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Abstract

A new methodology for density estimation is proposed. The method-
ology, which builds on the one developed in [15], normalizes the data
points through the composition of simple maps. The parameters of
each map are determined through the maximization of a local quadratic
approximation to the log-likelihood. Various candidates for the el-
ementary maps of each step are proposed; criteria for choosing one
includes robustness, computational simplicity and good behavior in
high-dimensional settings. A good choice is that of localized radial
expansions, which depend on a single parameter: all the complex-
ity of arbitrary, possibly convoluted probability densities can be built
through the composition of such simple maps.

1 Introduction

A central problem in the analysis of data is density estimation: given a
set of independent observations xj , j = 1, . . . ,m, estimate its underlying
probability distribution. This article is concerned with the case in which
x is a continuous, possibly multidimensional variable, typically in Rn, and
its distribution is specified by a probability density ρ(x). Among the many
uses of density estimation are its application to classification, clustering and
dimensional reduction, as well as more field-specific applications such as
medical diagnosis, option pricing and weather prediction [2, 7, 13].

Parametric density estimation is often based on maximal likelihood: a
family of candidate densities is proposed, ρ(x;β), where β denotes param-
eters from an admissible set A. Then these parameters are chosen so as to
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maximize the log-likelihood L of the available observations:

β = arg max
β∈A

L =
m∑
j=1

log (ρ(xj ;β)) . (1)

A typical example is a family ρ(x;β) of Gaussian mixtures, with β includ-
ing free parameters in the means and covariance matrices of the individual
Gaussians and their weights in the mixture. Parametric density estimation
is a practical tool of wide applicability, yet it suffers from the arbitrariness in
the choice of the parametric family and number of parameters involved. Ide-
ally, the form of the density function would emerge from the data, not from
arbitrary a priori choices, unless these are guided by a deeper knowledge of
the processes originating the probability distribution under study.

The simplest methodology for non-parametric density estimation is the
histogram [16], whereby space is divided into regular bins, and the estimated
density within each bin is assigned a uniform value, proportional to the
number of observations that fall within. Histogram estimates are not smooth
and suffer greatly from the curse of dimensionality. A smoother version,
first developed in [12] and [11], uses a sum of kernel functions centered
at each observation, with a bandwidth adapted to the level of resolution
desired. Particular kernels have been devised to handle properties of the
target distributions; for instance, when these are known to have support only
in the positive half-line, Gamma kernels have been proposed as a substitute
for their symmetric Gaussian counterpart [4].

In non-parametric estimation, one must be careful to to over-resolve the
density, for which one needs to calibrate the smoothing parameters to the
data [10]. The most universal methodology for this is cross-validation [6], in
which the available data are partitioned into subsets, used alternatively for
training and out-of-sample testing of the estimation procedure. A related
procedure is the bootstrap [8], which creates training and testing populations
by drawing samples with replacement from the data.

An alternative methodology for non-parametric density estimation was
developed in [15], based on normalizing flows in feature-space (A normaliza-
tion procedure in small-dimensional sections of the data also forms the basis
of exploratory projection pursuit [5], a methodology originally developed
for the visualization of high-dimensional data.) Normalizing the data xj is
finding a map y(x) such that the yj = y(xj) have a prescribed distribution
µ(y), for which we shall adopt here the isotropic Gaussian

µ(y) = N (0, In) =
1

(2π)
n
2

e−
‖y‖2

2 (2)
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If such map is known, then the probability density ρ(x) underlying the
original data is given by

ρ(x) = Jy(x)µ(y(x)), (3)

where Jy(x) is the Jacobian of the map y(x) evaluated at the point x. In view
of (3), density estimation can be rephrased as the search for a normalizing
map.

There is more than semantics to this rephrasing: normalizing the data is
often a goal per se. It allows us, for instance, to compare observations from
different datasets, to define robust metrics in phase-space, and to use stan-
dard statistical tools, often applicable only to normal distributions. More
important for us here, however, is that it leads to the development of a novel
family of density-estimation techniques.

