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Abstract We consider R
3 as a homogeneous manifold for the action of the motion

group given by rotations and translations. For an arbitrary τ ∈ ŜO(3), let Eτ be
the homogeneous vector bundle over R

3 associated with τ . An interesting problem
consists in studying the set of bounded linear operators over the sections of Eτ that are
invariant under the action of SO(3) � R

3. Such operators are in correspondence with
the End(Vτ )-valued, bi-τ -equivariant, integrable functions on R

3 and they form a
commutative algebra with the convolution product. We develop the spherical analysis
on that algebra, explicitly computing the τ -spherical functions. We first present a set
of generators of the algebra of SO(3)�R

3-invariant differential operators non Eτ . We
also give an explicit form for the τ -spherical Fourier transform,we deduce an inversion
formula and we use it to give a characterization of End(Vτ )-valued, bi-τ -equivariant,
functions on R

3.
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1 Introduction and preliminaries

Let G be a connected Lie group and K a compact subgroup of G. Let τ be a complex
representation of K on the vector space Vτ of finite dimension dτ . Up to isomorphism,
every homogeneous vector bundle over G/K is of the form Eτ = G ×τ Vτ ([13]
p. 115, 5.2.2 and Lemma 5.2.3). The sections of Eτ are naturally identified with the
space of Vτ -valued functions u on G such that

u(gk) = τ(k−1)u(g) ∀g ∈ G, k ∈ K . (1)

From now on we consider τ an irreducible unitary representation. The objective
is to characterize all the linear and continuous (with respect to the corresponding
standard topologies) integral operators over the sections of Eτ that commute with the
action of G on Eτ . From the Schwartz kernel theorem, every such operator T can be
represented in a unique way as a convolution operator

Tu(g) =
∫
G
F(gh−1)u(h) dh (2)

and its kernel F is an End(Vτ )-valued function (or distribution) on G that satisfies
the identity

F(k1gk2) = τ(k−1
2 )F(g)τ (k−1

1 ) ∀g ∈ G, k1, k2 ∈ K . (3)

In particular, convolution operators T = TF with kernel F ∈ L1
τ,τ (G, End(Vτ )), the

space of End(Vτ )-valued integrable functions on G satisfying (3), can be composed
with each other and TF1 ◦ TF2 = TF1∗F2 , where

F1 ∗ F2(g) =
∫
G
F1(h

−1g)F2(h)dh. (4)

The main goal of the subject, involving articles such as [1] and [7], is to reproduce
Fourier spherical analysis on the algebra L1

τ,τ (G, End(Vτ )) in order to deduce an
inversion and Plancherel theorem, and to have simultaneous diagonalization of the set
of G-invariant linear and continuous integral operators on the sections of an homoge-
neous vector bundle on G/K . Therefore, as in linear algebra, a necessary condition is
that these operators must commute. This motivates the following definition:

Definition 1 Let G, K and τ be as before, then (G, K , τ ) is said to be a commutative
triple if the algebra L1

τ,τ (G, End(Vτ )) with the convolution product is commutative.
When this holds for every irreducible unitary representation τ of K , (G, K ) is called
a strong Gelfand pair.

In particular, when τ is the trivial representation of K , the definition of commutative
triple is equivalent to say that (G, K ) is a Gelfand pair.
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Spherical analysis on the 3-dimensional euclidean motion… 623

There are many equivalent statements to the previous definition. For instance, let Ĝ be
the set of equivalence classes of the irreducible unitary representations of the group
G. Godement’s Criterion [3] states that (G, K , τ ) is a commutative triple if and only
if, for any π ∈ Ĝ, the multiplicity of τ in π|K is at most one (where π|K denotes the
restriction of π to K ). In particular, (G, K ) is a strong Gelfand pair if and only if, for
all π ∈ Ĝ, π|K is multiplicity free.
The linear functionals that will change the integral G-invariant operators into multi-
plicative operators, lie on the dual space of L1

τ,τ (G, End(Vτ )), so they are represented
by bounded End(Vτ )-valued functions on G that satisfy (3) (by the Riesz represen-
tation theorem) and these must be, in some sense, eigenfunctions of all the invariant
operators. They are called spherical functions, and the transformation that makes this
change is the spherical Fourier transform.

Definition 2 Let (G, K , τ ) be a commutative triple. A non-trivial function Φ in the
space L∞

τ,τ (G, End(Vτ )) is said to be a τ -spherical function if the map

F �−→ (F(F))(Φ) := 1

dτ

∫
G
Tr [F(g)Φ(g−1)] dg = 1

dτ

Tr [F ∗ Φ(e)] (5)

is a homomorphism of L1
τ,τ (G, End(Vτ )) into C. That map is called the τ -spherical

Fourier transform.

We concentrate our attention on the case where G = K � N , N being a connected
Lie group and K a compact subgroup of automorphisms of N . The general theory
about this special case has been recently studied by Ricci and Samanta [7], and it is
particularly interesting since in this case the objects to be studied are integral operators
on sections of homogeneous vector bundles of the Lie group N that commute with
translations and with the action of K . The case where G is a connected noncompact
semisimple Lie group with finite center and K is a maximal compact subgroup has
been studied for example by Camporesi [1].

We denote by k · x the action of k ∈ K on x ∈ N . The product on K � N is given
by

(k, x)(k′, x ′) = (kk′, x(k · x ′)).

The sections of Eτ , i.e., the Vτ -valued functions u on G satisfying the identity (1),
are identified with Vτ -valued functions u0 on N via the map given by

u0(x) �−→ u(k, x) = τ(k)−1u0(x). (6)

The action of G on a section u is reinterpreted as the action of N on u0 by left
translations and the action of K on u0 given by

(k, u0(x)) �−→ τ(k)u0(k
−1 · x). (7)

Similarly, convolution operators on sections of Eτ (that commute with the action
of G) are identified with convolution operators that apply to Vτ -valued functions on
N , with kernel function F0 : N → End(Vτ ) that satisfies the identity
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624 R. D. Martín, F. Levstein

F0(k · x) = τ(k)F0(x)τ (k)−1. (8)

Equivalently, the corresponding function on G = K � N via the map (6) is in
L1

τ,τ (G, End(Vτ )), that is F(k, x) = τ(k)−1F0(x) ∈ L1
τ,τ (G, End(Vτ )).

We denote by L1
τ (N ) the set of End(Vτ )-valued functions on N that satisfy (8) and,

as above, composition of integral operators corresponds to convolution of functions
in L1

τ (N ). Therefore, (K � N , K , τ ) is a commutative triple if and only if L1
τ (N )

is commutative. In such a case, a non-trivial function Φ ∈ L∞
τ (N ) is said to be a

τ -spherical function if the map

F �−→ (F(F))(Φ) := 1

dτ

∫
N
Tr [F(x)Φ(x−1)] dx (9)

is a homomorphism of L1
τ (N ) intoC. It can be proved that a functionΦ is a τ -spherical

function on N if and only if the corresponding function via the identification map (6)
is a τ -spherical function on K � N ([7] Theorem 6.3).
There is a reformulation of Godement’s Criterion proved in [7] Theorem 6.1. Given
k ∈ K and [π ] ∈ N̂ , K acts on N̂ by

(k, [π ]) �−→ [πk], where πk(x) := π(k−1 · x).

If we denote by Kπ the stabilizer of [π ], then, for k ∈ Kπ , there is a unitary
operator intertwining (π,Hπ ) and (πk,Hπ ), thatwe call δ(k). So δ defines a projective
representation of Kπ . Then, (K�N , K , τ ) is a commutative triple if and only if, for any
irreducible unitary representation π of N , the representation δ ⊗ (τ|Kπ

) is multiplicity
free.
Let D(Eτ ) be the algebra of G-invariant differential operators acting on the smooth
sections of the homogeneous vector bundle Eτ . When G = K � N , once the sections
on Eτ have been identified with Vτ -valued functions on N , we can also identify
D(Eτ ) with an algebra of differential operators on N . Let D(N ) be the algebra of
left-invariant differential operators on N , we denote by (D(N ) ⊗ End(Vτ ))

K the
algebra of differential operators on Vτ -valued functions on N , which are N -invariant
and commute with the action of K given in (7). Then one has the isomorphism

D(Eτ ) � (D(N ) ⊗ End(Vτ ))
K .

