data repository: 10.6084/m9.figshare.5854692

Alignments and ML trees for 
horizontally acquired genes

This study
Figshare data repository: 10.6084/m9.figshare.5854692

Metabolic trait data This study Figshare data repository: 10.6084/m9.figshare.5854692

Trait ancestral character state 
reconstructions

This study
Figshare data repository: 10.6084/m9.figshare.5854692

Experimental Models: Organisms/Strains

343 sampled species This study See Table S1

Software and Algorithms

iWGS v1.1 Zhou et al., 2016 https://github.com/zhouxiaofan1983/iWGS/

Trimmomatic v0.33 Bolger et al., 2014 http://www.usadellab.org/cmsUpage=trimmomatic

Lighter v1.1.1 Song et al., 2014 https://github.com/mourisl/Lighter/

KmerGenie v1.6982
Chikhi and 
Medvedev, 2014 http://kmergenie.bx.psu.edu/

ABYSS v1.5.2 Simpson et al., 2009 https://github.com/bcgsc/abyss

DISCOVAR r51885 Weisenfeld et al., 
2014 https://software.broadinstitute.org/software/discovar/blog/

MASURCA v2.3.2 Zimin et al., 2013 https://github.com/alekseyzimin/masurca

SGA v0.10.13
Simpson and Durbin, 
2012 https://github.com/jts/sga

SOAPdenovo2 v2.04 Luo et al., 2012 https://github.com/aquaskyline/SOAPdenovo2

SPADES v3.7.0
Bankevich et al., 
2012 http://cab.spbu.ru/software/spades/

QUAST v4.4 Gurevich et al., 2013 https://github.com/ablab/quast

NextClip v0.8 Leggett et al., 2014 https://github.com/richardmleggett/nextclip/

ALLPATHS-LG v51828 Gnerre et al., 2011 ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/

BUSCO v2.0.1
Waterhouse et al., 
2018 https://busco.ezlab.org/

OrthoDB Version 9 Zdobnov et al., 2017 https://busco.ezlab.org/
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AUGUSTUS v 3.2.2 Stanke and Waack, 
2003.

http://bioinf.uni-greifswald.de/augustus/downloads/

MAKER v2.31.8 Holt and Yandell, 
2011 http://www.yandell-lab.org/software/maker.html

GeneMark-ES v4.32 Ter-Hovhannisyan et 
al., 2008 http://exon.gatech.edu/GeneMark/gmes_instructions.html

SNAP v2013–11-29 Korf, 2004 http://korflab.ucdavis.edu/software.html

RepeatMasker v4.0.6
Institute for Systems 
Biology http://www.repeatmasker.org

Cuffcompare v2.2.1 Trapnell et al., 2012 https://github.com/gpertea/CuffCompare

MAFFT v7.299 Katoh and Standley, 
2013 https://mafft.cbrc.jp/alignment/software/

Pal2Nal v14 Suyama et al., 2006 http://www.bork.embl.de/pal2nal/#Download

PAML V4.8 Yang, 2007 http://abacus.gene.ucl.ac.uk/software/paml.html

MCMCtree v. 4.9 Yang, 2007 http://abacus.gene.ucl.ac.uk/software/paml.html

OrthoMCL v2.0 Li et al., 2003 http://orthomcl.org/common/downloads/software/v2.0/

Phyutility v2.2.6 Smith and Dunn, 
2008 https://github.com/blackrim/phyutility

FastTree v2.1.9 Price et al., 2010 http://www.microbesonline.org/fasttree/

PhyloTreePruner v1.0 Kocot et al., 2013 http://sourceforge.net/projects/phylotreepruner

trimAl v1.4
Capella-Gutierrez et 
al., 2009 http://trimal.cgenomics.org/

IQ-TREE v1.5.1 Nguyen et al., 2015 http://www.iqtree.org/

phylomeDB v4 Huerta-Cepas et al., 
2014 ftp://phylomedb.org/phylomedb/phylomes/phylome_0005/

MARE v0.1.2 Zoological Research 
Museum Alexander 
Koenig

http://mare.zfmk.de

RAxML v8.2.3 Stamatakis, 2014 https://sco.h-its.org/exelixis/web/software/raxml/index.html

ExaML v3.0.17 Kozlov et al., 2015 https://sco.h-its.org/exelixis/web/software/examl/index.html

ASTRAL-II v4.10.2 Mirarab and Warnow, 
2015

https://github.com/smirarab/ASTRAL

MEGA7 Kumar et al., 2016 https://www.megasoftware.net/

iTOL v3
Letunic and Bork, 
2016 https://itol.embl.de/help.cgi#batch

BayesTraits v3 Pagel et al., 2004 http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.1/BayesTraitsV3.0.1.html

R package igraph Csardi and Nepusz, 
2006 https://cran.r-project.org/web/packages/igraph/index.html

R package infotheo Meyer, 2008 https://cran.r-project.org/web/packages/infotheo/index.html

R package minet Meyer et al., 2008 https://www.bioconductor.org/packages/release/bioc/html/minet.html

R package wgcna Langfelder and 
Horvath, 2008 https://cran.r-project.org/web/packages/WGCNA/index.html

R package topgo Alexa and 
Rahnenfuhrer, 2016 https://bioconductor.org/packages/release/bioc/html/topGO.html

GhostKOALA
Kanehisa et al., 
2016a https://www.kegg.jp/ghostkoala/

ARACNE Margolin et al., 2006 https://bioconductor.org/packages/release/data/experiment/html/aracne.networks.html
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests may be directed to and will be fulfilled by the 

corresponding authors Chris Todd Hittinger (cthittinger@wisc.edu) and Antonis Rokas 

(antonis.rokas@vanderbilt. edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Taxon sampling

Detailed information about the strains and genomes of the 332 budding yeast species 

sampled and analyzed in this study can be found in Table S1. We did not include genomes 

associated with different strains from the same species or with known interspecies hybrids. 

Taxonomy, strain ID, and source information of 332 budding yeasts and the 11 outgroup 

taxa (9 representatives of the subphylum Pezizomycotina and 2 representatives of the 

subphylum Taphrinomycotina) used in this study are provided in Table S1. All sequenced 

strains have been publicly deposited in the NRRL, CBS, and/or JCM strain collections.

The percentage of newly sequenced 220 species (196 newly sequenced genomes from the 

Y1000+ Project and 24 publicly available but unpublished genomes from RIKEN) in each of 

the 12 major clades ranged from 41% to 100%, with an average of 78% (Figure S1). 

Specifically, these newly sequenced 220 species represent 63 different genera; 74 are 

representatives of 36 genera (e.g., Ambrosiozyma, Saturnispora, and Barnettozyma) whose 

genomes have not been previously sequenced; 111 are representatives of 25 genera (e.g., 

Ogataea, Kazachstania, Lipomyces, and Cyberlindnera) that previously had one or two 

publicly available genomes; and the remaining 35 are representatives of genera (e.g., 

Candida and Hanseniaspora) that already had 3 or more publicly available genomes. The 

sampled 332 budding yeasts use three different genetic codes: 229 follow the universal 

genetic code and decode the CUG codon as leucine (Figure 2; Table S1); 5 in the genera 

Nakazawaea, Pachysolen, and Peterozyma, decode CUG codon as alanine (CUG-Ala clade); 

94 in the families Debaryomycetaceae, Metschnikowiaceae, and Cephaloascaceae encode 

CUG codon as serine (CUG-Ser1 clade); and 4 in the families Ascoideaceae and 

Saccharomycopsidaceae also decode CUG codon as serine (CUG-Ser2 clade).

Yeast growth

Most yeast strains were obtained from the USDA Agricultural Research Service (ARS) 

NRRL Culture Collection in Peoria, Illinois, USA. Strains from all yeast species were 

initially plated from freezer stock on yeast extract peptone dextrose (YPD) plates and grown 

for single colonies. For all carbon and nitrogen testing, we set up 5 replicates on separate 

days using different colonies for each yeast species. Yeast strains from each species were 

inoculated into YPD and grown for 48 hours at room temperature. After 48 hours of growth, 

we randomized and arrayed species into a 96-well deep well plate for storage and future use. 

Using the same cultures, we also inoculated species into a minimal-based starvation medium 

containing 0.1% glucose, 5g/L ammonium sulfate, and 1.7g/L Yeast Nitrogen Base (w/o 

amino acids, ammonium sulfate, or carbon) and grew them overnight. After 24 hours of 

growth, we transferred the yeast species into carbon or nitrogen treatment plates for 

phenotyping.
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METHOD DETAILS

Genome sequencing and assembly

For each of the 196 newly sequenced species from the Y1000+ Project (Table S1), genomic 

DNA (gDNA) was isolated using a modified phenol:chloroform extraction method that used 

a second round of phenol:chloroform to remove additional proteins, sonicated, and ligated to 

Illumina sequencing adaptors as previously described (Hittinger et al., 2010). The paired-end 

libraries were submitted for paired end sequencing (2 × 250 base pairs) on an Illumina 

HiSeq 2500 instrument.

