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a b s t r a c t

LetΩ ⊂ R2 be a polygonal domain, and let Li, i = 1, 2, be two elliptic operators of the form

Liu(x) := − div(Ai (x)∇u(x)) + ci (x) u(x) − fi (x) .

Motivated by the results in Blanc et al. (2016), we propose a numerical iterative method to
compute the numerical approximation to the solution of the minimal problem{

min {L1u, L2u} = 0 inΩ,
u = 0 on ∂Ω.

The convergence of the method is proved, and numerical examples illustrating our results
are included.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

LetΩ ⊂ R2 be a polygon with largest interior angle less than or equal to π/2, and let Li, i = 1, 2, be two elliptic operators
of the form

Liu(x) := − div(Ai (x)∇u(x)) + ci (x) u(x) − fi (x) ,

where Ai :=
[
ajk

]
2×2 with ajk ∈ C1(Ω), 0 ≤ ci ∈ L∞(Ω) and fi ∈ Lp (Ω) for some p > 2. Assume also that the operators are

uniformly elliptic, that is, there existΛ, λ > 0 such thatΛ|ξ |2 ≥ ⟨Ai (x) ξ , ξ⟩ ≥ λ|ξ |2 for all ξ ∈ R2.
Although for simplicity we confine our analysis to two-dimensional polygons, one should be able to obtain similar results

for C1,1 domainsΩ in R3, approximatingΩ with a sequence of polyhedronsΩh, proceeding as in [1].
Our interest here is to find a numerical approximation for the problem

(P)
{
min {L1u, L2u} = 0 inΩ,
u = 0 on ∂Ω.

Analogous results can be obtained for{
max {L1u, L2u} = 0 inΩ,
u = 0 on ∂Ω,
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but we concentrate on (P). Notice that, since we assumed uniform ellipticity on the operators L1 and L2, then also
min {L1u, L2u} andmax {L1u, L2u} are uniformly elliptic and hencewe have existence and uniqueness of viscosity solutions to
our problems, see [2]. Also remark that, in spite of the fact that L1 and L2 are assumed to be in divergence form,min {L1u, L2u}
and max {L1u, L2u} are not in general in divergence form.

Maximal and minimal operators appear naturally in the literature as prototypes of fully nonlinear second order PDEs.
For example, when one considers the family of uniformly elliptic second order operators of the form −tr(AD2u) and looks
for maximal operators, one finds the so-called Pucci maximal operators, P+

λ,Λ(D
2u) = maxA∈A − tr(AD2u) and P−

λ,Λ(D
2u) =

minA∈A− tr(AD2u), whereA is the set of uniformly elliptic matrices with ellipticity constant between λ andΛ. This maximal
operator plays a crucial role in the regularity theory for uniformly elliptic second order operators, see [2].

In [3], the authors show that one can obtain the solution to (P) by taking the limit of a sequence constructed iterating
obstacle problems alternating the involved operators L1 and L2 with the previous term in the sequence as obstacle. More
precisely, let u1 be the unique solution of{

L1u1 = 0 inΩ,
u1 = 0 on ∂Ω, (1.1)

and let u2 := O (L2, u1) be the unique solution of the obstacle problem with L2 as operator and u1 as obstacle, that is,

(PL2,u1 ) :=

⎧⎪⎨⎪⎩
u2 ≥ u1 inΩ,
L2u2 ≥ 0 inΩ,
L2u2 = 0 in {u2 > u1} ,

u2 = 0 on ∂Ω;

or equivalently,{
min {L2u2, u2 − u1} = 0 inΩ,
u2 = 0 on ∂Ω.

Inductively, let us define un, n ≥ 2, to be the solution of the obstacle problem

un :=

{
O (L1, un−1) if n is odd,
O (L2, un−1) if n is even.

It was proved in [3, Theorem 1.1] that un is an increasing sequence that converges uniformly to the viscosity solution u of
the problem (P).

In this work, inspired by the ideas in [3], we propose a numerical iterative method to compute an approximation to the
solution to (P). Moreover, we prove that the proposed numerical solution converges to the solution of (P). More precisely,
given some partition Th ofΩ , let us denote by Sh the standard piecewise linear finite element space, and let uh

1 ∈ Sh be the
approximation of the exact solution u1, that is,{

L1uh
1 = 0 inΩ,

uh
1 = 0 on ∂Ω,

where the solution is understood in a suitable weak sense (see Section 2.2). Analogously, we set

uh
n :=

{
Oh (

L1, uh
n−1

)
if n is odd,

Oh (
L2, uh

n−1

)
if n is even,

(1.2)

where byOh
(
L, φh

)
we denote the discretization ofO (L, φ). We remark that uh

n ∈ Sh and the condition uh
n ≥ uh

n−1 is imposed
only at the nodes of the triangulation. For the precise definitions and more details see Section 2.2.