Moreover, (K � N , K , τ ) is a commutative triple if and only if (D(N ) ⊗ End(Vτ ))
K

is commutative. For a reference see [7] Theorem 7.1.
From now on, the symbol I will denote the identity matrix between finite dimensional
vector spaces with an appropriate dimension in each case. If (K � N , K , τ ) is a
commutative triple and Φ ∈ L∞

τ (N , End(Vτ )), it holds ([7] Corollary 7.2) that the
following are equivalent:

(i) Φ is a τ -spherical function;
(ii) Φ(0) = I and Φ is a joint eigenfunction for all D ∈ (D(N ) ⊗ End(Vτ ))

K .
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Spherical analysis on the 3-dimensional euclidean motion… 625

LetN be theLie algebra of N . There exists a linear isomorphism called symmetrization
operator (described in [5] p. 280, Theorem 4.3, for the scalar case, and in [7] Section
2, for our case) between (D(N ) ⊗ End(Vτ ))

K and the space Pτ of End(Vτ )-valued
polynomials on N that satisfy

P(k · x) = τ(k)P(x)τ (k)−1 ∀k ∈ K , x ∈ N.

When N = R
n , the maximal compact and connected subgroup of automorphisms

of R
n is, up to conjugation, the special orthogonal group SO(n). Let K be a closed

subgroup of SO(n) acting naturally on R
n , and (τ, Vτ ) be an irreducible unitary

representation of K . Considering the stabilizer of x ∈ R
n,

Kx = {k ∈ K/ k · x = x},

Theorem 10.1 in [7] gives a simplification of Godement’s Criterion for (K �R
n, K , τ )

to be a commutative triple: (K � R
n, K , τ ) is a commutative triple if and only if, for

every x ∈ R
n , the action of Kx on Vτ is multiplicity free.

Let (K � R
n, K , τ ) be a commutative triple. F. Ricci and A. Samanta describe ([7]

Section 11) an integral formula for the τ -spherical functions. For fixed ξ ∈ R
n , let

Vτ = ⊕l(ξ)
j=1Vj,ξ

be the multiplicity free decomposition of Vτ under the action of Kξ . Let Pj (ξ) denote
the projection from Vτ onto Vj,ξ with respect to this decomposition, and d j the dimen-
sion of Vj,ξ . Defining

Φ(ξ, j)(x) := dτ

d j

∫
K
e−i<ξ,k·x>τ(k−1)Pj (ξ)τ (k) dk, (10)

where < ·, · > denotes the usual inner product in R
n , it holds that Φ is a τ -spherical

function. Moreover, {Φ(ξ, j) : ξ ∈ R
n, j = 1, 2, . . . , l(ξ)} is a complete set of τ -

spherical functions and two τ -spherical functions Φ(ξ1, j1), Φ(ξ2, j2) coincide if and
only if ξ1 and ξ2 lie on the same K -orbit and, if ξ2 = k · ξ1, Vj2,ξ2 = τ(k)Vj1,ξ1 ([7]
Theorem 11.1).
It is proved in [14] that (SO(n)�R

n, SO(n)) is a strong Gelfand pair. In this work we
develop in greater detail the spherical analysis for the 3-dimensional euclidean motion
group, SO(3) � R

3, for an arbitrary irreducible unitary representation of the rotation
group SO(3). In Section 12 of [7] they computed explicitly the spherical functions
when τ is the natural action. In this paper we complete the theory for this strong
Gelfand pair giving the explicit form of spherical function for every representation
τ ∈ ŜO(3).
Theproblemofgiving explicit calculations of thematrix spherical functions in concrete
examples of commutative triples is developed in several articles such as [1,4,6,8].
All these articles study semisimple groups. This work, like [7], treats the case of a
semidirect product of a compact with a nilpotent group.
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626 R. D. Martín, F. Levstein

Given an arbitrary irreducible unitary representation (τ, Vτ ) of SO(3), ourmain results
focus ongiving an explicit description of a set of generators of the algebra of differential
operators (D(R3) ⊗ End(Vτ ))

SO(3), an explicit computation of the set of τ -spherical
functions in three different ways, and an explicit form of the τ -spherical Fourier
transform. We also give an inversion formula and the Plancherel measure associated
to the triple (SO(3) � R

3, SO(3), τ ). Summing up, our work is condensed into five
theorems:

– Theorem 1 characterizes certain invariant matrix differential operators. It will be
proved in Sect. 2.

– Theorems 2, 3 and 4 show different realizations of matrix spherical functions.
They will be proved in Sect. 3.

– Finally, Theorem 5, in Sect. 4, is the Inversion Theorem.

In order to enunciate them we introduce some concepts and notation.
The representations of SO(3) are well known and for each non-negative integer m
there is an irreducible unitary representation τm of (2m+1)-dimension on the space of
harmonic homogeneous polynomials of degreem onR

3, that we denote by Vτm = Hm .
The action is given by

(τm(k)p)(x) := p(k−1 · x) ∀k ∈ SO(3), p ∈ Hm, x ∈ R
3.

Any irreducible unitary representation of SO(3) is equivalent to one of these.
The 3-dimensional case is singled out since R

3 is isomorphic as vector space to
so(3) (the Lie algebra of SO(3)) and the natural representation of SO(3) on R

3

is equivalent to the adjoint representation of SO(3) on so(3). Given an irreducible
unitary representation τ of SO(3), we call dτ the corresponding representation on
so(3). Then, dτ can be considered to be a matrix-valued polynomial on R

3 and we
denote by Dτ the correspondent differential operator via the symmetrization map.
From now on we fix τ = τm ∈ ŜO(3). In this work we are going to see that, for a fixed
non-negative integer m, the set of End(Vτm )-valued polynomials on R

3 satisfying (8)
is a (2m+1)-dimensionalC[|x |2]-module.We are going to prove, using representation
theory, that, for each 0 ≤ j ≤ 2m, there is essentially one square (2m+1)× (2m+1)
matrix Q j such that its entries are harmonic homogeneous polynomials on R

3 of
degree j and such that it is SO(3)-invariant according to (8). Then, Pτm is generated
as C[|x |2]-module by the finite set {Q j }2mj=0. This fact is going to be used in Sect. 2 to
prove:

Theorem 1 The algebra (D(R3) ⊗ End(Vτm ))SO(3) is generated by Δ ⊗ I and Dτm ,
where Δ denotes the Laplacian operator on R

3.

Using the characterization of τ -spherical functions as joint eigenfunctions of the oper-
ators in (D(R3) ⊗ End(Vτ ))

SO(3) we will compute them in three different ways.
Our first result on τ -spherical functions evidences their realization as linear combina-
tions of scalar K -invariant functions times elementary End(Vτ )-valued polynomials
satisfying (8). In order to enunciate it properly we need to introduce the following
elements whose proofs can be found in Sect. 3.1.
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For each integer 0 ≤ j ≤ 2m, let { f sj }s∈R>0 be the set of radial functions

f sj (r) := Γ

(
3

2
+ j

) J j+ 1
2
(sr)

( sr2 )
j+ 1

2

,

where Jα denotes the Bessel function of the first kind of order α. This are bounded
eigenfunctions of the Laplacian operator with eigenvalue −s2. For a fix s ∈ R>0
consider the vector space V s generated by Bs := { f sj Q j }2mj=0. We will prove the
following two statements thatwill allowus to demonstrate the result about τm -spherical
functions:

(i) V s is invariant under Dτm and
(ii) Dτm diagonalizes without multiple eigenvalues with respect to Bs .

Let the (2m + 1)-tuples v(s,k) = (1, v(s,k)
1 , . . . , v

(s,k)
2m ) ∈ C

2m+1 denote the eigenvec-
tors of Dτm on V s in the basis Bs . Before enunciating the theorem we emphasize that
the following relations hold:

(i) f sj (r) = f 1j (sr) for all 0 ≤ j ≤ 2m and

(ii) v
(s,k)
j = s jv(1,k)

j for all the coordinates 0 ≤ j ≤ 2m.