Paired-end Illumina DNA sequence reads were used to generate whole genome assemblies 

using the meta-assembler pipeline iWGS v1.1 (Zhou et al., 2016). We first preprocessed the 

raw sequenced reads by trimming of adapters and low-quality bases with Trimmomatic 

v0.33 (Bolger et al., 2014) and Lighter v1.1.1 (Song et al., 2014). Next, we identified the 

optimal k-mer length for each genome’s assembly using KmerGenie v1.6982 (Chikhi and 

Medvedev, 2014). We then used the processed sequence reads as input into six different de 
novo assembly tools: ABYSS v1.5.2 (Simpson et al., 2009), DISCOVAR r51885 

(Weisenfeld et al., 2014), MASURCA v2.3.2 (Zimin et al., 2013), SGA v0.10.13 (Simpson 

and Durbin, 2012), SOAPdenovo2 v2.04 (Luo et al., 2012), and SPADES v3.7.0 (Bankevich 

et al., 2012). The resulting genome assemblies were assessed for quality with QUAST v4.4 

(Gurevich et al., 2013); as the “best” assembly for each genome we chose the one with the 

highest genome size and N50 value (i.e., the contig or scaffold value above which 50% of 

the total length of the sequence assembly can be found).

For the genomes of the 24 species sequenced by RIKEN (Table S1), a paired-end library 

with an approximate insert size of 240 bp was prepared from the genomic DNA using the 

TruSeq DNA PCR-free Library Preparation Kit (Illumina, Inc., San Diego, CA, USA) 

according to the manufacturer’s protocols. A mate-pair library with an approximate insert 

size of 3 kb was also prepared from DNA using the Nextera Mate Pair Sample Preparation 

Kit (Illumina, Inc.) with some modifications (Park et al., 2013). Both paired-end and mate-

pair libraries were sequenced on a HiSeq 2500 (Illumina, Inc.) to generate 151-base paired-

end reads. Mate-pair libraries derived from the DNA of Hyphopichia homilentoma JCM 

1507, Candida sorboxylosa JCM 1536, Candida intermedia JCM 1607, Wickerhamia 
fluorescens JCM 1821, Cyberlindnera fabianii JCM 3601, Saccharomycopsis malanga JCM 

7620, Candida carpophila JCM 9396, Candida succiphila JCM 9445, Wickerhamiella 
domercqiae JCM 9478, Sporopachydermia quercuum JCM 9486, Starmerella bombicola 
JCM 9596, Candida boidinii JCM 9604, Nakazawaeapeltata JCM 9829, Scheffersomyces 
lignosus JCM 9837, and Ambrosiozyma kashinagacola JCM 15019 were sequenced on a 

MiSeq (Illumina, Inc.) to generate 309-base paired-end reads. All mate-pair reads were 

processed using NextClip software, v0.8 (Leggett et al., 2014) to trim the adapter sequences. 

The estimated sequencing depths ranged from 76* for Yarrowia deformans JCM 1694 to 

281* for Wickerhamiella versatilis JCM 5958. The ALLPATHS-LG software version 51828 

(for Cyberlindnera fabianii JCM 3601, Wickerhamiella domercqiae JCM 9478, and 

Starmerella bombicola JCM 9596), version 52155 (for Hyphopichia homilentoma JCM 

1507, Candida sorboxylosa JCM 1536, Candida intermedia JCM 1607, Priceomyces 
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haplophilus JCM 1635, Yarrowia deformans JCM 1694, Wickerhamia fluorescens JCM 

1821, Ambrosiozyma monospora JCM 7599, Saccharomycopsis malanga JCM 7620, 

Candida carpophila JCM 9396, Candida succiphila JCM 9445, Sporopachydermia quercuum 
JCM 9486, Candida boidinii JCM 9604, Nakazawaea peltata JCM 9829, Scheffersomyces 
lignosus JCM 9837, Yarrowia keelungensis JCM 14894, and Ambrosiozyma kashinagacola 
JCM 15019), and version 52488 (for Wickerhamiella versatilis JCM 5958, Ascoidea asiatica 
JCM 7603, Alloascoidea hylecoeti JCM 7604, Ogataea methanolica JCM 10240, and 

Millerozyma acaciae JCM 10732) were used to assemble the reads into scaffolds using the 

default parameters (Gnerre et al., 2011). Small contigs (<1 kb) were not included in the final 

genome assemblies. The sequence library generation and sequencing were performed at the 

Genome Network Analysis Support Facility, RIKEN Center for Life Science Technologies 

(Yokohama, Japan).

Assessment of genome assemblies

The qualities of the genome assemblies of the 196 newly sequenced (Y1000+ Project 

genomes) and 136 publicly available (RIKEN plus previously published genomes) budding 

yeast species were assessed by quantifying their completeness based on the expected gene 

content of the Benchmarking Universal Single-Copy Orthologs (BUSCO), version 2.0.1 

(Waterhouse et al., 2018), as described previously (Shen et al., 2016a). We used a set of 

1,759 BUSCO genes inferred to be saccharomyceta-specific (“saccharomyceta” is an 

informal taxonomic rank used by many databases, including NCBI: https://

www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=716545) and 

single-copy in at least 90% of 60 genomes in the OrthoDB Version 9 database (Zdobnov et 

al., 2017) to evaluate the completeness of the 332 genome assemblies. Briefly, for each 

BUSCO gene, its consensus orthologous protein sequence among the 60 reference genomes 

was used as query in a tBLASTn search against each genome to identify up to three putative 

genomic regions, and the gene structure of each putative genomic region was predicted by 

AUGUSTUS v 3.2.2 (Stanke and Waack, 2003). Next, the sequences of these predicted 

genes were aligned to the HMM-profile of the BUSCO gene, and the ones with alignment 

bit-scores higher than a pre-set cutoff (90% of the lowest bit-score among the 60 reference 

genomes) were kept. If only one predicted gene from a genome was retained and its aligned 

sequence length in the HMM-profile alignment was > 95% of the aligned sequence lengths 

of genes in the 60 reference genomes, the BUSCO gene was classified to be present in the 

genome examined as single-copy, “full-length”. If two or more predicted genes from a 

genome were retained and their aligned sequence lengths in the HMM-profile alignments 

were > 95% of the aligned sequence lengths of genes in the 60 reference genomes, the 

BUSCO gene was classified as duplicated, “full-length”. If one or more predicted genes 

from a genome were retained but their aligned sequence lengths in the HMM-profile 

alignment were < 95% of the aligned sequence lengths of genes in the 60 reference 

genomes, the BUSCO gene was classified as “fragmented”. If no predicted gene from a 

genome was retained, the BUSCO gene was classified as “missing”. For each genome, we 

then calculated the fractions of single-copy (full-length) genes, duplicated (full-length) 

genes, fragmented genes, and missing genes, which in turn provided us with a measure of 

the completeness of gene content in each of the 332 genomes (Shen et al., 2016a).
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Genome annotation

With the exception of Saccharomyces cerevisiae and Candida albicans, whose genome 
annotations are of exceptionally high quality, for consistency we annotated all the other 330 

budding yeast genomes analyzed in our study using the MAKER genome annotation 

pipeline v2.31.8 (Holt and Yandell, 2011). Genome annotation using MAKER occurs in an 

iterative manner and relies on multiple inputs, some of which were universal to all genomes 

(e.g., homology evidence), whereas the others were species-specific (e.g., parameters for ab 
initio gene predictors). The procedure described below was followed for the annotation of all 

330 genomes.

The homology evidence used in our genome annotation consists of fungal protein sequences 

in the SwissProt database (release 2016_11;

ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2016_11/

knowledgebase/uniprot_sprot-only2016_11.tar.gz) and annotated protein sequences of select 

yeast species from Mycocosm (Grigoriev et al., 2014), a web portal developed by the US 

Department of Energy Joint Genome Institute for fungal genomic analyses. Three ab initio 
gene predictors were used with the MAKER pipeline, including GeneMark-ES v4.32 (Ter-

Hovhannisyan et al., 2008), SNAP v2013–11-29 (Korf, 2004), and AUGUSTUS v 3.2.2 

(Stanke and Waack, 2003), each of which was trained for each individual genome. For 

GeneMark-ES, repeats in the genome sequence were first soft-masked using RepeatMasker 

v4.0.6 (http://www.repeatmasker.org) with the library Repbase library release-20160829 and 

the “-species” parameter set to “saccharomycotina” for all genomes. GeneMark-ES was then 

trained on the masked genome sequence using the self-training option (“--ES”) and the 

branch model algorithm (“--fugus”), which is optimal for fungal genome annotation. On the 

other hand, the training of both SNAP and AUGUSTUS requires pre-existing gene models 

as training data. Therefore, we carried out an initial MAKER analysis where gene 

annotations were generated directly from homology evidence (the “protein2genome” option 

in the “maker_opts.ctl” control file was set to 1) without using any ab initio gene predictors. 

The resulting gene annotations supported by homology evidence (“keep_preds” set to 0) 

were then used to train SNAP and AUGUSTUS.

Once all three ab initio gene predictors were trained, they were used together with homology 

evidence to conduct a first round of full MAKER analysis; it should be noted that, here, the 

homology evidence was only used to inform gene predictions (“protein2genome” set to 0). 

Resulting gene models supported by homology evidence (“keep_preds” set to 0) were used 

to re-train SNAP and AUGUSTUS. A second round of MAKER analysis was conducted 

using the newly trained SNAP and AUGUSTUS parameters, and once again the resulting 

gene models with homology supports were used to re-train SNAP and AUGUSTUS. Finally, 

a third round of MAKER analysis was performed using the new SNAP and AUGUSTUS 

parameters. All resulting gene models were reported (“keep_preds” set to 1), and these 

comprise the final set of annotations for the genome.