We will show in Corollary 4.2 that if u is the solution of problem (P) and uh
n is given by (1.2), then there exists hn > 0

with hn → 0 such that

lim
n→∞

uhn
n − u


L∞(Ω) = 0.

Let us mention that recently, in [4], the authors study the numerical analysis of second order elliptic Hamilton–Jacobi–
Bellman (HJB) equations that include, as a particular case, the problem (P). We note however that in [4] it is required that
all the coefficients of Li belong to C(Ω), while here we only impose that ci ∈ L∞(Ω) and fi ∈ Lp (Ω) with p > 2. In fact, in
the examples that we include here to illustrate our results, the functions ci and fi are chosen in a way such that ci, fi ̸∈ C(Ω).
Moreover, in Example 3 we present a problem in which our algorithm converges even when fi ̸∈ L2 (Ω) and with the exact
solution of (P) not lying in W 2,2 (Ω). For further references regarding the numerical analysis of (HJB) equations we refer
to [5,6] and references therein.

To finish this introduction we remark that there is a large number of references dealing with numerical approximations
of obstacle problems, we quote the recent papers [7–10] and references therein. Observe that any numerical scheme that
approximates solutions to obstacle problems (including finite elements) can be iterated to obtain a numerical method for
(P). Therefore, the idea presented here is quite flexible. As we have already mentioned, note that, in general, maximal or
minimal operators are fully nonlinear ones (due to the presence of the max or min) and hence they are not in divergence
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form. This makes that classical second order finite element methods are not directly applicable to approximate (P) (instead
one has to use finite differences to approximate this problem directly).

The rest of this article is organized as follows. In Section 2we give the precise formulations for the discrete and continuous
problems. In Section 3 we collect some necessary L∞-error estimates, and we establish a key lemma concerning the stability
of the discrete obstacle problem. In Section 4 we prove our main results, and in the last section we present three numerical
examples illustrating the behavior of our iterative process.

2. Preliminaries

2.1. Weak formulation of the problems

Throughout the paper, we shall denote by ∥·∥p and ∥·∥k,p the usual norms in the spaces Lp(Ω) andW k,p(Ω) respectively.
For i = 1, 2, let Bi : H1 (Ω)× H1 (Ω) → R and Fi : H1 (Ω) → R be given by

Bi (u, v) :=

∫
Ω

⟨Ai∇u,∇v⟩ + ciuv and Fi (v) :=

∫
Ω

fiv.

As usual, a function u ∈ H1
0 (Ω) is called a weak solution of (1.1) if

B1 (u, v) = F1 (v) , for every v ∈ H1
0 (Ω) . (2.1)

The assumptions on the coefficients of the matrix A1 and on c1 guarantee the continuity and coercivity of the bilinear form
B1 in H1

0 (Ω) × H1
0 (Ω) and therefore this elliptic problem admits a unique weak solution u. Moreover, whenΩ is a polygon

with largest interior angle α and 2 ≤ p < (1 − π/(2α))−1, then there exists a constant CE = CE (Ω, p, L1) > 0 such that

∥u∥2,p ≤ CE ∥f1∥p (2.2)

(see [11, Theorem 5.2.7]).
On the other hand, given φ ∈ H1

0 (Ω) ∩ C(Ω), we call a function u := O (Li, φ) ∈ Kφ := {w ∈ H1
0 (Ω) : w ≥ φ} a weak

solution of the obstacle problem
(
PLi,φ

)
if

Bi (u, u − v) ≤ Fi (u − v) , for every v ∈ Kφ . (2.3)

It is well known that the obstacle problem admits a unique solution u, see e.g. [12, Chapter II]. Furthermore, assume that
the largest interior angle of Ω is less than or equal to π/2. Then, for any p ≥ 2, if the source fi ∈ Lp(Ω) and the obstacle
φ ∈ W 2,p(Ω), arguing as in [13, Theorem 6.3], we have that u ∈ W 2,p(Ω) and there exists CO = CO (Ω, p, Li) > 0 such that

∥u∥2,p ≤ CO
(
∥fi∥p + ∥φ∥2,p

)
. (2.4)

2.2. Finite element discretization and formulation of the discrete problems

Let {Th}0<h<1, be a conforming family of triangulations of the domain Ω ⊂ R2, that is, a family of partitions of Ω into
triangles T ∈ Th, such that if two triangles intersect, they do so at a full vertex/edge of both of them. For each element T ∈ Th,
let hT := diam(T ). We shall assume that h := maxT∈ThhT for each mesh Th; and that the family of triangulations {Th}0<h<1 is
shape regular, that is,

sup
h>0

sup
T∈Th

diam(T )
ρT

< ∞,

where ρT is the radius of the largest ball contained in T .
The standard piecewise linear finite element space Sh ⊂ H1(Ω) is defined by

Sh := {v ∈ C(Ω) : v|T is linear ∀ T ∈ Th}.