Theorem 2 Each pair (s, k) ∈ R>0×{0, 1, . . . , 2m} indexes a τm-spherical function
Φs,k given by

Φs,k(x) = f s0 (|x |)I + v
(s,k)
1 f s1 (|x |)Q1(x) + · · · + v

(s,k)
2m f s2m(|x |)Q2m(x).

Moreover, every τm-spherical function is either of this form or the identity map on
Vτm .

Our second result on τ -spherical functions represents them as Fourier transforms of
projection-valued measures on K -orbits. This is a consequence of the integral formula
(10) making a reduction of it. We require some previous notions to state it as a theorem
and its demonstration is developed in Sect. 3.2.
Let ξ ∈ S2. The action of Kξ on Vτm decomposes into 2m+1 one-dimensional spaces
{Vj,ξ }mj=−m , each corresponding to a different eigenvalue. For each j , let Pj (ξ) be the
orthogonal projection from Vτm to Vj,ξ .

Theorem 3 The non-trivial τm-spherical functions are parametrized by s ∈ R>0 and
j ∈ Z, −m ≤ j ≤ m, and have the following form

Φs, j = (2m + 1)P̂j (
.

s
)σs,

where ·̂ denotes the classical Fourier transform,σs is the normalized rotation invariant
measure of the sphere of radius s on R

3 and the projections Pj are explicitly

Pj (ξ) =
m∏

l �= j;l=−m

√−1dτm(ξ) + l I

l − j
.
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628 R. D. Martín, F. Levstein

Moreover, −s2 and s j are the eigenvalues of Φs, j with respect to Δ ⊗ I and Dτm ,
respectively.

Finally, we will realize a τ -spherical function as a matrix-valued function whose
entries are derivatives of a scalar-valued spherical function. For a fix s ∈ R>0, let ϕs

be the scalar spherical function associated to the Gelfand pair (SO(3)� R
3, SO(3))

with eigenvalue −s2 (with respect to the Laplacian operator). Those derivatives are
provided by the following matrix differential operators in (D(R3) ⊗ End(Vτm ))SO(3)

Ds, j :=
m∏

l �= j, l=−m

Dτm − sl I

s j − sl
,

where the parameter s runs over R>0 and j is an integer between −m ≤ j ≤ m.

Theorem 4 All the non-trivial τm-spherical functions can be obtained as

Φs, j = (2m + 1)Ds, j (ϕs I ).

The full proof of this theorem is given in Sect. 3.3 and from a personal communication
we know that F. Ricci andA. Samanta have proved that for a general groupG = K�N
all the τ -spherical functions canbeobtained applying appropriate differential operators
to the classical spherical functions associated to the respective Gelfand pair.
In the last section, for each triple (SO(3) � R

3, SO(3), τ ), we obtain the Plancherel
measure associated to it, and for any sufficiently good function F ∈ L1

τ (N ) we prove
the following inversion formula

F(x) =
m∑

j=−m

∫ ∞

0
F(F)(Φr, j ) Φr, j (x) r

2 dr.

2 Differential operators

The goal of this section is to describe explicitly a system of generators of the algebra
Dτm := (D(R3) ⊗ End(Vτm ))SO(3). We first study the polynomial space Pτm .
Let P(R3) be the space of scalar polynomials on three variables. We have the decom-
position P(R3) � ⊕

n Pn(R
3), where Pn(R

3) denotes the space of homogeneous
polynomials on R

3 of degree n. Each one of these spaces can be naturally decom-
posed as

Pn(R
3) �

⊕
k

|x |2k Hn−2k .

This follows from the fact that the Laplacian operator Δ from Pn(R
3) to Pn−2(R

3) is
surjective and since the operator |x |2Δ, fromPn(R

3) to its image, is hermitian adjoint
with respect to the inner product on Pn(R

3) (defined by < P, Q >:= P( ∂
∂x )|x=0 Q̄

for all P, Q ∈ Pn(R
3)) and its kernel is exactly the kernel of the Laplacian (i.e., Hn).
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Spherical analysis on the 3-dimensional euclidean motion… 629

Considering Pτm as a C[|x |2]-module, the next step consists in studying, for any non-
negative integer j , the elements of Hj ⊗ End(Vτm ) that are SO(3)-invariant for the
action given in (8).
The use of the representation theory of SO(3) is crucial in this part. It is well known
that End(V ) � (V ) ⊗ (V )∗, that τm is equivalent to its contragredient representation
[see [2] pp. 112 and 113] and that τp ⊗ τq = ⊕p+q

k=|p−q| τk [see [2] p. 151]. Then,

τ j ⊗ (τm ⊗ τm) = τ j ⊗
[

2m⊕
k=0

τk

]
=

2m⊕
k=0

⎡
⎣

j+k⊕
l=| j−k|

τl

⎤
⎦ , (11)

and thus the trivial representation appears only once for each 0 ≤ j ≤ 2m and does
not appear for j > 2m.
Therefore,

Pτm � C(|x |2)
⊗ 2m∑

j=0

(Hj ⊗ Hj )
SO(3),

where (Hj ⊗ Hj )
SO(3) is the one-dimensional vector space generated by a (2m + 1)-

dimensional square matrix Q j whose entries are harmonic homogeneous polynomials
of degree j and satisfies (8).We emphasize that polynomials Q j depend on τm . Finally,
every matrix-valued polynomial on three variables satisfying (8) can be written as

p0(|x |2)I + p1(|x |2)Q1 + · · · + p2m(|x |2)Q2m where p j are scalar polynomials.

Now we are going to see what happens in the first two cases, when m = 0 and when
m = 1, and later we move on to the general case.
When m = 0, i.e., when τ0 is the trivial representation of SO(3), Pτ0 = C[|x |2]
and the algebra Dτ0 (left invariant differential operators on R

3 that commute with
rotations) is generated by the Laplacian operator.
In the case m = 1, i.e, when τ1 is the natural representation of SO(3) on C

3, Pτ1 is
generated, asC[|x |2]-module, by Q0, Q1 and Q2. Trivially,we can take Q0 equal to the
constant function I . After that, we can take Q1(x) := dτ1(x) ∀x ∈ R

3, where it must
be interpreted via the identification between R

3 and so(3) given in the Introduction.
More explicitly, let⎧⎨

⎩Y1 =
⎛
⎝0 0 0
0 0 1
0 −1 0

⎞
⎠ ,Y2 =

⎛
⎝0 0 −1
0 0 0
1 0 0

⎞
⎠ ,Y3 =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠
⎫⎬
⎭

be the canonical basis of so(3), then dτ1 : R
3 → so(3) is defined by

dτ1(x1, x2, x3) :=
3∑

i=1

xi dτ1(Yi ) =
⎛
⎝ 0 x3 −x2

−x3 0 x1
x2 −x1 0

⎞
⎠ ∀ (x1, x2, x3) ∈ R

3.

In general, dτ satisfies τ(k)dτ(Y )τ (k−1) = dτ(Ad(k)Y ) for all Y ∈ so(3) and
k ∈ SO(3). As the adjoint representation can be identified with the natural action of
SO(3) on R

3, then Q1 satisfies (8).
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630 R. D. Martín, F. Levstein

We still have to determine Q2 explicitly. First of all note that Q2
1(x) = xxt − |x |2 I

∀x ∈ R
3, so it is a symmetricmatrixwhose components are homogeneous polynomials

of degree two and it satisfies (8) (because Q1 does). We will show that

Q2(x) := Q2
1(x) + 2

3
|x |2 I.

By its degree, Q2
1 cannot be a C[|x |2]-multiple of Q1 and then it can be written as

Q2
1(x) = a|x |2 I + bQ2(x) for some constants a and b. Since Q2

1 is not a multiple of
|x |2 I , then b �= 0 and we can consider b = 1. Applying the Laplacian operator on
both sides and using that Q2 has harmonic components, we obtain a = −2/3.
Therefore, Pτ1 is generated as C[|x |2]-module by

Pτ1 =< {I, Q1 =
⎛
⎝ 0 x3 −x2

−x3 0 x1
x2 −x1 0

⎞
⎠ , Q2

1 + 2

3
|x |2 I } >,

and the algebra Dτ1 is generated by Δ ⊗ I and Q1(
∂
∂x ) := ∑3

i=1
∂

∂xi
dτ1(Yi ), the curl

operator.
Now let us consider the case when m is an arbitrary integer. We must study the
generators Q0, Q1,…,Q2m of Pτm . As above, we can take Q0 := I and Q1(x) :=
dτm(x) ∀x ∈ R

3. We denote by Dτm the invariant differential operator given by

Dτm :=
3∑

i=1

∂

∂xi
dτm(Yi ).