Thirty-nine out of the 136 published genomes analyzed in our study have previously been 

annotated. To evaluate the quality of our genome annotations, we performed direct 

comparisons between our annotations and existing ones for the same species. Genome 
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annotations of 39 budding yeast species were downloaded from their respective sources and 

compared to the corresponding annotations generated in our study using Cuffcompare v2.2.1 

(Trapnell et al., 2012). Using the existing annotations as the reference, our annotations 

achieved high levels of specificity (ranging from 92% to 99.2%, with an average of 97.3%) 

and sensitivity (ranging from 85.3% to 99.3%, with an average of 94.9%) at the base pair 

level, as well as contained few missing exons (the fraction of exons missing ranged from 

2.7% to 15%, with an average of 4.8%) and genes (the fraction of genes missing ranged 

from 1.1% to 11.9%, with an average of 3.9%) across the 39 budding yeast species. Note 

that all of these calculations assume that the previously published annotations contain no 

errors, which might inflate estimates of inaccuracies in our annotations.

Identification of potential hybrid species

Although we excluded the genomes of known hybrid species from our study, the possibility 

exists that some of the 332 budding yeast genomes are the products of hybridization 

(Hittinger et al., 2015). To test whether this was the case, for each of the 332 budding yeast 

genomes, we examined the genome-wide distribution of Ks (number of synonymous 

substitutions per synonymous site) values determined from pairs of orthologous genes 

identified in the species of interest and its closest relative in the budding yeast phylogeny 

depicted in Figure 2 (following Ortiz-Merino et al. 2017). To calculate the Ks distribution for 

a species of interest, for each gene in the species of interest we identified its closest homolog 

in the genome of their closest relative using BlastP with an e-value cut off of 10’10. The 

protein sequences of the gene pairs were then aligned using MAFFT, version 7.299 (Katoh 

and Standley, 2013), with options “--genafpair --maxiterate 1000”. DNA/codon alignments 

were then generated by threading the DNA sequence onto the protein alignment using 

Pal2Nal (Suyama et al., 2006). Using the DNA/codon alignments, Ks was calculated using 

the LWL85m method implemented in the YN00 module of paml4 (Yang, 2007).

In known hybrid species, such as Saccharomyces pastorianus and Zygosaccharomyces 
parabailii (Dunn and Sherlock, 2008; Ortiz-Merino et al., 2017), the genome-wide 

distribution of Ks values is bimodal, reflecting the fact that some genes in the hybrid genome 

are most closely related to one parental species and some to the other more divergent parent. 

In contrast, non-hybrid species have a unimodal Ks distribution, reflecting the fact that genes 

originated from a single parental species. We visually inspected the resulting Ks 
distributions and found that the newly sequenced genomes of Citeromyces siamensis and 

Martiniozyma abiesophila had bimodal distributions of Ks similar to those of S. pastorianus 
and Z. parabailii (Dunn and Sherlock, 2008; Ortiz-Merino et al., 2017), suggesting that Ci. 
siamensis and Ma. abiesophila are of potentially hybrid origin. Consistent with this 

hypothesis, Ci. siamensis and Ma. abiesophila also had the highest numbers of predicted 

genes (12,786 and 12,589, respectively), the highest numbers of gene duplicates (24.1% and 

23.6%, respectively), and the highest genome sizes (24.8 Mb and 14.5 Mb, respectively) in 

our data set (Table S1). Both hybrid taxa were not associated with any of 32 incongruent 

intemodes (Figure 2).
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Phylogenomic data matrix construction

We generated two complete data matrices (2408OG data matrix and 1292BUSCO data 

matrix) from the genomes of 332 budding yeasts and 11 outgroups, as well as 7 additional 

data matrices by subsampling subsets of the orthologous groups of genes (OGs) in the 

2408OG data matrix.

a) 2408OG data matrix—The 2408OG orthologous group data matrix was constructed 

based on a 5-step workflow. In step 1, we used all protein sequences of the 2,012,541 genes 

present in the 332 budding yeasts and 11 outgroups to perform an all-versus-all search using 

BLASTP with an e-value cutoff of 10-10. We then used the BLASTP results to cluster 

homologous protein sequences using the Markov Cluster (MCL) algorithm implemented in 

OrthoMCL, version 2.0 (Li et al., 2003); we adopted the widely used inflation parameter of 

1.5 for two reasons. First, this inflation parameter value was found to be the optimal one in a 

previous evaluation of the effects of different inflation parameter values on orthology 

assignment in the budding yeasts (Salichos and Rokas, 2011). Second, our examination of a 

range of different inflation parameter values (from 1.2 to 2.0, with a step of 0.1) showed that 

all values led to the generation of nearly sets of clusters of homologous genes. OrthoMCL 

clustering resulted in the identification of 171,715 singleton clusters that contain a single 

protein and 61,763 clusters that contain two or more proteins. Plotting of the distributions of 

the lengths of genomic contigs that contain the 171,715 singleton clusters and 61,763 

clusters with two or more proteins showed that the two distributions were very similar. 

Retaining only those clusters with gene occupancy ≥ 50%, that is those clusters that were 

present in at least half (≥ 172) of the 343 genomes (332 budding yeasts and 11 outgroups), 

resulted in the identification of 4,036 putative OGs.

In step 2, we inspected these 4,036 putative OGs for the presence of two or more sequences 

(i.e., paralogous sequences) from a taxon. For each putative OG, we first aligned its protein 

sequences using the program MAFFT, version 7.299 (Katoh and Standley, 2013), with the 

parameters “--auto” and “--maxiterate 1000” and removed columns whose site occupancy 

was less than 0.01 from the resultant alignment using the program Phyutility, version 2.2.6 

(Smith and Dunn, 2008), with the parameters “-aa” and “-clean 0.01”. We then used each 

trimmed OG alignment to reconstruct a quick but “approximate” maximum likelihood (ML) 

tree using the program FastTree, version 2.1.9 (Price et al., 2010), with the LG model of 

amino acid substitutions (Le and Gascuel, 2008), a discrete gamma approximation with 20 

categories (-gamma), 4 rounds of minimum-evolution subtree-prune-regraft moves (-spr 4), 

and the more exhaustive ML nearest-neighbor interchange option enabled (-mlacc 2 -

slownni). Whenever there were 2 or more protein sequences from a specific taxon in a given 

OG, we identified the best (i.e., putatively orthologous) one by using a tree-based method 

(maximally inclusive subtree) implemented in PhyloTreePruner, version 1.0 with a minimum 

internal support value of 0.95 (Kocot et al., 2013). This resulted in the retention of 2,908 

OGs with gene occupancy > 50%.

In step 3, we performed multiple sequence alignment for each of the 2,908 OGs using the E-

INS-i strategy (--genafpair --maxiterate 1000) as implemented by the program MAFFT, 

version 7.299 (Katoh and Standley, 2013), and excluded ambiguously aligned regions using 
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trimAl v1.4 with the “gappyout” option on (Capella-Gutierrez et al., 2009). We then 

examined all the resulting alignments and removed protein sequences whose lengths were 

shorter than 50% the length of the trimmed multiple sequence alignment length of the OG to 

which they belonged. We also removed OGs whose total trimmed multiple sequence 

alignment length was <167 amino acid sites. These filters resulted in the retention of 2,424 

OGs, each of which had > 50% gene occupancy and > 167 amino acid site alignment length.

In step 4, to minimize the inclusion of potentially spurious sequences, we inferred an ML 

phylogram for each OG using IQ-TREE 1.5.1 (Nguyen et al., 2015) with an automatic 

detection for the best-fitting model of amino acid evolution and then used the ML 

phylogram to identify and to remove all protein sequences that resulted in terminal branch 

lengths that were at least 20-times longer than the median of all terminal branch lengths 

across the phylogram. This step led to the removal of 421 potentially spurious sequences 

from 292 OGs; the remaining 2,132 OGs did not contain any spurious sequences.

In the final step (step 5), we redid mutiple sequence alignment and trimming for those 292 

OGs that we removed as spurious sequences as part of step 4. From the 292 OGs, 276 OGs 

retained ≥ 50% gene occupancy and ≥ 167 amino acid site alignment length and, thus, were 

kept; the remaining 16 were discarded.

Retention of the 2,132 OGs from step 4 and the 276 OGs from step 5 yielded a final data 

matrix consisting of 2,408 orthologous groups (OGs) (1,162,805 amino acid sites) of genes 

from the 332 budding yeast taxa and 11 outgroups.

b) 1292BUSCO data matrix—As BUSCO genes are a set of reliable markers for 

phylogenomic inference of diverse lineages (Waterhouse et al., 2018), including the budding 

yeasts (Shen et al., 2016a), we used 1,757 / 1,759 single-copy, full-length BUSCO genes 

from 332 budding yeasts and 11 outgroups to construct a data matrix (the EOG09344D43 

and EOG09344ST8 BUSCO genes were excluded because we were unable to consistently 

recover them from our genomes). The number of BUSCO genes whose protein sequences 

are all present in the same orthologous group (OG) identified by OrthoMCL with the 

inflation value of 1.5 is 1,650 (~94% out of 1,757). Multiple sequence alignment; trimming 

of ambiguously aligned regions; removal of short, spurious, or paralogous sequences; and 

filtering for ≥ 50% gene occupancy and ≥ 167 amino acid site alignment length were done in 

the same way as described above for the 2408OG data matrix. Application of these filters 

resulted in a data matrix of 1,292 BUSCO genes (527,069 amino acid sites), each of which 

had ≥ 50% gene occupancy and ≥ 167 amino acid site alignment length.

c) 7 additional subsampled data matrices—To explore the stability of phylogenetic 

relationships among the 332 budding yeasts, we constructed 7 additional data matrices by 

subsampling subsets of OGs from the 2408OG data matrix as follows:

1. OG2BUSCO data matrix: This data matrix was constructed by retaining only those OGs 

that were present in both the 2408OG data matrix and the 1292BUSCO data matrix. 