1.1 Density estimation through normalizing flows

The simplest idea for finding a normalizing map y(x) is to propose a para-
metric family, y = yβ(x), and maximize the log-likelihood of the data, com-
bining (1), (2) and (3) into

β = arg max
β∈A

L =
m∑
j=1

[
log (Jyβ (xj))−

‖yβ(x)‖2

2

]
, (4)

where we have omitted from the log-likelihood L the β-independent term
−n

2 log(2π). In particular, if y(x) is chosen among all linear functions of the
form

yβ(x) = A(x− b)
(
β =

{
A ∈ Rn×n, b ∈ Rn

})
, (5)

then the output of the maximization in (4) is

b = x̄, A = Σ−
1
2 , (6)

where x̄ = 1
m

∑m
j=1 xj is the empirical mean and Σ = 1

m

∑m
j=1 xjx

t
j the

empirical covariance matrix of the data. In other words, a linear choice for
yβ(x) yields the standard normalization procedure of subtracting the mean
and dividing by the square-root of the covariance matrix. In terms of density
estimation, it yields the Gaussian

ρ(x) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2

(x−x̄)tΣ−1(x−x̄). (7)

Yet this, as all parametric procedures, suffers from the extra-structure it
imposes on the data, by assuming that it has an underlying probability
density of a particular form.
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One way to approach the algorithm proposed in [15] is to factor the map
y(x) into N parametric maps φβi(z):

yN (x) = φβN ◦ φβN−1
◦ . . . ◦ φβ1(x), (8)

since the composition of many simple maps can be made arbitrarily complex,
thus overcoming the limitations of parametric maps. If this is considered
as a function yβ(x), depending on the indexed family of parameters β =
(β1 . . . βN ) on which to perform the maximization in (4), then we have just
complicated matters without resolving any issue. Yet the following two
realizations help us move forward:

• We can calculate the various βi sequentially: first find β1 using y1(x) =
φβ1(x) in (4), then β2 using y2(x) = φβ2 (φβ1(x)), with β1 fixed at the
value found in the prior step, and so on. If the identity map is included
in each elementary family for βi = 0,

φ0(z) = z,

then each new step can only increase the value of the log-likelihood L,
so even though we are not maximizing L over β = (β1 . . . βN ), we are
still ascending it through the sequence of maps.

• Switching perspective from density estimation to normalization, we
can at each step i forget all prior steps, and just deal with the currently
normalized states zj = yi−1(xj) of the observations as if these were the
original ones. In order to be able to compute at the end the estimated
density of the original variables xj , we just need to update at each
step the global Jacobian of the map, through

Jyi(xj)→ Jφi(zj)J
yi−1(xj), (9)

i.e. by multiplying it by the Jacobian of the current elementary map.
With this new perspective, all steps adopt the simple form in (4), with
β = βi and each xj replaced by the current zj . This duality is the basis
of our algorithm: rather than set out to estimate the density ρ(x), we
seek a normalizing map y(x). This we factor into many elementary
maps, with parameters determined through a local density estimation,
in which (4) is applied not to x but to the current state z(x) of the
map.

Pushing this idea to the limit, we may think of a continuous flow z = φt(x)
in an algorithmic time t, with velocity field

u(z) =
∂z

∂t
(10)
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driven by the variational gradient of the log-likelihood L. From this per-
spective, the observations xj give rise to active Lagrangian markers zj(t),
with zj(0) = xj , that move with the flow and guide it through their contri-
bution to the –local in time– log-likelihood L. It was proved in [15] that,
as the number of observations grows, y(x) = limt→∞ z(x, t) converges to
a normal distribution, and the density ρ(x) estimated through (3) to the
actual density of the data.

For the observations xj , the active Lagrangian markers that guide the
flow leading to the map y(x), we know at the end their normalized values
y(xj) and the corresponding estimated densities ρ(xj) from (3). Yet one is
typically interested in evaluating the estimated density at other points xgi .
These might be points on a regular grid –hence the “g” in xgi –, required to
plot or manipulate ρ(x). They can also represent events whose likelihood one
would like to know, or points whose probability under various distributions
is required for a classification problem. In order to evaluate the density
at these extra points xgi , it is enough to add them as passive Lagrangian
markers that move with the flow but do not influence it, since they are not
included in the likelihood function.