Also, from now on we let r = |x |.
Lemma 1 (i) For all 1 ≤ j ≤ 2m, Dτm Q j = a j Q j−1 for some scalar a j .
(ii) Dτm Q1 = Ωτm , where Ωτm is the Casimir operator of the representation dτm. It

is well known that, in this case, Ωτm = cτm I , where cτm := −m(m + 1).

(iii) For all 0 ≤ j < 2m, Q1Q j − r2
2 j+1Dτm Q j is a (2m + 1)-dimensional matrix-

valued harmonic homogeneous polynomial and satisfies (8).
(iv) Q1Q2m − r2

2m+1Dτm Q2m = 0.

Proof (i) Dτm Q j is a matrix-valued harmonic homogeneous polynomial of degree
j − 1 which satisfies (8). Then, Dτm Q j ∈ (Hj−1 ⊗ Hj−1)

SO(3) and it is a scalar
multiple of the generator Q j−1.
For (ii) just check

Dτm Q1(x) =
3∑

i=1

∂

∂xi
dτm(Yi )

(
3∑

k=1

xkdτm(Yk)

)

=
3∑

i=1

(dτm(Yi ))
2

= Ωτm .

Notice that from here it follows that a1 = cτm .
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(iii) follows essentially from the computations

Δ[Q1Q j ](x)

= [ΔQ1](x)Q j (x) + 2
3∑

i=1

(
∂

∂xi
Q1(x)

)(
∂

∂xi
Q j (x)

)

+ Q1(x)[ΔQ j ](x)

= 2
3∑

i=1

(
∂

∂xi

3∑
k=1

xkdτm(Yk)

)(
∂

∂xi
Q j (x)

)

= 2Q1

(
∂

∂x

)
Q j (x)

= 2Dτm Q j (x) ;

Δ
[
r2Dτm Q j

]
(x) = 6Dτm Q j (x) + 4

[
3∑

i=1

xi
∂

∂xi

]
(Dτm Q j )(x) + r2Δ[Dτm Q j ](x)

= (6 + 4( j − 1))Dτm Q j .

Finally, the last item follows since Q1Q2m − r2
2 j+1Dτm Q2m is a matrix-valued har-

monic homogeneous polynomial of degree 2m + 1 that also satisfies (8), and we have
proved that Pτm is generated as C[|x |2]-module by matrix-valued harmonic homoge-
neous polynomials of degree less than or equal to 2m. ��
Proposition 1 Let m be an arbitrary integer. Then Pτm is generated as a C[|x |2]-
module by Q j

1 , with 0 ≤ j ≤ 2m.

Proof On the one hand, every power of Q1 satisfies (8) and, on the other hand, for
any 0 ≤ j ≤ 2m there is only one matrix-valued harmonic homogeneous polynomial
of degree j .
The proposition follows by an inductive argument. Let 1 < j < 2m, and assume
that Q j−1 and Q j are monic polynomials on Q1 with coefficients in C[|x |2]. By the
previous Lemma,

Q1Q j − r2

2 j + 1
Dτm Q j = Q1Q j − r2

2 j + 1
a j Q j−1 (12)

is a matrix-valued harmonic homogeneous polynomial satisfying (8). From the induc-
tive hypothesis it results a linear combination of powers of Q1 with coefficients in
C[|x |2]. We just need to prove that it is not the null matrix-valued polynomial.
Notice that Q1(e1) = dτm(Y1) and it is well known that dτm(Y1) can be diagonal-
ized and has 2m + 1 different eigenvalues. Then the minimal polynomial of Q1(e1)
coincides with its characteristic polynomial (which has degree 2m + 1). Consider-
ing x = e1, (12) results a monic polynomial on Q1 of degree j + 1 with constant
coefficients and, as j + 1 ≤ 2m, it can not be null.
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Therefore, Pτm is generated as C[|x |2]-module by Q0 = I , Q1(x) = dτm(x) and

Q j+1 := Q1Q j − r2

2 j + 1
Dτm Q j = Q1Q j − r2

2 j + 1
a j Q j−1, for 1 < j < 2m.

(13)
��

Thus, Theorem 1 stated in the Introduction follows directly.

3 Spherical functions of type τ

Fixed an arbitrary irreducible unitary representation τ of SO(3), we are going to
describe three methods to compute all the τ -spherical functions of the commutative
triple (SO(3) � R

3, SO(3), τ ).
We know, from general theory, that the complete set of τm-spherical functions is
parametrized by r ∈ R>0 and j in a finite set of 2m + 1 elements (cf [7] Theorem
11.1).

3.1 Spherical functions of type τ in terms of invariant polynomials and classical
spherical functions

We consider the problem of writing a τm-spherical function Φ as a linear combination
of {Q j }2mj=0 with coefficients of the form v j f j (r) where v j are scalars and f j (r) are
certain normalized radial functions to be defined later, that is

Φ(x) = v0 f0(r)I +v1 f1(r)Q1(x)+· · ·+v2m f2m(r)Q2m(x), where r = |x |. (14)

Since the functions f j are radial and the matrix-valued functions Q j described in the
previous section satisfy (8), then it follows that the RHS satisfies (8).
Applying the differential operators Δ ⊗ I and Dτm on (14) we get the following iden-

tities using Euler’s identity
(∑3

i=1 xi
∂

∂xi

)
Q = j Q for any homogeneous polynomial

Q of degree j⎛
⎝Δ

⎛
⎝ 2m∑

j=0

f j Q j

⎞
⎠
⎞
⎠ (x) =

2m∑
j=0

[
f

′′
j (r) + 2 + 2 j

r
f

′
j (r)

]
Q j (x) and (15)

Dτm

⎛
⎝ 2m∑

j=0

f j Q j

⎞
⎠ (x) =

2m∑
j=0

[
f

′
j (r)

r
Q1(x)Q j (x) + f j (r)Dτm Q j (x)

]
.

(16)

Since Φ is an eigenfunction of Δ ⊗ I and of Dτm , we look for f j Q j that are eigen-
functions of Δ ⊗ I corresponding to the same eigenvalue λ ∈ C. Then, for each
0 ≤ j ≤ 2m, f j must satisfy the following ODE

f
′′
j (r) + 2 + 2 j

r
f

′
j (r) = λ f j (r). (17)
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Therefore, the function

uα,λ(r) := Γ (α + 1)
Jα(iλ1/2r)

(iλ1/2r/2)α

is a solution of (17) with value 1 at r = 0, where Jα(x) = ∑∞
k=0

(−1)k

k!Γ (k+α+1)

( x
2

)2k+α

is the Bessel function of the first kind and of order α = j + 1
2 .