Overlapping OGs between the two data matrices were determined by BLASTP (e-value 

cutoff of 10−10). Briefly, a query 2408OG sequence was considered to be overlapping to a 
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subject 1292BUSCO sequence only if they were from the same taxon and were at least 95% 

similar at the protein sequence level. OGs between the two data matrices were considered 

overlapping only if all their sequences were overlapping, resulting in a data matrix of 1,081 

OGs (545,300 amino acid sites), each of which had ≥ 50% gene occupancy and ≥ 167 amino 

acid site alignment length.

2. OG2PHYLOME data matrix: This data matrix was constructed by retaining only those 

OGs that were present in both the 2408OG data matrix and the phylomeDB, version 4 

(Huerta-Cepas et al., 2014). First, 1,838 orthologs from the S. cerevisiae phylome (P21) 

containing at least 11 taxa were selected. The S. cerevisiae phylome was curated using 21 

budding yeast genomes (8 are representatives from the CUG-Ser1 clade; 12 are 

representatives from the Saccharomycetaceae; 1 is a representative from the Dipodascaceae/

Trichomonascaceae clade). Overlap between the two sets of OGs was determined in the 

same way as described above for the OG2BUSCO data matrix, resulting in a data matrix of 

819 OGs (317,158 amino acid sites), each of which had ≥ 50% gene occupancy and ≥ 167 

amino acid site alignment length.

3. Top500_ABS data matrix: This data matrix was constructed by retaining the 500 OGs 

(from the 2408OG data matrix) with the highest average bootstrap support (ABS) value of 

all internal branches on the ML gene tree (Shen et al., 2016b) and contains 472,241 amino 

acid sites.

4. Top500_completeness data matrix: This data matrix was constructed by retaining the 500 

OGs (from the 2408OG data matrix) with the highest gene occupancy (Shen et al., 2016b) 

and contains 295,429 amino acid sites.

5. Top500_ informativeness data matrix: This data matrix was constructed by retaining the 

500 OGs (from the 2408OG data matrix) with the highest information content and contains 

174,183 amino acid sites. Information content was calculated based on quartet-mapping 

(Nieselt-Struwe and von Haeseler, 2001) implemented in MARE, version 0.1.2 (http://

mare.zfmk.de), with default settings.

6. Top500_length data matrix: This data matrix was constructed by retaining the 500 OGs 

(from the 2408OG data matrix) with the longest trimmed multiple sequence alignment 

lengths (Shen et al., 2016b), and contains 494,658 amino acid sites.

7. Top500_treeness2RCFV data matrix: This data matrix was constructed by retaining the 

500 OGs (from the 2408OG data matrix) with the highest ratio of treeness to relative 

composition frequency variability (RCFV) (Phillips and Penny, 2003; Shen et al., 2016b), 

and contains 328,534 amino acid sites. Treeness is defined as the ratio (sum of lengths of all 

internal branches) / (total tree length) (Phillips and Penny, 2003; Shen et al., 2016b). RCFV 

(Phillips and Penny, 2003) is defined as:

RCFV = ∑
i = 1

s
∑

j = 1

t Fi j − Fi
t
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Where s is the number of the character states (here the s is 20 for amino acids) and t is the 

number of taxa in a given trimmed OG alignment. Fy is the frequency of state i for the yth 

taxon, and Fi is the average frequency of state i across t taxa.

Phylogenetic analyses

For each of these 9 data matrices, we inferred individual gene trees, as well as three 

estimates of the species phylogeny; two species phylogeny estimates were obtained by 

concatenation (concatenation under a single partition and concatenation under gene-based 

partitioning) (Rokas et al., 2003) and one by coalescence (Mirarab and Warnow, 2015).

Individual gene tree inference:

Individual gene trees were reconstructed using maximum likelihood (ML) analysis. For each 

gene, we conducted 10 independent tree searches (5 used starting trees inferred by 

parsimony and the other 5 used random starting trees) to obtain the best-scoring ML tree 

using RAxML, multithread version 8.2.3 (Stamatakis, 2014), under the best-fitting model of 

amino acid substitution selected by the IQ-TREE program (option -m TEST -mrate G4) with 

the Bayesian information criterion (BIC).

Concatenation-based ML species tree inference:

Our recent evaluation of 19 empirical phylogenomic data matrices showed that IQ-TREE 

and RAxML/ExaML typically recovered the ML trees with the highest-observed likelihood 

scores (Zhou et al., 2018). Moreover, our pilot concatenation-based ML tree inferences 

under a single “LG (Le and Gascuel, 2008) +G4 (Yang, 1996)” model of amino acid 

substitutions using the multi-threaded version of IQ-TREE v1.5.1 (Nguyen et al., 2015) and 

the MPI parallel version of ExaML v3.0.17 (Kozlov et al., 2015) for the 2408OG and 

1292BUSCO data matrices, showed that IQ-TREE and ExaML produced topologically 

identical ML trees with very similar likelihood scores, but IQ-TREE did so faster (IQ-

TREE: ~3,000 CPU hours / single tree search; ExaML: ~4,200 CPU hours / single tree 

search). Therefore, we adopted the program IQ-TREE to infer concatenation-based ML trees 

under a single partition (LG+G4) and gene-based partitions (i.e., model parameters were 

unlinked across genes with the -q option in IQ-TREE), respectively. Branch support for each 

internode in the ML tree was evaluated with 100 rapid bootstrapping replicates using 

RAxML, hybrid version 8.2.3 (Stamatakis, 2014) with the CAT model with 25 categories 

instead of G4 model.

Coalescence-based species tree inference:

For each data matrix, we used the set of individual ML gene trees (see section on individual 

gene tree inference above) to infer the coalescence-based phylogeny with ASTRAL-II, 

version 4.10.2 (Mirarab and Wamow, 2015). This is a summary species tree method that 

aims to account for individual gene tree heterogeneity due to incomplete lineage sorting 

(ILS). The reliability of each internal branch in the coalescence-based species tree was 

evaluated using the local posterior probability (LPP) measure.
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Quantification of incongruence:

For each of 27 species phylogenies inferred from the 9 data matrices (2 original data 

matrices + 7 subsampled data matrices) under the three different approaches (two 

concatenation-based and one coalescence-based), we used internode certainty (ICA) to 

quantify the degree of incongruence for every internode by considering all prevalent 

conflicting bipartitions among individual ML gene trees (Salichos and Rokas, 2013). The 

(partial) internode certainty (ICA) values were calculated as implemented in RAxML, 

multithread version 8.2.3 (option -f i).

Molecular dating

We used the Bayesian method MCMCTree in the paml4.9e package (Yang, 2007) to 

estimate divergence times among the 332 budding yeasts using the 2408OG data matrix. The 

input tree was derived from the concatenation-based ML analysis under a single LG+G4 

model (Figure 2). Since budding yeasts lack a reliable fossil record, we adopted four well-

estimated ranges of divergence from four internodes of the budding yeast phylogeny as our 

calibrations (Kumar et al., 2017; Marcet-Houben and Gabaldon, 2015). These were: the 

Saccharomyces cerevisiae -Saccharomyces uvarum split (lower bound: 14.3 MYA - upper 

bound: 17.94 MYA), the Saccharomyces cerevisiae - Kluyveromyces lactis split (103 MYA - 

126 MYA), the Saccharomyces cerevisiae - Candida albicans split (161 MYA - 447 MYA), 

and the origin of the subphylum Saccharomycotina (304 MYA −590 MYA).

Because Bayesian molecular dating is computationally intractable for data matrices that 

contain hundreds of species and thousands of genes (Irisarri et al., 2017), such as the 

2408OG one, we created 50 replicate data matrices, each of which comprised of a different, 

randomly chosen subset of 100 OGs, to infer the budding yeast timetree (inference of each 

of the replicates took ~500 CPU hours). For each replicate, we first estimated branch lengths 

under a single LG+G4 model with codeml in the paml4.9 e package (Yang, 2007) and 

obtained a rough mean of the overall mutation rate. Next, we applied the approximate 

likelihood method (dos Reis and Yang, 2011) to estimate the gradient vector and Hessian 

matrix with Taylor expansion (option usedata=3). Last, we assigned (a) the gamma-Dirichlet 

prior for the overall substitution rate (option rgene_gamma) as G(1, 12.5), with a mean of 

0.08 (meaning 8×10−10 amino acid substitutions per site per year), (b) the gamma-Dirichlet 

prior for the rate-drift parameter (option sigma2 gamma) as G(1, 10), and (c) the parameters 

for the birth-death sampling process with birth and death rates X=p=1 and sampling fraction 

p=0. We employed the autocorrelated-rate model (option clock=3) to account for the rate 

variation across different lineages and used soft bounds (left and right tail probabilities equal 

0.025) to set minimum and maximum values for the four calibration splits mentioned above. 

The MCMC run was first run for 100,000 iterations as burn-in, then sampled every 500 

iterations until a total of 3,000 samples was collected. Lastly, the divergence time estimate 

for each internal branch was calculated as the average across the timetrees produced by the 

50 replicates.

In addition to the Bayesian MCMCTree method, we also used the non-Bayesian RelTime 

method, as implemented in the command line version of MEGA7 (Kumar et al., 2016). As 

RelTime is computationally much less demanding than MCMCTree (Mello et al., 2017), we 
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conducted divergence time estimation using the complete 2408OG data matrix. We used the 

same ML tree and calibrations as we did for the MCMCTree analysis (see above). 