1.2 The individual maps

The building blocks φi(x) proposed in [15] were simple one-dimensional
maps, centered at a random point x0, oriented in a random direction; they
depended on three parameters β. These parameters were found by ascent
of the log-likelihood, i.e. through

β = ν∇βL|β=0, (11)

with a learning rate ν given by

ν =
ε√

ε2 + ‖∇βL‖2
, (12)

and ε� 1 prescribed. This simple formula for the learning rate guarantees
that the size ‖β‖ of all steps is bounded by ε and decreases near a maximum
of L. It was proved in [15] that the composition of such one-dimensional
maps suffices to guarantee convergence to arbitrary distributions ρ(x), based
on the fact that two distributions with the same marginals in all directions
are necessarily identical. This procedure was further developed in [1] to
address clustering and classification problems.

Yet the procedure just described suffers from some computational draw-
backs:
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• Exploring all directions through one-dimensional maps requires a num-
ber of steps that grows exponentially with the dimension of phase-
space. In many applications, such as to microarray data, this dimen-
sion can be very large. Moreover, performing random rotations –i.e.
orthogonal transformations– in high dimensions is costly.

• In order to have a smooth ascent process, the step-size ε needs to be
small, hence requiring the algorithm to perform a large number of
steps to reach convergence.

In this paper, we address both of these issues. On the one hand, we
propose elementary transformations that do not deteriorate when the di-
mensionality of phase-space grows, the simplest and most effective of which
is based on radial expansions. On the other, we exploit the fact that the
elementary transformations have a very simple analytical form to go beyond
straightforward gradient descent, and instead maximize in each step the lo-
cal quadratic approximation to the log-likelihood in terms of the parameters
β. This allows us to take much larger steps, and hence reduces significantly
the total number of steps that the algorithm requires.

2 General methodological aspects

2.1 Center x0 and length-scale α

All the elementary maps that we propose are of the form

y = x+ φ

(
x− x0

α

)
,

centered at a random point x0. The parameter α, measuring the length-
scale of the map, has a value that depends on the selected node x0: in areas
with small probability, the length-scale must be large, not to over-fit the
data. We start by choosing a number np of points that we would like to
have within a ball or radius α around x0. Then α is given by the expression

α = (2π)
1
2

(
Ω−1
n

np
m

) 1
n

e
‖x0‖

2

2n , (13)

which results from inverting the density of the target normal distribution.
Here m is the total number of data-points, n the dimension of feature-space,
and Ωn the volume of the unit ball in Rn. The concept is illustrated in two
dimensions in figure 1.
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Figure 1: Dependence of the length scale α on the center x0. In order not
to over-resolve the estimation, the maps need to include a sufficient number
of observations within their typical length scale. Thus, for maps centered in
relatively unpopulated areas, the radius α must be larger than in areas with
high probability density, so as to encompass a similar number of points. The
two circles in the figure exemplify this: a point in the tail of the distribution
is assigned a larger domain of influence than one in the core.

We can think of two candidate methodologies for selecting the point x0:
to pick it at random from the actual observations -at their current normal-
ized state- or to sample the normal distribution to which y(x) is converging.
The former choice has the advantage of sampling the actual current density,
not the estimated one; on the negative side, it never picks points away from
the observations, so it may be ineffective at reducing over-estimated densi-
ties at points far from the observed set. The latter choice, on the other hand,
will sample all points proportionally to their current estimated density, so
it will detect and help correct points with over-estimated probability, yet it
may fail to sample points in areas with under-estimated probability density,
so these may never be corrected. We have implemented a balanced solution,
whereby we randomly alternate between the two sampling methodologies
just described.