As, by definition, the τ -spherical functions are bounded, we just have to consider
λ = −s2 with s ∈ R>0. Then, associated to the eigenvalue λ = −1 there is the family
of functions

{ f j (r) := u j+1/2,−1(r)}2mj=0,

and associated to an arbitrary eigenvalue−s2, there is the family { f sj (r) := f j (sr)}2mj=0
(for a reference see [12]).
Observe that, for each integer 0 ≤ j ≤ 2m, { f sj }s∈R>0 is the set of classical spherical

functions associated to the Gelfand pair (SO(2 j +3)�R
2 j+3, SO(2 j +3)). Also, as

noticed by one of the referees, this sets of functions appear when computing Fourier
transforms in R

3 of radial functions times solid spherical harmonics of degree j (cf.
Theorem 3.10, Chapter 4 of [10]).
From the well known recurrence relation Jα(z) = z

2α [Jα−1(z) + Jα+1(z)] and dif-

ferential relation d
dz [ Jα(z)

zα ] = − Jα+1(z)
zα (for a reference see [11]), we can derive the

following identities for the functions f j that will be very useful

f j (r) = f j−1(r) + r2

(2 j + 1)(2 j + 3)
f j+1(r); (18)

d
dr f j (r)

r
= − f j+1(r)

2 j + 3
. (19)

And for the functions f sj it holds

f sj (r) = f sj−1(r) + (sr)2

(2 j + 1)(2 j + 3)
f sj+1(r); (20)

d
dr f

s
j (r)

s2r
= − f sj+1(r)

2 j + 3
. (21)

Nowwe setV 1 the vector space generated byB1 := { f j Q j }. It is (2m+1)-dimensional
and similarly, for each s > 0, we consider the vector spaces V s generated by Bs :=
{ f sj Q j }.
Lemma 2 The vector space V 1 is invariant with respect to the differential operator
Dτm .
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Proof

Dτm ( f j Q j )(x) = f
′
j (r)

r
Q1(x)Q j (x) + f j (r)Dτm Q j (x). (22)

Using (18) and (19) we get

Dτm ( f j Q j )(x)

= − f j+1(r)

2 j + 3
Q1(x)Q j (x)+

[
f j−1(r) − r2

(2 j + 1)(2 j + 3)
f j+1(r)

]
Dτm Q j (x)

= − f j+1(r)

2 j + 3

[
Q1(x)Q j (x) − r2

2 j + 1
Dτm Q j (x)

]
+ f j−1(r)Dτm Q j (x).

By the definition of Q j+1 given in (13) and Lemma 1 it follows

Dτm ( f j Q j ) = − f j+1

2 j + 3
Q j+1 + a j f j−1Q j−1 ∀ 1 ≤ j ≤ 2m − 1 and (23)

Dτm ( f0Q0) = − f1
3
Q1 , (24)

Dτm ( f2mQ2m) = a2m f2m−1Q2m−1. (25)

��
Analogously, on the vector space V s we obtain

Dτm ( f sj Q j ) = − s2

2 j + 3
f sj+1Q j+1 + a j f

s
j−1Q j−1. (26)

Finally, we can compute the matrix [Dτm ]Bs

Bs corresponding to the operator Dτm with
respect to the basis Bs

[Dτm ]Bs

Bs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 0 · · · · · · · · · 0

− s2
3 0 a2 0 · · · · · · · · ·
0 − s2

5 0 a3 0 · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · 0 − s2

4m−1 0 a2m
0 · · · · · · · · · 0 − s2

4m+1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

If v ∈ C
2m+1 is an eigenvector of [Dτm ]B1

B1 with eigenvalue λ ∈ C, then sλ is an eigen-

value of [Dτm ]Bs

Bs and an eigenvector associated to it is given by ṽ whose coordinates
are

ṽi = sivi for all 0 ≤ i ≤ 2m. (28)

Computing the eigenvectors of [Dτm ]B1

B1 we can obtain a complete set of τ -spherical

functions. Indeed, for each s ∈ R>0 let {v(s,k) := (1, v(s,k)
1 , . . . , v

(s,k)
2m )}2mk=0 be the set
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of eigenvectors of [Dτm ]Bs

Bs (calculated from the eigenvectors of [Dτm ]B1

B1 ), then the set
of τ -spherical functions is parametrized by s ∈ R>0 and k ∈ Z, 0 ≤ k ≤ 2m and is
given by

{
Φs,k(x) = f s0 (r)I + v

(s,k)
1 f s1 (r)Q1(x) + · · · + v

(s,k)
2m f s2m(r)Q2m(x)

}
s,k

(29)

and we have proved Theorem 2.
Finally, in order to find explicitly the eigenvalues and eigenvectors of [Dτm ]B1

B1 we need
an explicit formula for the coefficients a j . From Lemma 1 we know that a1 = cτm .
The rest of them are computed in the appendix and they are

a j+1 = ( j + 1)2

2 j + 1

(
cτm + j2 + 2 j

4

)
. (30)

3.2 Integral formula for spherical functions of type τ

Let x ∈ R
3\{0} and let Kx be the stabilizer subgroup of K = SO(3) with respect to

x . As Kx -module, (τm, Vτm ) decomposes as a direct sum of 2m + 1 one-dimensional
subspaces. So the matrix Q1(x) = dτm(x) can be diagonalized and we denote by
λ j (x) its eigenvalues and by q j (x) its normalized eigenvectors respectively (where j
is an integer between 0 ≤ j ≤ 2m).
If we consider x̃ = x

|x | ∈ S2, since dτm(x) = |x |dτm(x̃) (by linearity), it is easy to
see that λ j (x) = |x |λ j (x̃) and q j (x) = q j (x̃). Moreover, it is enough to know the
eigenvalues and eigenvectors of dτm(e1). Indeed, since every x̃ ∈ S2 can be written
as x̃ = k · e1 for some k ∈ SO(3), we get that

dτm(x̃) = dτm(k · e1) = τm(k)dτm(e1)τm(k−1).

Therefore if q is an eigenvector of dτm(e1) with eigenvalue λ, then τm(k)q is an
eigenvector of dτm(x̃) with the same eigenvalue λ. Moreover, it is well know that for
all j ∈ Z, −m ≤ j ≤ m

λ j (e1) = λ j (x̃) = i j ∀x̃ ∈ S2 and λ j (x) = i j |x | ∀x ∈ R
3. (31)

Now observe that, for each point x ∈ R
3 and fixed −m ≤ j ≤ m, the matrix

q j (x)q j (x)t is the orthogonal projection onto the eigenspace associated to the eigen-
value λ j (x) = i j |x | of the matrix dτm(x). We denote it by Pj (x) and it has the
following properties:

• For every x ∈ R
3\{0},

Pj (x) = Pj

(
x

|x |
)

. (32)
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• Given ξ ∈ S2 and k ∈ SO(3) such that ξ = k · e1,

Pj (ξ) = τm(k)Pj (e1)τm(k)t . (33)

Notice that the transpose matrix τm(k)t coincides with τm(k)−1.
• Since all the eigenvalues of dτm(x) are different, by Cayley–Hamilton’s Theorem
and Lagrange interpolation formula we can take,

Pj (x) =
m∏

l �= j; l=−m

dτm(x) − il|x |I
i j |x | − il|x | . (34)

• For all j ,
P− j (x) = Pj (−x). (35)

For s ∈ R>0 and j ∈ {−m, . . . ,m} we set

Φs, j (x) := dτm

∫
SO(3)

e−is<k·x,e1>τm(k−1)Pj (e1)τm(k) dk (36)

where dτm = 2m + 1 is the dimension of Vτm and we can obtain:

• Φs, j is an eigenfunction of Δ ⊗ I with eigenvalue −s2, since e−is<x,k−1·e1> is an
eigenfunction of Δ with the same eigenvalue.

• For s �= 0, Φs, j (x) can be rewritten as an integral over the sphere S2 � K/Ke1 :

Φs, j (x) = dτm

∫
S2
e−is<x,ξ>Pj (ξ) dσ(ξ). (37)

where σ is the normalized O(3)-invariant measure on the sphere S2 ⊂ R
3.

• Φs, j is an eigenfunction of Dτm :

DτmΦs, j (x) = dτm

∫
S2

3∑
i=1

dτm(Yi )
∂

∂xi

(
e−is<x,ξ>

)
Pj (ξ) dσ(ξ)

= dτm

∫
S2

(−is)e−is<x,ξ>

(
3∑

i=1

ξi dτm(Yi )

)
Pj (ξ) dσ(ξ)

= dτm

∫
S2

(−is)e−is<x,ξ>dτm(ξ)Pj (ξ) dσ(ξ)

= −isdτm

∫
S2
e−is<x,ξ>λ j (ξ)Pj (ξ) dσ(ξ)

= s jΦs, j (x).
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• Φs, j satisfies the property (8) for all k ∈ SO(3):

τm(k)Φs, j (k
−1 · x)τm(k−1) = dτm

∫
S2
e−is<k−1·x,ξ>τm(k)Pj (ξ)τm(k)t dσ(ξ)

= dτm

∫
S2
e−is<x,k·ξ>Pj (k · ξ)dσ(ξ)

= dτm

∫
S2
e−is<x,ξ>Pj (ξ)dσ(ξ)

= Φs, j (x)

because the measure on S2 is invariant under rotations.
• Φs, j (0) is the identity map from Vτm to Vτm . Indeed, if we consider the basis of

Vτm given by the normalized eigenvectors {q j (e1)}, then

Φs, j (0)qi (e1) = dτm

∫
SO(3)

[τm(k)Pj (e1)τm(k)t ] qi (e1) dk

= dτm

∫
SO(3)

τm(k) < τm(k)t qi (e1), q j (e1) > q j (e1) dk

= dτm

∫
SO(3)

< qi (e1), τm(k)q j (e1) > τm(k)q j (e1) dk

and thus

< Φs, j (0)qi (e1), qk(e1) >

= dτm

∫
SO(3)

< qi (e1), τm(k)q j (e1) >< τm(k)q j (e1), qk(e1) > dk

= dτm

∫
SO(3)

< qi (e1), τm(k)q j (e1) > < qk(e1), τm(k)q j (e1) > dk

= δk,i

where the last equality comes from the orthogonality relations of the matrix entries
of τm(k).