Comparison of divergence time estimates between RelTime and MCMCTree revealed that 

they were broadly consistent (Pearson’s correlation coefficient r = 0.87, P-value < 2.2e-16; 

average time deviation = ~ 19.5%), which is in agreement with a previously published 

comparison of the two methods based on analyses of 8 empirical phylogenomic data 

matrices (Mello et al., 2017). Furthermore, both our study and that of Mello and colleagues 

(Mello et al., 2017) found that the RelTime estimates were generally older than MCMCTree 

estimates for the deep internodes of the budding yeast phylogeny (e.g., for the internodes 

between 12 major clades) and were generally younger than the MCMCTree estimates for 

shallower internodes (e.g., within the families Pichiaceae, Saccharomycodaceae, 

Saccharomycetaceae, Phaffomycetaceae, the CUG-Ala clade, and the CUG-Ser1 clade).

Horizontal gene transfer (HGT) analyses

Identification of HGT events: To detect genes in budding yeast genomes that may have 

been horizontally acquired from non-fungal organisms, we employed a robust and 

conservative phylogeny-based approach (Husnik and McCutcheon, 2017; Marcet-Houben 

and Gabaldon, 2010; Richards et al., 2011; Wisecaver et al., 2016). Briefly, for a given 

budding yeast gene, we inferred it to have been acquired by HGT if there was substantial 

topological disagreement between the gene tree and its associated species tree and the 

budding yeast gene sequence was robustly nested within the donor lineage in the gene tree.

To avoid spurious results due to the presence of small genomic fragments of contaminant 

organisms in our genome assemblies (Schonknecht et al., 2014), we limited our analyses to 

those genes that resided in genomic contigs or scaffolds that were ≥ 100 kb. This filter 

resulted in the analysis of 1,538,912 predicted genes (out of a total of 1,892,694 genes) in 

329 yeast genomes. The remaining three genomes (Botryozyma nematodophila, 
Blastobotrys nivea, and Citeromyces siamensis) did not contain genomic contigs that were ≥ 

100 kb).

For each gene, we evaluated whether it had been horizontally acquired using a two-step 

workflow.

In step 1, we first carried out a BLASTP search against a custom database (nr+) consisting 

of the NCBI non-redundant (nr) protein database (last accessed January 20, 2017) and all 

predicted protein sequences from 329 yeasts genomes, with an e-value cutoff of 10’10. We 

next used custom Perl scripts to: (a) assign taxonomic information to each BLAST hit rating 

with the dump files downloaded from the NCBI Taxonomy database (nodes.dmp, 

merged.dmp, and names.dmp; ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomv). and then (b) parse 

the BLAST hits. based on their taxonomic information. into three different lineages 

(RECIPIENT: Saccharomycotina; GROUP: Fungi; OUTGROUP: non-fungal) so as to 

obtain three values: bbhO (BLAST bitscore of the best hit in OUTGROUP lineage). bbhG 
(bitscore of the best hit in GROUP lineage but not in RECIPIENT lineage). and maxB 
(bitscore of the query to itself).
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Using this information. we next calculated: (a) the Alien Index (AI) value (Wisecaver et al.. 

2016). which is a normalized difference of bitscore between the best hit in OUTGROUP 

lineage and the best hit in GROUP lineage but not in RECIPIENT lineage:AI = bbho
maxB − bbhG

maxB

and (b) the percentage of species from OUTGROUP lineage (outg_pct) in the list of the top 

300 hits that have different taxonomic species names (so that we avoid over-representation 

of multiple strains of the same species) (Marcet-Houben and Gabaldon. 2010). From the 

1.538.912 genes analyzed. we found 1.806 genes with AI value ≥ 0.1 and outg_pct ≥ 90%.

In step 2. we retrieved the 300 most similar homologs that have different taxonomic species 

names from the nr+ database (see above). aligned them by the MAFFT. version 7.299 

(Katoh and Standley, 2013), with “--auto” option, and trimmed ambiguously aligned regions 

using trimAl v1.4 (Capella-Gutierrez et al., 2009) with “-automated1” option. We then used 

the resulting alignment to infer the ML tree using IQ-TREE 1.5.1 (Nguyen et al., 2015) with 

its best-fitting model of amino acid evolution and 1000 ultrafast bootstrapping replicates 

(Minh et al., 2013). Lastly, we rooted each ML tree at the midpoint using the ape and 

phangorn R packages and visualized it using the command version of iTOL v3 (Letunic and 

Bork, 2016). After manually inspecting all 1,806 ML trees, we identified 878 genes in 186 / 

329 budding yeast genomes whose phylogenies indicated they were putatively acquired via 

HGT. A summary table file that contains species name, gene name, genomic contig ID, 

genomic contig length, HGT status, and Gene Ontology (GO) term for each of 1,538,912 

genes in 329 yeast genomes that we examined has been deposited on the Figshare data 

repository.

Analysis of HGT-acquired genes:

For each of 878 genes inferred to have been horizontally transferred into budding yeast 

genomes, we used the gene sequence and taxon names of their closest relatives on the ML 

tree to infer the gene name, gene function, and likely donor lineage of the HGT-acquired 

gene (Table S3). To examine the biological processes, cellular components, and molecular 

functions that these 878 HGT-acquired genes are associated with, we conducted gene 

ontology (GO) enrichment analysis using topGO 2.28.0 (Alexa and Rahnenfuhrer, 2016). 

We found that these genes were significantly enriched in metabolism-related terms, such as 

metabolic process, oxidation-reduction process, carbohydrate metabolic process (terms in 

Biological process), beta-galactosidase complex, integral component of membrane (terms in 

Cellular component), acetyltransferase activity, and catalytic activity (terms in Molecular 

function) (Figure S5). In the list of 878 putative HGT-acquired genes (Table S3), the largest 

number of horizontally acquired genes, 169, was found in the genome of W. versatilis, one 

of the six representative species from the W/S clade (Figure 3A). Transcriptome data in 

NCBI (SRA accession numbers: SRR5942408, SRR5942407, SRR5942426, SRR5942425, 

SRR5942428, SRR5942427, SRR5942422, SRR5942421) showed that at least 91 of its 169 

horizontally acquired genes had expression values > 5 FPKM (Fragments Per Kilobase per 

Million mapped fragments), suggesting that most are likely functional. Gene Ontology (GO) 

enrichment analysis of 169 HGT-acquired genes in the genome of W. versatilis show they 

are significantly enriched in GO term functions and processes, such as oxidation-reduction 

process, metabolic process, catalytic activity, cofactor binding, and oxidoreductase activity.
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Examination of the 878 HGT-acquired gene phylogenies showed that they stem from 365 

distinct HGT events, 230 species-specific ones and 135 that involve two or more species 

(Figure S4; Table S3). The average age of these 365 HGT events was 66.3 MYA (95% 

credibility interval: 56.6–76.0), the average protein sequence identity between the HGT-

acquired yeast gene and the most closely related non-fungal donor gene was 58%, and the 

average percentage of descendent species that retained a given HGT-acquired gene was 

40.7%. These results suggest that most HGT events tend to affect one or a few species, they 

are relatively ancient or divergent, and are frequently lost.

Finally, the examination of the genomic locations of the 878 HGT-acquired genes showed 

that 77 genes were physically linked in 13 contiguous clusters of 3 or more genes each. Of 

these 13 horizontally acquired gene clusters, 4 were shared by several budding yeast species, 

while the other 9 were species-specific.

Robustness of HGT inference:

Inference of HGT can be noise-prone (Husnik and McCutcheon, 2017; Martin, 2018; Roger, 

2018). To gauge the robustness of inference of HGT-acquired genes, we performed five 

additional sets of analyses.

First, we compared the list of 878 putative HGT-acquired genes to the list of 30 previously 

identified instances of HGT in budding yeasts. We found that 21 / 30 (70%) of these 

previously detected instances of HGT were included in our set of 878 HGT-acquired genes, 

corroborating the sensitivity and conservativeness of our high-throughput approach for 

identifying HGT (Table S3).

Second, to gauge whether setting the values of AI value ≥ 0.1 and outg_pct ≥ 90% in step 1 

was too strict, we also examined the top 1,806 candidates with the highest AI scores for 

outg_pct ≥ 10%. Examination of the overlap between the set of 1,806 genes recovered with 

AI value ≥ 0.1 and outg_pct ≥ 90% and the set of the top 1,806 genes recovered with 

outg_pct ≥ 10% showed that that 605 / 878 strongly supported cases of HGT were present in 

both sets.

Third, we examined diverse properties of contigs containing HGT-acquired genes and 

compared to those of contigs lacking HGT-acquired genes. Examination of the distribution 

of sequence lengths of the 480 genomic contigs that contain 878 HGT-acquired genes, 

alongside the 8,312 genomic contigs that do not contain any HGT-acquired genes, showed 

that contigs containing the HGT-acquired genes were typically longer than contigs that lack 

them. We further used different cutoff values of contig length (from ⩾ 100 kb to ⩾ 1,500 kb 

with steps of 100 kb) to examine the percentage of HGT-acquired genes over total number of 

gene examined and found that it slightly increased with contig size.