2.2 Local ascent

In [15], we proposed picking the parameters β of each time-step by gradient
ascent of the log-likelihood, through (11) and (12). Yet such procedure does
not exploit to its full extent the simplicity of each elementary map. The
explicit nature of these maps allows us to compute analytically not just the
first but also the second derivatives of the log-likelihood L with respect to β.
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With this is hand, we can take larger and more effective steps by maximizing
the quadratic local approximation to L

L ≈ L0 +Gβ +
1

2
β′Hβ, (14)

where

L0 = L|β=0, Gj =
∂L

∂βj

∣∣∣
β=0

and Hj
i =

∂2L

∂βi∂βj

∣∣∣
β=0

(15)

are the log-likelihood, its gradient and its Hessian matrix evaluated at β = 0.
Maximizing (14) yields

β = −H−1G. (16)

A little care is required though not to take steps that are too long, in-
compatible with the local quadratic approximation. Firstly, if the Hessian
matrix H were not negative-definite, the quadratic form (14) would have
no maximum, and regular gradient descent would be called upon. Luckily,
this is never the case with the maps that we propose, whose Hessian H is
always negative definite. It may happen though that L is locally quite flat,
leading to a large value of ‖β‖ from (16). To avoid pushing the quadratic
approximation too far from its domain of validity, we limit the step-size to
a maximum learning rate ε. We adopt, if ‖H−1G‖ > ε, the capped step

β = −ε H−1G

‖H−1G‖
. (17)

2.3 Preconditioning

It may be convenient to do some simple initial transformations that map
the data points toward a normal distribution in the bulk. Reasons for this
range from the general to the specific:

• For data points far from the origin, the gradient of their likelihood un-
der a normal distribution could reach machine zero, at which point the
algorithm will lack any guidance as to how to move them to improve
their likelihood.

• Movements in the bulk may require a coarse resolution, as measured
by the length scale α, at odds with the finer one needed for a more
detailed resolution of the probability density.

• We may have some a priori knowledge of a family of distributions that
should capture much of the data’s variability. Using this to do first a
simple parametric estimation may save much computational time.
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• In some cases, we might be interested in how much the actual dis-
tribution differs from a conventional one, such as the log-norm for
investment returns. Then we can first do a fit to the conventional dis-
tribution, and then quantify the extent and nature of the subsequent
maps.

This first set of maps can be thought of as a preconditioning step of the
algorithm, which only differs from the subsequent steps in the form of the
proposed maps or in the scale adopted. Two preconditioning steps that we
include by default in the algorithm are substracting the mean of the data,

x→ x− µ, µ =
1

m

m∑
j=1

xj , (18)

and dividing by the average standard deviation:

x→ 1

σ
x, σ =

√√√√ 1

mn

m∑
j=1

‖xj‖2, (19)

with corresponding initial estimation

ρ0(x) =
(
2πσ2

)−n
2 e−

‖x−µ‖2

2σ2 . (20)

Proposing a general Gaussian as in (7) is not generally advisable in high
dimensions, unless the sample size m is big enough to allow for a robust
estimation of the covariance matrix Σ.

Another preconditioning candidate generally applicable consists of carry-
ing out a few steps of the regular core procedure, but with coarser resolution,
i.e. with larger np in (13). More generally, we can have a value of np that
decreases monotonically throughout the procedure, from an initial coarse
value to the finest resolution desired or allowed by the data, thus blurring
the boundary between preconditioning and the algorithm’s core.

In specific cases, where a family of probability densities of specific form
ρ0(x, β) is known or conjectured to provide a sensible fit of the data, and a
map y(x, β) is known such that

ρ0(x, β) = Jy(x)µ(y(x, β)), (21)

then the preconditioning step should consist of a parametric fit of these
parameters β followed by the map. The popular procedure of taking the log
of a series of returns fits within this framework, where the conjecture ρ0(x)
is a log-normal distribution.
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Often ρ(x) has bounded or semi-infinite support, which may be known
even though ρ itself is not. For instance, some components of x may be
known to be positive or, if x denotes geographical location, ρ(x) may be
known to vanish over seas or in other unpopulated areas [14]. When this
is the case, it may be convenient to perform as preconditioning a first map
that fills out all of space, such as

x→ erf−1 (1− 2e−x
)

(22)

for one-dimensional data with x ≥ 0. The advantage of such preconditioning
step goes beyond moving the data toward Gaussianity: it also guarantees
that the estimated ρest(x) will vanish outside the support of ρ(x).