For the discretization of the continuous problems we consider the space

Sh0 := {v ∈ Sh : v = 0 on ∂Ω}.

Observe that Sh0 ⊂ H1
0 (Ω).

The discrete counterpart of (2.1) reads:

Find uh
∈ Sh0 such that B1

(
uh, vh

)
= F1

(
vh

)
, for every vh ∈ Sh0 . (2.5)

Clearly, this discrete problem has a unique solution for each mesh; the system matrix is not affected by the right-hand side
and is invertible because the assumptions on the coefficients guarantee the coercivity of the bilinear form B1(·, ·) in Sh0 × Sh0 .
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Now, let Ih : C(Ω) → Sh be the Lagrange interpolation operator. In the case of the obstacle problem
(
PLi,φ

)
(i.e., (2.3)),

the discrete formulation is the following:

Find uh
∈ K h

φ such that Bi
(
uh, uh

− vh
)

≤ Fi
(
uh

− vh
)
,

for every vh ∈ K h
φ ,

(2.6)

where K h
φ := {wh

∈ Sh0 : wh
≥ φh

} and φh
:= Ihφ. It is also well known that the problem (2.6) admits a unique solution uh

(see e.g. [14]), which we denote by Oh
(
Li, φh

)
.

3. Stability and error analysis for the discrete problems

In this section we establish some pointwise a priori error estimates for both the elliptic and the obstacle problem, and,
under an additional condition on Th, we prove a key stability result for the discrete obstacle problem with respect to the
obstacle.

In the sequel, we shall denote by C (or Ck) positive constants which are independent of h (but which may depend on the
data of the given problems).

3.1. L∞-error estimates for the elliptic problem

We start with the following lemma concerning the elliptic problem. The proof can be found for instance in [15, Remark
3.25] or [16, Remark 6.2.3].

Lemma 3.1. Let u1 ∈ W 2,2(Ω) be the solution of (2.1) and uh
1 ∈ Sh

0 be the solution of (2.5). Then, there exists C1 > 0 such thatu1 − uh
1


∞

≤ C1h ∥u1∥2,2 . (3.1)

3.2. Stability and L∞-error estimates for the obstacle problem

The goal of this subsection is to prove a stability result and give an analogue pointwise a priori error estimate as the one
given in (3.1) for the discretized obstacle problem. To obtain these results, we have to restrict our analysis to triangulations
of a special kind.

Given a fixed triangulation Th of the domainΩ , denote by x1, . . . , xn+m its vertices, where

xl ∈ ∂Ω ⇔ n + 1 ≤ l ≤ n + m.

Let ϕ1, . . . , ϕn+m be the nodal basis of the space Sh, i.e., the unique basis with

ϕj(xl) = δl,j, 1 ≤ l, j ≤ n + m.

With respect to the nodal basis, a function vh ∈ Sh can be written as

vh =

n+m∑
j=1

vjϕj, with vj = vh(xj) for all j ∈ {1, . . . , n + m}.

Therefore, if vh and wh are functions in Sh,

Bi
(
wh, vh

)
=

n+m∑
l=1

n+m∑
j=1

wlvjBi
(
ϕl, ϕj

)
.

Definition 3.2. Let i = 1, 2. A triangulation Th of the domain Ω is said to satisfy the condition (M) if for all j ̸= l with
j = 1, . . . , n and l = 1, . . . , n + m it holds that

Bi
(
ϕl, ϕj

)
=

∫
Ω

⟨
Ai∇ϕl,∇ϕj

⟩
+ ciϕlϕj ≤ 0. (3.2)

Remark 3.3. It is worth mentioning that condition (M) is strongly related to the discrete maximum principle. It is well
known that this is a sufficient condition for the validity of the discretemaximumprinciple for a fully discrete linear simplicial
finite element discretization of a reaction–diffusion problem, see [17,18]. The validity of the condition (M) is connected with
the dihedral angles of the used simplices and hence it translates into geometric issues. Let us be more precise. Suppose
Ai (x) = ai (x) Id, where Id denotes the identity matrix. For a given triangle T ∈ Th, define the set of indices of basis functions
whose support contains T ,