Fourth, we compared the percentages of HGT-acquired genes in the 220 newly sequenced 

genomes and in the 112 publicly available genomes and found them to be similar. In 

contrast, the percentage of HGT-acquired genes in the 164 genomes with the highest N50 

values was significantly higher than the percentage in the 165 genomes the lowest N50 

values.
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Finally, to test whether the maximum likelihood (ML) gene tree (i.e., the tree with the 

highest ML score, which shows that the horizontally acquired yeast gene was nested within 

a clade of non-fungal donor genes) was statistically different from a constrained ML tree in 

which all fungal and yeast genes were forced to be monophyletic, we applied the 

approximately unbiased (AU) (Shimodaira, 2002) test in the software package CONSEL 

(Shimodaira and Hasegawa, 2001), version 0.20. We found that 616 out of 878 putative 

HGT-acquired genes are significantly supported with the AU test (AU test; p-values <0.05) 

(Table S3).

Analyses of trait evolution

In this study, we reconstructed the evolution of 45 discrete metabolic traits in 274 budding 

yeasts representing the 12 major clades. All metabolic trait data were obtained from The 
Yeasts: A Taxonomic Study and pertain to budding yeasts’ abilities to grow on different 

substrates (Kurtzman et al., 2011).

For each discrete metabolic trait, we scored each taxon for its ability to grow (hereafter 

scored as “1”), not grow (hereafter scored as “0”), show variation in growth / absence of 

growth across different strains (hereafter scored as “v”), or lack of information / missing 

data (hereafter scored as “n”) (Table S4).

To conduct analyses of trait evolution and ancestral state inference, we used Bayes 

MultiState module in the BayesTraits, version 3 (Pagel et al., 2004), because of its ability to 

apply reversible jump MCMC (rjMCMC) to optimize model uncertainty with different 

parameters. To infer ancestral states and the rates of trait gain and loss, BayesTraits takes as 

input the species phylogeny, the trait states, and a model of trait evolution. For the input 

species phylogeny, we used the ML tree with branch lengths inferred from the 2408OG data 

matrix using a single LG+G4 model (Figure 2), which was then pruned to keep the 274 

budding yeast species for which there were metabolic trait data.

For each trait, v and n values were recoded to be “01” (this means that the character’s state 

can be either “0” or “1”) and “-” in the BayesTraits analyses, respectively. We calculated the 

rate of gain (q01: rate of change from 0 to 1) and the rate of loss (q10: rate of change from 1 

to 0) across the budding yeast phylogeny. To test whether the rates of trait gain and loss were 

significantly different or not, we compared estimates of marginal likelihoods under a model 

of trait evolution in which the rates of trait gain and loss were unconstrained against those 

obtained under a model in which the rates of gain and loss were constrained to be equal. We 

determined whether the two models were significantly different using log Bayes Factors 

(lnBF): 2(log marginal likelihood [unconstrained] -log marginal likelihood [constrained]); 

the rates of gain and loss for a given trait were considered to be significantly different when 

lnBF > 2.

For each metabolic trait, we also inferred the posterior probability of each of the two 

character states (0 and 1) at the root (i.e., the budding yeast common ancestor [BYCA]) and 

at each of 272 internodes across the phylogeny. Each analysis was run for 10 million 

generations, sampling parameters every 4,000 generations until 2,000 samples were 
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collected. The stepping stone sampler was used to estimate marginal likelihoods, sampling 

200 stones in which each stone was run 1,000 generations.

Finally, we plotted the kernel density of the posterior distribution for the rates of trait gain 

and loss, as well as posterior probabilities (PP) of states 0 and 1 at each intemode, and 

identified the largest peak values from their densities. To visualize the ancestral state at each 

internode across the budding yeast phylogeny, we used the pie char function in iTOL v3 

(Letunic and Bork, 2016).

Validation of metabolic trait data

As the metabolic trait data in The Yeasts: A Taxonomic Study (Kurtzman et al., 2011) comes 

from multiple sources, contains missing data, and the strains tested sometimes differ from 

the sequenced strains, we also experimentally determined the growth for 328 / 332 strains of 

the budding yeast species whose genomes we used on 13 / 45 discrete metabolic traits, 11 

carbon-based and 2 nitrogen-based (Table S4). As a control, we also experimentally 

determined yeast species growth on glucose, a substrate on which all sampled strains are 

known to grow (Kurtzman et al., 2011).

Carbon treatment plates contained a minimal media base with ammonium sulfate and one of 

twelve carbon sources at a 2% concentration (Kurtzman et al., 2011). The 12 carbon sources 

tested in our analyses included glucose, sucrose, raffinose, galactose, lactose, maltose, 

cellobiose, L-rhamnose, D-xylose, glycerol, D-glucosamine, and V-acetyl-D-glucosamine. 

Nitrogen treatment plates contained a minimal media base with either potassium nitrate or 

sodium nitrite as the nitrogen source and 2% glucose (Kurtzman et al., 2011). Nitrogen 

treatment plates required two rounds of growth to accurately measure growth of species; 

therefore, after a week of growth, we pinned the yeast species into a second round of the 

respective nitrogen source. After a week of growth, we visually scored yeast species for 

growth on each carbon or nitrogen source. We then compared growth across replicates for 

each species and treatment; a species was determined to grow on a carbon source if it 

showed growth ≥ 50% of the time across replicates. Our results show that the average 

consistency of the character states shared between the compilation of available metabolic 

trait data and our experimental measurements was 94% (Table S4), suggesting that our 

inferences are based on accurate data.

Trait and gene association network analyses

Calculations of positive associations among carbon and nitrogen assimilation traits were 

obtained from a recently published study (Opulente et al., 2018). A positive association 

network was created in the R package igraph v. 1.0.1 (Csardi and Nepusz, 2006), and trait 

communities in these networks were determined through the Clauset-Newman-Moore 

algorithm (fast.greedy community), an approach that determines communities by 

maximizing the total network’s modularity.

The input data matrix consisted of species-specific presence and absence data for functional 

annotations of genes, together with the species-specific qualitative information about their 

capabilities to grow in the conditions used in the ancestral trait reconstruction analyses. The 

functional annotations were Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
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entries or annotations (Kanehisa et al., 2016b) obtained through GhostKOALA (Kanehisa et 

al., 2016a). Mutual information coefficients were calculated for each pairwise combination 

of KEGG annotation and trait using the R packages infotheo, minet (Meyer, 2008; Meyer et 

al., 2008), and WCGNA (Langfelder and Horvath, 2008), and the resulting association 

network was trimmed with the ARACNE algorithm (Margolin et al., 2006). Strong 

associations were defined by a cutoff of 0.15 nats or higher, and weak associations were 

considered between 0.10 and 0.15 nats. The positive or negative character of the associations 

was determined by calculating the Jaccard index for each pairwise combination, with a 

cutoff at 0.25.

Data tracks shown on Figure 5 were subject to the following adjustments: (1) the nitrite 

growth track contained exclusively data from validation experiments performed in this study 

(Table S4), due to limited data in the literature (Table S4); (2) for the nitrate growth track, 

positive growth was imputed in cases of disagreement between the validation and literature; 

and (3) due to partial annotation redundancy for specific steps of the Moco biosynthesis 

pathway, MOCS1 and MOCS2 data tracks were collated from multiple annotations, with 

MOCS1 activity being considered present if either the K03637, K03639, or K20967 KEGG 

annotation was found in a genome and with MOCS2 activity being considered present if 

either the K03635, K03636, or K21232 KEGG annotation was found in a genome.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses and quantification approaches associated with genome sequencing, 

accuracy and completeness of assembly, accuracy and completeness of annotation, 

phylogenetic data matrix reconstruction, horizontal gene transfer (HGT) inference, and 

metabolic trait evolution can be found in the relevant sections of the Method Details.

The Fisher’s exact tests were conducted in R version 3.4.0.

DATA AND SOFTWARE AVAILABILITY

Raw sequence read and genome assembly data for all 220 new genomes have been deposited 

at DDBJ/ENA/GenBank and their accession numbers are provided in Table S1. All budding 

yeast genome assemblies and annotations, phylogenetic data matrices, multiple sequence 

alignments, phylogenetic trees, the metabolic trait data matrix, trait ancestral character state 

reconstructions, additional figures and tables, R codes, and the custom Perl scripts used in 

this study are available on the Figshare data repository (10.6084/m9.figshare.5854692; 

https://figshare.com/articles/

Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_subphylum/5854692). All 

sequenced strains have been publicly deposited in the NRRL, CBS, and/or JCM strain 

collections.Supplemental Excel titles and legends

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 332 genomes, including 220 newly sequenced, covering ~ 1/3 of known 

budding yeasts

• Genome-scale inference of robust phylogeny and timetree of budding yeast 

subphylum

• Reconstruction of 45 metabolic traits infers complex budding yeast common 

ancestor

• Reductive evolution of traits and genes is a major mode of evolutionary 

diversification
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Figure 1. Levels of evolutionary sequence divergence within the budding yeast subphylum are on 
par with levels observed in animals and plants.
The phylogenetic distance (in terms of amino acid substitutions / site) between iconic 

species in budding yeasts (Saccharomyces cerevisiae), animals (Homo sapiens), and plants 

(Arabidopsis thaliana) and other representative species in each lineage. For each lineage, 

phylogenetic distance was estimated from a concatenated ML tree inferred from analysis of 

295 single-copy BUSCO genes. S. cerevisiae = Saccharomyces cerevisiae; S. paradoxus = 
Saccharomyces paradoxus; S. uvarum = Saccharomyces uvarum; C. glabrata = Candida 
glabrata; K. lactis = Kluyveromyces lactis; Wy. anomalus = Wickerhamomyces anomalus; 
D. hansenii = Debaryomyces hansenii; C. albicans = Candida albicans; B. bruxellensis = 

Brettanomyces bruxellensis; L. starkeyi = Lipomyces starkeyi; Y. lipolytica = Yarrowia 
lipolytica. Images representing taxa were drawn by hand, taken from PhyloPic (http://

phylopic.org), or modified from Google Images. The data matrix and ML tree in Newick 

format used for calculating sequence divergence in each of the three lineages are provided in 

the Figshare depository.
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Figure 2. Time-calibrated phylogeny of the budding yeast subphylum.
Divergence times were estimated using the autocorrelated clock model of rate variation 

across different lineages implemented in MCMCTree (clock=3), with a topology 

reconstructed from the concatenation-based maximum likelihood analysis of 2,408 amino 

acid orthologous groups (OGs) under a single LG+G4 model. The thirty-two internal 

branches that were not robustly recovered across our analyses are marked with circles. The 

220 genomes published in this study are shown in bold. The bar plot next to each species 

indicates genomic quality assessed by a set of 1,759 BUSCO genes. “Complete” indicates 
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the fraction of full-length BUSCO genes; “Fragmented” indicates the fraction of genes with 

a partial sequence; and “Missing” indicates the fraction of genes not found in the genome. 