• Finally,
Φs,− j (x) = Φs, j (−x) (38)

follows from (35) and the invariance under the orthogonal group O(3) of the
measure on S2:

Φs,− j (x) = dτm

∫
S2
e−is<x,ξ>P− j (ξ) dσ(ξ)

= dτm

∫
S2
e−is<x,ξ>Pj (−ξ) dσ(ξ)

= dτm

∫
S2
eis<x,ξ>Pj (ξ) dσ(ξ)

= Φs, j (−x).
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Also, as Pj (x) are orthogonal projections we have,

[Φs, j (x)]∗ = Φs, j (−x), (39)

where the left hand side denotes the conjugate transpose matrix of Φs, j (x).

We recall that for a finite positive Borel measure μ on R
n its classical (euclidean)

Fourier transform is given (up to normalization) by

μ̂(ξ) :=
∫
Rn

e−i<ξ,x>dμ(x).

For example, if μ is given by an integrable scalar function f on R
n we have

f̂ (ξ) :=
∫
Rn

f (x)e−i<ξ,x>dx .

For an integrablematrix-value function F onR
n , F̂ is interpreted as taking the classical

Fourier transform of each of its entries. Therefore, a non-trivial τ -spherical function
is given by

Φs, j (x) = dτm

∫
S2
e−is<x,ξ>Pj (ξ)dσ(ξ) = dτm P̂j (

.

s
)σs(x) (40)

and we have proved Theorem 3.
As a corollary of this representation we observe the next fact. Let V be a finite
dimensional hermitian inner product space. A continuous End(V )-valued function
F on a group G is said to be of positive type ([7] Section 9) if the matrix given
by (< F(x j x

−1
k )vk, v j >) jk is positive semi-definite for every choice of elements

x1, . . . , xn ∈ G and for every v1, . . . , vn ∈ V . From a simple deduction it follows
that if all the matrix entries of F are of positive type (with the usual definition), then
it is of positive type.

Corollary 1 Every τ -spherical function Φs, j is of positive type.

Proof All the matrix entries of Φs, j are of positive type since, from (40), they are the
classical Fourier transform of a positive finite Borel measure. ��
This is a particular case of a general result proved in [7] Theorem 9.4 with a different
proof.

3.3 Spherical functions of type τ as matrix derivatives of classical spherical
functions

In this paragraph we are going to prove that all the τ -spherical functions can be
obtained by applying adequate differential operators fromDτm to the classical spherical
functions associated to the Gelfand pair (SO(3) � R

3, SO(3)).
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For each s ∈ R>0 and j ∈ Z, −m ≤ j ≤ m, let ϕs be the classical spherical function
associated to the Gelfand pair (SO(3)�R

3, SO(3))with eigenvalue−s2 with respect
to the Laplacian operator. Inspired by (34) we define Ds, j ∈ Dτm as the differential
operator

Ds, j :=
m∏

l �= j, l=−m

Dτm − sl I

s j − sl
. (41)

Now we set a proof of Theorem 4:

Proof Let x ∈ R
3, since the eigenvalues of Q1(x) = dτm(x) are given in (31), its

characteristic polynomial is

pQ1(λ) = λ

m∏
j=1

(λ2 + j2|x |2). (42)

By Cayley–Hamilton theorem, pQ1(Q1(x)) = 0. Using that the symmetrization map,
mentioned in the introduction, sends |x |2 to Δ and Q1 to Dτm , it follows that

pDτm
(λ) := λ

m∏
j=1

(λ2 I + j2Δ) (43)

vanish at Dτm .
We define

Φs, j := dτm Ds, jϕs I.

Since Δ ⊗ I commutes with Dτm , Φs, j is an eigenfunction of Δ ⊗ I with eigenvalue
−s2. Also, it is an eigenfunction of Dτm with eigenvalue s j because

(Dτm − s j I )

⎡
⎣ m∏
l �= j, l=−m

(Dτm − sl I )

⎤
⎦ϕs I = Dτm

[
m∏
l=0

(
D2

τm
+ l2Δ ⊗ I

)]
ϕs I

= 0

where the first equality holds from the fact that Δϕs = −s2ϕs and the last equality
follows since pDτm

(Dτm ) = 0.
Finally, as Ds, j ∈ Dτm and ϕs is a radial scalar function, Φs, j satisfies (8). ��
We want to remark that there is another form to obtain the same formula of the τm-
spherical functions and it is a consequence of the following proposition. Let ϕs be as
above and consider the space

Dτmϕs := {D(ϕs I ) : D ∈ Dτm }. (44)
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Proposition 2 Dτmϕs is a (2m + 1)-dimensional vector space generated by

Dτmϕs =< {ϕs I, Dτm (ϕs I ), . . . , D
2m
τm

(ϕs I )} >. (45)

Proof It follows from Proposition 1. ��

Now, let Bs := {Dl
τm

(ϕs I )}2ml=0 be an ordered basis of Dτmϕs and consider [Dτm ]Bs
Bs

the matrix representation of Dτm with respect to Bs . From (43) and using the fact that

Δϕs = −s2ϕs , the characteristic polynomial of [Dτm ]Bs
Bs

is

p[Dτm ]Bs
Bs

(λ) = λ

m∏
j=1

(λ2 − j2s2) =
m∏

j=−m

(λ − js). (46)

Thus, [Dτm ]Bs
Bs

coincides with the rational canonical form of dτm(isY1) and its
2m + 1 eigenvalues are {s j}mj=−m .
As any linear combination of the elements of Bs is an eigenfunction of Δ ⊗ I with
eigenvalue −s2 and satisfies (8), in order to determine τm-spherical functions we just
have to calculate the eigenvectors of [Dτm ]Bs

Bs
. Once we calculate the extended form

of the characteristic polynomial (46), the linear system to compute the eigenvectors
from a matrix in a rational canonical form is very simple to solve. If we assume that,
for a fix integer −m ≤ j ≤ m, v j = (v

j
0 , . . . , v

j
2m) is an eigenvector, then

2m∑
l=0

v
j
l D

l
τm

(ϕs I ) (47)

will be an eigenfunction of Dτm . The condition that every τm-spherical function eval-
uated at 0 must be I , determines the multiple of v j that we must choose in order to
obtain a τm-spherical function in (47).
So we have proved the following:

Corollary 2 For any s ∈ R>0 the vector space Dτmϕs is finite dimensional and
coincides with the space generated by the τ -spherical functions with eigenvalue −s2

with respect to Δ ⊗ I :
< {Φs, j }mj=−m >= Dτmϕs . (48)

In [7] Corollary 3.3, F. Ricci and A. Samanta have proved that if (G, K , τ ) is a
commutative triple for some τ , with G/K connected, then (G, K ) is a Gelfand pair.
WhenG = K�N they have also proved that every τ -spherical function is a differential
operator in (D(N )⊗End(Vτ ))

K applied to a classical spherical function of theGelfand
pair (K � N , K ) (personal communication). Thus Corollary 2 is a particular case of
this general result.
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3.4 Relations among the different methods and positiveness

In the classical theory of the Gelfand pair (SO(n) � R
n, SO(n)), the spherical func-

tions (scalar type) are parametrized by s ∈ R>0 and can be calculated as

ϕs(x) :=
∫
Sn−1

e−is<x,ξ>dσ(ξ) ∀x ∈ R
n . (49)