I (T ) :=
{
j ∈ N : 1 ≤ j ≤ n + m, T ⊂ supp ϕj

}
,
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and let ιT : {1, 2, 3} → I (T ) denote a bijective local numbering map. We also write the vertices of T as xιT (s), s = 1, 2, 3,
and by ϕιT (s) we denote the associated basis functions. We denote by Fs and Ft the two edges of the triangle T opposite to
the vertices xιT (s) and xιT (t). The interior dihedral angle αst between Fs and Ft is defined as αst = π − γst , where γst ∈ [0, π]

is the angle between outward normals ηs and ηt to Fs and Ft , respectively. To stress the dependence on the edges, we will
write cos(Fs, Ft ) for cos(αst ). Finally, denote the proper lengths/areas by |Fs|, |Ft | and |T |, and write σs for the (positive) height
of T above Fs, which satisfies σs =

2|T |

|Fs|
, relating the area of T to the length of its edges. With this notation, for s, t ∈ {1, 2, 3}

with s ̸= t , we can express the key integrals as follows:∫
T
ϕιT (s)ϕιT (t) =

|T |

12
and

∫
T
ai

⟨
∇ϕιT (s),∇ϕιT (t)

⟩
=

−cos(Fs, Ft )
σsσt

∫
T
ai.

Using the above notation and writing aTi :=
∫
T ai, we have that a triangulation Th satisfies condition (M) if for each T ∈ Th,

− aTi
cos(Fs, Ft )
σsσt

+ ∥ci∥∞

|T |

12
≤ 0 for s, t ∈ {1, 2, 3} with s ̸= t . (3.3)

In general, condition (3.3) is satisfied provided all dihedral angles are acute and the mesh is sufficiently fine. In the case of
the Poisson problem or pure diffusion problem (ci ≡ 0), the crucial condition (3.3) reduces to

cos(Fs, Ft ) ≥ 0. (3.4)

This corresponds to the well-known requirement of nonobtuseness of all dihedral angles in the triangulation Th. In [18], a
condition sharper than (3.3) is given in terms of the stiffness matrices.

In order to prove the stability of the discrete obstacle problem with respect to the obstacle, we need to introduce
the concept of discrete supersolutions for problem (2.6). We note that the following definition extends the notion of
supersolutions utilized in [12] to the discrete setting.

Definition 3.4. A function gh
∈ Sh is a discrete supersolution of problem (2.6) if it holds:

(i) Bi
(
gh, vh

)
≤ Fi

(
vh

)
, for every vh ∈ Sh0 with vh ≤ 0,

(ii) gh
≥ φh inΩ ,

(iii) gh
≥ 0 on ∂Ω.

Thenext two lemmas are adaptations of [1, Theorems8 and9],where similar results are proved in the case of the Laplacian
operator. Let us point out that the continuous counterpart of Lemma 3.5 can be found in [12, Theorem 6.4, Chapter II].

Lemma 3.5. Assume that Th satisfies the condition (M). Let uh be the solution of (2.6) with obstacle φh
∈ Sh0 . Then, for every

discrete supersolution gh of (2.6) it holds that uh ≤ gh inΩ .

Proof. Let vh ∈ Sh0 be defined by

vh(xl) := min(uh(xl), gh(xl)), for every l ∈ {1, . . ., n + m},

where {xl} denotes the set of all vertices of the triangulation Th. It is clear from the construction that φh
≤ vh ≤ uh, and

therefore vh ∈ K h
φ .

Now, since uh is the solution of problem (2.6), it satisfies

Bi
(
uh, uh

− vh
)

≤ Fi
(
uh

− vh
)
, (3.5)

and on the other hand, from the first property in Definition 3.4 we have that

Bi
(
gh, uh

− vh
)

≥ Fi
(
uh

− vh
)
. (3.6)

Then, subtracting (3.6) from (3.5) we obtain

Bi
(
uh

− gh, uh
− vh

)
≤ 0.

Let yl := uh(xl) − gh(xl) for l = 1, . . . , n + m. Then,

0 ≥ Bi
(
uh

− gh, uh
− vh

)
=

n+m∑
l=1

yl max(0, yl)Bi (ϕl, ϕl)+

n+m∑
l̸=j

yl max(0, yj)Bi
(
ϕl, ϕj

)
=

n+m∑
l=1

max(0, yl)2Bi (ϕl, ϕl)+

∑
l̸=j, j=1,...,n,
l=1,...,n+m

yl max(0, yj)Bi
(
ϕl, ϕj

)
.