3 Elementary building blocks

In order to complete the description of the algorithm, we need to provide
a form for the elementary maps of each computational step, the “building
blocks” of the general map y(x) defining the estimated density ρ(x) through
(3). In order to be useful, these elementary maps must satisfy some prop-
erties:

• They must include the identity map for β = 0.

• They must constitute a basis, through composition, for quite general
maps. Thus linear maps are not good, since their composition never
leaves the group of linear transformations.

• For robustness, they should have a simple spatial structure, without
unnecessary oscillations. Our choices below are local, typically the
identity plus localized bumps times linear functions.

• They must have a simple analytical dependence on the parameters
β, leading to first and second derivatives of the likelihood function
with respect to β that are not computationally intensive. We find
below that a scalar β, the simplest of all choices, works best, since
no complexity is needed at the level of the elementary maps: any
complexity of the actual y(x) can be built by the composition of simple
maps.

• They should not deteriorate in high dimensions. The maps proposed
in [15] require the laborious construction of general maps through
the composition of one-dimensional transformations. This is always
doable, as proved in [15], but not computationally efficient in high
dimensions.
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3.1 Radial expansions

Among the simplest elementary transformations suitable for building general
maps are isotropic local expansion centered at a random point x0, of the form

y = x+ βf(‖x− x0‖)(x− x0), (23)

depending on the single parameter β, positive for local expansions and neg-
ative for contractions.

A typical localization function f is given by

f(r) =
1

α

erf
(

r
α

)
r
α

, (24)

where r = ‖x− x0‖. Another choice is

f(r) =
1

α+ r
. (25)

Even though the two are similar in shape, each choice has its advantages: the
former is smoother and more localized, while the latter is faster to compute
and, more importantly, the corresponding map (23) can be inverted in closed
form, yielding

x− x0

r
=
y − x0

s
,

where s = ‖y − x0‖ and

r =
s− (α+ β)

2
+

√(
s− (α+ β)

2

)2

+ αs.

This is useful in a number of applications that involve finding the inverse
x(y) of the normalizing map y(x): producing synthetic extra sample points
xj from ρ(x), for instance, can be achieved by obtaining samples yj from
the Gaussian µ(y), and writing xj = x(yj)).

Still one more choice is

f(r) =

(
1− r

α

)2
α

for r < α, f(r) = 0 otherwise. (26)

This has the advantage of its compact support, which permits the easy
superposition of various such maps simultaneously. All three families require
β > −α for the maps to be one–to–one; the last one requires also that
β < 3α. Figure 2 compares the three functions, for x0 = 0 and α = 1.

The map in (23) has Jacobian

J =
∣∣∣(1 + βf)n−1(1 + β(f + rf ′))

∣∣∣
11



Figure 2: Three radial building blocks. The upper panels display f(|x|), the
lower ones xf(|x|). On the left, a smooth, analytic block based on the error
function, in the center, one with algebraic decay –and closed-form inversion–
and, on the right, one with compact support.

and corresponding log-likelihood function L

∑
j

log(ρ(xj)) =
∑
j

{
− 1

2

[
|x0|2 + 2(x0, (1 + βf)(xj − x0)) + ((1 + βf)rj)

2
]

+(n− 1) log(1 + βf) + log(1 + β(f + rjf
′))
}
.

Then

∂L

∂β

∣∣∣
β=0

=
∑
j

{[
n− (x0, xj − x0)− r2

j

]
f + rjf

′
}

and
∂2L

∂β2

∣∣∣
β=0

= −
∑
j

[
(n+ r2

j )f
2 + 2rjff

′ + (rjf
′)2
]
< 0,

so we may replace L by its quadratic approximation at β = 0, yielding the
following approximation to the maximizer:

β = −
∂L
∂β |β=0

∂2L
∂β2 |β=0

.
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3.2 One-dimensional maps

One may gain extra degrees of freedom by changing the map above into the
component-wise

yi − xi0 =
(
1 + βifi(|xi − xi0|)

) (
xi − xi0

)
, (27)

the composition of n one-dimensional maps, each depending on a parameter
βi. In this case,