Note that the CUG-Ser1 clade includes interspersed taxa from the families 

Debaryomycetaceae, Metschnikowiaceae, and Cephaloascaceae; the CUG-Ser2 clade 

includes the families Ascoideaceae and Saccharomycopsidaceae; the newly recovered CUG-

Ala clade includes several taxa in need of reassignment; the Pichiaceae clade includes 

several taxa in need of reassignment; and the Dipodascaceae/Trichomonascaceae clade 

includes interspersed taxa mainly from these two families. MYA: million years ago. See also 

Figures S1, S2 and S3 and Tables S1 and S2.
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Figure 3. Very few budding yeast genes were acquired via horizontal gene transfer (HGT).
(A) Mapping of the 878 putative HGT-acquired genes on the 332-taxon phylogeny of 

budding yeasts (Figure 2). These 878 genes were acquired through 365 distinct HGT events, 

of which 230 appear to be species-specific and the other 135 involve two or more species. 

(B) Two independent HGT events provided osmotolerant budding yeasts the genetic 

machinery to produce the osmoprotectant glycine betaine. On the top, the biochemical 

pathway for the biosynthesis of glycine betaine from choline-O-sulfate is shown. Choline-O-

sulfate is first converted by the action of choline sulfatase into choline; then, choline is 

converted by the action of choline oxidase into glycine betaine. On the bottom, the 
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phytogenies for the choline sulfatase and choline oxidase genes are shown. Note that the 

sequences of the sister lineages to the W. domercqiae and W. versatilis choline sulfatase 

sequences are from Proteobacteria, whereas the sequences of the sister lineages to the W. 
domercqiae and W. versatilis choline oxidase sequences are from Actinobacteria. (C) Two 

independent events provided two different lineages of budding yeasts (the W/S clade and a 

clade of three species in the genus Kluyveromyces) the genetic machinery to metabolize the 

mitochondrial toxin propionate-3-nitronate (P3N). On the top, the biochemical pathway for 

the oxidation of P3N is shown, where P3N is converted into malonic semialdehyde via the 

action of nitronate monooxygenase. On the bottom, the phylogeny for the nitronate 

monooxygenase acquired by an ancestor of W. domercqiae and W. versatilis is shown. Note 

that the sequences of the sister lineages to the W. domercqiae and W. versatilis nitronate 

monooxygenase sequences are from Proteobacteria in the genus Pseudomonas, whereas the 

sequences of the sister lineages to the three Kluyveromyces nitronate monooxygenase 

sequences are from Proteobacteria in the genus Acinetobacter. The budding yeast species 

inferred to have been the recipients of horizontally transferred genes are shown in bold. Data 

matrices and phylogenies for all HGT-acquired genes are provided in the Figshare 

repository. See also Figures S4 and S5 and Table S3.
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Figure 4. Evolution of metabolic traits across the budding yeast subphylum.
(A) The number of traits per major clade (columns) is depicted in a scatterplot where each 

grey dot corresponds to a species. Red dots indicate representative species, and black dots 

represent the median number of traits across each family. On the right is the distribution 

across the subphylum Saccharomycotina in histogram form. The red line corresponds to the 

inferred number of metabolic traits present (i.e., posterior probability of trait presence > 0.5 

in Table 1) in the BYCA (budding yeast common ancestor). The blue dashed and solid lines 

represent the 75th (25 traits), 50th (median; 20 traits), and 25th (12 traits) percentiles of the 
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numbers of traits, respectively. Representative species names are written using a four-letter 

abbreviation as follows: Lsta: Lipomyces starkeyi; Ylip: Yarrowia lipomyces; Wver: 

Wickerhamiella versatilis; Stbo: Starmerella bombicola; Bbru: Brettanomyces bruxellensis; 
Calb: Candida albicans; Cyja: Cyberlindnera jadinii; Klac: Kluyveromyces lactis; Cgla: 

Candida glabrata; Scer: Saccharomyces cerevisiae. (B) Heatmap showing the fraction of 

species in each major clade (columns) that display a representative set of metabolic traits; 

values near white indicate major clades (whose species are) lacking the trait, and values near 

black indicate major clades with the trait. To the left of the heatmap, the presence (black) or 

absence (white) of a trait in BYCA (inferred from ancestral trait reconstruction) is shown. To 

the right of the heatmap, well-characterized genes whose distributions are significantly 

associated with each trait are shown. (C) Positive association network for genes and traits. 

Traits and genes are represented by squares and circles, respectively. Trait communities are 

represented by the following colors: magenta, Contains Galactose; purple, Modified 

Glucose, green, Respiratory; orange, Glucosides; and cyan, Sugar Alcohols & Pentose 

Phosphate Pathway (Opulente et al., 2018). Associations among gene and traits were 

calculated using Mutual Information (MI) analysis, and negative associations were detected 

using a Jaccard index (all values less than 0.25 were considered negative associations and 

excluded). Edges connecting genes to traits are colored gray and are represented by solid 

lines for associations that had a MI value greater than or equal to 0.15; for genes already 

appearing in the figure, dashed lines representing MI values between 0.10 and 0.15 were 

included. The inset includes genes associated with GPHN, which encodes gephyrin. See also 

Figure S6 and Tables S4 and S5.
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Figure 5. Interconnections and interdependence of nitrate assimilation, xanthine assimilation, 
and the molybdopterin cofactor (Moco) biosynthesis pathways across the budding yeast 
subphylum.
The concentric tracks on the periphery of the figure depict (from inner to outer) the 

phylogenetic distribution of: growth phenotype on media containing nitrate or nitrite as a 

sole nitrogen source (inner green circles) and genes encoding proteins involved in nitrate/

nitrite assimilation (green squares); hypoxanthine/xanthine assimilation (orange squares); 

and Moco biosynthesis (blue squares). The underlying phylogeny and distribution of taxa is 

the same as in Figure 2, but species names have been omitted. The central diagram depicts 
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the individual steps of nitrate assimilation (green, top), xanthine assimilation (orange, right), 

and Moco biosynthesis (blue, left) pathways, with proteins involved shown in bold: nitrate 

transporter (YNT), nitrate reductase (YNR), nitrite reductase (YNI), cyclic pyranopterin 

monophosphate synthase (MOCS1), molybdopterin synthase (MOCS2), gephyrin (GPHN), 

molybdopterin sulfurtransferase (MS), and xanthine dehydrogenase (XDH). Molecules in 

the pathways: guanosine triphosphate (GTP), cyclic pyranopterin monophosphate (cPMP), 

molybdopterin (MPT), adenylated molybdopterin (MPT-AMP), molybdenum cofactor 

(Moco), and thiomolybdenum cofactor (Moco-sulfide). Solid arrows indicate subsequent 

steps in each pathway; dashed lines indicate use of a specific cofactor by an enzyme. See 

also Table S6.
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Figure 6. The evolution of the budding yeast subphylum is characterized by lineage-variable 
HGT and widespread losses of genes and traits.
The x-axis depicts the posterior mean of the age of (representative) nodes in the budding 

yeast phylogeny, and the y-axis depicts the number of metabolic traits inferred to have been 

present at these nodes. The lines of different colors represent the evolutionary trajectories (in 

the spaces of time and metabolic traits) for 7 representative yeast taxa and their common 

ancestors (depicted by dots). For each ancestral node, metabolic traits were considered to be 

present when the posterior probability of ancestral state 1 (present) was > 0.5 for the node. 

The gray region is the 95% confidence interval for the number of metabolic traits present 

across budding yeast evolution based on ancestral trait reconstruction of the distribution of 

inferences for 45 metabolic traits across 274 budding yeasts. The inferred numbers of HGT-

acquired genes are depicted by the circles of different sizes next to each taxon’s name. C. 

albicans = Candida albicans; L. starkeyi = Lipomyces starkeyi; Cy. jadinii = Cyberlindnera 
jadinii; B. bruxellensis = Brettanomyces bruxellensis; W. versatilis = Wickerhamiella 
versatilis; Y. lipolytica = Yarrowia lipolytica; S. cerevisiae = Saccharomyces cerevisiae; 
BYCA: Budding Yeast Common Ancestor; MYA: million years ago; Dev. = Devonian; Carb. 