(3.7)
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Now, from the condition (M) we know that for all l ̸= jwith j = 1, . . . , n and l = 1, . . . , n + m it holds that

yl max(0, yj)Bi
(
ϕl, ϕj

)
≥ max(0, yl)max(0, yj)Bi

(
ϕl, ϕj

)
.

Thus, (3.7) implies

0 ≥

n∑
l=1

n∑
j=1

max(0, yl)max(0, yj)Bi
(
ϕl, ϕj

)
= Bi

(
uh

− vh, uh
− vh

)
≥ 0

and consequently

uh(xl) − vh(xl) = max(0, uh(xl) − gh(xl)) = 0 ∀ l ∈ {1, . . ., n + m}.

Using again the piecewise linearity of the involved functions, we deduce uh
≤ gh inΩ and this ends the proof. ■

Now, we prove a key stability result for the discrete obstacle problem with respect to the obstacle. This lemma will be
useful in the next section.

Lemma 3.6. Assume Th is a triangulation satisfying condition (M). Let ψ, φ be two obstacles in Sh0 , and let uh
ψ := Oh (Li, ψ) and

uh
φ := Oh (Li, φ). Then,uh

ψ − uh
φ


∞

≤ ∥ψ − φ∥∞ .

Proof. Let gh
:= uh

φ + ∥ψ − φ∥∞. Then, it clearly holds that

gh
∈ Sh, gh

≥ 0 on ∂Ω, and gh
≥ uh

φ + ψ − φ ≥ ψ.

From the definition of the bilinear form Bi and the variational inequality (2.6), for all vh ∈ Sh0 with vh ≤ 0 inΩ , we have
that

Bi
(
gh, vh

)
≤ Bi

(
uh
φ, v

h)
= Bi

(
uh
φ, u

h
φ −

(
uh
φ − vh

))
≤ Fi

(
vh

)
.

Thus, gh is a discrete supersolution for the discrete obstacle problem with obstacle ψ . Hence, by Lemma 3.5, we obtain
uh
ψ ≤ gh

= uh
φ + ∥ψ − φ∥∞ inΩ and therefore,

uh
ψ − uh

φ ≤ ∥ψ − φ∥∞ inΩ.

Since interchanging the roles of ψ and φ yields

uh
φ − uh

ψ ≤ ∥ψ − φ∥∞ inΩ,

the lemma follows. ■

Let us observe that the estimate in the above lemma holds also in the continuous setting for similar obstacle problems,
see [12, Theorem 8.5, Chapter 4].

We conclude this section with the following pointwise a priori error estimate for the obstacle problem, for a proof see
e.g. [13,14].

Lemma 3.7. Let Th be a triangulation satisfying condition (M) and an obstacle φ ∈ W 2,p(Ω), p > 2. Let u ∈ W 2,p(Ω) be the
solution of (2.3), and let uh

∈ Sh0 be the solution of (2.6). Then there exists a constant CD > 0 such thatu − uh


∞
≤ CDh2−2/p

|log h|
(
∥u∥2,p + ∥φ∥2,p

)
.

4. Convergence of the discrete iteration

We are now in position to prove our main results. Recall that u1 and uh
1 are the solutions of (2.1) and (2.5) respectively,

and that for n ≥ 2,

un :=

{
O (L1, un−1) if n is odd,
O (L2, un−1) if n is even,

uh
n :=

{
Oh (

L1, uh
n−1

)
if n is odd,

Oh (
L2, uh

n−1

)
if n is even.

(4.1)

Theorem 4.1. Let {Th}0<h<1 be a family of triangulations satisfying condition (M). Let un ∈ W 2,p(Ω), p ≥ 2, and uh
n ∈ Sh0 be as

in (4.1). Then, for all fixed n ≥ 2,

lim
h→0+

uh
n − un


∞

= 0.
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Proof. For n ≥ 2, let ũh
n ∈ Sh0 be defined by

ũh
n :=

{
Oh (L1, Ihun−1) if n is odd,
Oh (L2, Ihun−1) if n is even.

(4.2)

That is, ũh
n is the solution of the discrete obstacle problem with obstacle Ihun−1. By Lemma 3.7 we have that̃uh
n − un


∞

≤ CDh2−2/p
|log h|

(
∥un∥2,p + ∥un−1∥2,p

)
. (4.3)

Taking into account Lemma 3.6 and (4.3) we deduce thatuh
n − un


∞

≤
uh

n − ũh
n


∞

+
̃uh

n − un


∞

≤
uh

n−1 − Ihun−1


∞

+ CDh2−2/p
|log h|

(
∥un∥2,p + ∥un−1∥2,p

)
≤

uh
n−1 − un−1


∞

+ ∥un−1 − Ihun−1∥∞

+ CDh2−2/p
|log h|

(
∥un∥2,p + ∥un−1∥2,p

)
.