L =
∑
j

∑
i

log
[
1 + βi

(
fi +

∣∣∣xij − xi0∣∣∣ f ′i)]
−1

2

[
xi0

2
+ 2xi0

(
1 + βifi

) (
xij − xi0

)
+
(
xij − xi0

)2 (
1 + βifi

)2
]
,

∂L

∂βi

∣∣∣
β=0

=
∑
j

{
fi +

∣∣∣xij − xi0∣∣∣ f ′i − xi0fi (xij − xi0)− fi (xij − xi0)2 }
and

∂2L

∂β2
i

∣∣∣
β=0

= −
∑
j

(
fi +

∣∣∣xij − xi0∣∣∣ f ′i)2
+ f2

i

(
xij − xi0

)2
,

so we must pick

βi = −
∂L
∂βi
|β=0

∂2L
∂β2
i
|β=0

.

This family of maps is not isotropic, since it privileges the coordinate
axes. To restore isotropy, one can rotate the axes every time-step, through
a random orthogonal matrix. With this extra ingredient, this building block
agrees with the one originally implemented in [15]; the only differences are
the specific form of the stretching function, which in [15] was a more com-
plex function depending on three parameters per dimension, and the max-
imization procedure, which is carried out here through a local quadratic
approximation, not by first-order ascent of the log-likelihood.

3.3 Localized linear transformations

The radial expansions in (23) and, except for a minor twist, also the one-
dimensional maps in (27) can be thought of as particular instances of a more
general localized linear transformation of the form

y = x+ f(‖x− x0‖)A(x− x0). (28)
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For the radial expansions, we have A = βI and, for each one-dimensional
map, A = βnnt, where n is the column vector of direction cosines of the
direction considered; in the latter case f applies not to ‖x − x0‖, but to
|n · (x− x0)|.

For a general matrix A in (28), we have the following quadratic approx-
imation to the logarithm of the density ρ at each point x:

log(ρ(x)) ≈ −|x|2/2 +
∑
i,j

Lji (x)Aji +
∑
i,j,k,l

Qklij (x)AjiA
l
k, (29)

where

Lji (x) =

[
∂f

∂xi
− f(x)xi

]
(xj − xj0) + f(x)δji

and

Qklij (x) = f2(x)
(
δliδ

k
j + δki (xj − xj0)(xl − xl0)

)
+ δjk

(
2f(x)

∂f

∂xi
(xl − xl0)

)
+

∂f

∂xi
∂f

∂xk
(xj − xj0)(xl − xl0).

Hence maximizing over A the quadratic approximation to the log-likelihood
L =

∑
m log(ρ(xm)) yields the system

∑
kl

{∑
m

(
Qklij (xm) +Qijkl(xm)

)}
Alk = −

∑
m

Lji (xm).

Notice that this building block requires much more computational work
than the isotropic expansions, hence its use would only be justified if it
yielded better accuracy in a much smaller number of steps. We found in the
experiments below that this is not typically the case, so we conclude that
simpler maps, with only a handful of parameters β –such as the single one
for the radial expansions– are to be preferred.

4 Examples

In this section, we use some synthetic examples to illustrate the procedure
and to compare the efficiency of the various building blocks proposed above.
In all examples, we have used for preconditioning only the two steps in
(18,19), which re-center the observations at x = 0 and stretch them isotrop-
ically so as to produce a unitary average standard deviation.

As a first example, consider the two-dimensional probability density dis-
played in figure 3, given by

ρ(x, y) = e−
1
2
θ2e−

1
2( r−1

0.1 )
2

, (30)
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Figure 3: A synthetic two-dimensional example. On the left, the proposed
probability density, displayed through contours and in perspective. On the
right, the 1000 point sample used to test the procedure, and the evolution
of Kullback-Leibler divergence between the analytical density and the one
discovered by the algorithm.

where r and θ are the radius and angle in polar coordinates: a distribution
concentrated in a small neighborhood of the unit circle, with maximal den-
sity at (x, y) = (1, 0). Such distribution, with thin support and pronounced
curvature, would be hard to capture with any parametric approach. Yet the
proposed algorithm does a very good job, as shown in figure 4.