= Carboniferous; Per. = Permian; Tri. =Triassic; Jur. = Jurassic; Cre. = Cretaceous; Pal. = 

Paleogene; and Neo. = Neogene. See also Figure S7.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Phenol:Chloroform:Isoamyl Alcohol Sigma Cat#P2069

Critical Commercial Assays

NEBNext Ultra DNA Library Prep NEB Cat#E7370L

TruSeq DNA PCR-free Library 
Preparation Kit

Illumina Cat#20015963

Nextera Mate Pair Sample 
Preparation Kit Illumina Cat#FC-132–1001

Quant-iT PicoGreen ds DNA Assay 
Kit Quant-iT Cat#P11496

Deposited Data

De novo assemblies DDBJ/ENA/GenBank See Table S1

Genome annotations This study Figshare data repository: 10.6084/m9.figshare.5854692

Data matrices This study Figshare data repository: 10.6084/m9.figshare.5854692

Phylogenetic trees This study Figshare data repository: 10.6084/m9.figshare.5854692

Alignments and ML trees for 
horizontally acquired genes

This study
Figshare data repository: 10.6084/m9.figshare.5854692

Metabolic trait data This study Figshare data repository: 10.6084/m9.figshare.5854692

Trait ancestral character state 
reconstructions

This study
Figshare data repository: 10.6084/m9.figshare.5854692

Experimental Models: Organisms/Strains

343 sampled species This study See Table S1

Software and Algorithms

iWGS v1.1 Zhou et al., 2016 https://github.com/zhouxiaofan1983/iWGS/

Trimmomatic v0.33 Bolger et al., 2014 http://www.usadellab.org/cmsUpage=trimmomatic

Lighter v1.1.1 Song et al., 2014 https://github.com/mourisl/Lighter/

KmerGenie v1.6982
Chikhi and 
Medvedev, 2014 http://kmergenie.bx.psu.edu/

ABYSS v1.5.2 Simpson et al., 2009 https://github.com/bcgsc/abyss

DISCOVAR r51885 Weisenfeld et al., 
2014 https://software.broadinstitute.org/software/discovar/blog/

MASURCA v2.3.2 Zimin et al., 2013 https://github.com/alekseyzimin/masurca

SGA v0.10.13
Simpson and Durbin, 
2012 https://github.com/jts/sga

SOAPdenovo2 v2.04 Luo et al., 2012 https://github.com/aquaskyline/SOAPdenovo2

SPADES v3.7.0
Bankevich et al., 
2012 http://cab.spbu.ru/software/spades/

QUAST v4.4 Gurevich et al., 2013 https://github.com/ablab/quast

NextClip v0.8 Leggett et al., 2014 https://github.com/richardmleggett/nextclip/

ALLPATHS-LG v51828 Gnerre et al., 2011 ftp://ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/

BUSCO v2.0.1
Waterhouse et al., 
2018 https://busco.ezlab.org/

OrthoDB Version 9 Zdobnov et al., 2017 https://busco.ezlab.org/
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AUGUSTUS v 3.2.2 Stanke and Waack, 
2003.

http://bioinf.uni-greifswald.de/augustus/downloads/

MAKER v2.31.8 Holt and Yandell, 
2011 http://www.yandell-lab.org/software/maker.html

GeneMark-ES v4.32 Ter-Hovhannisyan et 
al., 2008 http://exon.gatech.edu/GeneMark/gmes_instructions.html

SNAP v2013–11-29 Korf, 2004 http://korflab.ucdavis.edu/software.html

RepeatMasker v4.0.6
Institute for Systems 
Biology http://www.repeatmasker.org

Cuffcompare v2.2.1 Trapnell et al., 2012 https://github.com/gpertea/CuffCompare

MAFFT v7.299 Katoh and Standley, 
2013 https://mafft.cbrc.jp/alignment/software/

Pal2Nal v14 Suyama et al., 2006 http://www.bork.embl.de/pal2nal/#Download

PAML V4.8 Yang, 2007 http://abacus.gene.ucl.ac.uk/software/paml.html

MCMCtree v. 4.9 Yang, 2007 http://abacus.gene.ucl.ac.uk/software/paml.html

OrthoMCL v2.0 Li et al., 2003 http://orthomcl.org/common/downloads/software/v2.0/

Phyutility v2.2.6 Smith and Dunn, 
2008 https://github.com/blackrim/phyutility

FastTree v2.1.9 Price et al., 2010 http://www.microbesonline.org/fasttree/

PhyloTreePruner v1.0 Kocot et al., 2013 http://sourceforge.net/projects/phylotreepruner

trimAl v1.4
Capella-Gutierrez et 
al., 2009 http://trimal.cgenomics.org/

IQ-TREE v1.5.1 Nguyen et al., 2015 http://www.iqtree.org/

phylomeDB v4 Huerta-Cepas et al., 
2014 ftp://phylomedb.org/phylomedb/phylomes/phylome_0005/

MARE v0.1.2 Zoological Research 
Museum Alexander 
Koenig

http://mare.zfmk.de

RAxML v8.2.3 Stamatakis, 2014 https://sco.h-its.org/exelixis/web/software/raxml/index.html

ExaML v3.0.17 Kozlov et al., 2015 https://sco.h-its.org/exelixis/web/software/examl/index.html

ASTRAL-II v4.10.2 Mirarab and Warnow, 
2015

https://github.com/smirarab/ASTRAL

MEGA7 Kumar et al., 2016 https://www.megasoftware.net/

iTOL v3
Letunic and Bork, 
2016 https://itol.embl.de/help.cgi#batch

BayesTraits v3 Pagel et al., 2004 http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.1/BayesTraitsV3.0.1.html

R package igraph Csardi and Nepusz, 
2006 https://cran.r-project.org/web/packages/igraph/index.html

R package infotheo Meyer, 2008 https://cran.r-project.org/web/packages/infotheo/index.html

R package minet Meyer et al., 2008 https://www.bioconductor.org/packages/release/bioc/html/minet.html

R package wgcna Langfelder and 
Horvath, 2008 https://cran.r-project.org/web/packages/WGCNA/index.html

R package topgo Alexa and 
Rahnenfuhrer, 2016 https://bioconductor.org/packages/release/bioc/html/topGO.html

GhostKOALA
Kanehisa et al., 
2016a https://www.kegg.jp/ghostkoala/

ARACNE Margolin et al., 2006 https://bioconductor.org/packages/release/data/experiment/html/aracne.networks.html
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Table 1.

Rates of trait gain (q01), loss (q10), and posterior probabilities (PP) of ancestral states 0 and 1 of the Budding 

Yeast Common Ancestor (BYCA) for 45 metabolic traits.

Trait q01 q10 PP (0) pp (1) Trait q01 q10 PP (0) pp (1)

Glucose Fermentation 1.16 0.37 0.96 0.04 L-Arabinose* 0.02 1.36 0.00 1.00

Galactose Fermentation* 0.31 1.48 0.87 0.13 D-Arabinose 0.18 2.27 0.99 0.01

Sucrose Fermentation 0.40 2.00 0.98 0.02 D-Ribose 0.17 0.96 0.99 0.01

Maltose Fermentation* 0.34 3.17 0.56 0.44 Methanol 0.03 0.27 1.00 0.00

Lactose Fermentation* 0.17 78.03 0.50 0.50 Ethanol 0.73 0.14 0.00 1.00

Raffinose Fermentation* 0.27 2.35 0.76 0.24 Glycerol* 1.95 0.23 0.40 0.60

Trehalose Fermentation* 0.38 1.55 0.00 1.00 Erythritol* 0.03 1.38 0.00 1.00

Inulin* 0.23 3.49 0.12 0.88 Ribitol 0.33 0.38 0.97 0.03

Sucrose 0.21 0.92 0.68 0.32 Galactitol* 0.13 1.85 0.09 0.91

Raffinose* 0.23 2.13 0.00 1.00 D-Mannitol 0.11 0.27 0.00 1.00

Melibiose* 0.06 2.89 0.00 1.00 D-Glucitol 0.04 0.23 0.00 1.00

Galactose 0.49 0.31 0.01 0.99 myo-Inositol 0.01 1.43 0.00 1.00

Lactose* 0.18 2.74 0.04 0.96 DL-Lactate 0.68 0.89 0.66 0.34

Trehalose 0.62 0.83 0.28 0.72 Succinate 0.35 0.20 0.00 1.00

Maltose 0.27 0.92 0.67 0.33 Citrate 0.46 0.85 0.08 0.92

Melezitose 0.43 1.22 0.83 0.17 D-Gluconate 0.75 0.97 0.58 0.42

Methyl-a-D-glucoside 0.24 1.53 0.00 1.00 D-Glucosamine* 0.04 1.35 0.01 0.99

Soluble Starch* 0.11 2.25 0.00 1.00 N-Acetyl-D-glucosamine 0.08 0.57 0.21 0.79

Cellobiose 0.24 0.75 0.17 0.83 Hexadecane 0.17 0.89 0.91 0.09

Salicin 0.10 0.76 0.20 0.80 Nitrate* 0.01 2.12 0.02 0.98

L-Sorbose 0.50 0.51 0.01 0.99 Nitrite 0.16 1.18 0.95 0.05

L-Rhamnose* 0.02 1.97 0.03 0.97 2-Keto-D-gluconate 0.53 0.48 0.87 0.13

D-Xylose 0.12 0.38 0.00 1.00

Note: q01 (instantaneous transition rate of trait gain): the rate of change from state 0 (absent) to state 1 (present). q10 (instantaneous transition rate 
of trait loss): the rate of change from state 1 to state 0.

*
Asterisks indicate traits in which rates q01 and q10 are significantly different (assessed by Bayes Factors). PP (0) and PP (1) denote posterior 

probabilities of ancestral states 0 (absence) and 1 (presence) for the Budding Yeast Common Ancestor (BYCA), respectively. Every value in this 
table is derived from the largest peak of density of posterior distributions. See also Figure S6 and Table S4.
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