Now, for any v ∈ W 2,p(Ω), p ≥ 2, there exists a constant CL > 0 such that the Lagrange interpolation satisfies the following
estimate (see [19, Remark 4.4.27]):

∥v − Ihv∥∞ ≤ CLh2−2/p
∥v∥2,p .

Let us now set C := max (2, CD, CL, CO, CE, C1). We haveuh
n − un


∞

≤
uh

n−1 − un−1


∞

+ Ch2−2/p [
∥un−1∥2,p + |log h|

(
∥un∥2,p + ∥un−1∥2,p

)]
.

Repeating this n − 1 times and applying Lemma 3.1 we arrive atuh
n − un


∞

≤
uh

1 − u1


∞

+ Ch2−2/p
n−1∑
j=1

[uj

2,p + |log h|

(uj+1

2,p +

uj

2,p

)]
≤

uh
1 − u1


∞

+ 3Ch2−2/p
|log h|

n∑
j=1

uj

2,p .

Also, from (3.1) and (2.2),uh
1 − u1


∞

≤ C1h ∥u1∥2,2

≤ CEC1h ∥f1∥2 .

On the other hand, calling f := max (|f1| , |f2|) and using (2.4) we have
n∑

j=1

uj

2,p ≤ ∥u1∥2,p

n−1∑
j=0

C j
O + ∥f ∥p

n−1∑
j=1

(n − j) C j
O

≤ ∥f ∥p

n∑
j=1

(n + 1 − j) C j.

Therefore, since ∥f ∥2 ≤ CΩ ∥f ∥p with CΩ := |Ω|
1
2 −

1
p and C ≥ 2, for all h > 0 small enough it holds thatuh

n − un


∞
≤ C2h ∥f ∥2 + 3h2−2/p

|log h| ∥f ∥p

n∑
j=1

(n + 1 − j) C j+1

≤ h ∥f ∥p

⎡⎣CΩC2
+ 3 |log h|

n∑
j=1

(n + 1 − j) C j+1

⎤⎦
≤ 4h ∥f ∥p |log h|

n∑
j=1

(n + 1 − j) C j+1

= 4h ∥f ∥p |log h|
Cn+2

− nC2

C − 1
≤ 8h ∥f ∥p |log h| Cn+1. (4.4)

Finally, letting h → 0+ the theorem follows. ■
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As a direct consequence of the above theorem and the convergence result in [3], we have the following corollary. Let us
point out that in [3] the solutions are considered in the viscosity sense. However, since our weak solutions un lie inW 2,p (Ω),
p ≥ 2, an immediate application of the strong maximum principle for strong solutions (e.g. [20, Theorem 9.6]) shows that
they are also viscosity solutions (for general theory of viscosity solutions we refer the reader to [21,22]).

Corollary 4.2. Let u be the solution of (P) and let uh
n be as in (4.1). Then, there exists hn > 0 with hn → 0 such that

lim
n→∞

uhn
n − u


∞

= 0.

Proof. We observe thatuhn
n − u


∞

≤
uhn

n − un


∞
+ ∥un − u∥∞ .

Let ε > 0. By the convergence result Theorem 1.1 in [3], there exists n0 ∈ N such that, for all n ≥ n0,

∥un − u∥∞ ≤
ε

2
.

Taking into account (4.4), it is enough to choose hn such that

hn |log hn| ≤
ε

16 ∥f ∥p Cn+1 for all n ≥ n0

and the corollary is proved. ■

5. Numerical experiments

In this section we consider three different numerical examples that document the behavior of the iterative process. We
point out that we shall consider simple problems in which we know the exact solution of (P), in order to be able to compare
such solution with the numerical approximation.

In the first part we shall test the performance of our algorithmwhenwe vary h and fix n, and vice versa; and in the second
part we consider in all the examples the same sequence hn and we analyze the asymptotic behavior of

uhn
n − u


∞

.
Let us add that in order to solve each obstacle problemduring the iterative processwe followed the augmented Lagrangian

method proposed in [23, p. 466–467].
In order to avoid repetitions, for the rest of the section we fix

ω := (0, 1) and Ω := ω × ω.