For the experiment displayed in figures 3 and 4, we have taken a sample
of size m = 1000, used the radial expansion in (23) with f(r) from (24), and
adopted a value np = 500 for the calculation of the lengh-scale α in (13).
The Kullback-Leibler divergence [9] between the exact and the estimated
distributions, displayed in the last panel of figure 3, is given by

KL =

∫
log

(
ρex(y)

ρest(y)

)
ρex(y) dy, (31)

which is integrated numerically on the same grid used for the plots, a set of
points carried passively by the algorithm, where ρest is known. Another pos-
sibility, much more efficient in high dimensions, is to estimate KL through
Monte Carlo simulation:

KL ≈ 1

N

n∑
j=1

log(ρex(xj)− log(ρest(xj)). (32)

This also reveals the connection between the Kullback-Leibler divergence be-
tween estimated and exact densities and the log-likelihood of the estimated
density, which the algorithm ascends.
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Figure 4: Evolution of the estimated density and normalized observations,
through three snap-shots: on the left, the onset of the algorithm, after
a pre-conditioning step that re-centers the observations and rescales them
isotropically; in the center, the situation after 200 steps and, on the right,
a final estimation after 600 steps. The top two rows display the estimated
density; the third row the normalized observations.

Experimenting with the other building blocks proposed above yields en-
tirely similar results. We conclude that the radial expansions are to be
preferred, since their use is much less computationally intensive. Moreover,
the simplicity of the radial expansions brings in an extra degree of robust-
ness, as revealed by a much smaller sensitivity to the choice of np, the only
free parameter of the algorithm.

Next we compare the procedure developed here with Kernel density esti-
mation, the most popular non-parametric methodology in use [16]. We have
adopted Gaussian kernels of the form

Kh(x, y) =
1

(2π)
n
2 hn

e−
1
2

( ‖y−x‖
h

)2
, (33)

and proposed the estimate

ρ(y) =
1

m

m∑
j=1

Kh (xj , y) . (34)

Hence each observation xj contributes to the local density within a neigh-
borhood whose size scales with h. This bandwidth plays a similar role to the
np of our procedure, the typical number of points affected by each map.

Figure 5 displays the results of applying both procedures, at different
bandwidths, to a sample with m = 500 points from the distribution in
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(30). We have picked two values for h and np, one too large, slightly under-
resolving the distribution, and one too small, slightly over-resolving it. Com-
paring the results from the two procedures, we can make the following ob-
servations:

• Both procedures are robust, capturing the main features of the prob-
ability density ρ(x), whereas most parametric approaches would have
done poorly.

• The mapping procedure yields smoother and tighter density profiles,
and correspondingly smaller values of the Kullback–Leibler divergence
between the exact and estimated densities.

The computational costs of both procedures are comparable: estimating the
density at q points requires m×q evaluations of the kernel and ns×q map ap-
plications respectively. Since the number ns of iterations before convergence
scales with the number m of observations, these two numbers of evaluations
are of the same order. The mapping procedure has the additional cost of
determining the optimal parameter β for each step, but this is comparatively
unimportant when q is much larger than m.

Beyond the comparison of effectiveness, which depends on the actual
problem in hand, one can describe the main differences between the two
procedures:

• The estimated density is expressed in terms of the sum of kernel func-
tions in one case and of the composition of elementary maps in the
other.

• In the implementations discussed here, Kernel density estimation is
explicit and deterministic, while there is a stochastic element to the
choice of the centers for the elementary maps.

• Kernel density estimation is conceptually simpler, while the normaliz-
ing maps have a richer structure and more versatility.

• The kernels provide just an estimated density, while the new procedure
also produces a normalizing map. This can be used for a variety of
purposes, such as sampling.