So, for each s ∈ R>0, ϕs is the classical Fourier transform of the normalized O(n)-
invariant measure σs of the sphere in R

n centered at the origin and with radius s.
In analogy to the classical relation x̂ f = i∂x f̂ (where ̂ is the classical Fourier
transform), the formulæ(34) and (41) yield

P̂j (
.

s
)σs(x) = Ds, jϕs(x), for all x ∈ R

3. (50)

Then, the relation between the methods given in the Sects. 3.2 and 3.3 to obtain τ -
spherical functions is given by the classical Fourier transform.
Finally, we want to remark that, for all s ∈ R>0, the functions f s0 given in Sect. 3.1
are the classical spherical functions ϕs of the Gelfand pair (SO(3)�R

3, SO(3)) with
eigenvalue−s2 with respect to the Laplacian operator. For completeness, we just want
to mention that the relation among Sects. 3.1 and 3.3 is given by the family of changes
of basis betweenBs andBs , for s ∈ R>0. The differential relation (19) of the functions
f sj and the fact that every polynomial Q j is a polynomial on Q1 with coefficients on

C[|x |2] (Proposition 1) is connected to these changes of basis.

4 The τ -spherical Fourier transform and the inversion formula

Let F ∈ L1
τm

(R3). For a fixed x ∈ R
3, F(x) commutes with τm |Kx and then, by

Schur’s Lemma, it can be decomposed as a direct sum

F(x) =
m∑

j=−m

β j (x)Pj (x), (51)

where β j (x) = Tr(F(x)Pj (x)) = Tr(F(x)[Pj (x)]∗) are integrable radial scalar
functions.
The usual Fourier transform (computed component-wise) of F preserves the relation
of K -invariance F̂(k · y) = τm(k)F̂(y)τm(k−1) and then F̂ is decomposed as

F̂ =
m∑

j=−m

h j Pj , (52)

where h j = Tr(F̂ Pj ).
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Fix x ∈ R
3, let k ∈ SO(3) be such that k · e1 = x

|x | . We observe

h j (x) = Tr
(
F̂(x)Pj (x)

)

= Tr

(
F̂(x)Pj

(
x

|x |
))

= Tr(F̂(|x |k · e1)Pj (k · e1))
= Tr

(
τm(k)F̂(|x |e1)τm(k)τm(k)t Pj (e1)τm(k)t

)
= Tr(F̂(|x |e1)Pj (e1)).

Therefore, each h j is a radial function. In addition, since F̂ ∈ C0 and Pj (e1) is a
constant matrix, it holds that h j ∈ C0.
We denote by F the τm-spherical Fourier transform defined by

F(F)(Φs, j ) := 1

dτm

∫
R3

Tr [F(x)Φs, j (−x)] dx = 1

dτm

∫
R3

Tr [F(x)[Φs, j (x)]∗] dx .

From (38),

F(F)(Φs, j ) = 1

dτm

∫
R3

Tr [F(x)Φs,− j (x)] dx

and using the integral formula of the τm-spherical functions, we get

F(F)(Φs, j ) =
∫
R3

Tr [F(x)
∫
S2
e−is<x,ξ>P− j (ξ) dσ(ξ)] dx .

For an arbitrary ξ ∈ S2 there is an element kξ ∈ K such that ξ = kξ · e1, then using
(33) for P− j and (8) for F ,

F(F)(Φs, j ) =
∫
R3

Tr [P− j (e1)
∫
SO(3)

F(k−1 · x)e−is<x,k·e1> dk] dx .

Making a change of variables when we integrate on R
3, it holds

F(F)(Φs, j ) = Tr [P− j (e1)
∫
R3

F(x)e−is<x,e1> dx]
= Tr [P− j (e1)F̂(se1)]
= h− j (s).

Theorem 5 Let F ∈ L1
τ (R

3) be such that its classical Fourier transform F̂ is inte-
grable, then

F(x) =
m∑

j=−m

∫ ∞

0
F(F)(Φr, j ) Φr, j (x) r

2 dr. (53)
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Proof Using the classical inversion formula, we have that

F(x) =
∫
R3

F̂(y) ei<x,y> dy

=
∫ ∞

0

∫
S2

F̂(rξ) ei<x,rξ> dσ(ξ) r2 dr

=
∫ ∞

0

∫
S2

m∑
j=−m

Tr [Pj (ξ)F̂(rξ)] Pj (ξ) ei<x,rξ> dσ(ξ) r2 dr

=
m∑

j=−m

∫ ∞

0
(Tr [Pj (e1)F̂(re1)])

(∫
S2

Pj (ξ)ei<x,rξ> dσ(ξ)

)
r2 dr

=
m∑

j=−m

∫ ∞

0
Tr [Pj (e1)F̂(re1)] Φr, j (−x) r2 dr

=
m∑

j=−m

∫ ∞

0
F(F)(Φr,− j ) Φr,− j (x) r

2 dr

=
m∑

j=−m

∫ ∞

0
F(F)(Φr, j ) Φr, j (x) r

2 dr.

��
Therefore the Plancherel measure is the product measure of the Plancherel measure
associated to the Gelfand pair and a finite sum of deltas.
The inversion theorem allows us to prove a decomposition of regular matrix-valued
functions in accordance with the main theorem proved in [9].
Let V be a finite dimensional vector space. An End(V )-valued function F on R

n is
said to be a Schwartz function if every such matrix entry defines a scalar Schwartz
function on R

n and we denote F ∈ S(Rn, End(V )). In particular, consider a function
F in S(R3, End(Vτm )) satisfying (8) and set as in (52) F̂ = ∑m

j=−m h j Pj . Notice
that, from the identity

h j (|x |) = Tr(F̂(|x |e1)Pj (e1)),

the scalar functions h j are radial Schwartz functions onR
3, for all−m ≤ j ≤ m, since

the classical Fourier transform of F is a Schwartz function and Pj (e1) is a constant
matrix. Moreover, from the identityF(F)(Φs, j ) = h− j (s), it holds thatF(F) defines
a Schwartz function as a function on the variable s ∈ R>0.

Corollary 3 Let F ∈ S(R3, End(Vτm )) such that (8) holds. Then, it can be written
as

F(x) =
2m∑
k=0

gk(x)Qk(x) (54)

for some infinitely differentiable scalar functions gk.
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Proof Using the Inversion Theorem, the formula of the τ -spherical functions given in
Sect. 3.1 and (28), we get

F(x) =
m∑

j=−m

∫ ∞

0
F(F)(Φr, j ) Φr, j (x) r

2 dr

=
m∑

j=−m

∫ ∞

0
h− j (r)

[
2m∑
k=0

v
(r, j)
k fk(r |x |)Qk(x)

]
r2 dr

=
2m∑
k=0

⎡
⎣ m∑

j=−m

∫ ∞

0
v

(r, j)
k h− j (r) fk(r |x |) r2 dr

⎤
⎦ Qk(x)

=
2m∑
k=0

⎡
⎣ m∑

j=−m

∫ ∞

0
v

(1, j)
k rkh− j (r) fk(r |x |) r2 dr

⎤
⎦ Qk(x)

=
2m∑
k=0

⎡
⎣ m∑

j=−m

v
(1, j)
k

∫ ∞

0
h− j (r) f

|x |
k (r) rk+2 dr

⎤
⎦ Qk(x).