Example 1. We consider the following operators,

L1u := −∆u + f1 (x, y) , L2u := − div(A (x, y)∇u) + f2 (x, y) ,

where

f1 (x, y) :=

⎧⎪⎪⎨⎪⎪⎩
20 (1 − 2xy) if x ∈

(
0,

1
2

)
× ω,

−54 (yr (y)+ r (x) (3y − 1)) if x ∈

[
1
2
, 1

)
× ω,

f2 (x, y) :=

⎧⎪⎪⎨⎪⎪⎩
27 (g (x, y)+ h (x, y)) if x ∈

(
0,

1
2

]
× ω,

27 (g (x, y)+ h (x, y))+ 10 if x ∈

(
1
2
, 1

)
× ω,

r (t) := t (1 − t) ,

g (x, y) := r (x)
(
2 − 6y + 4xy − 9xy2

)
,

h (x, y) := yr (y) (y − 2 − 4xy) ,

A (x, y) :=

(
1 + xy 0

0 1 + xy

)
.

One can see that the function

u (x, y) := 27r (x) yr (y)

satisfies that L1u = 0 ≤ L2u if x ≥ 1/2 and L2u = 0 ≤ L1u if x < 1/2, and thus it is the solution of the problem

(P1) :=

{
min {L1u, L2u} = 0 inΩ,
u = 0 on ∂Ω.
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Fig. 1. (a) Triangulation Th considered in Examples 1 and 3. (b) Triangulation Th considered in Example 2.

Fig. 2. (a)–(d) Iterative process considering h =

√
2

40 fixed (41 nodes at each boundary side) and varying n from 1 to 50. (a) Exact solution u(x, y) =

27xy2 (1 − x) (1 − y). (b) Approximated solution uh
1 . (c) Approximated solution uh

50 . In spite of starting with poor initial data, the algorithm is able to give
a good approximation of the exact solution. (d) Error

u − uh
n


∞

versus the number of iterations n.

For this first example, we consider a uniform fixedmeshwithN+1 nodes at each boundary, dividing the unit square into
N2 subsquares and then each subsquare is divided into two triangles. Therefore, we have a triangulation Th with h =

√
2

N .
See Fig. 1(a).

Let us observe that here, since L1 and L2 are pure diffusion problems (i.e., c1 = c2 ≡ 0), the triangulation Th satisfies (3.4)
and the condition (M) holds.
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Fig. 3. Plot of the errors
u − uh

n


∞
. We considered n = 50 fixed and varied the mesh diameter h. In Examples 1 and 3 (Figs. (a) and (c)) we used h =

√
2

N
from N = 10 to N = 90; in Example 2 (Fig. (b)) we used h =

1
N from N = 10 to N = 90.

Next we examine the performance of the iterative process for different values of h and n.
In first place, we ran the algorithm in order to get the numerical solution uh

n and we compared it with the known exact
solution u. In Fig. 2 we show N = 40 and n = 50: at the top left the exact solution u, at the right the approximate solution
uh
1, and at the bottom left uh

50. One can observe that, in spite of starting with poor initial data, the algorithm is able to give a
good approximation of the exact solution. Moreover, at the bottom right we plot the

u − uh
n


∞

error versus the number of
iterations, and we can see how this error decreases when n increases.

Finally, in Fig. 3(a), we plot
u − uh

50


∞

for several choices of h. One can also observe, as expected from the theoretical
results, that this error gets smaller as h decreases.

Example 2. We consider the operators

L1u := −∆u + c1 (x, y) u + f1 (x, y) , L2u := −∆u + c2 (x, y) u + f2 (x, y) ,

where

c1 (x, y) :=

⎧⎪⎪⎨⎪⎪⎩
π2 if (x, y) ∈

(
0,

3
10

]
× ω,

2π2 (1 − x) if (x, y) ∈

(
3
10
, 1

)
× ω,



J.P. Agnelli et al. / Journal of Computational and Applied Mathematics 342 (2018) 133–146 143

Fig. 4. (a)–(d) Iterative process considering h =
1
40 fixed and varying n from 1 to 50. (a) Exact solution u(x, y) = sin(πx)sin(πy). (b) Approximated solution

uh
1 . (c) Approximated solution uh

50 . In spite of starting with a poor initial data, the algorithm is able to give a good approximation of the exact solution. (d)
Error

u − uh
n


∞

versus the number of iterations n.

c2 (x, y) :=

⎧⎪⎪⎨⎪⎪⎩
2π2x if (x, y) ∈

(
0,

3
10

)
× ω,

π2 if (x, y) ∈

[
3
10
, 1

)
× ω,

f1 (x, y) :=

⎧⎪⎪⎨⎪⎪⎩
−3π2 sin(πx) sin(πy) if (x, y) ∈

(
0,

3
10

]
× ω,

0 if (x, y) ∈

(
3
10
, 1

)
× ω,

f2 (x, y) :=

⎧⎪⎪⎨⎪⎪⎩
0 if (x, y) ∈

(
0,

3
10

)
× ω,

−3π2 sin(πx) sin(πy) if (x, y) ∈

[
3
10
, 1

)
× ω.