Figures 6 and 7 show another two-dimensional experiment. In this case,
the proposed density is the mixture of two anisotropic Gaussians, and, for
illustration, the building block utilized is the general localized linear trans-
formation in (28). Notice in figure 7 a feature associated with the dual
nature of the algorithm: since the normalizing procedure cannot fully elim-
inate the gap between the two Gaussians without over-resolving, as shown
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Figure 5: Comparison between density estimation through the mapping
procedure and through Gaussian kernels at various bandwidths. On the
left, two estimates performed using radial expansions; on the right, two
Gaussian kernel density estimations. The top row uses values of np and h
that slightly under-resolve the distribution, while the corrresponding values
on the bottom row slightly over-resolve it. Both methodologies are robust
and yield comparable results, yet the mapping procedure gets estimates
that are both tighter and smoother, with corresponding lower values for the
Kullback-Leibler divergence with the exact density underlying the sample.
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Figure 6: A second synthetic two-dimensional example, the mixture of two
Gaussians. On the left, the proposed probability density, displayed through
contours and in perspective. On the right, the 2000 point sample used to test
the procedure, and the evolution of Kullback-Leibler divergence between the
analytical density and the one discovered by the algorithm.

in the three bottom panels, the corresponding density estimation, displayed
in the top panels, cannot fully separate the two. A kernel estimator would
also be unable to fully separate the two components, but here the reason
would be more straightforward: a bandwidth h small enough to separate
them would over-resolve the estimation, particularly at the less populated
tails of the distribution.

The examples above are two-dimensional to facilitate their display, yet
the full power of the algorithm manifests itself in high-dimensional situa-
tions. Thus we consider next the equal-weight mixture of two n-dimensional
normal distributions, centered at x = ±2e1. Here we have used a sample
of m = 1000 points, np = 500, and again the isotropic radial expansion in
(23,24). Figure 8 compares the evolution of the Kullback-Leibler divergence
between the exact and estimated density in dimensions n = 2, n = 5 and
n = 10. In order to enable a meaningful comparison between problems in
different dimensions, the KL from (31) in the plots is normalized by An, the
surface area of the n-dimensional unit sphere.

Notice that the rate of convergence does not deteriorate significantly with
the dimension n –nor does the time per step, which is nearly independent of
n for radial expansions. The value of n = 10 is beyond the largest one might
have hoped to resolve with a sample of size m = 1000, since 210 = 1024:
one has in average one observation per the 10-dimensional equivalent of a
quadrant! Thus it is surprising that the algorithm resolves this density so
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Figure 7: Evolution of the estimated density and normalized observations,
through three snap-shots: on the left, the onset of the algorithm, after
a pre-conditioning step that re-centers the observations and rescales them
isotropically; in the center, the situation after 100 steps and, on the right,
a final estimation after 500 steps. The top two rows display the estimated
density; the third row the normalized observations.

well.

5 Conclusions

We have developed a methodology for non-parametric density estimation.
Based on normalizing flows, the new procedure improves on the one de-
veloped in [15], in that it is more robust and efficient in high dimensions,
and ascends the log-likelihood function through larger steps, based on a
quadratic approximation rather than gradient ascent. It requires only one
external parameter, np, with a clear interpretation: the level of resolution
sought, measured in number of observations per localized feature of the esti-
mated density. We have found that the simplest elementary transformations,
such as localized radial expansions, are also the most efficient and robust
building blocks from which to form the map that normalizes the data points.

Density estimation appears often in applications as a tool for more spe-
cific tasks. One advantage of the methodology developed here is its flexi-
bility, which allows for easy adaptation to such tasks. Thus, in [1], we have
adapted the algorithm from [15], a direct ancestor to the one in this paper, to
do classification and clustering. Along similar lines, projects under way em-
ploy variations of the methodology proposed here to perform tasks as varied
as medical diagnosis, relating behavioral traits to neuron classes in worms,
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Figure 8: Evolution of the Kullback-Leibler divergence between the real and
the estimated density for a Gaussian mixture in dimensions 2 (solid blue),
5 (dashed red) and 10 (dashed black.)

Montecarlo simulation, time series analysis, estimation of risk-neutral mea-
sures, and transportation theory. It is in the context of these more specific
procedures that examples with real data make sense. In this paper, we have
purposefully concentrated instead on “pure” density estimation, illustrating
the new procedure only with synthetic examples. The advantage of these is
that the knowledge of the precise distribution from which the observations
are drawn allows us to quantify the accuracy of the estimated distribution,
both visually, for small dimensional problems, and quantitatively, through
the Kullback-Leibler divergence between the two.
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