We recall that the functions fk are bounded spherical functions associated to the
Gelfand pairs (SO(2k + 3) � R

2k+3, SO(2k + 3)) with eigenvalue −1 with respect
to the Laplacian operator (and f |x |

k (r) = fk(r |x |) are bounded spherical functions
associated to these Gelfand pairs with eigenvalue−|x |2). Therefore, they are bounded
by 1 (|| fk ||∞ = fk(0) = 1). Using this and the fact that the functions h j are Schwartz
functions, it holds that the functions

gk(x) :=
m∑

j=−m

v
(1, j)
k

∫ ∞

0
h− j (r) fk(r |x |)rk+2dr

are well defined, for all 0 ≤ k ≤ 2m.
Moreover, they are infinitely differentiable by the Lebesgue’s dominated convergence
Theorem. Indeed, for the first derivatives, using (21) we have that for each −m ≤ j ≤
m,

∂

∂xl
[ fk(r |x |)h− j (r)r

k+2] = − fk+1(r |x |)
2k + 3

h− j (r)r
k+4xl ,

and they are integrable functions on the variable r .
Finally, and only as a remark, note that for each 0 ≤ k ≤ 2m, since f |x |

k is a scalar
spherical function of the Gelfand pair (SO(n) � R

n, SO(n)) with n = 2k + 3, the
expression

∫ ∞

0
h− j (r) f

|x |
k (r)rk+2dr =

∫ ∞

0

h− j (r)

rk
f |x |
k (r)r2k+2dr (55)
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is the spherical Fourier transform associated to that pair evaluated at the point |x | of
the function

h− j (r)
rk

. In this way, each smooth function gk can be thought of as the

spherical Fourier transform of a radial function on R
2k+3. ��

5 Appendix

Here we present the computation of the coefficients a j mentioned in Sect. 3.1.
In Sect. 2 we deduced that every matrix-valued polynomial Q j (1 ≤ j ≤ 2m) can be
written as a monic polynomial on Q1 with coefficients in C[|x |2], i.e.

Q j =
{
Q j

1 + b1j r
2Q j−2

1 + · · · + b j/2
j r j I if j is even

Q j
1 + b1j r

2Q j−2
1 + · · · + b( j−1)/2

j r j−1Q1 if j is odd

for some scalars {bkj }k . We are only interested in the coefficients b1j , so let us write

Q j = Q j
1 + b1j r

2Q j−2
1 + lower order terms on Q1. (56)

Applying the operator Dτm to both sides we get

a j Q j−1 = Dτm Q j = Dτm [Q j
1] + 2b j Q

j−1
1 + b jr

2Dτm [Q j−2
1 ]

+ lower order terms on Q1.

Now we want to analyze Dτm [Q j
1]. By induction it holds

Dτm [Q j
1] =

j−1∑
k=0

[
3∑

i=1

dτm(Yi )Q
k
1dτm(Yi )Q

j−1−k
1

]
,

and in order to make more readable the following computations we denote

T (k) :=
3∑

i=1

dτm(Yi )Q
k
1dτm(Yi ).

For k = 0, T (0) = ∑3
i=1[dτm(Yi )]2 = cτm I the Casimir operator of dτm .

For k = 1, T (1) = (1 + cτm )Q1. Indeed, as T (1) = ∑3
i=1 dτm(Yi )Q1(x)dτm(Yi ),

adding ans subtracting
∑3

i=1 Q1(x)dτm(Yi )dτm(Yi ), we get

T (1) =
3∑

i=1

[dτm(Yi ), Q1(x)]dτm(Yi ) + Q1(x)Ωτm

=
3∑

i=1

⎛
⎝ 3∑

j=1

x j
[
dτm(Yi ), dτm(Y j )

]
⎞
⎠ dτm(Yi ) + cτm Q1(x)
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=
3∑

i=1

⎛
⎝ 3∑

j=1

x j dτm([Yi ,Y j ])
⎞
⎠ dτm(Yi ) + cτm Q1(x)

=
3∑

i=1

xidτm(Yi ) + cτm Q1(x)

= Q1(x) + cτm Q1(x)

where [· , ·] denotes the Lie bracket.

Lemma 3 There is a recursive formula associated to T :

T (k + 2) − Q1T (k + 1) = (k + 2)Qk+2
1 − r2

k∑
j=0

T (k − j)Q j
1. (57)

Proof We start by calculating
∑3

i=0[dτm(Yi ), Q1]Qk
1[dτm(Yi ), Q1] in two different

ways

3∑
i=0

[dτm(Yi ),Q1]Qk
1[dτm(Yi ), Q1]

=
3∑

i=0

(dτm(Yi )Q1 − Q1dτm(Yi ))Q
k
1(dτm(Yi )Q1 − Q1dτm(Yi ))

= T (k + 1)Q1 − T (k + 2) − Q1T (k)Q1 + Q1T (k + 1)

and

3∑
i=0

[dτm(Yi ), Q1]Qk
1[dτm(Yi ), Q1]

= (x3dτm(Y2) − x2dτm(Y3))Q
k
1(x3dτm(Y2) − x2dτm(Y3))

+ (x1dτm(Y3) − x3dτm(Y1))Q
k
1(x1dτm(Y3) − x3dτm(Y1))

+ (x2dτm(Y1) − x1dτm(Y2))Q
k
1(x2dτm(Y1) − x1dτm(Y2))

=
3∑

i=0

x2i

3∑
j=0

dτm(Y j )Q
k
1dτm(Y j ) −

∑
i, j

xi x j dτm(Yi )Q
k
1dτm(Y j )

= r2T (k) −
3∑

i=0

xi dτm(Yi )Q
k
1

3∑
j=0

x j dτm(Y j )

= r2T (k) − Qk+2
1 .
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Therefore,

T (k + 2) − Q1T (k + 1) − T (k + 1)Q1 + Q1T (k)Q1 = −r2T (k) + Qk+2
1 .

Since we know the first two values of T , from the last recursion formula we can deduce
that T (k) is a polynomial on r2 and Q1, and therefore T (k) commutes with Q1. This
allows us to rewrite the preceding expression as

T (k + 2) − Q1T (k + 1) = Q1(T (k + 1) − Q1T (k)) − r2T (k) + Qk+2
1

and from here we get

T (k+2)−Qk+1
1 T (1) = Q1T (k+1)−Qk+2

1 T (0)−r2
k∑
j=0

Q j
1T (k− j)+(k+1)Qk+2

1 .

Finally, replacing T (0) and T (1), we obtain (57). ��
As T (k) is a polynomial on r2 and Q1, we can express its first terms by

T (k) = γ 0
k Q

k
1 + γ 1

k r
2Qk−2

1 + lower order terms on Q1. (58)

Comparing the principal coefficients on (57) and (58) we obtain,

γ 0
k+2 − γ 0

k+1 = k + 2 and γ 0
1 − γ 0

0 = (1 + cτm ) − cτm = 1.

Then,

γ 0
j − γ 0

0 =
k∑
j=1

(γ 0
j − γ 0

j−1) =
k∑
j=1

j =
(
k + 1

2

)
= k(k + 1)

2

and so

γ 0
j = cτm +

(
k + 1

2

)
and if k = 0, γ 0

0 = cτm

As a consequence we can write

Dτm Q
j
1 = γ Q j−1

1 + lower order terms on Q1.

with

γ =
j−1∑
k=0

γ 0
k

= cτm +
j−1∑
k=1

(
cτm +

(
k + 1

2

))
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= jcτm +
j−1∑
k=1

(
k + 1

2

)

= jcτm +
(
j + 1

3

)
.

Thus,

Dτm Q
j
1 =

(
jcτm +

(
j + 1

3

))
Q j−1

1 + lower order terms on Q1.

Now taking into account (13) and since every Q j can be written as in (56), comparing
coefficients it results

a j

2 j + 1
= b j − b j+1 and a1 = cτm . (59)

At the same time, note that

a j+1Q j = Dτm [Q j+1] = Dτm

[
Q j+1

1 + b j+1r
2Q j−1

1 + lower order terms on Q1

]

= Dτm Q
j+1
1 + 2b j+1Q

j
1 + b j+1r

2Dτm Q
j−1
1 + lower order terms on Q1

=
(

( j + 1)cτm +
(
j + 2

3

))
Q j

1 + 2b j+1Q
j
1 + lower order terms on Q1.

Comparing coefficients one more time we get

a j+1 = ( j + 1)cτm +
(
j + 2

3

)
+ 2b j+1. (60)

Then, from (59) and (60) it holds

a j+1 − a j = cτm +
(
j + 1

2

)
− 2

a j

2 j + 1

or equivalently,

(2 j + 1)a j+1 − (2 j − 1)a j =
(
cτm +

(
j + 1

2

))
(2 j + 1). (61)

Finally, when we sum over j in (61), the coefficients a j can be calculated as

ak+1 = (k + 1)2

2k + 1

(
cτm + k2 + 2k

4

)
and a1 = cτm .
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