One can check that the function

u (x, y) := sin(πx) sin(πy)
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Fig. 5. (a)–(d) Iterative process considering h =

√
2

40 fixed and varying n from 1 to 50. (a) Exact solution u(x, y) = ũ (x) y (1 − y). (b) Approximated solution
uh
1 . (c) Approximated solution uh

50 . In spite of starting with a poor initial data (and although u ̸∈ W 2,2 (Ω) and f1, f2 ̸∈ L2 (Ω)), the algorithm is able to give
a good approximation of the exact solution. (d) Error

u − uh
n


∞

versus the number of iterations n.

satisfies that L1u = 0 ≤ L2u if x ≤ 3/10 and L2u = 0 ≤ L1u if x > 3/10, and therefore u is the solution of the problem

(P2) :=

{
min {L1u, L2u} = 0 inΩ,
u = 0 on ∂Ω.

For this second example, we built a triangulation inwhich for every T the interior angles are acute.We consider a uniform
fixedmeshwithN+1nodes at eachboundary, dividing theunit square intoN2 subsquares and then each subsquare is divided
into four triangles. Therefore, we have a triangulation Th with h =

1
N . See Fig. 1(b). We point out that a simple computation

shows that for all h > 0 small enough, (3.3) holds and therefore the triangulation Th satisfies the condition (M).
Here we examined the performance of the iterative process for different values of h and n, doing a similar analysis to the

one made for Example 1. The results are shown in Figs. 4 and 3(b).

Example 3. We shall present a last example in which the exact solution u ̸∈ W 2,2 (Ω) (and thus, u ̸∈ W 2,p (Ω) for any
p > 2) and the coefficients f1, f2 ̸∈ L2 (Ω). Let us first define

ũ (x) :=

⎧⎪⎪⎨⎪⎪⎩
32(x (1 − x))

3
2 if x ∈

[
0,

1
2

]
,

4(4(x −
1
2
)3 − 6(x −

1
2
)2 + 1) if x ∈

[
1
2
, 1

]
.
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Fig. 6. Plot of the errors
u − uhn

n


∞

considering hn :=

√
2

2n . One can observe that for all the previous examples it holds that
uhn

n − u


∞

< 1
n for all n.

A few computations yield the following facts: ũ > 0 in ω, ũ = 0 on ∂ω, ũ ∈ C2 (ω) ∩ C1 (ω) and ũ ̸∈ W 2,2 (ω) (and so,
ũ ̸∈ W 2,p (ω) for any p > 2). We now consider the operators

L1u := −∆u + f1 (x, y) , L2u := −∆u + f2 (x, y) ,

where

f1 :=

⎧⎪⎨⎪⎩
24

(
8x2 − 8x + 1

)
r (y)

√
r (x)

− 64r(x)
3
2 if (x, y) ∈ (0,

1
2
] × ω,

20 if (x, y) ∈ (
1
2
, 1) × ω,

f2 :=

⎧⎪⎨⎪⎩
24

(
8x2 − 8x + 1

)
r (y)

√
r (x)

if (x, y) ∈ (0,
1
2
) × ω,

96(x − 1)r (y)− 8(4(x −
1
2
)3 − 6(x −

1
2
)2 + 1) if (x, y) ∈ [

1
2
, 1) × ω,

r (t) := t (1 − t) .

It can be verified that the function

u (x, y) := ũ (x) y (1 − y)
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satisfies that L1u = 0 ≤ L2u if x ≤ 1/2 and L2u = 0 ≤ L1u if x > 1/2, and so u is the solution of the problem

(P3) :=

{
min {L1u, L2u} = 0 inΩ,
u = 0 on ∂Ω.

In this example we consider a uniform fixed mesh as in Example 1. As there, the condition (M) holds. We examined the
performance of our iterative process for different values of h and n, doing an analysis similar to the onemade in the previous
examples. The results are shown in Figs. 5 and 3(c).

To conclude this section, we recall that Corollary 4.2 yields the existence of some hn → 0+ such that limn→∞

uhn
n − u


∞

= 0. Utilizing in the three examples the mesh in Fig. 1(a), and choosing hn :=

√
2

2n , we see thatuhn
n − u


∞
<

1
n

for all n,

see Fig. 6. In particular, the asymptotic behavior of the iterative process is, at least, O( 1n ). Let us also note that in Example 2,
although the mesh utilized here does not fulfill (3.3), the algorithm performs as in the other two examples.
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